
Quantum critical transport, duality, and M theory

Christopher P. Herzog,1 Pavel Kovtun,2 Subir Sachdev,3 and Dam Thanh Son4

1Department of Physics, University of Washington, Seattle, Washington 98195-1560, USA
2Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106-4030, USA

3Department of Physics, Harvard University, Cambridge Massachusetts 02138, USA
4Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195-1550, USA

(Received 11 January 2007; published 27 April 2007)

We consider charge transport properties of 2� 1 dimensional conformal field theories at nonzero
temperature. For theories with only Abelian U(1) charges, we describe the action of particle-vortex duality
on the hydrodynamic-to-collisionless crossover function: this leads to powerful functional constraints for
self-dual theories. For N � 8 supersymmetric, SU�N� Yang-Mills theory at the conformal fixed point,
exact hydrodynamic-to-collisionless crossover functions of the SO(8) R-currents can be obtained in the
large N limit by applying the anti-de Sitter/conformal field theory (AdS/CFT) correspondence to M
theory. In the gravity theory, fluctuating currents are mapped to fluctuating gauge fields in the background
of a black hole in 3� 1 dimensional anti-de Sitter space. The electromagnetic self-duality of the 3� 1
dimensional theory implies that the correlators of the R-currents obey a functional constraint similar to
that found from particle-vortex duality in 2� 1 dimensional Abelian theories. Thus the 2� 1 dimen-
sional, superconformal Yang Mills theory obeys a ‘‘holographic self-duality’’ in the large N limit, and
perhaps more generally.
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I. INTRODUCTION

The quantum phase transitions of two (spatial) dimen-
sional systems have been the focus of much study in the
condensed matter community. Prominent examples in-
clude the superfluid-insulator transition in thin films [1–
3], the transitions between various quantum Hall states
[4,5], and magnetic ordering transitions of Mott insulators
and superconductors which have applications to the cup-
rate compounds [6–8]. Of particular interest in this paper
are the transport properties of conserved quantities such as
the electrical charge or the total spin: these are character-
ized by a (charge or spin) conductivity �, which can in
general be a complicated function of frequency !, wave
vector k, temperature T, and various couplings character-
izing the ground state.

It is often the case that the quantum critical point is
described by a strongly interacting quantum field theory in
2� 1 spacetime dimensions D. Examples are (i) the
superfluid-insulator transition in the boson Hubbard model
at integer filling [9–11], which is described by the ’4 field
theory with O(2) symmetry, and so is controlled by the
Wilson-Fisher fixed point in D � 2� 1; (ii) the spin-gap
paramagnet to Néel order transition of coupled spin
dimers/ladders/layers which is described by the O(3) ’4

field theory [12,13]; and (iii) the ‘‘deconfined’’ critical
point of a S � 1=2 antiferromagnet between a Néel and a
valence bond solid state [14,15], which is described by the
CP1 model with a noncompact U(1) gauge field [16]. In all
these cases the critical point is described by a relativistic
conformal field theory (CFT). With an eye towards such
experimentally motivated applications, our purpose here is
to explore the transport properties of general interacting
CFTs in D � 2� 1.

A crucial property of CFTs in D � 2� 1 (which ac-
tually applies more generally to any critical theory in 2
spatial dimensions which obeys hyperscaling) is that the
conductivity is 1=@ times a dimensionless number. For
U(1) currents, there is also a prefactor of �e��2 where e�

is the unit of charge—we will drop this factor below. For
non-Abelian Noether currents, the normalization of charge
is set by a conventional normalization of the generators of
the Lie algebra. We will be working with relativistic theo-
ries, and therefore set @ � kB � c � 1.

Initial discussions [17–19] of this dimensionless con-
ductivity at the quantum critical point were expressed in
terms of ground state correlations of the CFT. Let Ja�
represent the set of conserved currents of the theory; here
� � 0, 1, 2 is a spacetime index, and a labels the gener-
ators of the global symmetry. In the CFT, Ja��x� has dimen-
sion 2, and so current conservation combined with Lorentz
and scale invariance imply for the Fourier transform of the
retarded correlator Cab���x� at zero temperature1:

 Cab���p�jT�0 �
������
p2

q �
��� �

p�p�
p2

�
Kab; (1.1)

where ��� � diag��1; 1; 1�, p� � ��!; k� is spacetime

momentum, and p2 � k2 �!2. We define
������
p2

p
so that it is

analytic in the upper half-plane of ! and Im
������
p2

p
� 0 for

!> 0. The parameters Kab are a set of universal,

1If needed, a ‘‘diamagnetic’’ or ‘‘contact’’ term has been
subtracted to ensure current conservation. In theories with
Chern-Simons terms, an additional term proportional to
����p� is permitted in Eq. (1.1) and the T > 0 generalization
in Eq. (1.4). See Appendix B.
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momentum-independent dimensionless constants charac-
terizing the CFT, which are the analog of the central charge
of the Kac-Moody algebra of CFTs in D � 1� 1.
Application of the Kubo formula at T � 0 shows that
[17,19] the Kab are equal to the conductivities �ab �
Kab, thus setting up the possibility of observing these in
experiments.

It was also noted [18,19] that particle-vortex duality
[20–22] of theories with Abelian symmetry mapped the
T � 0 conductivities to their inverse (we review this map-
ping in Sec. II). In self-dual theories, this imposes con-
straints on the values of the Kab, possibly allowing them to
be determined exactly. However, the field theories consid-
ered in these early works were not self-dual (see
Appendix B). Duality, and possible self-duality, was also
considered in the context of theories containing Chern-
Simons terms, relevant to quantum Hall systems [23–
28]. We comment on these works in Appendix B, but the
body of the paper considers only theories without Chern-
Simons terms. For our purposes, more relevant is the self-
dual field theory proposed recently by Motrunich and
Vishwanath [16], and we discuss its charge transport prop-
erties below.

It was subsequently pointed out [29–31] that theKab are
not the d.c. conductivities observed at small but nonzero
temperature. The key point [31–33] is that at nonzero T,
the time 1=T is a characteristic ‘‘collision’’ or ‘‘decoher-
ence’’ time of the excitations of the CFT. Consequently the
transport at !� T obeys ‘‘collision-dominated’’ hydro-
dynamics, while that at !	 T involves ‘‘collisionless’’
motion of excitations above the ground state. Therefore,
the limits !! 0 and T ! 0 do not, in general, commute,
and must be taken with great care; the constants Kab above
are computed in the limit !=T ! 1, while the d.c. con-
ductivities involve !=T ! 0.

This contrast between the collisionless and collision-
dominated behavior is most clearly displayed in the corre-
lations of the conserved densities. Taking the tt component
of Eq. (1.1) we obtain the response

 Cabtt �!; k� � Kab
�k2�����������������
k2 �!2
p ; jj!j � kj 	 T; (1.2)

which characterizes the collisionless response of the CFT
at T � 0. We have also noted above that we expect the
same result to apply at T > 0 provided ! and k � jkj are
large enough, and away from the light cone. The T > 0
correlations are the Fourier transform of the retarded real-
time correlators. These are related by analytic continuation
to the Euclidean space correlations defined at the
Matsubara frequencies, which are integer multiples of
2�T. The low frequency hydrodynamic regime !� T is
only defined in real time (Minkowski space). In this re-
gime, the arguments of Ref. [29] imply that the ‘collision-
dominated’ response has the structure

 

Cabtt �!; k� �
X
�

��ab
�D�k2

�i!�D�k2 ; j!j; k� T; (1.3)

where D� are the diffusion constants of a set of diffusive
eigenmodes labeled by �, and ��ab are the corresponding
susceptibilities. Scaling arguments imply that [34] D� �
D�=T and ��ab � C�abT, where the D�, C�ab are a set of
universal numbers characterizing the hydrodynamic re-
sponse of the CFT. The d.c. conductivities can be obtained
from the Kubo formula by

 �ab � lim
!!0

lim
k!0
�i!=k2�Cabtt ;

where the order of limits is significant. At any fixed T > 0,
the limits of small k and ! imply that this Kubo formula
has to be applied to Eq. (1.3), and leads to Einstein rela-
tions between the T-independent universal conductivities
and the diffusivities. The distinct forms of Eqs. (1.2) and
(1.3) make it clear that, in general, the universal d.c.
conductivities bear no direct relationship to the Kab; the
latter, as we will see below in Eq. (1.7), are related to the
high frequency conductivity.

