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Spectral broadening of radiation from relativistic collapsing objects
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We discuss light curves and the spectral broadening of the radiation emitted during a finite interval of
time from the surface of a spherically symmetric collapsing object. We study a simplified model of
monochromatic radiations. We discuss how one can obtain information about the physical parameters of
the collapsing body, such as its mass and radius, from the light curves and spectral broadenings.
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Light propagating in the vicinity of astrophysical com-
pact objects, like neutron stars and black holes, is affected
by the gravitational field. It has been demonstrated that the
general relativistic effects might be important for under-
standing the features of the radiation coming from the
neutron-star-like objects [1-3]. The gravitational redshift
and bending of light rays emitted by a compact object
affect the form and spectrum of the observed signals. For
the emission of light from the vicinity of a black hole these
effects are more profound than for neutron stars. For
example, the line broadening of X-rays observed by the
ASCA satellite can be explained by the strong gravitational
effect on the light emitted from the accretion disk located
near to the central black hole [4,5].

Astrophysical black holes are believed to be formed as a
result of the gravitational collapse of massive stars [6].
Then it is natural to expect that the radiation emitted during
the gravitational collapse is also affected by the strong
gravity. For a spherical collapse and continuous emission
of light, this effect was studied in detail [7-9]. Recently the
light curves for collapsing objects were studied in a slightly
different setup [10] assuming that the radiation has a
profile of a sharp pulse in time. Such radiation may occur
during the collapse of a star when its matter density be-
comes much higher than the nuclear density. Under these
conditions hadronic phase transitions are expected [11]
which may result in sharp-in-time emission of massless
particles (photons and neutrinos) [12].

In this work, we consider the radiation emitted by a
collapsing star during a finite time interval and calculate
light curves and the spectrum of this radiation as seen by a
distant observer. As in the previous work [10], we adopt a
simplified model of a freely-falling spherical surface and
assume that the radiation is originally monochromatic. But
instead of instant radiation, we focus on the radiation
emitted during a finite interval of time. The main goal of
this study is to analyze how one can extract information
about the characteristics of a collapsing object (its mass
and radius) from the observed spectra and light curves.
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In the adopted simplified approach, we consider a
spherical collapse and assume that the points of the col-
lapsing surface follow radial geodesics in the
Schwarzschild geometry [7,10,13,14]. Thus the photons
emitted from the surface propagate to the observer at
infinity in the background of the Schwarzschild metric

ds? = —fdi* + f~1dr? + r*dQ% ¢))

Here f = f(r) = 1 — 2M/r, M is the mass of the collaps-
ing object, and dQQ> = d#? + sin’0d¢? is a line element
on a unit sphere. We use the natural units, c = G =#h = 1
throughout this paper.

Denote by 7 the proper time as measured by an observer
comoving with the collapsing surface. We suppose that the
collapse starts at 7 = O with the initial surface radius Ry.
We denote by #©)(7) the Schwarzschild time ¢ correspond-
ing to 7 and take #©)(7 =0) =0. In the coordinates
(t,r, 0, ) the four-velocity of the collapsing surface is
v* = (d1'9/dr, dR/dr, 0, 0). We define v; as the invariant
radial velocity which measures the proper length change as
measured by the proper time of the observer at rest at a
given radius. One has v; = f~'(R)4E, |v;| = 1. For a
freely-falling surface with the initial radius R, the invariant
velocity as a function of R is

. _\/@ JT—R/R, ®
! R [T—2M/R,

Because of the spherical symmetry the trajectories of
particles and light are plane, so that we can always put ¢ =
0. Denote by p* = (p/, p", p%,0) the 4-momentum of a
photon, then E = — p, (the energy at infinity) and L = p,
(the angular momentum) are constants of motion. In the
adopted units, where # = 1, E coincides with the photon
frequency as measured by a far distant observer, and p
coincides with its wave vector. Instead of the angular
momentum L we shall use the impact parameter defined
by [ = L/E. The radial momentum p” is given by p" =
oEZ, where Z(I,r) = /1 — ’f(r)/r*. Here and later o

denotes a sign function which takes the values + and — for
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a forward (p, > 0) and backward (p, < 0) motion of the
photon, respectively.

For a photon emitted at the radius R and propagating to
the infinity there exists an upper limit for the impact

parameter /,,, = R/+/f(R) determined by the condition
Z(lyax R) = 0. Let us consider the emission angle, 8, of
the radiation as measured by an observer comoving with
the surface. The emission angle is zero for the emission in
vertical outward direction and 77/2 for the tangentially
emitted radiation. Since the matter inside the collapsing
surface is supposed to be opaque, it is natural to consider
only the light emitted with the emission angle, 8 < /2. It
gives a lower bound on the impact parameter for the back-
ward emission, I; = [ < l,,,, where I; = R/\/f(Ry) is
determined by the condition for tangentially emitted radia-
tion, Z(l;, R) = —v;. Hence the possible ranges of the
impact parameter are 0 = [ =1, and Iy =[] = [, for
a forward and backward emission, respectively. In this

work we consider only R > 3+/3,/1 — 2M/R,M. A dis-
cussion of the allowed ranges of the impact parameter for
the smaller radius up to R ~ 2M, can be found in [7,8].

