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A two dimensional model of chiral bosons in noncommutative field space is considered in the
framework of the Batalin-Fradkin-Tyutin Hamiltonian embedding method converting the second-class
constrained system into the first-class one. The symmetry structure associated with the first-class
constraints is explored and the propagation speed of fields is equivalent to that of the second-class
constraint system.
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I. INTRODUCTION

The model of chiral bosons in two dimensions is basi-
cally a constrained system. Although it is simple, the study
of its structure may give us helpful insights in understand-
ing various models with some chiral structure, like theories
of self-dual objects appearing in superstring theory. One of
the major issues about the chiral boson model is how to
treat its constraint structure consistently in the canonical
Hamiltonian formalism. Because of the interesting feature
of the model itself and its implicit relevance to other
models, there have been lots of studies from various view-
points, which are based largely on three approaches, the
Floreanini-Jackiw (FJ) method [1], the method with linear
constraint [2], and the Batalin-Fradkin-Tyutin (BFT) em-
bedding method [3].

The usual playground for the study of chiral bosons is
assumed to be restricted to the commutative field space. On
the other hand, there is some argument about the possibil-
ity that some noncommutative effects could take place in
ultra high-energy physics without violating Lorentz
invariance. Motivated by this, one may consider the chiral
bosons in the noncommutative field space, based on
achievements of the previous studies. Indeed, the construc-
tion of the corresponding model has been given, and the
problems on the bosonization and Lorentz invariance have
been studied in Ref. [4].

Having the model of chiral bosons in the noncommuta-
tive field space, it is natural to ask about its canonical
structure and investigate, if any, its difference from the
commutative model. In this article, we study the canonical
structure of the model in the framework of the BFT embed-
ding method [3]. The BFT method converts the second-
class constrained system into the first-class one by intro-
ducing auxiliary fields and hence extending the phase

space, and allows one to have local symmetries associated
with the first-class constraints (See Refs. [5–8] for chiral
bosons, Refs. [9–15] for the Chern-Simons model, and
Ref. [16] for the noncommutative D-brane system). The
resulting full first-class constrained system in the extended
phase space usually has many fields (infinite number of
fields in our case). We consider the propagation speed of
each field and investigate the consistency in Lorentz
invariance.

The organization of this paper is as follows. In the next
section, we introduce the model of chiral boson in non-
commutative field space and take into account of its
second-class constraints via the method of symplectic
structure [1]. The BFT embedding of the model follows
in Sec. III and the second-class constraints are fully con-
verted into the first-class one in the extended phase space.
The resulting extended system is shown to have infinite
local symmetries. At the end, from the equations of motion
of the fields, the propagation speed in the noncommutative
field space is considered. Conclusions are given in Sec. IV.

II. NONCOMMUTATIVE CHIRAL BOSON

The noncommutativity in field space is basically repre-
sented by the nonvanishing commutator between different
elementary fields. The action for a theory in noncommu-
tative field space is constructed in a way that such non-
commutativity is realized. The theory of chiral boson in
noncommutative field space has been constructed in
Ref. [4]. In order to study the theory of a chiral boson in
a noncommutative field space, the Poisson brackets in this
model have been deformed by the noncommutative pa-
rameter �. In this case, the action is given by

 S �
Z
d2x

�
�

2

1� �2
_�a�ab�

0
b ��

0
a�
0
a

�
; (1)

where the overdot and the prime denote the derivatives
with respect to time and space, respectively [4]. The left
(right) moving field is represented by the subscript a with
positive (negative) sign. The 2� 2 matrix �ab encodes the
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noncommutativity of the field space with the noncommu-
tative parameter � and is defined by

 �ab �
a
2
���ab � �ab� �

1

2
�1 �
� 1

� �
; (2)

the inverse of which is

 ��1
ab �

4

1� �2 �ab: (3)

Note that for the �! 0 limit, the action reduces to the FJ
action [1].