It is worth noting here in passing that the structure in
Eq. (1.3) does not apply to CFTs in D � 1� 1, where a
result analogous to Eq. (1.2) holds also in the low fre-
quency and low momentum limit; see Appendix A for
further discussion of this important point.

Returning to consideration of all the components of the
Cab�� in D � 2� 1, an alternative presentation of the
collisionless-to-hydrodynamic crossover is obtained by
writing down the generalization of Eq. (1.1) to T > 0.
Current conservation and spatial rotational invariance,
without Lorentz invariance at T > 0, generalize Eq. (1.1)
to

 Cab���!; k� �
������
p2

q
�PT��KT

ab�!; k� � P
L
��KL

ab�!; k��; (1.4)

where k � jkj, and PT�� and PL�� are orthogonal projectors
defined by

 PT00 � PT0i � PTi0 � 0; PTij � 	ij �
kikj
k2 ;

PL�� �
�
��� �

p�p�
p2

�
� PT��;

(1.5)

with the indices i, j running over the 2 spatial components.
The constants Kab have each been replaced by two dimen-
sionless, universal, temperature-dependent functions
KL;T
ab �!; k�, characterizing the longitudinal and transverse

response. These functions are dimensionless, and hence
they can only depend upon the dimensionless ratios !=T
and k=T, as is also the case for the conductivities. Spatial
rotational invariance, and the existence of finite correlation
length at T > 0 which ensures analyticity at small k, imply
that the longitudinal and transverse response are equal to
each other at k � 0, and, by the Kubo formula, are both
equal to the zero momentum, frequency-dependent com-
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plex conductivity, �ab�!=T�:

 �ab�!=T� � KL
ab�!; 0� � KT

ab�!; 0�: (1.6)

Also at T � 0, these functions reduce to the constants in
Eq. (1.1):

 �ab�1� � Kab � KL
ab�!; k�jT�0 � KT

ab�!; k�jT�0: (1.7)

The functions KL;T
ab �!; k� are clearly of great physical

interest, and it would be useful to compute them for a
variety of CFTs. A number of computations have appeared
[29,30,35–38], and show interesting structure in the con-
ductivity as a function of !=T, encoding the
hydrodynamic-to-collisionless crossover for a variety of
tractable models. Here we will present some additional
results which shed light on the role duality can play on
the form of these functions.

In Sec. II we will consider the role of duality in Abelian
systems, by examining the self-dual noncompact, easy-
plane, CP1 field theory discussed by Motrunich and
Vishwanath [16]. Closely related results apply to other
Abelian CFTs whose particle-vortex duals have been de-
scribed in the literature [28,39–42], some of which are
supersymmetric (in which case, particle-vortex duality is
known as ‘‘mirror symmetry’’). The Lagrangian formula-
tion of the CP1 theory involves two complex scalar fields
and one gauge field A�, which is coupled to a gauge current
J1�. The theory has a global U�1� 
 Z2 symmetry, and we
will denote by J2� the Noether current arising from the
U(1) global symmetry. There is another conserved current,
the topological current J�top � ����@�A�, which is con-
served by the Bianchi identity. The topological and
Noether currents exchange under the self-duality. As we
will see in Sec. II, the two-point correlator of J�top is the
inverse of that of J1�. We use the notations of Eqs. (1.1)
and (1.4) with a, b � 1, 2.

The Z2 symmetry ensures that the cross correlations of
the J1�, J2� currents vanish, and consequently there are
only two constants K1 � K11 and K2 � K22 in Eq. (1.1),
and similarly for the T > 0 functions in Eq. (1.4). We
examine the duality transformations of these functions in
Sec. II and show that the existence of a self-dual critical
point leads to the functional relations2

 

KL
1 �!; k�K

T
2 �!; k� �

1

�2 ; (1.8a)

KL
2 �!; k�K

T
1 �!; k� �

1

�2 ; (1.8b)

which hold for general T, while for the constants in
Eq. (1.1) this implies K1K2 � 1=�2. Note that these rela-
tions are not sufficient to determine the conductivities

�1;2�!=T�; from Eq. (1.6), only their product obeys
�1�!=T��2�!=T� � 1=�2, at all !=T. Thus we expect
that for this self-dual model, the conductivities will remain
nontrivial functions of !=T exhibiting the hydrodynamic-
collisionless crossover, and their functional form has to be
determined from the solution of a quantum Boltzmann
equation.

In Sec. III, we turn to a field theory with non-Abelian
symmetries: the supersymmetric Yang Mills (SYM) gauge
theory with a SU�N� gauge group and N � 8 supersym-
metry [43]. At long distances, the theory flows under the
renormalization group to a strongly coupled 2� 1 dimen-
sional N � 8 superconformal field theory (SCFT), which
is believed to describe degrees of freedom on a stack of N
M2-branes [44,45]. In the limit of largeN, the SCFT can be
analyzed by using the AdS/CFT correspondence [46]. The
gravity description of the SCFT is given by M theory on
3� 1 dimensional anti-de Sitter space times a seven-
sphere, and in the large N limit corresponds to 10� 1
dimensional supergravity on AdS4 
 S

7. The AdS/CFT
correspondence provides a method to compute real-time
response functions at finite temperature [47,48], in which
case the gravity theory contains a black hole in AdS4. In
the limit of low frequency and momentum !� T, k� T
one finds hydrodynamic behavior in the SCFT [49].3 The
surprising solvability in this limit therefore demands our
attention.4

The 2� 1 dimensional SCFT has a global SO(8) R-
symmetry (the symmetry of the seven-sphere in the super-
gravity description), and therefore has a set of conserved
currents Ja�, a � 1; . . . ; 28. The SO(8) symmetry implies
that Kab � K	ab, and so there is only a single universal
constantK at zero temperature. Similarly, in Eq. (1.4) there
are only two independent functions KL�!; k� and KT�!; k�
which characterize the CFT response at finite temperature.
In Sec. III we will compute these functions in the N ! 1
limit, for all values of !=T and k=T. We also prove that
these functions obey the identity

2We only keep the one-photon irreducible (1PI) part in KL;T
1 ,

as explained in Sec. II.

3Hydrodynamic charge transport at small ! and k is of course
not specific to the N � 8 SCFT in 2� 1 dimensions.
Hydrodynamics from the supergravity description was first
found in strongly coupled N � 4 SYM in 3� 1 dimensions
[50], and later in a variety of other strongly coupled field theories
[51–54]. In strongly coupled N � 4 SYM in D � 3� 1,
hydrodynamic-to-collisionless crossover functions KL;T�!; k�
were computed in [55]. Note that in D � 3� 1 the conductivity
is not dimensionless [31], but is proportional to T in the hydro-
dynamic limit !� T.

4Of course, there are other well-known D � 2� 1 CFTs
which are solvable in the large N limit, such as the O�N� ’4

field theory. However, all of these are theories of particles which
are infinitely long-lived at N � 1, and so do not exhibit hydro-
dynamic behavior in this limit. Indeed, an infinite-order resum-
mation of the 1=N expansion is invariably necessary [31] (via the
quantum Boltzmann equation) to obtain hydrodynamics. These
solvable theories become weakly coupled as N ! 1, while the
N � 8 SYM remains strongly coupled even as N ! 1.
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 KL�!; k�KT�!; k� �
N3

18�2 ; (1.9)

at general T, which is strikingly similar to Eqs. (1.8). Now
this relation and Eq. (1.6) do indeed determine ��!=T�
(and K) to be the frequency-independent constant which is
the square root of the right-hand side of Eq. (1.9). In other
words, for this model, the hydrodynamic and high-
frequency collisionless conductivities are equal to each
other. Nevertheless, the theory does have a
hydrodynamic-to-collisionless crossover at all nonzero k
(as we will review in Sec. III), where KL�!; k� �

KT�!; k�, and so Eq. (1.9) is not sufficient to fix the
correlators at k � 0. Thus the identity Eq. (1.9) causes
all signals of the hydrodynamic-collisionless crossover to
disappear only at k � 0.

