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In previous papers, we studied ’t Hooft-Polyakov (TP) monopole configurations in U�2� gauge theory
on the fuzzy 2-sphere, and showed that they have nonzero topological charges in the formalism based on
the Ginsparg-Wilson (GW) relation. In this paper, we will show an index theorem in the TP monopole
background, which is defined in the projected space, and provides meaning of the projection operator. We
also extend the index theorem to general configurations which do not satisfy the equation of motion, and
show that configuration space can be classified into topological sectors. We further calculate the spectrum
of the GW Dirac operator in TP monopole backgrounds, and consider the index theorem in these cases.
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I. INTRODUCTION

Matrix models are promising candidates to formulate
superstring theory nonperturbatively [1,2], where both
spacetime and matter are described in terms of matrices,
and noncommutative (NC) geometries [3] naturally appear
[4–6]. One of the important subjects of the matrix model is
a construction of configurations with nontrivial indices in
finite NC geometries, since compactifications of extra
dimensions with nontrivial indices can realize chiral gauge
theories in our spacetime. Topologically nontrivial con-
figurations in NC geometries were constructed by using
algebraic K-theory and projective modules [7–12].

In order to see their relation to indices of Dirac opera-
tors, a suitable framework will be the one where the
chirality operator and the Dirac operator satisfy the
Ginsparg-Wilson (GW) relation [13], since NC geometries
on some compact manifolds have only finite degrees of
freedom. The GW relation has been developed in lattice
gauge theory. Its explicit construction was given by the
overlap Dirac operator [14] and perfect action [15]. The
exact chiral symmetry [16,17] and the index theorem
[15,16] at a finite cutoff can be realized due to the GW
relation.

In Ref. [18], we have provided a general prescription to
construct a GW Dirac operator with coupling to nonvan-
ishing gauge field backgrounds on general finite NC ge-
ometries. As a concrete example we considered the fuzzy
2-sphere [19].1 Owing to the GW relation, an index theo-
rem can be proved even for finite NC geometries. We have
defined a topological charge, and showed that it takes only

integer values, and becomes the Chern character in the
commutative limit [18,21–23].2

We then constructed the ’t Hooft-Polyakov (TP) mono-
pole configuration as a topologically nontrivial configura-
tion [22,23]. We showed that this configuration is a NC
analogue of the commutative TP monopole by explicitly
studying the form of the configuration. We then redefined
the topological charge by inserting a projection operator,
and showed that it reproduces the correct form of the
topological charge in the commutative limit. We also
showed that the topological charge takes the appropriate
values for TP monopole configurations. Furthermore, in
[28], we presented a mechanism for dynamical generation
of a nontrivial index, by showing that TP monopole con-
figurations are stabler than the topologically trivial sector
in the Yang-Mills-Chern-Simons matrix model [29,30].3

In this paper, we will prove an index theorem in TP
monopole backgrounds. The TP monopole configuration
breaks the SU�2� gauge symmetry down to U�1�, and the
matter field in the fundamental representation of the SU�2�
gauge group has two components, corresponding to �1=2
and �1=2 electric charges of the unbroken U�1� gauge
group. Since these two components cancel the index and
the chiral anomaly, we need to pick up one of them. The
index with a projection operator to pick up one of the two
components is shown to give the above topological charge
introduced in Refs. [22,23,28].

The index theorem can be extended to more general
configurations which do not satisfy the equation of motion.

3The stability of these configurations is also investigated in
papers [30–35].

2The GW relation was implemented also on the NC torus by
using the Neuberger’s overlap Dirac operator in [24]. In [25], this
GW Dirac operator was also derived from the general prescrip-
tion [18] and the correct chiral anomaly was reproduced by using
a topological method in [26]. The correct parity anomaly was
reproduced in [27].
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By modifying the chirality operators and the GW Dirac
operator in general gauge field configurations on the fuzzy
2-sphere, we propose a topological charge classifying con-
figurations in spontaneously symmetry-broken gauge theo-
ries. This topological charge is shown to become the
’t Hooft’s topological charge in the commutative limit.
Since the U�2� gauge theory on the fuzzy sphere is gen-
erally broken down to U�1� �U�1� gauge theory through
Higgs mechanism, this generalization shows that the con-
figuration space of gauge fields on the fuzzy sphere can be
classified into topological sectors. We also discuss the
validity of this classification by introducing the concept
of admissibility condition, which was developed to inves-
tigate topological structure in the lattice gauge theory.

We also calculate the spectrum of the GW Dirac opera-
tor in TP monopole backgrounds,4 and confirm the index
theorem in these cases. The spectrum was also provided in
[22]. We study the spectrum in more detail and obtain
explicit forms of the eigenstates by using the GW relation.
The largest eigenvalue states are shown to play an impor-
tant role in the index theorem.

In Sec. II we briefly review how to define the GW Dirac
operator on the fuzzy 2-sphere and how to construct TP
monopole configurations. We then show the index theorem
in TP monopole backgrounds, and give an interpretation of
the projection operator. We further extend the index theo-
rem to general configurations. In Sec. III, we calculate the
spectrum for the GW Dirac operator in TP monopole
backgrounds, and in Sec. IV, we obtain the forms of the
chiral zero modes. Section V is devoted to conclusions and
discussions. In appendix A, we calculate the spectrum for
another type of Dirac operator DGKP, which is given in
(2.7). In appendix B, we obtain the spectrum for the Dirac
operator in the commutative theory.

II. INDEX THEOREM IN SPONTANEOUSLY
SYMMETRY-BROKEN GAUGE THEORY ON

FUZZY 2-SPHERE

A. Review on fuzzy 2-sphere

NC coordinates of the fuzzy 2-sphere are described by

 xi � �Li; (2.1)

where � is the NC parameter, and Li’s are n-dimensional
irreducible representation matrices of SU�2� algebra:

 �Li; Lj� � i�ijkLk: (2.2)

Then we have the following relation:

 �xi�
2 � �2 n

2 � 1

4
1n 	 �21n; (2.3)

where � � �
�����������������������
�n2 � 1�=4

p
expresses the radius of the fuzzy

2-sphere. The commutative limit can be taken by �! 0,
n! 1 with � fixed.