We choose the direction of the axis § = 0 such that a
photon emitted with 8 = 0 at § = 0 propagates along the
radial direction to a distant observer. For a photon emitted
from a collapsing surface at the angle 6 to reach the distant
observer, 6 coincides with the bending angle. For a null ray
from the collapsing surface when its radius is R, the bend-
ing angle for a forward-emission, 6 is

6+=®(1,R)Elj°o dr

R PPZ(Lr) 3)

For a backward emission, a photon, before it reaches
infinity, should first pass through a turning point r,(<R).
The turning point is determined by Z(/, r,) = 0. Then we
get the bending angle for backward emission as 8_ (I, R) =
20(l, r,) — O(I, R). One can easily check that for a tan-
gentially emitted backward photon the angle 6_ (I, R) is
greater than 77/2. This means that a distant observer can
see a part of the ““opposite side” of the spherical surface as
a result of strong gravity effect.

Let pﬁf) and pﬁf) be the 4-momentum of a photon emitted
by a collapsing surface and of a photon at infinity, respec-
tively. Then »(¢) = — pﬁf)v” is the energy (frequency) of
the photon as measured by a comoving observer. For the
observer at rest at with the 4-velocity, plon = 66‘ , the
observed energy (frequency) is determined by v\ =
— pﬁf)v(")#. For a given ray with the impact parameter [,
which is emitted from the freely-falling surface, Eq. (2),
when its radius is R, the redshift factor ® defined as the
ratio of the emitted frequency to the observed frequency at

infinity, ® = /v is given by
— ov;Z(L, R)

®,(LR) =" )
-
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Consider a light ray with the impact parameter / emitted
from the collapsing surface at the moment of the proper
time 7, when it has the radius R(7), Ry(7y) = R(7) =
R;(7;), and let ¢ be the time when it reaches the distant
observer. The first ray reaching the distant observer is the
ray with / = 0 emitted from a point “a” at 7; (see Fig. 1).
We use it as a reference ray. We characterize the arrival
time of other rays by their time delay Az with respect to the
arrival time of the reference ray. In Fig. 1 we show the sets
of points of emission {R, 8}, which have the same A¢, by
dotted lines. For the forward ray the time delay At is given
by the following expression

Aty (L7, 7)) = 19 (1) — 19(7,) + T(L, R(7))

Ri - 2M
(= dr 1
en= | ol o

Similarly for the backward ray one has
Ar_(l;m, ) = 19(r) = 1(r;) + 2T (L, r,) = T(L R(7))
+ R, + R(7) — 2r,

(R(r) — 2M)(R; — 2M)

+ 2M In
" (rt_ZM)z

(7)

The integrals for ® and T, Egs. (3) and (6) respectively,
can be expressed in terms of the elliptic functions.
However, for practical calculations it is very convenient
to use the analytical approximations for these quantities in
terms of simple elementary functions [10,15].
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FIG. 1 (color online). The dotted lines are the emission points
for the same arrival time parameter. “a” and “b” denote the
points of the first lights with / = 0 from R; and R respectively.
The solid line from “‘c” to “d” are the points where the last
tangential ray for each R, R; = R = Ry, is emitted. “c” denotes
where the light is emitted tangentially from R;. ““d” is the point

from which the last ray is emitted from R;.
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For the monochromatic emission with frequency »(¢) =
v, the flux as measured by a distant observer at r, can be
written as an integral over the proper time, 7:

2 dl
(0)(7) —

0 T

‘ 411 1), 8)

where Igf)(l, 7) is the intensity of the radiation (see e.g.
[10]). In the present paper we focus on the finite-duration
monochromatic emission, and take the intensity in the form
190, 7) = F(7)I®(1). For simplicity we assume that the
profile f(7) is a step function, f(7) =1 for 7, =7 =7,
and f(7) = 0 otherwise. We further simplify calculations
assuming the isotropic emission: 7 (1) = I©). Then we
get

2
A ="

J(e dl
5 /de(T)l ‘— d4 9
s dr
The integration over 7 for a given ¢ is equivalent to the
integration along the dotted line in Fig. 1 for the same
arrival time difference. The duration of the observed light,
AT, is determined by the difference between the arrival
time of the last ray from R, emitted at the point “d” and
the arrival time of the first ray from R; emitted at “a’ with
=0
AT = At_(lT, Tf, 'Ti)

= t(e)(Tf) - t(e)('Ti) + ZT(ZT, r,) - T(lT, R('T)) + Ri

(R(7p) = 2M)(R; — 2M)

+ R(7;) —2r, + 2M In (= 2M)?

(10)
In what follows it is convenient to use a dimensionless time
parameter &, which is a normalized arrival time difference
defined as 8 = At../AT. The time parameter 8 changes in
the interval [0, 1]. For a given radius R, the time parameter
for forwardly emitted light increases as [/ increases from
I = 0to I, (R). Then the backward emissions takes place
for I < I,,,.(R) and ends with /;(R) when 6 = 1.