The similarity of Eq. (1.9) to Eq. (1.8) suggests that
explanation of the frequency independence of the conduc-
tivity of the N � 8 SYM SCFT lies in a self-duality
property. Section III demonstrates that this is indeed the
case. Under the AdS/CFT correspondence, the two-point
correlation function of the SO(8) R-currents in D � 2� 1
is holographically equivalent to the correlator of a SO(8)
gauge field on an asymptotically AdS4 background. In the
large N limit, the action of the SO(8) gauge field is
Gaussian, and is easily shown to possess electromagnetic
(EM) self-duality under which the electric and magnetic
fields are interchanged. We demonstrate in Sec. III D that it
is precisely this EM self-duality of the 3� 1 dimensional
gauge field which leads to the constraint (1.9) in the SCFT.
Thus the SYM theory obeys a self-duality which is not
readily detected in 2� 1 dimensions, but becomes explicit
in the holographic theory in 3� 1 dimensions. The gen-
eralization of the particle-vortex duality of Abelian CFTs
in D � 2� 1 to non-Abelian CFTs is facilitated by the
holographic extension to the theory on AdS4.

There have been a few earlier studies connecting dual-
ities in D � 4 to those in D � 3. Sethi [56] considered the
Kaluza-Klein reduction of S-duality from D � 4 to D � 3
by compactifying the D � 4 theory on a circle in one
dimension. This is quite different from the connection
above, using a holographic extension. The work of
Witten [28] makes a connection which is the same as
ours above (see also the work of Leigh and Petkou [57]).
He examined the connection between Abelian particle-
vortex duality (‘‘mirror symmetry’’) of CFTs in D � 2�
1 to the action of SL�2; Z� on Abelian gauge theories on
AdS4 at zero temperature. We have considered a similar
connection at nonzero temperature for the N � 8 SCFT,
and shown that it is ‘‘holographically self-dual’’ in the
large N limit; combined with the non-Abelian SO(8) sym-
metry (which implies a single K), the constraints for the
current correlators are stronger than those for Abelian
theories.

We will also consider in Appendix E other non-Abelian
theories with known gravity descriptions. In particular, we

will show that for a theory on a stack of D2 branes, a
nontrivial dilaton profile prevents EM self-duality. In this
case, we do not have the constraint (1.9), and so find a
frequency dependent conductivity.

II. ABELIAN, NONCOMPACT CP1 MODEL

This section will consider duality properties and current
correlations of the Abelian, easy-plane CP1 model of
Ref. [16]. This is a theory of two complex scalars z1;2

and a noncompact U(1) gauge field A�; the noncompact-
ness is necessary to suppress instantons (monopoles), and
we indicate below Eq. (2.13) the modifications required
when monopoles are present.

More generally, one can consider dualities of the non-
compact CPN�1 model where the global SU�N� flavor
symmetry has been explicitly broken down to U�1�N�1 

GN , withGN some subgroup of the permutation group ofN
objects [42]. The N � 1 case, which is better known as the
Abelian Higgs model, will be described in Appendix B.
The N � 2 case (with G2 � Z2) is described below. The
T > 0 results below have a generalization to all N > 2,
with the mappings spelled out in Ref. [42]. Only the N � 2
case is self-dual, and this is our reason for focusing on it.

It is interesting to note that the duality properties of the
noncompact CPN�1 models have strikingly similar coun-
terparts in D � 2� 1 theories with N � 4 supersymme-
try [39–41]. In particular, the correspondence is to the
theories with one U(1) vector (gauge) multiplet and N
matter hypermultiplets (SQED-N). SQED-1 is dual to a
theory of a single hypermultiplet, with no vector multi-
plet5; this corresponds to the duality, reviewed in
Appendix B, of the Abelian Higgs model to the theory of
a single complex scalar with no gauge field (also known as
the XY model or the O(2) ’4 field theory). Next, SQED-2
is self-dual, as is our N � 2 case. For N > 2, the dual of
SQED-N is a quiver gauge theory, as is the case for the
CPN�1 models [42].6 Our results below for T > 0 should
have straightforward extensions to these N � 4 super-
symmetric theories.

A. Conserved currents

Let us now begin our analysis of the nonsupersymmetric
N � 2 case. The action of the noncompact CP1 theory is

5The theory of a single hypermultiplet is free. This is because
the Gaussian fixed point is protected by N � 4 supersymmetry
[41]. In the nonsupersymmetric case, the Gaussian fixed point is
unstable to the interacting Wilson-Fisher fixed point.

6A quiver gauge theory consists of a direct product of gauge
group factors along with matter fields transforming in the
bifundamental representation of pairs of group factors. The
word quiver is used because the bifundamental fields are often
represented as arrows.
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S �
Z
d2x dt

�
j�@� � iA��z1j

2 � j�@� � iA��z2j
2

� s�jz1j
2 � jz2j

2� � u�jz1j
2 � jz2j

2�2

� vjz1j
2jz2j

2 �
1

2e2 ��
���@�A��2

�
; (2.1)

with u > 0 and�4u < v < 0. For these negative values of
v, the phase for s sufficiently negative has jhz1ij � jhz2ij �

0. We can also define a gauge-invariant vector order pa-
rameter ~N � z� ~�z, where ~� are the Pauli matrices, and the
constraint v < 0 implies that ~N prefers to lie in the xy
plane: hence ‘‘easy-plane’’ (for v > 0, ~N would be ori-
ented along the z ‘‘easy-axis,’’ realizing an Ising order
parameter). The CP1 model is usually defined with fixed
length constraint jz1j

2 � jz2j
2 � 1, but here we have only

implemented a soft constraint by the quartic term propor-
tional to u; we expect that the models with soft and hard
constraints have the same critical properties. We are inter-
ested in the nature of the quantum phase transition ac-
cessed by tuning the value of s to a critical value s � sc.
For s > sc, we have a ‘‘Coulomb’’ phase h ~Ni � 0 with a
gapless photon, while for s < sc there is a ‘‘Higgs’’ phase
with h ~Ni � 0. The phase diagram [16] of the model in the
s, T plane is shown in Fig. 1. Both the Higgs and Coulomb
phases have phase transitions as the temperature is raised:
for the former it is driven by the loss of the Higgs (quasi)-
long-range order, while for the latter it is a ‘‘confinement-
deconfinement’’ transition of the z particle-antiparticle
pairs formed from the logarithmic Coulomb force.

Neither of these transitions is of interest to us in this paper.
Rather, we will compute T > 0 correlations of the CFT
associated with the quantum critical point, and these de-
scribe the physical properties of the shaded quantum criti-
cal region in Fig. 1.

The theory has a discrete Z2 symmetry which exchanges
z1 and z2. The continuous symmetries are a gauge U(1)
symmetry

 z1 ! z1e
i
; z2 ! z2e

i
; A� ! A� � @�


(2.2)

and a global U(1) symmetry

 z1 ! z1e
i’; z2 ! z2e

�i’: (2.3)

Associated with these symmetries we can define two cur-
rents
 

J1� � i�z�1�@� � iA��z1 � z1�@� � iA��z
�
1�

� i�z�2�@� � iA��z2 � z2�@� � iA��z
�
2� (2.4)

and

 J2� � i�z�1@�z1 � z1@�z�1� � i�z
�
2@�z2 � z2@�z�2�: (2.5)

Note that J1 is even under the Z2 symmetry, while J2 is
odd. Current conservation implies that at T > 0 these have
two-point correlators of the form in Eq. (1.4), with the 4
distinct functions KL;T

1;2 .
Now consider the correlators of the gauge field A�. It is

useful to write this in terms of the leading quadratic terms
in the Coleman-Weinberg effective potential:

 W �
1

2

Z
k;!