Any wave functions on the fuzzy 2-sphere are mapped to
n� n matrices. We can expand them in terms of NC
analogues of the spherical harmonics Ŷlm, which are trace-
less symmetric products of the NC coordinates, and have
an upper bound for the angular momentum l as l 
 n� 1.
Derivatives along the Killing vectors of a function M���
on the 2-sphere are written as the adjoint operator of Li on
the corresponding matrix M̂:
 

LiM��� � �i�ijkxj@kM���

$ ~LiM̂ � �Li; M̂� � �LLi � L
R
i �M̂: (2.4)

Here the superscript L (R) in Li means that this operator
acts from the left (right) on the matrix M̂. An integral of
functions is given by a trace of matrices:

 

Z d�

4�
M��� $

1

n
tr�M̂�: (2.5)

Two types of Dirac operators, DWW [37] and DGKP

[30,38], were constructed. DWW has doublers and the
correct chiral anomaly cannot be reproduced. On the other
hand, DGKP breaks chiral symmetry at finite matrix size,
and the chiral structures are not clear, though the chiral
anomaly can be reproduced correctly in the commutative
limit [8,39–41]. We here review DGKP. The fermionic
action is defined as

 SGKP � tr� ��DGKP��; (2.6)

 DGKP � �i� ~Li � �ai� � 1; (2.7)

where �i’s are Pauli matrices. The gauge field ai of U�k�
gauge group and the fermionic field � in the fundamental
representation of the gauge group are expressed by nk�
nk and nk� n matrices, respectively. This action is invari-
ant under the gauge transformation:

 �! U�; ��! ��Uy;

ai ! UaiUy �
1

�
�ULiUy � Li�;

(2.8)

since a combination, which is sometimes called a covariant
coordinate,

 Ai 	 Li � �ai (2.9)

transforms covariantly as

 Ai ! UAiUy: (2.10)

In the commutative limit, the Dirac operator (2.7) be-
comes

4While preparing this paper, we were informed of a related
work [36] before its publication, which studies monopole har-
monics on a commutative sphere and a fuzzy sphere.
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 DGKP ! Dcom � �i�Li � �ai� � 1; (2.11)

which is the ordinary Dirac operator on the commutative 2-
sphere. The gauge fields ai’s in 3-dimensional space can be
decomposed into the tangential components on the 2-
sphere a0i and the normal component � as

 

� a0i � �ijknjak;

� � niai;
(2.12)

 , ai � ��ijknja
0
k � ni�; (2.13)

where ni � xi=� is a unit vector. The normal component�
is a scalar field on the 2-sphere. Then, the Dirac operators
Dcom and DGKP have a coupling to the scalar field.

B. GW Dirac operator and index theorem

In order to discuss chiral structures, a Dirac operator
satisfying the GW relation is more suitable. Reference [18]
provided a general prescription to define the GW Dirac
operator in arbitrary gauge field backgrounds on general
finite NC geometries. We first define two chirality opera-
tors:

 �R � a��iL
R
i �

1
2�; (2.14)

 �̂ �
H�������
H2
p ; (2.15)

where

 H � a��iAi �
1
2�; (2.16)

Ai is defined in (2.9), and

 a �
2

n
(2.17)

is introduced as a NC analogue of a lattice spacing. These
chirality operators satisfy

 ��R�y � �R; ��̂�y � �̂; ��R�2 � ��̂�2 � 1:

(2.18)

In the commutative limit, both �R and �̂ become the
chirality operator on the commutative 2-sphere, � � ni�i.

We next define the GW Dirac operator as

 DGW � �a�1�R�1� �R�̂�: (2.19)

Then the action

 SGW � tr� ��DGW�� (2.20)

is invariant under the gauge transformation (2.8). In the
commutative limit, DGW becomes

 DGW ! D0com � �i�Li � �Pijaj� � 1; (2.21)

where Pij � �ij � ninj is the projector to the tangential
directions on the sphere. Thus this Dirac operator D0com is

nothing but the Dirac operator on the commutative 2-
sphere without coupling to the scalar field.

By the definition (2.19), the GW relation

 �RDGW �DGW�̂ � 0 (2.22)

is satisfied. Then the following index theorem is satisfied:

 index �DGW� 	 �n� � n�� �
1
2T r��R � �̂�; (2.23)

where n� is the number of zero modes of DGW with
positive or negative chirality (for either �R or �̂), and T r
represents a trace over the space of matrices and over the
spinor index. (See [18,23] for a proof.)

The right-hand side (rhs) of (2.23) has the following
properties: First, it takes only integer values since both
�R and �̂ have a form of sign operator by the definitions
(2.14) and (2.15). Second, it becomes the topological
charge on the 2-sphere, the Chern character, in the com-
mutative limit [18,23]. Finally, it takes nonzero values for
topologically nontrivial configurations if we slightly mod-
ify the definition of it, which we will see in the next
subsections.

C. Monopole configurations

As topologically nontrivial configurations in the U�2�
gauge theory on the fuzzy 2-sphere, the following mono-
pole configurations were constructed [22,23]:

 Ai �
L�n�m�i

L�n�m�i

 !
; (2.24)

where Ai is defined in (2.9), and L�n�m�i are (n�m) di-
mensional irreducible representations of SU�2� algebra.5

The total matrix size is N � 2n. The m � 0 case corre-
sponds to two coincident fuzzy 2-spheres, whose effective
action is given by the U�2� gauge theory on the fuzzy 2-
sphere. The cases with general m correspond to two fuzzy
2-spheres which share the same center but have the differ-
ent radii. Form� n, as we will see below, they correspond
to the monopole configurations with magnetic charge�m,
where the gauge groupU�2� is spontaneously broken down
to U�1� �U�1�.

For the m � 1 case, (2.24) is unitary and gauge equiva-
lent to the following configuration:

 UAiU
y � L�n�i  12 � 1n 

	i
2
; (2.25)

as is easily seen from the SU�2� algebra. From (2.9), the
first and second terms represent the coordinate of the NC
space and the configuration of the U�2� gauge field, re-
spectively. Then, the gauge field is given by

5Since (2.24) with �m is unitary equivalent to the one with m,
we will restrict m � 0 without loss of generality in this paper.
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 ai �
1

�
1n 

	i
2
: (2.26)

By taking the commutative limit of (2.26), and decompos-
ing it into the normal and tangential components of the
sphere as in (2.12), it becomes

 a0ai �
1

�
�ijanj; (2.27)

 �a �
1

�
na; (2.28)

which is precisely the TP monopole configuration [23].