For the radial rays (I = 0) emitted from “a” and “b” in
Fig. 1 the time parameter & are 0 and &, respectively.
Denote by 67 the time parameter for the point ““c’ (the last
ray from R;, see Fig. 1). Then during the interval [&, 67]
the distant observer receives light emitted in the radius
domain [R;, Rf]. In other time intervals, earlier, 0 =< § <
Oy, or later, 57 = 6 = 1, only part of this radius domain
contributes. For this reason it is natural to expect the
maximum flux at some 6 between 6, and &7.

To illustrate characteristic features of the light curves,
we plot in Fig. 2 the observable flux for the case when the
collapse starts at the radius Ry = 9.0M and the emission
takes place from R; = 6.0M to Ry = 4.6M. We use the
analytic approximation developed in [10] for calculating
the arrival time differences, I|dl/d7| and bending angles.
The arrival time difference between the first ray and the last
ray is calculated to be AT = 42.0M, while the correspond-
ing proper time interval is A7 = 3.6M. The invariant
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velocities are v; = —0.38 and —0.52 for R; and Ry, re-
spectively. The first ray from the surface Ry arrives at 6, =
0.17 and the last ray from R; arrives at 67 = 0.37. One can
see in Fig. 2 that the maximum of the flux is observed
around 6 ~ 0.2 as discussed above.

Let us discuss now the time dependence of the observed
redshift factor. For a moment, we consider the radiation of
a sharp-in-time profile emitted at the moment of 7 when the
radius is R, . Figure 3 shows the redshift factor as a function
of 6 for R, = R; = 6.0M, R, = 5.3M, and R, = Ry =
4.6M. One can see that for all three curves that have the
same minimum value of the redshift factor, ®; =
(R, I;) = 1.13, at § = 1. As discussed in Ref. [10], the
basic reason is that the redshift factor of the last ray (I =
Iy) for a freely-falling surface does not depend on the
radius of radiation but depends only on the initial radius
RO:

O, = ; (11)
J1 —2M/R,

For the emission during the finite interval of time, the
lights rays which arrive at the time 6 are emitted at differ-
ent radii, and hence have different redshifts. For each value
of 6 (except for 6 = 0 and 6 = 1) one has a finite range of
possible redshifts and the redshift curves are broaden. The
spectral broadening of the monochromatic radiation is a
function of arrival time.

The shadowed region in Fig. 4 shows the broadening of
redshift factor as a function of the time parameter 6. We
again choose Ry = 9M. The redshift factor of the first ray
(emitted from “a” in Fig. 1) is &y = ®(R = 6.0M,[ =
0) = 1.82. The maximum redshift occurs for the ray emit-
ted from “b” in Fig. 1, which arrives to the distant observer
at 8; = 0.18. The maximum redshift factor @, =
®(R =4.6,1 =0) = 2.36 in Fig. 3 corresponds to the
spectral broadening at 0 in Fig. 4. From 61 = 0.37t0 6 =
1, the distant observer receives the last rays, which are
emitted tangentially for given radii, with the same redshift
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FIG. 2. The flux from R; = 6.0M through R; = 4.6M in arbi-
trary unit. The horizontal axis is the normalized arrival time 6.
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FIG. 3 (color online). The three lines 1, 2, and 3 are the
redshift factors for the radiation emitted from R = 6.0M,
5.3M, and 4.6M respectively. Arrival time differences are those
from sharp-in-time pulses [10].

factor ®;. Hence the spectral broadening for 6; = 6 = 1
has a constant minimum value of ®; between ¢ and d, as
shown in Fig. 4.

In our model, the physical parameters characterizing the
collapsing object are its mass M and three of dimensionless
parameters Ry/M, R;/M and R;/M, which determine the
initial radius and the initial and final radiation emitting
radii, respectively. In case we do not know the frequency of
the emitted radiation v we cannot determine the redshift
factor directly by observing the spectrum of the radiation.
Nevertheless, if it is possible to determine the frequency

Vf;’s)t of the last ray with sufficient accuracy, then the

relative (normalized) redshift factors ® = &/d, =
)/ fos)t can be determined. Then by measuring 6, and
87 as well as @, and @, one can determine Ry/M, R,/ M
and R;/M. Once we know Ry/M, ®7 in Eq. (11) can be
evaluated and we can determine the original frequency of
emission as given by v = @ v{;’zt. The mass of the collaps-
ing object can be inferred from the observed value of Az to
complete the determination of the physical characteristics
of the collapsing object.
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FIG. 4. The broadening of red shift factors. “a, b, ¢,” and “d”
are those in Fig. 1.

To summarize, we discuss in this work the light curves
and the spectral broadening of the radiation emitted from a
surface of a collapsing object. We demonstrate that the
spectral broadening occurs when the radiation from the
collapsing surface takes place during a finite duration of
time. It is because of the variance of the frequency shifts of
the light rays subjected to the gravitational redshift and the
Doppler shift of the collapsing surface. In a simplified
model of monochromatic radiation from a freely-falling
spherical surface, we discuss the possible way of how to
infer the physical parameters, the mass, the radii of the
emission, and the frequency of the radiation from the light
curves and spectral broadenings.
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