�
��kiA0 �!Ai�2

�
1

e2 �
�L�k;!�

�!2 � k2

�

� AiAj

�
	ij �

kikj
k2

��
k2

e2 ��T�k;!�

�
�L�k;!�!2

�!2 � k2

��
� . . . ; (2.6)

where �L;T are the two components of the photon self-
energy (the ‘‘polarization’’ operator); these are related to

the current correlations by �L;T �
������
p2

p
KL;T

1 .
A key point is that at the conformal fixed point describ-

ing the phase transition at the quantum critical point s � sc
we can safely take the limit e! 1 in the above. This is
because dim�� � 1, and so the induced polarizations are
more singular than the bare Maxwell term. This is a very
generic property of CFTs with gauge fields in D � 2� 1.
From the effective potential we can obtain the form of the
gauge-invariant two-point correlators in the critical regime
(it is easiest to work this out in the Coulomb gauge kiAi �
0):

 

ssc
0

Higgs
Coulomb: logarithmically

bound z particles

T
Quantum

critical

FIG. 1 (color online). Phase diagram [16] of the easy-plane
noncompact CP1 model (Eq. (2.1)) in 2 spatial dimensions as a
function of the coupling s and temperature T. The quantum
critical point is at s � sc, T � 0. The finite T correlations of the
CFT describe the shaded quantum critical region; the boundary
of the shaded region is a crossover into a different physical
region, not a phase transition. The full lines are Kosterlitz-
Thouless (KT) phase transitions. The KT line for s < sc de-
scribes the disappearance of quasi-long-range xy order of ~N. The
KT transition for s > sc describes the deconfinement of z quanta
which are logarithmically bound by the Coulomb interaction in
the low temperature phase into particle-antiparticle pairs. The
phase diagram can also be described in terms of the dual w
theory in Eq. (2.11). Duality interchanges the two sides of s � sc
(T remains invariant under duality), and the z Coulomb phase is
interpreted as a w Higgs phase and vice versa.
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 h�ijkiAj; �i0j0ki0Aj0 i �
k2

�T�k;!�
; h�i0j0ki0Aj0 ; �kiA0 �!Ai�i � �i0i

!ki0

�T�k;!�
;

h�kiA0 �!Ai�; �kjA0 �!Aj�i �
�
	ij �

kikj
k2

�
!2

�T�k;!�
�
kikj
k2

��!2 � k2�

�L�k;!�
:

(2.7)

B. Vortices and duality

Here we will build a dual description of the CP1 model,
treating the vortices of the original model as complex
scalar fields in the dual description. Consider the topologi-
cal vortex excitations in the Higgs state of the action (2.1).
These are characterized [58] by a pair of winding numbers
�n1; n2� associated with the phases of z1 and z2 out at
spatial infinity. In general, such a vortex has a logarithmi-
cally diverging energy because the currents are only par-
tially screened by the gauge field A�. By an extension of
the Abrikosov-Nielsen-Olesen argument, it can be seen
that the coefficient of the logarithmically divergent energy
is proportional to

 

�
2�n1 �

Z
d2x�ij@iAj

�
2
�

�
2�n2 �

Z
d2x�ij@iAj

�
2
;

(2.8)

and this is minimized when the total A� flux is quantized as
[16,42,58]

 

Z
d2x�ij@iAj � ��n1 � n2�: (2.9)

Let us now identify the (1, 0) vortex as the worldline of a
dual particle w1, the (0, 1) vortex as the worldline of a dual
particle w2, and try to construct a dual theory by introduc-
ing complex scalar fields w1�x�, w2�x�. Then from
Eq. (2.9), Lorentz covariance implies that the total w
current is related to the A� flux:
 

1

�
����@�A� � i�w�1@�w1 � w1@�w�1�

� i�w�2@�w2 � w2@�w�2�: (2.10)

A second key property is that there are forces with a
logarithmic potential between the w1;2 particles. These
are also easily seen from the structure of the classical
vortex solutions of Eq. (2.1). Also, it is the difference of
the z1 and z2 currents, which is not screened by the A�
field, which contributes to an attractive logarithmic poten-
tial between the w1 and w2 particles. Another way to see
this is to consider the configuration of the gauge-invariant
Higgs field �Nx; Ny� around each vortex: the w1 has an
anticlockwise winding of the arg�Nx � iNy�, while the w2

has a clockwise winding. Because there is a finite stiffness
associated with this Higgs order, a w1 particle will attract a
w2 particle, while two w1 (or w2) particles will repel each
other.

We can now guess the form of the effective theory for the
w1;2 particles. We mediate that logarithmic potential as the

Coulomb potential due to a new ‘‘dual’’ gauge field ~A�.
Then general symmetry arguments and the constraints
above imply the dual theory [16]
 

~S �
Z
d2xdt

�
j�@� � i ~A��w1j

2 � j�@� � i ~A��w2j
2

� ~s�jw1j
2 � jw2j

2� � ~u�jw1j
2 � jw2j

2�2

� ~vjw1j
2jw2j

2 �
1

2~e2 ��
���@� ~A��2

�
: (2.11)

Note especially the difference in the charge assignments
from (2.1)—now the w1;2 particles have opposite charges
under ~A�. Apart from this, the theories have an identical
form, and so current correlation functions ~KL;T

1;2 , associated
with the global and gauge U(1) symmetries, will have the
same dependence upon the couplings in ~S as the KL;T

1;2 have
on S. However, the explicit expressions for the current in
terms of the field operators have a sign interchanged:

 

~J 1� � i�w�1�@� � i ~A��w1 � w1�@� � i ~A��w�1�

� i�w�2�@� � i ~A��w2 � w2�@� � i ~A��w
�
2�

(2.12)

and

 

~J 2� � i�w�1@�w1 � w1@�w
�
1� � i�w

�
2@�w2 � w2@�w

�
2�:

(2.13)

We note in passing the extension of the above analysis to
a compact CP1 theory of the z particles. Following
Polyakov [59], we have to include monopoles which
change the A� flux by 2�. This can be achieved by adding
the term �ym�w1w2 � w�1w

�
2� to the w action ~S, where ym

is the monopole fugacity. This monopole operator is neu-
tral under ~A� charge and, from Eq. (2.10), catalyzes the
required change in A� flux. This is a relevant perturbation:
the theories for the z and w particles are no longer equiva-
lent under duality, and the universality class of the tran-
sition is changed. We will not consider the compact case
further; for more details, see the review [60].

Returning to the noncompact theory, we note the duality
mapping can now also be carried backwards from the w
theory to the z theory, and from (2.10) we see that the
theories S and ~S are connected by the relations
 

1

�
����@

�A� � ~J2�; (2.14a)

1

�
����@� ~A� � J2�: (2.14b)
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From these relations, Eq. (2.7), and the definition (1.4), we
immediately obtain the relation between K1 and K2:
 

KT
1 �!; k� ~K

L
2 �!; k� �

1

�2 ;
~KT

1 �!; k�K
L
2 �!; k� �

1

�2 ;

(2.15a)

KL
1 �!; k� ~K

T
2 �!; k� �

1

�2 ;
~KL

1 �!; k�K
T
2 �!; k� �

1

�2 :

(2.15b)

Now, assuming a single second-order transition obtained
by tuning the parameter s, the above reasoning implies that
this critical point must be self-dual, KT;L

1 � ~KT;L
1 , and

KT;L
2 � ~KT;L

2 . Self-duality thus immediately implies rela-
tion (1.8), as claimed in the introduction.

Monte Carlo simulations [61] of a current loop model
related to S observe a weak first-order transition. This is
possibly because they are using a particular lattice action
which is not within the domain of attraction of the self-dual
point. In any case, the duality mappings between the two
phases on either side of the transition apply, and the con-
straints on a possible CFT remain instructive.

III. THE M2-BRANE THEORY

This section examines the transport properties of the
non-Abelian SU�N� Yang Mills theory in D � 2� 1
with N � 8 supersymmetry. The weak-coupling action
and field content of this theory is most directly understood
by dimensional reduction of the N � 1 SYM theory in
D � 9� 1 on the flat torus T7 [62]. This reduction shows
that the D � 2� 1 theory has an explicit SO(7) R-charge
global symmetry. The D � 9� 1 SYM theory has only a
single gauge coupling constant, and therefore, so does the
D � 2� 1 theory. The latter coupling has a positive scal-
ing dimension, and flows to strong coupling in the infrared.
It is believed [43] that the flow is to an infrared-stable fixed
point that describes a SCFT. It was also argued that this
SCFT has an emergent R-charge symmetry which is ex-
panded to SO(8). We shall be interested in the transport
properties of this SO(8) R-charge in the SCFT at T > 0 in
the present section.

We are faced by a strongly coupled SCFT, and a pertur-
bative analysis of the field theory described above is not
very useful. Instead, remarkable progress is possible using
the connection to string theory and the AdS/CFT corre-
spondence. TheD � 2� 1 SYM theory is contained in the
low energy description of type IIA string theory in the
presence of a stack of N D2-branes. The flow to strong
coupling of the SYM theory corresponds in string theory to
the lift of ten-dimensional type IIA strings to 11-
dimensional M theory [46]. So we can directly access the
D � 2� 1 SYM SCFT by considering M theory in the
presence of a stack of N M2-branes [45]. In the large N
limit, M theory can be described by the semiclassical
theory of 11-dimensional supergravity, and this will be

our main tool in the analysis described below. This for-
mulation also makes the SO(8) R-charge symmetry ex-
plicit, because the M2-branes curve the spacetime of 11-
dimensional supergravity to AdS4 
 S7.