D. Index theorem in monopole backgrounds

The index (2.23) turns out to vanish for TP monopole
configurations (2.24) with general m. The reason is as
follows. TP monopole configuration breaks the SU�2�
gauge symmetry down to U�1�. Then the fermionic field
in the fundamental representation which couples to the TP
monopole background contains two components, corre-
sponding to �1=2 and �1=2 electric charge of the unbro-
ken U�1� gauge group. Hence, these two components
cancel the index. We thus need to pick up one of the two
components in order to obtain nonzero index and chiral
anomaly.

As in (2.23), the following equality is satisfied also in the
projected space6:

 index �P�n�m�DGW� �
1
2T r�P�n�m���R � �̂��; (2.29)

where P�n�m� is the projection operator to pick up the
Hilbert space for the n�m dimensional representation
in (2.24). That is, the projection operator picks up one of
the two fuzzy 2-spheres. The projection operator is written
as

 P�n�m� �
�Ai�

2 � 1
4 ��n�m�

2 � 1�
1
4 ��n�m�

2 � 1� � 1
4 ��n�m�

2 � 1�
(2.30)

 �
1

2
�1� T�; (2.31)

where

 T �
2

nm

�
A2
i �

n2 �m2 � 1

4

�
(2.32)

 �
1�n�m�

�1�n�m�

� �
: (2.33)

On the other hand, in the representation (2.9), (2.32)
becomes

 T �
2

nm

�
�fLi; aig � �

2a2
i �

m2

4

�
: (2.34)

In the commutative limit, it becomes 2�
m � when m� n,

where � is the scalar field defined in (2.12). Then, T is
proportional to the scalar field. Also, T is normalized as
T2 � 12n, which can be seen from (2.33). Therefore, T is
the generator for the unbroken U�1� gauge group in the TP
monopole. Then, the eigenstate of T with eigenvalue �1
corresponds to the fermionic state with �1=2 electric
charge of the unbroken U�1� gauge group.7 Thus the
projection operator P�n�m� picks up �1=2 electric charge
component.

Then, the index in the projected space (2.29) corre-
sponds to the index for each electric charge component,
which is precisely what we needed to define as we men-
tioned at the beginning of this subsection. For the configu-
rations (2.24), we can see [22,23]

 

1
2 T r�P�n�m���R � �̂�� � �m: (2.35)

We thus obtain a nonzero index �m for a �1=2 electric
charge component. Without the projection operator, con-
tributions from �1=2 and �1=2 charges cancel the index.

In the commutative limit,

 

1

2
T r�P�n�m���R � �̂�� �

1

2
T r

�
1

2
�1� T���R � �̂�

�

� �
1

2
T r

�
1

2
T��R � �̂�

�

���! � �2

8�

Z
S2
d��ijkni�0 aFajk;

(2.36)

where �0 a is a scalar field normalized as
P
a��

0a�2 � 1.
Fjk � Fajk	

a=2 is the field strength defined as Fjk �
@ja

0
k � @ka

0
j � i�a

0
j; a
0
k�. This is the magnetic charge for

the unbroken U�1� component in the TP monopole con-
figuration, which is nothing but the topological charge for
the TP monopole configuration.8 Compared with (2.35),
the topological charge defined by inserting �0 as in (2.36)
turns out to be �jmj for the configurations (2.24), as in
[28].

Finally we see the gauge symmetry breaking in the
configurations (2.24) with m � 1: U�2� ! U�1� �U�1�.

6Note that the projection operator P�n�m� is written by the
Casimir operator �Ai�2 as in (2.30). Then, we can see from the
definition (2.14) and (2.15) that �P�n�m�;�R� � �P�n�m�; �̂� � 0.
Also, from (2.19), we can see �P�n�m�; DGW� � 0.

7Strictly speaking, since T � 2�
m �, the eigenstate of T with

eigenvalue �1 corresponds to electric charge �1=2 (� 1=2) for
m> 0 (m< 0). Anyway, we restrict m � 0 in this paper.

8The topological charge should have an additional term as the
second term in (2.50). However, the additional term vanishes for
TP monopole configurations.
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There are two ways to look at the unbroken gauge symme-
tries9:

(1) Each sphere in (2.24) has unbroken U�1� symmetry,
and totally (2.24) has U�1� �U�1� symmetry. The
generator for each U�1� is written as

 

1�n�m�
0

� �
;

0
1�n�m�

� �
: (2.37)

(2) U�2� ’ SU�2� �U�1�, and the SU�2� breaks down
to U�1� in the TP monopole configuration. We can
rearrange the generators (2.37) as

 1 2n; T; (2.38)

where T is given by (2.33). On the other hand, in
the representation (2.34), T is identified as a non-
commutative generalization of the unbroken U�1�
generator for commutative TP monopole con-
figurations.

The above two ways of looking at the unbroken gauge
symmetry are equivalent since the representations (2.9) and
(2.24) are unitary and gauge equivalent.

E. Extension to general configurations

In the previous subsection, we have considered the index
theorem (2.29) for the monopole background configura-
tions (2.24), which satisfy the equation of motion. We now
extend it to general configurations which do not necessarily
satisfy the equation of motion. The only assumption in the
following is that the U�2� gauge symmetry is spontane-
ously broken to U�1� �U�1� through the Higgs mecha-
nism, i.e. a nonzero value of the scalar field. Under this
assumption, the gauge configuration space on the fuzzy 2-
sphere can be classified into the topological sectors.

We first generalize the definition of the electric charge
operator T to

 T0 �
�Ai�

2 � n2�1
4������������������������������

��Ai�2 �
n2�1

4 �
2

q : (2.39)

This definition is valid for general configurations Ai unless
the denominator has zero modes. It satisfies

 �T0�y � T0; �T0�2 � 1; (2.40)

and its eigenvalue takes 1 or�1. The commutative limit of
T0 becomes the normalized scalar field as

 T0 ! 2�0 � 2�0 a
	a

2
: (2.41)

For the configurations (2.24), T0 reduces to the previous
one (2.33).