The system (1) is basically a constrained one, since the
canonical momentum �a of the field �a does not contain
any time evolution of the field as can be easily seen by
�a � �

2
1��2 �ab�

0
b:The primary constraints are then

 �a � �a �
2

1� �2 �ab�0b � 0; (4)

and the evaluation of the Poisson bracket between them
gives f�a�x�;�b�y�g �

4
1��2 �ab@x��x� y�; from which

we see that the primary constraints are in the second class.
The time evolution of primary constraints by using the
primary Hamiltonian defined by Hp � Hc �

R
dx�a�a,

where Hc is the canonical Hamiltonian corresponding to
the action (1),

 Hc �
Z
dx�0a�

0
a; (5)

results in fixing the Lagrangian multiplier fields �a.
Therefore, the primary constraints (4) form a full set of
constraints for the system (1).

All the constraints are in the second class and hence a
proper procedure is required to implement them consis-
tently. Although the usual Dirac procedure [17] may be
considered, we take a smarter method based on the sym-
plectic structure developed by Floreanini and Jackiw (FJ)
[1], which is basically concerned with symplectic struc-
ture. Since our system (1) is just the first order one, the
symplectic structure method is especially suitable. The
symplectic structure, say Cab, is read off from the first
order term in time derivative, and its precise form in the
present case is obtained as Cab �

4
1��2 �ab@x��x� y�. The

so-called FJ bracket between the field variables �a is
simply given by the inverse of the symplectic structure,
which is C�1

ab �x; y� � �ab
1
@x
��x� y� � �ab��x� y�,

where ��x� y� is the step function. The resulting non-
vanishing brackets between elementary fields are then
obtained as follows. f�a�x�; �b�y�gFJ � �ab��x� y�,
f�a�x�;�b�y�gFJ �

1
2�ab��x� y�, f�a�x�;�b�y�gFJ �

� 1
1��2 �ab@x��x� y�. They are equivalent to the Dirac

brackets and they recovers the conventional brackets for
chiral bosons for the �! 0 limit.

III. BFT EMBEDDING

In this section, we consider the system (1) in the frame-
work of the BFT Hamiltonian embedding method and

convert it into the first-class constrained system. For nota-
tional convenience, we replace the fields �a and �a with
��0�a and ��0�

a , respectively. The second-class constraints
(4) are then written as

 ��0�a � ��0�
a �

2

1� �2 �ab�
�0�0
b � 0: (6)

In order to convert these constraints into first-class ones,
we first extend the phase space by introducing auxiliary
fields ��1�a (one auxiliary field for each constraint), which
satisfies

 f��1�a �x�; �
�1�
b �y�g � �ab�x; y�; (7)

with �ab determined later on.
In the extended phase space, a proper modification of

constraints ��0�a is given by

 

~� �0�
a � ��0�a �

X1
k�1

!�1;k�a ; (8)

which has to satisfy the boundary condition ~��0�a j��1�a �0
�

��0�a and the requirement of strong involution,
f ~��0�a ; ~��0�b g � 0, to accomplish the BFT embedding. Here
we would like to note that the strong involution is valid
only for the Abelian theory, which is the case at hand. As
for the non-Abelian case, the weak involution should be
considered. The correction !�1;k�a at a given order k is
assumed to be proportional to ���1�a �k. To begin with, we
consider the first order correction which is given by
!�1;1�a �

R
dyXab�x; y��

�1�
b . It is not so difficult to show

that the requirement of strong involution leads us to have
the simple solution for �ab of Eq. (7) and Xab as

 �ab�x; y� � �ab��x� y�; (9)

 Xab�x; y� �
4

1� �2 �ab@x��x� y�: (10)

We see that the constraints (8) become the first-class one
already at the level of the first correction. This means that it
is not necessary to consider higher order corrections and
hence we can safely set them to zero. The resulting first-
class constraint in the phase space extended by introducing
the fields ��1�a is then

 

~� �0�
a � ��0�

a �
2

1� �2 �ab��
�0�
b �
0 �

4

1� �2 �ab��
�1�
b �
0:

(11)