Another powerful feature of the supergravity formula-
tion is that it can be extended to T > 0. We have to consider
supergravity in a spacetime which is asymptotically AdS4,
but which also contains a black hole. The Hawking tem-
perature of the black hole then corresponds to the tempera-
ture of the SCFT [63] (for example, fluctuation-dissipation
theorems are satisfied [48]). Hydrodynamics of the SCFT
emerges from the semiclassical supergravity dynamics in
the presence of the black hole.7

Turning to our explicit computation of dynamics in M
theory, we consider the gravitational background associ-
ated with a stack of N M2-branes, with N 	 1 [45,49,65],

 ds2 �
r4

R4 ��f�r�dt
2 � dx2 � dy2 �

R2

r2

�
dr2

f�r�
� r2d�2

7

�
;

(3.1)

where f�r� � 1� r6
0=r

6. It is more convenient for us to
change coordinates from r to u � �r0=r�2, in terms of
which

 ds2 �
r4

0

R4u2 ��f�u�dt
2 � dx2 � dy2 �

R2

4u2f
du2

� R2d�2
7 (3.2)

and f�u� � 1� u3. The horizon of the black hole is lo-
cated at u � 1, and the boundary of AdS4 is at u � 0.

The relationship between the quantities in the world
volume SCFT (N and temperature T) and those of the
metric (R and r0) are given by [45,49]

 �5R9 �
���
2
p
N3=2�2; T �

3

2�
r2

0

R3 ; (3.3)

where � is the gravitational coupling strength ofD � 10�
1 supergravity.

There is a precise correspondence between correlation
functions computed in the D � 2� 1 CFT and correlation
functions of supergravity fields computed in the metric
(3.1) [46–48]. We will use this to compute charge transport
properties.

In the metric (3.1) a 7-sphere factors out: R2d�2
7. The

spacetime thus has a SO(8) symmetry. This matches with
the global symmetry in the M2 world volume theory: there
is a R-charge which transforms under the same global
symmetry. The following subsections will compute the
two-point correlations of the R-charge currents, Ja�, with
a � 1; . . . ; 28.

7Strictly speaking, the appearance of a black hole is dual to
being at finite temperature and being in a deconfined phase; it is
possible to have a finite-temperature gravitational description
without a black hole [63,64].
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The existence of a compact 7-sphere makes it possible to
do Kaluza-Klein reduction on this space. We expand all
fields in terms of spherical harmonics on the 7-sphere. The
original fields of M theory are the metric tensor g�� and a
three-index antisymmetric tensor A���. Upon Kaluza-
Klein reduction, an SO(8) gauge field appears from the
components of the metric and the threeform where only
one index is in the AdS4 directions (t, x, y, and u) and the
others are in the S7 directions (see Appendix C for details).
The action for this gauge field is

 S � �
1

4g2
4D

Z
d4x

�������
�g
p

gMAgNBFaMNF
a
AB; (3.4)

where uppercase Latin indices A, B, M, N run four values
of t, x, y, and u (in contrast to Greek indices �, , �, �
which run t, x, and y). The four-dimensional gauge cou-
pling constant g4D is dimensionless, and its largeN value is
computed in Appendix C

 

1

g2
4D

�

���
2
p

6�
N3=2: (3.5)

Although we focus on the gravity background con-
structed from a stack of N M2-branes in flat 11-
dimensional space, there are a number of related examples
which are easily understood from considering (3.4). The
key observation, which we discuss further in Sec. III D, is
that (3.4) exhibits classical electric-magnetic duality. In the
case of our M2-brane theory, this duality is close enough to
a self-duality to enforce a relation on the current-current
two-point functions and result in a frequency-independent
conductivity. In fact, this self-duality holds in a more
general context. Consider an 11-dimensional space which
factorizes into R2;1 and a Calabi-Yau fourfold which de-
velops a local singularity. By placing a stack of M2-branes
at the singularity, we should obtain a more exotic 2� 1
dimensional conformal field theory which still has at least a
U(1) global R-symmetry. Kaluza-Klein reduction of the
gravity theory will yield precisely (3.4) and our results on
holographic self-duality will carry over to these more
general cases.

There are two other interesting generalizations to con-
sider in which holographic self-duality fails. After Kaluza-
Klein reduction, the gauge fields FAB will support electri-
cally charged black holes [66]. These black holes are dual
to introducing an R-charge chemical potential to the field
theory. Another interesting 2� 1 dimensional field theory
with a holographic description is the theory living on a
stack of D2-branes in type IIA string theory. In both cases,
there is generically a nontrivial scalar which appears in a
modification of (3.4) as a coupling constant which depends
on the holographic radial direction. The relation on the
two-point functions will be between a theory with coupling
g4D�u� and one with coupling 1=g4D�u�. For details con-
cerning this more general perspective, see Appendix E.

A. Current-current correlators

We now proceed to the computation of the two-point
correlators of the Ja� in the CFT at T > 0. Here we will
work in Minkowski space (real frequencies and time), and
so define the current correlation as follows:

 C���x� y�	ab � �i��x
0 � y0�h�Ja��x�; Jb��y�i: (3.6)

The 	ab follows from SO(8) symmetry. The expectation
value is taken in a translation-invariant state, so we can
Fourier transform to C���p�, where p� � ��!; k�.
Spectral density is proportional to the imaginary part of
the retarded function,

 ����p� � �2 ImC���p�: (3.7)

It is an odd, real function of p, whose diagonal components
are positive (for positive frequency). Expectation values of
all global conserved charges are assumed to vanish in the
equilibrium state; in other words we consider systems
without chemical potentials. Conservation of Ja��x� im-
plies that the correlation functions may be defined so that
they satisfy the Ward identity8 p�C���p� � 0. Then, as in
Sec. I and in Eq. (1.4), we can write C�� in the form

 C���p� � PT���T�!; k� � PL���L�!; k�: (3.8)

(The relationship between � and K is �T;L �
������
p2

p
KT;L.)

Without loss of generality one can take the spatial momen-
tum oriented along the x direction, so that p � �!; k; 0�.
Then the components of the retarded current-current cor-
relation function are

 Cyy�!; k� � �T�!; k�; (3.9)

as well as

 Ctt �
k2

!2 � k2 �L�!; k�;

Ctx � Cxt �
�!k

!2 � k2 �L�!; k�;

Cxx �
!2

!2 � k2 �L�!; k�:

(3.10)

B. Correlation functions from AdS/CFT

In order to find the retarded function, one needs to study
fluctuations of vector fields on the background spacetime
created by a stack of M2-branes. At the linear order the
fields satisfy the equations

 @M�
�������
�g
p

gMAgNBFAB� � 0: (3.11)

8One may choose to define the correlation functions in such a
way that local (in position space) counterterms appear on the
right-hand side of the Ward identities. The correlation functions
defined in this way will differ from C���p� by analytic functions
of ! and k.
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These equations are to be solved with the boundary con-
ditions

 lim
u!0

A��u; x� � A0
��x�; (3.12)

at u � 0. Near u � 1 one imposes the outgoing wave
boundary condition, which means that for u slightly less
than 1 the solution is purely a wave that propagates toward
the horizon. Because of translational invariance with re-
spect to x one can solve for each Fourier mode eip�x

separately. The result can be represented in the form

 A��u; p� � M�
��u; p�A0

��p�: (3.13)

Then, according to the AdS/CFT prescription formulated
in Ref. [47], the current-current correlator can be found
from the formula9

 C���p� � ��lim
u!0

M0���u; p�; (3.14)

where � is the constant that appears in the normalization of
the action,

 S �
�
2

Z
du d3x�A02t � fA02x � fA02y � . . .�; (3.15)

(only terms with two derivatives with respect to u are
written). In our case � � 4�T=3g2

4D. It turns out that �
is precisely the charge susceptibility.10

The prescription given above might appear ad hoc.
However it is a special case of a more general AdS/CFT
prescription that gives real-time correlators of any number
of operators [48]. For our task, however, the above pre-
scription is technically most straightforward to implement.