We next define modified chirality operators as

 �0 �
fT0;�Rg

2
� T0�R; (2.42)

 �̂ 0 �
fT0; �̂g����������������
fT0; �̂g2

q : (2.43)

These chirality operators are weighted by the electric
charge operator T0 but they still satisfy the usual relations:

 ��0�y � �0; ��̂0�y � �̂0; ��0�2 � ��̂0�2 � 1:

(2.44)

We then define a modified GW Dirac operator as

 D0GW � �a
�1�0�1� �0�̂0�: (2.45)

This Dirac operator is also weighted by the electric charge
operator T0, which avoids the cancellation between the
contributions from �1=2 electric charge components
when we consider its index. In the commutative limit, we
obtain

 D0GW !
1
2f2�

0; D0comg: (2.46)

In the �0 a � �0; 0; 1� gauge, it becomes

 	3

�
�iLi � 1� ��iPija

3
j
	3

2

�
: (2.47)

Inside of the parenthesis is precisely the Dirac operator
with coupling to the unbroken U�1� gauge field.

From the definition (2.45), this Dirac operator satisfies
the GW relation

 �0D0GW �D
0
GW�̂0 � 0 (2.48)

and thus the index theorem

 

1
2 index�D0GW� �

1
4 T r��0 � �̂0� (2.49)

can be proved similarly to the ordinary case. In the com-
mutative limit, the rhs becomes

 

1

4
T r��0 � �̂0� !

�2

8�

Z
S2
d��ijkni��0 aFajk

� �abc�0 a�Dj�0 b��Dk�0 c��; (2.50)

which is precisely the topological charge for the configu-
rations with unbroken U�1� gauge symmetry [42].

For the configurations (2.24), T0 commutes with �̂. Then
we obtain �̂0 � T0�̂. Then the above index reduces to the
previous one;

9We gave a similar argument in [28] for the m � 1 case. We
here generalize it to m � 1.
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1
4 T r��0 � �̂0� � 1

2T r�12T��
R � �̂��: (2.51)

Hence the index theorem (2.49) gives a natural general-
ization for general configurations which are not restricted
to special solutions such as TP monopoles.

Finally we consider a condition for gauge configurations
that the topological charge (2.49) can be well defined.

In the commutative limit, we obtain

 �Ai�
2 �

n2 � 1

4
! �n��x� � �n��x�a

	a

2
: (2.52)

Then,

 

�
�Ai�2 �

n2 � 1

4

�
2
!
��n�2

4

�X
a

��a�x��212 �O�1=n�
�
:

(2.53)

In order to define the topological sectors by using the
unbroken U�1� gauge symmetry in the commutative the-
ory, the scalar field should take nonvanishing values on
arbitrary points on the sphere, namely, �2P

a��
a�x��2 �

O�1� for all x. Otherwise we could not define the unbroken
U�1� direction, nor could we define the topological charge
(2.50). This condition corresponds to

 

�
�Ai�2 �

n2 � 1

4

�
2
�O�n2�; (2.54)

which means that all of the eigenvalues are of the order of
n2. Smaller eigenvalues may invalidate the definition of
topology, while larger eigenvalues may change the struc-
ture of space and violate the assumption that we define the
gauge theory on the fuzzy 2-sphere. The upper bound on
the eigenvalues corresponds to the admissibility condition,
which was introduced to assure the topological structure in
the lattice gauge theory [43–45]. Condition (2.54) has also
the lower bound, then it gives an extension of the admis-
sibility condition.

More detailed analysis of this subsection will be re-
ported in a separate paper [46].

III. SPECTRUM OF THE GW DIRAC OPERATOR

In this section, we will calculate the spectrum for the
Ginsparg-Wilson Dirac operator (2.19) in monopole back-
grounds (2.24):

 

Dm
GW �

n
n�m��iL

�n�m�
i � 1

2�

n
n�m��iL

�n�m�
i � 1

2�

0@ 1A
� ��iLRi �

1
2�: (3.1)

We define the total angular momentum operator

 Mi � Li � ai � L
R
i �

�i
2

(3.2)

 � Ai � LRi �
�i
2

(3.3)

 �
L�n�m�i

L�n�m�i

 !
� LRi �

�i
2
: (3.4)

We also consider the electric charge operator T defined in
(2.32), and the chirality operator �R defined in (2.14). Since
Mi, T, �R commute with one another, we can consider the
simultaneous eigenstates for these operators as10

 M2
i jJ; J3; �; 
i � J�J� 1�jJ; J3; �; 
i; (3.5)

 M3jJ; J3; �; 
i � J3jJ; J3; �; 
i; (3.6)

 TjJ; J3; �; 
i � �jJ; J3; �; 
i; (3.7)

 �RjJ; J3; �; 
i � 
jJ; J3; �; 
i: (3.8)

We here note that the state with � � �1 is the state with
spin L�m=2 for the operator Ai, where L is taken to be
n�1

2 . The state with 
 � �1 is the state with spin L� 1=2
for the operator �LRi �

�i
2 . Thus, from (3.3), J takes the

values given in Table I. Here we assumed m> 0.
Since the total number of these eigenstates is

TABLE I. Values of J in each �, 
 sector. We assume m> 0
here.

��T� � � � �

J 
��R� � � � �

m�1
2 � �

m�1
2 � � � �

m�3
2 � � � �

..

. ..
. ..

. ..
. ..

.

2L� m�1
2 � � � �

2L� m�1
2 � � �

..

. ..
. ..

.

2L� m�1
2 � �

2L� m�1
2 �

10Since Mi, T, and �̂ also commute with one another, we can
consider the simultaneous eigenstates for them, and follow the
same calculations that will be performed in this paper by using
Mi, T, and �R.
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2
�

2 �
m� 1

2
� 1

�
� 4

� X2L���m�1�=2�

J��m�1�=2

�2J� 1�
�
� 3

�
2
�
2L�

m� 1

2

�
� 1

�
� 2

� X2L���m�1�=2�

J�2L��m=2���3=2�

�2J� 1�
�

�

�
2
�
2L�

m� 1

2

�
� 1

�
� 4n2; (3.9)

these eigenstates exhaust the complete set of the Hilbert
space. Note that the spectrum starts from the nonzero
lowest spin J � m�1

2 , as in the case of the monopole
harmonics. Note also that, for the lowest spin states with
J � m�1

2 , and for the highest spin states with �J; �� �
�2L� m�1

2 ;�1�, �2L� m�1
2 ;�1�, only 
 � �1 or 
 �

�1 exist for each �, while for the other states, both 
 �
�1 and 
 � �1 exist for each �.11,12

By straightforward calculations, the square of Dm
GW

becomes

 �Dm
GW�

2 �
n

n�mT

�
M2
i �

m2 � 1

4

�
; (3.10)

and �Dm
GW�

2 commutes with Mi, T, �R. We thus obtain the
spectrum for �Dm

GW�
2 as follows:

 

�Dm
GW�

2jJ; J3; �; 
i �
n

n�m�

�
J�J� 1� �

m2 � 1

4

�
� jJ; J3; �; 
i: (3.11)

Note that the states with the lowest spin J � m�1
2 corre-

spond to the zero modes for the Dm
GW.