The canonical Hamiltonian H�0�c � Hc of Eq. (5) is the
one only for the fields ��0�a . Similar to the modification of
constraints in Eq. (8), it should also be modified properly in
the extended phase space. The new canonical Hamil-
tonian is defined by H�1�c � H�0�c � h�1�, where h�1� is de-
termined from the involutive condition f ~��0�a ; H

�1�
c g � 0. In

the present case, what we get is

BRIEF REPORTS PHYSICAL REVIEW D 75, 087702 (2007)

087702-2



 H�1�c �
Z
dx����0�a �0 � ��

�1�
a �0����

�0�
a �0 � ��

�1�
a �0�: (12)

Given this Hamiltonian, we can obtain the corresponding
Lagrangian by considering the partition function to explore
the constraint structure in the extended phase space. The
phase space partition function is given by

 Z �
Z Y

a�	

Y
n�0;1

D��n�a D��0�
a �
 ~�

�0�
a ��
�

�0�
a �

� detjf ~��0�a ;�
�0�
a gjeiS

�1�
; (13)

where
 

S�1� �
Z
d2x

�
��0�
a _��0�a �

1

2

Z
dy��1�a �x���1

ab �x; y� _��1�b �y�
�

�
Z
dtH�1�c ; (14)

and ��0�a are gauge fixing conditions to make the nonvan-
ishing determinant of ~��0�a and ��0�a . Through the usual
procedure of path integration with respect to the momenta
��0�
a and by noticing from Eq. (9) ��1

ab �x; y� �
4

1��2 �ab@x��x� y�, the Lagrangian density [S�1� �R
d2xL�1�] is obtained as

 L �1� � �
2

1� �2 �
_��0�a �ab��

�0�
b �
0 � _��1�a �ab��

�1�
b �
0�

� ���0�a �0��
�0�
a �0 � ��

�1�
a �0��

�1�
a �0

�
4

1� �2
_��0�a �ab��

�1�
b �
0 � 2���0�a �0��

�1�
a �0: (15)

From this Lagrangian, the canonical momenta conjugate to
��0�a and ��1�a are derived as ��0�

a � �
2

1��2 �ab��
�0�
b �
0 �

4
1��2 �ab��

�1�
b �
0, ��1�

a � �
2

1��2 �ab��
�1�
b �
0, which lead to

the following constraints:
 

~��0�a � ��0�
a �

2

1� �2 �ab��
�0�
b �
0

�

�
��1�
a �

2

1� �2 �ab��
�1�
b �
0

�
� 0; (16)

 ��1�a � ��1�
a �

2

1� �2 �ab��
�1�
b �
0 � 0; (17)

where the constraint ~��0�a has been rewritten by using the
constraint ��1�a . The time evolution of these constraints via
the primary Hamiltonian based on H�1�c gives no more
constraints and thus we see that ~��0�a and ��1�a form a full
set of constraints for the system described by L�1�.

The Poisson bracket structure between the constraints,
Eqs. (16) and (17), shows that ��1�a are in second-class,
while ~��0�a are the first-class constraints as expected. This
means that the system in the extended phase space is not a
fully first-class constrained one and the procedure of BFT
embedding is not yet completed. At this point, we observe

that ��1�a is exactly the same as ��0�a in Eq. (6) if ��0�a and
��0�
a are substituted for ��1�a and ��1�

a , respectively. By
introducing another auxiliary field, say ��2�a , and taking
the same steps from Eq. (6) to Eq. (17), we can convert ��1�a
into the first-class constraints ~��1�a . However, the canonical
momenta ��2�

a of ��2�a give new constraints ��2�a which are
in the second-class. It is necessary to introduce the third
auxiliary fields ��3�a , and the story continues forever. We
note that this kind of infinite dimensional extended phase
space appears also in the study of Abelian Chern-Simons
theory [14].