We work in the radial gauge Au � 0, and take all fields
A��x� to be proportional to e�i!t�ik�x. Taking momentum
k along the x direction, k � �k; 0�, one finds that the
fluctuating vector fields satisfy the following equations
[49]

 wA0t � qfA
0
x � 0; (3.16)

 A00t �
1

f
�wqAx � q2At� � 0; (3.17)

 A00x �
f0

f
A0x �

1

f2 �wqAt � w
2Ax� � 0; (3.18)

 A00y �
f0

f
A0y �

1

f2 �w
2 � q2f�Ay � 0: (3.19)

Here prime denotes derivative with respect to u; w and q

are the dimensionless frequency and momentum, w �
3!=�4�T�, q � 3k=�4�T�. Note that the equation for the
transverse potential Ay decouples from the rest. Moreover,
Eq. (3.18) can be shown to follow from Eqs. (3.16) and
(3.17) and so is not independent. Combining Eqs. (3.16)
and (3.17) one can obtain an equation that does not involve
Ax,

 A000t �
f0

f
A00t �

1

f2 �w
2 � q2f�A0t � 0: (3.20)

One can think about this equation as a second-order equa-
tion for A0t. It was observed in [49] that Eq. (3.20) has the
same form as the equation for Ay. Such degeneracy is
unusual, and we now proceed to explore its implications.

1. Transverse channel

Let us start with the retarded function for transverse
currents, Cyy�!; k�. According to the AdS/CFT prescrip-
tion (3.14),

 Cyy�p� � ��lim
u!0

M0yy�u; p�: (3.21)

The function Myy�u; p� is the solution to Eq. (3.19) which
satisfies the outgoing wave boundary condition on the
horizon u � 1, and Myy�0; p� � 1 at the boundary u � 0.

Let us denote a solution to Eq. (3.19) which satisfies the
outgoing boundary condition at the horizon as  �u�. The
normalization of  �u� is left arbitrary. Near u � 0,
Eq. (3.19) allows two asymptotic solutions, which can be
expressed in terms of the Frobenius series,

 ZI�u� � 1� hZII�u� lnu� b
�1�
I u� . . . ; (3.22)

 ZII�u� � u�1� b�1�II u� b
�2�
II u

2 � . . .�: (3.23)

The coefficient b�1�I is arbitrary, and we set it to zero. All
other coefficients are determined by substituting expansion
(3.25) in the original Eq. (3.19). In particular, we find that
h � 0, therefore

 ZI�0� � 1; Z0I�0� � 0; ZII�0� � 0; Z0II�0� � 1:

(3.24)

The outgoing wave solution  �u� can be expressed as

  �u� �AZI�u� �BZII�u�; (3.25)

where A and B depend on the parameters of the equation,
in particular, on w and q. From Eq. (3.24) it follows that
 �0� �A and  0�0� � B. The properly normalized mode
function is Myy�u; p� �  �u�= �0�, and therefore we find

 Cyy�w; q� � ��
B�w; q�
A�w; q�

: (3.26)

9Greek indices on M�� are raised using the flat space
Minkowski metric.

10The hydrodynamic density-density response function found
in [49] is Ctt � �1=g2

4D�k
2=�i!�Dck

2�. Comparing this to the
hydrodynamic form Ctt � �Dck

2=�i!�Dck
2�, we find the

above value for charge susceptibility �.
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2. Longitudinal channel

Let us now look at the correlators in the longitudinal
channel: Ctt, Ctx, and Cxx. For that we need to solve
Eqs. (3.16) and (3.17). First, we know that A0t�u� satisfies
the same equation as Ay�u�. Therefore, we can write
A0t�u� � c �u�, where c is some coefficient. This coeffi-
cient can be fixed from the boundary conditions at u � 0
by employing Eqs. (3.17) and  0�0� � B. We find

 A0t�u� �
�
A

B
ZI�u� � ZII�u�

�
�wqA0

x � q2A0
t �: (3.27)

From Eq. (3.16) we also find

 A0x�u� � �
1

f

�
A

B
ZI�u� � ZII�u�

�
�w2A0

x � wqA
0
t �:

(3.28)

These equations are to be compared with Eq. (3.13), from
which one extracts M0���u; p�. Putting u � 0, one finds the
correlators

 Ctt�w; q� � �q2 A�w; q�
B�w; q�

;

Cxx�w; q� � �w2 A�w; q�
B�w; q�

:

(3.29)

In Appendix D we show that at zero momentum, q � 0, the
mode equation (3.19) can be solved analytically, which
allows one to determine �T�w; 0� � �L�w; 0�. However,
one can determine the conductivity without explicitly solv-
ing the mode equation, as we now show.

C. Conductivity

We see that both Cyy and Cxx are expressed in terms of
the same connection coefficients A and B. Eliminating
the coefficients, we find

 Cxx�w; q�Cyy�w; q� � ��2w2;

Ctt�w; q�Cyy�w; q� � ��
2q2:

(3.30)

Expressed in terms of the self-energies �T , �L this reads

 �T�w; q��L�w; q� � ��2�w2 � q2�: (3.31)

Note that this relation holds for all w and q: we have not
made any small-frequency approximations anywhere. In
fact, we did not even have to solve the mode equations.
Combining Eqs. (1.4), (3.8), and (3.31), we obtain our main
result in Eq. (1.9).

As discussed in Sec. I, at zero momentum, rotation
invariance implies that �T � �L, therefore relation
(3.31) uniquely determines the self-energy11 �T�!; 0� �
�L�!; 0� � �i�w for all w. The conductivity is given by

��!=T� � i�T�!; 0�=!, and we find

 ��!=T� � �
3

4�T
� �Dc �

1

g2
4D

; (3.32)

where Dc � 3=�4�T� is the diffusion constant found in
[49]. Note that the Einstein relation between the conduc-
tivity and the diffusion constant is satisfied. Also, as noted
earlier, it is surprising that ��!=T� is actually independent
of !=T. [Dependence upon !=T is found at all nonzero k,
as is shown below.] This!-independence is a consequence
of the relation (3.31), which in turn follows from the fact
that A0t and Ay satisfy the same equation in the bulk. It can
be traced back to the electromagnetic duality of the clas-
sical action (3.4), as we now show.

D. Electric-magnetic duality

Even though the origin of the relation (3.31) is puzzling
from the point of view of the microscopic degrees of free-
dom in the N � 8 SCFT, its origin from the bulk point of
view can be traced to electric-magnetic (EM) duality of an
Abelian gauge field. Indeed, current-current correlators are
computed from the Maxwell equations in the four-
dimensional bulk, and it is precisely in four dimensions
that Maxwell equations may possess EM duality.

Although in general the R-symmetry may be non-
Abelian and hence be dual to a non-Abelian gauge field
in the bulk, we work in the classical supergravity limit and
must keep N large. At large N, the gauge coupling g4D /

N�3=4 is very small, and our non-Abelian gauge field
factorizes into a number of effectively Abelian pieces to
leading order in 1=N.

If we write equations of motion in terms of the gauge-
invariant FMN (rather than the vector potential), then
Maxwell equations have to be supplemented by a
Bianchi identity,
 

@M�
�������
�g
p

FMN� � 0; (3.33a)

@M�
�������
�g
p 1

2"
MNABFAB� � 0; (3.33b)

where "MNAB is the totally antisymmetric tensor, with
"0123 � 1=

�������
�g
p

. Now, one can introduce GMN defined as
FMN � 1

2 "
MNABGAB, which can be inverted to giveGMN �

� 1
2"

MNABFAB. Expressed in terms of G, the equations of
motion become
 

@M�
�������
�g
p 1

2"
MNABGAB� � 0; (3.34a)

@M�
�������
�g
p

GMN� � 0: (3.34b)

Maxwell equations for F become a Bianchi identity for G,
and vice versa. GMN is the dual field strength tensor, and
we can also define a dual vector potential BM by GMN �
@MBN � @NBM. Note that the validity of EM duality does
not depend on the background spacetime having any par-
ticular symmetries such as Lorentz symmetry, or rotational
symmetry.

11Up to a sign, which can be fixed by requiring positivity of the
spectral function �yy � �2 Im�T .
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From the point of view of AdS/CFT, the EM dual theory
in the bulk will correspond to some theory on the boundary,
which is a dual of the original SCFT. In particular, the dual
vector potential B� will couple to the dual current ~J�, and
one can compute two-point functions Cdual

�� �!; k� in the
dual theory.