We can also show

 �Mi;Dm
GW� � 0; (3.12)

 �T;Dm
GW� � 0; (3.13)

 ��R;Dm
GW� � 0: (3.14)

Therefore, linear combinations over 
 for each J, J3, �,P

c
jJ; J3; �; 
i, give eigenstates for the Dirac operator

Dm
GW as

 Dm
GW

�X



c
jJ; J3; �; 
i
�
� �

��������������������������������������������������������������
n

n�m�

�
J�J� 1� �

m2 � 1

4

�s �X



c
jJ; J3; �; 
i
�
: (3.15)

By the Ginsparg-Wilson relation,

 �RDm
GW �D

m
GW�̂ � 0; (3.16)

 Dm
GW�R � �̂Dm

GW � 0; (3.17)

if
P

c
jJ; J3; �; 
i is an eigenstate for the Dm

GW with
eigenvalue �, ��R � �̂�

P

c
jJ; J3; �; 
i is an eigenstate

with eigenvalue ��. From (2.19), we see �R � �̂ �
aDm

GW � 2�R. Then,

 

��R � �̂�
X



c
jJ; J3; �; 
i � �a�� 2�c1jJ; J3; �; 1i

� �a�� 2�c�1jJ; J3; �;�1i:

(3.18)

For the states with the highest spin, (J � 2L� m�1
2 ,

� � �1) and (J � 2L� m�1
2 , � � 1) in Table I, only


 � �1 exists. Hence ��R � �̂�jJ; J3; �; 
 � �1i must
vanish. From (3.18) we obtain a� � 2. Thus only
positive eigenvalues for Dm

GW exist for the highest
spin states. For the other states, since � �
�

�����������������������������������������������������������������������������������
�n=�n�m���fJ�J� 1� � ��m2 � 1�=4�g

p
, we see

�2< a�< 2. Since ��R � �̂�
P

c
jJ; J3; �; 
i does not

vanish, both positive and negative eigenvalues exist. We
illustrate the spectrum for the case with n � 10 andm � 0,
1, 2, 3, 4 in Fig. 1.

Next, we determine the coefficients c
, and obtain the
form of the eigenstates for the nonzero eigenvalues of
Dm

GW. Since ��R � �̂�
P

c
jJ; J3; �; 
i must be orthogonal

to
P

c
jJ; J3; �; 
i,

 �a�� 2�jc1j
2 � �a�� 2�jc�1j

2 � 0: (3.19)

Therefore, the eigenstates for the eigenvalue � are

11The unbalance between 
 � �1 and 
 � �1 in the total
spectrum is consistent with T r��R� � �4n. The unbalance
between � � �1 and � � �1 in the total spectrum is consistent
with T r�T� � 4nm.

12We can also consider the simultaneous eigenstates for Mi, T,
and �̂, and make the same table as Table I. For the lowest spin
states, which are shown to be zero modes of DGW, � eigenvalue
for �R corresponds to � eigenvalue for �̂, as can be seen from
the definition of DGW (2.19). For the highest spin states, �
eigenvalue for �R corresponds to � eigenvalue for �̂, as can
be seen from the GW relation (2.22).

GINSPARG-WILSON DIRAC OPERATOR IN MONOPOLE . . . PHYSICAL REVIEW D 75, 085021 (2007)

085021-7



 

1

2

� ����������������
2� a�
p

jJ; J3; �; 1i �
�
j�j

����������������
2� a�
p

jJ; J3; �;�1i
�
;

(3.20)

where � � �
�����������������������������������������������������������������������������������
�n=�n�m���fJ�J� 1� � ��m2 � 1�=4�g

p
.

Here we have absorbed the relative phase into the defini-
tion of jJ; J3; �; 1i and jJ; J3; �;�1i.

Next, we check the index theorem (2.29) by counting the
number of the chiral zero modes of Dm

GW. As noted before,
the zero modes for Dm

GW correspond to the states with J �
m�1

2 , whose degeneracy is m. Then, for ��; 
� � ��1;�1�
in Table I, the index in the projected space is given by

 index �P�n�m�DGW� � n� � n� � 0�m � �m:

(3.21)

For ��; 
� � ��1;�1�, it is given by

 index �P�n�m�DGW� � n� � n� � m� 0 � m: (3.22)

Comparing with (2.35), this is consistent with the index
theorem (2.29).

Finally, we give some comments about the highest spin
states. As we noted above, the highest spin sates give only
positive eigenvalue ofDm

GW, and thus the largest eigenvalue
of the GW Dirac operator takes only a positive value (see
the spectrum in Fig. 1). This unbalance between the posi-
tive and the negative eigenvalues of DGW comes from the
fact that DGW does not satisfy the ordinary chiral symme-

try, i.e. fDGW;�
Rg � 0. It is known that the highest spin

states correspond to the species doublers of the Watamura’s
Dirac operator DWW [37].

As can be seen from Table I, these modes have only 
 �
�1, which means that they have definite chirality defined
by �R. The similar pattern of spectrum was provided for
the GW Dirac operator D in the lattice gauge theories [47]:

(i) n� states with eigenvalue zero for �5D and �1 for
the chirality �5.

(ii) N� states with eigenvalue � 2
a for �5D and �1 for

the chirality �5.
(iii) The remaining states have eigenvalues ��n for

�5D pairwise, with 0< j�nj<
2
a .