Then, the infinite repeat of the BFT embedding method
gives us finally the canonical Hamiltonian of the fully first-
class constrained system, which is

 

~H c �
Z
dx

X1
n�0

X1
m�0

���m�a �0��
�n�
a �0: (18)

The corresponding Lagrangian is obtained as
 

L �
X1
n�0

�
�

2

1� �2
_��n�a �ab��

�n�
b �
0 � ���n�a �0��

�n�
a �0

�

� 2
X1
n�1

Xn�1

m�0

�
�

2

1� �2
_��m�a �ab��

�n�
b �
0

� ���m�a �0��
�n�
a �0

�
: (19)

From the canonical momenta ��n�
a conjugate to the fields

��n�a ,

 ��n�
a � �

2

1� �2 �ab��
�n�
b �
0 �

4

1� �2 �ab

X1
m�n�1

���m�b �
0;

(20)

we get the constraints
 

~��n�a � ��n�
a �

2

1� �2 �ab��
�n�
b �
0

�

�
��n�1�
a �

2

1� �2 �ab��
�n�1�
b �0

�
� 0; (21)

which are in first-class, as it should be. It can be easily
checked that the constraints (21) satisfies f ~��n�a �x�; ~Hcg �
0.

Now we are in a position to be able to investigate new
local symmetries of the first-class constrained system (19).
The total action is written as S �

R
d2x

P
1
n�0 ��n�

a _��n�a �R
dt ~Hc �

R
d2x

P
1
n�0 �

�n�
a

~��n�a , where ��n�a ’s are Lagrange
multipliers. It can be shown that the action is invariant
under the following local gauge transformations:

 ���n�a � ��
�n�
a � �

�n�1�
a ; (22)

 ���n�
a � �

2

1� �2 �ab
��
�n�
a �0 � ��

�n�1�
a �0�; (23)
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 ���n�a � � _��n�a ; (24)

where ��n�a �x� are infinitesimal gauge parameters with
���1�
a � 0 and n is non-negative integer valued. As is

well established, these local symmetries are generated by
the first-class constraints. Since there are infinite number of
first-class constraints in the present situation, the model we
are considering has infinite local symmetries.

Finally, we consider the propagation of fields in the
noncommutative field space. The equations of motion for
the fields ��n�a are derived from the variation of the
Lagrangian (19) as

P
1
n�0


_��n�a � 2�ab��
�n�
b �
0� � 0,

where Eq. (3) has been used. In light cone coordinates
x	 ( � �ct	 x�=2), these equations split into two partsP
1
n�0 @��

�n�
� � ��

P
1
n�0��

�n�
� �
0,

P
1
n�0 @��

�n�
� �

��
P
1
n�0��

�n�
� �
0, from which we can obtain

 

X1
n�0

��� �2@2
x��

�n�
a � 0; (25)

where � � �1=c2�@2
t � @2

x. This means that, by the effect
of the noncommutativity in the field space, the propagation
speed of the fields is modified to

 c! c0 � c
��������������
1� �2

p
; (26)

which was noticed in Ref. [4]. As was pointed out by the
authors of [4], however, this modification of the propaga-
tion speed does not mean the violation of Lorentz invari-
ance. The present formulation in the framework of the BFT
embedding method shows that such modification takes
place for all the fields with exactly the same manner, and
thus does not lead to any inconsistency in Lorentz
invariance.

IV. CONCLUSION

We have shown that the second-class constraint system
for the chiral bosons in the noncommutative field space has
been converted into the first-class constraint system by
using the BFT method, where the resulting brackets can
be implemented by the conventional Poisson algebra. The
resulting equation of motion (25) is symmetric under the
transformation of (22), which can be shown by the total
summation of the infinitesimal transformation parameters
which are canceled completely. In general, the original
second-class constraint system can be interpreted as a
gauge fixed version of the first-class constraint system in
the context of the BFT method. Therefore, the equations of
motion (25) and (26) have been derived in a gauge inde-
pendent fashion. Of course, each scalar field in the first-
class constraint system has the same velocity with that of
the velocity in the gauge fixed system corresponding to the
second-class constraint system if the auxiliary field ��n�a
has its angular frequency w�n�a and the wave number k�n�a ,
respectively.
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