In components we have Ftz � Gxy=
�������
�g
p

. This means
that the equation for

�������
�g
p

Ftz obtained from Eqs. (3.33) is
the same as the equation for Gxy, obtained from the dual
Eqs. (3.34). In our particular example of the nonextremal
M2 background metric, we have

�������
�g
p

Ftu / A0t�u�, and
Gxy / kBy�u� (in the radial gauge). Thus the equation for
A0t�u� is the same as the equation for By�u�. Then, by the
argument in Sec. III B we find a relation between the self-
energies �T;L in the original theory, and the self-energies
~�T;L in the dual theory:

 

�T�w; q� ~�L�w; q� � ��2�w2 � q2�; (3.35a)
~�T�w; q��L�w; q� � ��2�w2 � q2�: (3.35b)

For our M2-branes, EM duality is a self-duality, and the
EM dual theory is the same as the original theory, as is
evident from Eqs. (3.33) and (3.34). Therefore, C�� �
Cdual
�� , and ~�T � �T , ~�L � �L. This gives back our

main result (3.31).12 In the case when there are nontrivial
background profiles for scalar fields, the EM dual theory is
not equivalent to the original theory. This is discussed in
Appendix E.

E. Full spectral functions

We will now evaluate the spectral functions numerically,
for all ! and k. To do so, we find a solution  �u� to the
mode equation (3.19) with the outgoing boundary condi-
tions at the horizon u � 1. Then, as described in Sec. III B,
the retarded two-point function Cyy�!; k� is proportional to
 0�0�= �0�, while Ctt�!; k� is proportional to  �0�= 0�0�.

Figure 2 shows the imaginary part of the transverse
current-current correlation function, plotted in units of
(��). At zero momentum, ImCyy is a linear function of
w � 3!=�4�T� for all w, as shown in the previous sub-
section. At large frequency, the spectral function asymp-
totes to ImCyy � ����w, regardless of the value of
q � 3k=�4�T�.

The longitudinal correlators are directly related to the
conserved R-charge density, and so are more direct probes
of hydrodynamic behavior, and the hydrodynamic-to-
collisionless crossover. Figure 3 shows the imaginary part
of the density-density correlation function divided by q2.
At small momentum and frequency, one clearly sees the
diffusive peak, consistent with the hydrodynamic expres-
sion in Eq. (1.3)

 ImCtt�!; k� � Dc�
�!k2

!2 � �Dck
2�2
;

j!j � T and k� T:

(3.36)

At large frequency, the asymptotic form of the spectral
function is expected to be determined by the collisionless
ground state correlator. The latter was presented in
Eq. (1.2), and here has the form

 ImCtt�!; k� �
1

g2
4D

sgn�!�
��k2������������������
!2 � k2
p ; j!j � k	 T:

(3.37)

Figure 3, right, shows that this form is indeed well obeyed.
Indeed, Eqs. (3.36) and (3.37) are exactly the correlators
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FIG. 2. Imaginary part of the retarded function Cyy�!; k�, plotted in units of (��), as a function of dimensionless frequency w �
3!=�4�T�, for several values of dimensionless momentum q � 3k=�4�T�. Curves from left to right correspond to q � 0, 0.5, 1.0, 2.0,
3.0. Left: ImCyy�w; q�, Right: ImCyy�w; q�=w.

12The present discussion assumes that the coupling constant
g2

4D is not inverted in the dual theory, which is justified for a free,
sourceless, Abelian gauge field. One could formally repeat the
same steps leading to Eq. (3.31), assuming ~g2

4D � 1=g2
4D, as is

standard in EM duality. However, in this case the coupling
constant ~g2

4D / N
3=2 becomes large, invalidating the bulk de-

scription in terms of a classical gauge field.
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expected across a hydrodynamic-to-collisionless crossover
in a generic system [67]: the prefactor of k2 in Eq. (3.37) is
required by charge conservation even at large !, while the
factor of 1=

�����������������
!2 � k2
p

is set by the CFT current scaling
dimension and Lorentz invariance.

In Fig. 4, we illustrate the crossover from the hydro-
dynamic regime to the collisionless regime. For each value
of q we find the value wmax where the function ImCtt�w; q�
reaches its maximal value, and plot the resulting function
wmax�q�. As we see on Fig. 4, at small q the location of the
peak is wmax � q2, in accordance with hydrodynamics. At

large q it slowly reaches the asymptotic collisionless be-
havior wmax � q.

What is unexpected, is that the two prefactors in
Eqs. (3.36) and (3.37), Dc� and g�2

4D , happen to be equal
to each other, as we saw in Eq. (3.32). We have also seen
that this surprising feature is a consequence of the general
functional relations in Eqs. (1.9) and (3.31). As we have
discussed, such functional relations are not expected to
apply to a typical D � 2� 1 CFT, but only those which
enjoy special self-duality symmetries. Here the self-duality
of the gauge theory on AdS4 led to the identical form of
Eqs. (3.19) and (3.20) which was shown eventually to lead
to Eqs. (1.9) and (3.31). In Appendix E, we consider a R-
symmetry gauge field action with a nontrivial dilaton
which spoils the holographic self-duality and the
frequency-independent conductivity. The field theory on
a D2-brane in type IIA string theory is an example with
such a dilaton.

IV. CONCLUSIONS

We considered finite-temperature charge transport of
quantum field theories in D � 2� 1 dimensions: the
easy-plane CP1 model, and the CFT living on a stack of
N M2-branes in M theory (the N � 8, SU(N) SYM
theory). In the former theory, Abelian particle-vortex
self-duality imposes a relationship (Eq. (1.8)) between
different current correlators. In the latter theory, we found
a strikingly similar relationship (Eq. (1.9)) between longi-
tudinal and transverse components of the correlators of the
SO(8) R-charge. This relationship led to a frequency-
independent conductivity for the M2 world volume theory
at zero wave vector, but hydrodynamic behavior and the
hydrodynamic-collisionless crossover did appear at non-
zero wave vectors. We also demonstrated that for the D2-
brane theory, our argument for frequency-independent
conductivity fails because of a nontrivial dilaton
background.
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FIG. 4. The position of the peak of the spectral function in
Fig. 3. The dashed line is w � q.
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FIG. 3. Imaginary part of the retarded function Ctt�w; q�=q2, plotted in units of (��), as a function of dimensionless frequency
w � 3!=�4�T�, for several values of dimensionless momentum q � 3k=�4�T�. Curves from left to right correspond to q � 0:2, 0.5,
1.0 (left panel), and q � 1:0, 2.0, 3.0, 4.0 (right panel). The dashed curves are plots of Eq. (3.37) divided by k2.
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We traced the origin of the SO(8) charge correlation
constraint of the SYM theory, and its frequency-
independent conductivity, to an electromagnetic self-
duality of the holographic theory on AdS4. Thus, the gen-
eralization of three-dimensional Abelian particle-vortex
duality to non-Abelian theories becomes manifest only
after a holographic extension to a four-dimensional theory.
For Abelian theories, the AdS/CFT connection between
particle-vortex duality in three dimensions and the
SL�2; Z� invariance of four-dimensional Abelian gauge
theories was explored earlier in [28,57].

Our results for the SU�N� SYM theory were established
at large N. Does holographic self-duality, and the relation-
ship13 Eq. (1.9), hold also for finite N? The fact that the
large N theory has hydrodynamic behavior is evidence for
the ‘‘generic’’ nature of this limit. Furthermore, Eq. (1.9)
has the same structure as Eq. (1.8), and the latter is believed
to be an exact relationship, obtained without a large N
limit. While these facts are encouraging, establishing self-
duality at finite N requires looking at the full M theory on
AdS4. Its low energy limit is N � 8 supergravity [66,68–
71] (Sec. III considered only the SO(8) gauge fields of this
theory), and its ‘‘generalized E7�7� duality invariance’’ [69]
(which appears to include EM duality) has remnants in M
theory [72].

It would be very interesting to find an Abelian field
theory which obeyed a relationship as simple as
Eq. (1.9), found here for the SYM theory. An unsuccessful
attempt to find such a theory is described in Appendix B.
The closest we could get is Eq. (1.8), obeyed by the easy-
plane CP1 model [16] and its expected generalization to
the SQED-2 theory with N � 4 supersymmetry [39– 41].
A fundamental feature of Abelian particle-vortex duality is
the exchange of U(1) ‘‘flavor’’ and ‘‘topological’’ currents,
and we have not been able to construct a theory in which
these currents are equivalent to each other (which would
lead to a single K in Eq. (1.1)). However, non-Abelian
theories can have additional symmetries which rotate dif-
ferent U(1) currents into each other; this was important for
the simplicity of Eq. (1.9).