It was also shown that the N� would-be species doubler
states play an important role in defining the index consis-
tently. As the index theorem states, in the well-defined
continuum theories, the trace of the chirality operator
becomes T rcon��5� � n� � n�, while in the lattice theo-
ries T r��5� � 0. This discrepancy can be solved by taking
account of the contributions from the N� would-be species
doublers. Then T r��5� � n� � n� � N� � N� � 0 is
actually satisfied on the lattice. The would-be species
doublers can be eliminated by adopting 1

2T r��5 � �̂5� �

T r��5�1�
1
2aDGW�� instead of T r��5�, or by inserting

some other factor which suppresses the contributions from
the large eigenvalues of the Dirac operator. Then the
correct value of the index is obtained, and the smooth
continuum limit can be taken. Actually, these features of
the spectrum and the index are given only by the GW
algebra, and they hold in the present case of the fuzzy 2-
sphere as well.

Now let us come back to the case of the fuzzy 2-sphere,
and consider the counterpart of T r��5�, which is T r��R�.
From Table I, for the � � 1 sector, we can see that n� �
n� � �m, N� � N� � ��2n�m�. For the other states,
both values of 
 exist pairwise. Thus

 T r�P�n�m��R� � �n� � n�� � �N� � N��

� �m� �2n�m� � �2�n�m�:

(3.23)

In the same way, for the � � �1 sector, we see

 T r�P�n�m��R� � �n� � n�� � �N� � N��

� m� �2n�m� � �2�n�m�: (3.24)

We can eliminate the contributions from the would-be
species doublers by adopting 1

2T r�P�n�m���R � �̂�� �

T r�P�n�m���R � 1
2aDGW��, as in the lattice gauge theories.

However, (3.23) and (3.24) do not vanish, while T r��5� �
0 in the lattice gauge theories. This is because the definition
of �R in (2.14) has a constant term � a

2 � �
1
n , and thus

T r�P�n�m��R� has a nonvanishing value, which is � 1
n

times the dimension of the Hilbert space, 2n�n�m�.

 

FIG. 1. Spectrum for GW Dirac operator for the cases of n �
10 and m � 0, 1, 2, 3, 4. The dotted line connects the states with
the same value of J.
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These nonvanishing values reflect the noncommutativity of
the geometry which can be interpreted as introducing a
magnetic flux.

IV. CHIRAL ZERO MODES

In this section we will obtain the form of the chiral zero
modes for the GW Dirac operator in the TP monopole
background with m � 1. By the unitary transformation
(2.25), (3.1) becomes
 

DTP
GW 	 UDm�1

GW Uy

� �i ~Li � 1� �i
	i
2

�
1

n2 � 1
Li	i

�
1� 2�j

�
Lj �

	j
2

��
: (4.1)

The benefit of taking this representation is that we can

easily see the correspondence between the noncommuta-
tive and commutative theories.

As we showed in Sec. III, the zero modes for DTP
GW

correspond to the lowest spin states with J � m�1
2 , which

is J � 0 for m � 1. They thus can be written as ��l and
Li�i��0��0l, where � and l are spinor and gauge group
indices, respectively. Indeed, we can show directly that
these modes are zero modes of DTP

GW by using the identity

 �i� � ���	i�T; (4.2)

or, if the indices are written explicitly,

 �i��0��0l � �	
i
ll0��l0 : (4.3)

For example,

 �DTP
GW���l � ��l �

1

2
�i��0	

i
ll0��0l0 �

1

n2 � 1
�Li	ill0��l0 � 2LiLj�j��0	

i
ll0��0l0 � L

i�j��0	
i
ll0	

j
l0l00��0l00 �

� ��l �
1

2
��i�i���l �

1

n2 � 1
��Li��i���l � 2LiLj��j�i���l � L

i��j�j�i���l�

� ��l �
3

2
��l �

1

n2 � 1

�
2Li��i���l �

n2 � 1

2
��l � 2Li��i���l

�
� 0: (4.4)

In the same way, we can show �DTP
GWL

i�i���l � 0.
Chiral zero modes can be obtained by the linear combi-

nations of these two zero modes ��l and Li�i��0��0l. The
states with ��; 
� � ��1;�1� are given by

 jJ � 0; � � �1; 
 � �1i � 1
2�1� �R�� � 1

2�1� T��;

(4.5)

or, if the indices are written explicitly,

 jJ � 0; � � �1; 
 � �1i

�
1

2

��
1�

1

n

�
��l �

2

n
Li�i��0��0l

�

�
1

2

��
1�

1

n

�
��l �

2

n
Li	ill0��l0

�
; (4.6)

where again we used the identity (4.3).
In appendix B, we calculate the spectrum of the Dirac

operator in the commutative theory. We also obtain the
chiral zero modes in (B19):
 

jJ � 0; � � �1; 
 � �1icom �
1
2�1� n

i�i���0��0l

� 1
2�1� n

i	i�ll0��l0 ; (4.7)

where ni � xi=� is a unit vector. As we mentioned before,
the correspondence between the noncommutative and
commutative theories can be easily seen in representation
(4.1). Indeed, we can see that the commutative limit of
(4.6) becomes (4.7).

V. CONCLUSIONS AND DISCUSSIONS

In this paper, we showed the index theorem for the
Ginsparg-Wilson Dirac operator in the ’t Hooft-Polyakov
monopole backgrounds and provided the meaning of the
projection operator. We then calculated the spectrum and
eigenstates, and confirmed the index theorem by counting
the number of chiral zero modes. We also showed that the
largest-eigenvalue modes play an important role in defin-
ing the index consistently in theories with finite degrees of
freedom.

One of the main results of the paper is that we have
extended the index theorem to general configurations
which are not restricted to the special type of solutions.
By this generalization, configuration space can be classi-
fied into topological sectors. The commutative limit of the
topological charge becomes the one introduced by ’t Hooft
in spontaneously symmetry-broken gauge theories. We
also considered the condition to assure the validity of this
formulation, which gives the generalization of the admis-
sibility conditions in lattice gauge theory. Since this for-
mulation is gauge invariant, it might be used to formulate
the chiral gauge theory. Abelian chiral gauge theories on
the lattice with exact gauge invariance was constructed by
using the chiral projection operator [45]. It is an interesting
future problem to consider whether a generalization of our
formulation provides an alternative to it.

It is also interesting to study TP monopole configura-
tions of general m in the commutative and noncommuta-
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tive theories.13 By some gauge transformations, TP mono-
pole configurations can be seen as Dirac monopoles or Wu-
Yang monopoles where we need to introduce the notion of
patch. Hence this study will lead to a formulation of
monopole bundles in noncommutative geometries or ma-
trix models. Also it is interesting to study whether configu-
rations with a nontrivial index exist without introducing the
projection operator. In a discretized noncommutative torus,
nontrivial configurations can exist without introducing a
projection operator, though their existence probability van-
ishes in the continuum limit [48,49]. These studies may
provide another meaning of the projection operator.
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APPENDIX A: SPECTRUM OF DGKP

In this appendix, we will obtain the spectrum for DGKP

(2.7) in the TP monopole backgrounds (2.24):

 Dm
GKP � �i�Ai � L

R
i � � 1

� �i
L�n�m�i

L�n�m�i

 !
� LRi

" #
� 1: (A1)

Note L�n�m�i has spin L�m=2, and�LRi has spin L, where
n � 2L� 1. Then the operator Ai � LRi has the following
spins:

 l �
� m

2 ; . . . ; 2L� m
2 �� � 1�;

m
2 ; . . . ; 2L� m

2 �� � �1�:
(A2)

Here we setm � 0. Then, by considering the spin J for the
operator Mi of (3.3), we obtain the following spectrum for
Dm

GKP:

 Dm
GKP �

�
J� 1

2 � l� 1 �J � l� 1
2�;

��J� 1
2� � �l �J � l� 1

2�;
(A3)

where l’s are given by (A2). The spectrum is shown in
Fig. 2 form> 0 cases. Form � 0, the spectrum is given by
Fig. 2 except for the fact that zero modes do not exist. We
also illustrate the cases for n � 10, m � 0, 1, 2, 3, 4 in
Fig. 3. In the remainder of this appendix, we will obtain the
above spectrum in another way, as we did for Dm

GW in
Sec. III. Then we can make the correspondence of the
eigenstates for Dm

GKP to the eigenstates in Table I. In
particular, we can see the chirality of �R, 
, of the Dm

GKP
eigenstates. By straightforward calculations, we can show

 �Dm
GKP�

2 � M2
i �

1
4 � J�J� 1� � 1

4 � �J�
1
2�

2; (A4)

and �Dm
GKP�

2 commutes with Mi, T, �R. Thus spectrum for

�Dm
GKP�

2 is

 �Dm
GKP�

2jJ; J3; �; 
i � �J�
1
2�

2jJ; J3; �; 
i; (A5)

where the simultaneous eigenstate jJ; J3; �; 
i is defined in
(3.5), (3.6), (3.7), and (3.8).

Since Dm
GKP satisfies

 �Mi;D
m
GKP� � 0; (A6)

 �T;Dm
GKP� � 0; (A7)

 ��R;Dm
GKP� � 0; (A8)

linear combinations over 
 for each fixed J, J3, �,P

c
jJ; J3; �; 
i, give eigenstates for Dm

GKP as

 Dm
GKP

X



c
jJ; J3; �; 
i � ��J�
1
2�
X



c
jJ; J3; �; 
i: (A9)

We now define

 Dm�
GKP �

�
�iL

�n�m�
i �

1

2

�
�

�
�iLRi �

1

2

�

�
n�m

2
�̂� �

n
2

�R; (A10)

where

 

DGKP

2L + m
2 + 1

··
·

··
·

2L − m
2 + 1

··
·

··
·

··
·

m
2 + 2
m
2 + 1

0
− m

2

− ( m
2 + 1)

··
·

··
·

··
·

− (2L − m
2 )

··
·

··
·

− (2L + m
2 )

δ = − 1 δ = 1

FIG. 2. Spectrum for the GKP Dirac operator in monopole
backgrounds of m> 0.

13Some comments are given in [36].
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 �R �
2

n

�
�iLRi �

1

2

�
; (A11)

 �̂� �
2

n�m

�
�iL

�n�m�
i �

1

2

�
; (A12)

in each of � � �1 sectors. Then we can show the follow-
ing Ginsparg-Wilson–like relation:

 

n�m
n

�̂�Dm�
GKP �D

m�
GKP�R � �m�

m2

2n
; (A13)

 

n�m
n

Dm�
GKP�̂� � �RDm�

GKP � �m�
m2

2n
: (A14)

Suppose  is an eigenstate for Dm�
GKP with an eigenvalue �:

 Dm�
GKP � � : (A15)

Then, from (A13) and (A14),
 

Dm�
GKP

�
�R �

n�m
n

�̂�
�
 � ��

�
�R �

n�m
n

�̂�
�
 

�

�
�2m�

m2

n

�
 : (A16)

Thus,

 Dm�
GKP

�
�R �

n�m
n

�̂� �
1

2�

�
�2m�

m2

n

��
 

� ��
�

�R �
n�m
n

�̂� �
1

2�

�
�2m�

m2

n

��
 :

(A17)

Hence, ��R � n�m
n �̂� � 1

2� ��2m� m2

n �� is an eigenstate
for Dm�

GKP with an eigenvalue ��.
From (A10),

 �R �
n�m
n

�̂� �
2

n
Dm�

GKP � 2�R: (A18)

Then, for the eigenstate  �
P

c
jJ; J3; �; 
i in (A9),

 �
�R �

n� �m
n

�̂�
1

2�

�
2�m�

m2

n

��X



c
jJ; J3; �; 
i �
�

2

n
�� 2�

1

2�

�
2�m�

m2

n

��
c�1jJ; J3; �; 
 � �1i

�

�
2

n
�� 2�

1

2�

�
2�m�

m2

n

��
c1jJ; J3; �; 
 � 1i; (A19)

where � � ��J� 1
2�. For the lowest spin states with J � m�1

2 in Table I, since only 
 � �1 or 
 � �1 exists for each �,
the state (A19) must vanish. Thus we can show � � � m

2 . Hence only negative eigenvalues for Dm
GKP exist for the lowest

spin states. For the highest spin states, �J; �; 
� � �2L� m�1
2 ;�1;�1�, �2L� m�1

2 ;�1;�1�, only 
 � �1 exists for each
�, and the state (A19) must vanish. Thus we can show � � n� m

2 for � � �1. Hence only positive eigenvalues for Dm
GKP

exist for the highest spin states. For the other states, both positive and negative eigenvalues exit. Then we obtain the
spectrum in Fig. 2 again.

We will also determine the coefficients c
, and obtain the form of the eigenstates. Since the state (A19) andP

c
jJ; J3; �; 
i are orthogonal,

 

�
2

n
�� 2�

1

2�

�
2�m�

m2

n

��
jc�1j

2 �

�
2

n
�� 2�

1

2�

�
2�m�

m2

n

��
jc1j

2 � 0: (A20)

 

FIG. 3. Spectrum for the GKP Dirac operator for the cases of
n � 10 and m � 0, 1, 2, 3, 4.
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Therefore the eigenstates for Dm
GKP are given by

 

1

2

� ���������������������������������������������������������
2�

2

n
��

1

2�

�
2�m�

m2

n

�s
jJ; J3; �; 
 � �1i �

�
j�j

���������������������������������������������������������
2�

2

n
��

1

2�

�
2�m�

m2

n

�s
jJ; J3; �; 
 � 1i

�
; (A21)

where � � ��J� 1
2�. Here we have absorbed the relative

phase into the definition of jJ; J3; �; 
 � �1i and
jJ; J3; �; 
 � 1i.

APPENDIX B: SPECTRUM OF THE DIRAC
OPERATOR IN THE COMMUTATIVE THEORY

In this appendix, we will calculate the spectrum for the
Ginsparg-Wilson Dirac operator in the commutative theory
(2.21) in the TP monopole background (2.26) with m � 1:

 D0 m�1
com � � �L� 1� 1

2� � 	�
1
2�n � ���n � 	�: (B1)

It is also obtained by the commutative limit of (4.1).
We consider the following operators:

 Mi � Li �
�i
2
�
	i
2
; (B2)

 t � n � 	; (B3)

 � � n � �; (B4)

where Mi is a total angular momentum operator, t is a
generator for the unbroken U�1� gauge group, and � is a
chirality operator. Since they commute with one another,
we can consider the simultaneous eigenstates for these
operators as

 M2
i jJ; J3; �; 
i � J�J� 1�jJ; J3; �; 
i; (B5)

 M3jJ; J3; �; 
i � J3jJ; J3; �; 
i; (B6)

 tjJ; J3; �; 
i � �jJ; J3; �; 
i; (B7)

 �jJ; J3; �; 
i � 
jJ; J3; �; 
i: (B8)

J turns out to take values as in Table II.14

By straightforward calculations, the square of D0 m�1
com

becomes

 �D0 m�1
com �

2 � M2
i ; (B9)

and �D0 m�1
com �

2 commutes with Mi, t, �. We thus obtain the
spectrum for �D0 m�1

com �
2 as follows:

 �D0 m�1
com �

2jJ; J3; �; 
i � J�J� 1�jJ; J3; �; 
i: (B10)

Note that the states with the lowest spin, J � 0, in Fig. 2
correspond to the zero modes for D0 m�1

com .
We can also show

 �Mi;D
0 m�1
com � � 0; (B11)

 �t;D0 m�1
com � � 0; (B12)

 ��;D0 m�1
com � � 0: (B13)

Then, linear combinations over 
 for each J, J3, �,P

c
jJ; J3; �; 
i, give eigenstates for the Dirac operator

D0 m�1
com as

 

D0 m�1
com

�X



c
jJ; J3; �; 
i
�

� �
������������������
J�J� 1�

p �X



c
jJ; J3; �; 
i
�
: (B14)

Since Dirac operator D0 m�1
com anticommutes with the

chirality operator �:

 f�;D0 m�1
com g � 0; (B15)

if
P

c
jJ; J3; �; 
i is an eigenstate for the D0 m�1

com with
eigenvalue �, �

P

c
jJ; J3; �; 
i is an eigenstate with ei-

genvalue ��. Since
 

�
X



c
jJ; J3; �; 
i � �c�1jJ; J3; �; 
 � �1i

� c1jJ; J3; �; 
 � 1i (B16)

does not vanish, both positive and negative eigenvalues for
D0 m�1

com exist in each J � 1 and �.
We next determine the coefficients c
, and obtain the

form of the eigenstates. Since the state (B16) is orthogonal
to
P

c
jJ; J3; �; 
i,

 jc1j
2 � jc�1j

2 � 0: (B17)

TABLE II. Values of J in each �, 
 sector.

� � � � �

J 
 � � � �

0 � �

1 � � � �

2 � � � �

3 � � � �
..
. ..

. ..
. ..

. ..
.

14As we will see later in (B19), two zero modes exist as
��; 
� � ��1;�1� and ��1;�1�. From (B11), (B12), and
(B15), the eigenstates with both 
 � �1 and 
 � �1 exist in
each J, J3, � for J � 1. [Also, by defining D0 � 	 �L� 1�
1
2� � 	�

1
2 �n � ���n � 	�, we can show that the eigenstates with

both � � �1 and � � �1 exist in each J, J3, 
 for J � 1.] We
can also show that there is no degeneracy in each jJ; J3; �; 
i, by
counting the number of states in each J.
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Therefore, the eigenstates for the eigenvalue � are

 

1���
2
p

�
jJ; J3; �; 1i �

�
j�j
jJ; J3; �;�1i

�
; (B18)

where � � �
������������������
J�J� 1�

p
. Here we have absorbed the rela-

tive phase into the definition of jJ; J3; �; 1i and
jJ; J3; �;�1i.

Finally, we obtain the configuration form of the chiral
zero modes. Since they correspond to the zero modes
of Mi, the modes with J � 0 in Table II, they can be
written as ��l and ni�i��0��0l, where � and l are spinor
and gauge group indices, respectively. We can indeed show

�D0 m�1
com �� � 0, �D0 m�1

com �n � �� � 0 directly. Chiral zero
modes can be obtained by the linear combinations of these
two zero modes. The states with ��; 
� � ���1;�1� are

 

1
2 �1� n � ����0��0l �

1
2�1� n � 	�ll0��l0 ; (B19)

where we used the identity (4.3).
The eigenvalues and eigenstates obtained here agree

with the commutative limit of the results in Secs. III and
IV. We also note that monopole harmonics in the commu-
tative theory was provided in [50], and the spectrum of the
equivalent Dirac operator was studied in [51].
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