Finally, we would like to emphasize that the unexpected
relation between the self-energies found in this paper,

 KL�!; k�KT�!; k� � const; (4.1)

holds beyond the N � 8 SYM theory.14 It applies to the
CFTs whose electromagnetic response is described by the

Maxwell action (3.4) in the 3� 1 dimensional asymptoti-
cally AdS space. Thus the relation (4.1) should be viewed
as another example of universality that characterizes finite-
temperature response in the AdS/CFT correspondence.
Previous examples of such universality include the univer-
sal value of the viscosity to entropy density ratio �=s �
1=4� [73], and a possible universal value of the friction
coefficient for a heavy particle [74]. Unlike these other
examples, the universal relation (4.1) applies only to 2� 1
dimensional CFTs at finite temperature. On the other hand,
unlike these other examples, the universal relation (4.1)
applies at arbitrary ! and k.
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APPENDIX A: THERMAL CORRELATORS OF
CFTs IN D � 1� 1

First, let us consider an arbitrary Lorentz-scalar observ-
able O of a CFT in D � 1� 1 with scaling dimension h.
Then, at T � 0, its two-point correlator in Euclidean space
is

 CO��; x�jT�0 �
1

�x2 � �2�h
; (A1)

while the corresponding correlator in momentum and
imaginary frequency is ��!2 � k2�h�1. By the conformal
map from the infinite plane to the cylinder with circum-
ference 1=T, we can obtain the form of the correlation at
T > 0:

 CO��; x� �
�

�2T2

sin��T��� ix�� sin��T��� ix��

�
h
: (A2)

Notice that this expression is periodic in �, with period
1=T. Now let us Fourier transform Eq. (A2) to momenta k
and Matsubara frequencies !n; because of the periodicity,
the !n must be integer multiples of 2�T, and the result is
 

CO�i!n; k� � T
2h�2 ��1� h�

��h�



��h2�

j!nj�ik
4�T ���

h
2�

j!nj�ik
4�T �

��1� h
2�

j!nj�ik
4�T ���1�

h
2�

j!nj�ik
4�T �

: (A3)

13Of course, the constant on the right-hand side of Eq. (1.9)
would have finite N corrections. The issue is whether the right-
hand side remains independent of! and k for T > 0 also at finite
N.

14As described in Appendix C, there is a whole class of 2� 1
dimensional CFTs satisfying Eq. (4.1). For large N field theories
which are dual to M theory on AdS4 
 X, where X is a seven-
dimensional Sasaki-Einstein manifold, with currents normalized
as in Appendix C, the value of the constant in the right-hand side
of Eq. (4.1) is N3=�2�10�Vol�X�2.
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Finally, we analytically continue this expression to real
frequencies from the upper half-frequency plane (!n > 0)
with the mapping i!n ! ! to obtain the retarded two-
point correlator at T > 0. This is a nontrivial function of !
and k, which describes relaxation of O correlations at T >
0. See Chapter 4 of Ref. [31] for more details.

Now let us consider the special case of a conserved
current, and search for the collisionless-to-hydrodynamic
crossover. In this case, h � 1. Note that Eq. (A3) has a pole
at h � 1 with a residue which is ! and k independent; this
reflects a logarithmic cutoff dependence in the Fourier
transform of Eq. (A2), and the finite ! and k dependent
contribution is obtained by subtracting the pole. However,
the current is not a Lorentz scalar, so the above results do
not directly apply anyway. The density correlator at T � 0
in Euclidean space is

 Ctt��; x�jT�0 �
1

��� ix�2
�

1

��� ix�2
: (A4)

In momentum and real frequency space, the Fourier trans-
form of this is cutoff independent because of the nonzero
Lorentz spin:

 Ctt�!; k�jT�0 �
�k2

k2 �!2 : (A5)

This is, of course, the generalization of Eq. (1.2) to D �
1� 1. We can obtain the T > 0 density correlator by a
conformal mapping of Eq. (A4), as was done earlier in
Eq. (A2); here the corresponding expression is

 Ctt��; x� �
�

�T
sin��T��� ix��

�
2
�

�
�T

sin��T��� ix��

�
2
:

(A6)

Finally, let us Fourier transform Eq. (A6) to momentum
and Matsubara frequency space. Carrying out this trans-
formation yields an initially surprising result. Although the
real space result in Eq. (A6) depends upon temperature, the
T > 0 result in momentum and frequency space has the
same form as that at T � 0 in Eq. (A5):

 Ctt�i!n; k� �
�k2

k2 �!2
n
: (A7)

The inverse Fourier transforms of Eqs. (A5) and (A7) differ
only because the frequency !n is discrete, while ! is
continuous. So there is no hydrodynamic behavior at T >
0, and no analog of the result in Eq. (1.3).

The physical interpretation of the absence of hydrody-
namic behavior is simple. CFTs in D � 1� 1 can be
holomorphically factorized, and consequently, there are
no interactions or collisions between left and right movers.
To obtain collisions, one has to consider the influence of
formally irrelevant perturbations which can couple left and
right movers. Only then will hydrodynamic behavior
emerge: see Ref. [75]. In contrast, in D � 2� 1, hydro-

dynamics emerges already in the conformal scaling limit
[29].

APPENDIX B: ABELIAN DUALITY WITH ONE
COMPLEX SCALAR

Here we will make some remarks on the duality prop-
erties of theories of a single complex scalar coupled to a
U(1) gauge field with a Chern-Simons term in D � 2� 1.
Such theories have been studied extensively in the context
of the quantum Hall effect [23–28,76]. A N � 3 super-
symmetric generalization of the theory below has been
studied by Kapustin and Strassler [41] and their results
are very similar to our T � 0 results below. We will also
present results for the theory without the Chern-Simons
term (whose supersymmetric analog, noted in Sec. II, is the
N � 4 SQED-1 theory [39–41]).

We consider a theory with the following action, which is
essentially the single scalar version of Eq. (2.1), with an
additional Chern-Simons term:
 

Scs �
Z
d2x dt

�
j�@� � iA��zj2 � sjzj2 � ujzj4

�
1

2e2 ��
���@�A��

2 �
�

4�
����A�@�A�

�
: (B1)

In general, this theory is not a CFT. However, as in Sec. II,
we can imagine accessing a second-order phase transition
out of a Higgs phase at a critical value of the ‘‘mass’’ term
s � sc; we are interested here in the duality properties of
such a CFT.

First, standard methods [20,21] can be used to obtain a
dual version of the action Scs: we can either use the
continuum arguments of Sec. II B, or apply Poisson sum-
mation methods to a lattice discretization [24,25,27]. From
this we obtain a dual field theory, which has the same
formal structure at long wavelengths:
 

~Scs �
Z
d2x dt

�
j�@� � i ~A��wj

2 � ~sjwj2 � ~ujwj4

�
1

2~e2 ��
���@� ~A��2 �

~�
4�

���� ~A�@� ~A�

�
: (B2)

The similarity between Scs and ~Scs is encouraging and
suggests that we may be able to use it to define a self-
dual CFT. However, we will now argue that this is not the
case.

In general, the relationship of the coupling constants in
Scs and ~Scs is nonuniversal, and dependent upon the nature
of the ultraviolet cutoff (with one exception, see below).
However, there are a number of crucial constraints, which
are readily apparent from the explicit transformations.
From these constraints we find that there are 2 distinct
sets of theories which are connected by duality:

Class A: Theories with no Chern-Simons terms: These
theories have � � ~� � 0. Then the duality mappings show
that we must have either e � 0 or ~e � 0 but not both
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[20,21]; this is because in a theory with zero electric
charge, duality maps the coefficient of the matter kinetic
energy (the ‘‘stiffness’’) to the electric charge squared of
the dual theory. Without loss of generality, let us choose
e � 0. Then we may set A� � 0, which then defines Scs as
the theory of a single scalar with a global U(1) symmetry
(the XY model). The theory ~Scs is the Abelian Higgs model
which has a gauged U(1) ‘‘symmetry.’’ Thus we have
obtained the familiar duality [21] between the XY model
and the Abelian Higgs model in D � 2� 1. It is evident
from the distinct nature of these models that they are not
self-dual [20,21].

Class B: Theories with Chern-Simons terms: Now both
� and ~� must be nonzero, and indeed the lattice duality
transformations show that they satisfy

 �~� � �1; (B3)

and this is the only relationship between the couplings of
Scs and ~Scs which is universal. Furthermore, the require-
ment that either e or ~e vanish no longer appears; in general,
both are nonzero and finite. The duality also shows that it is
not possible to eliminate the kinetic terms of both gauge
fields, i.e. it is not possible to set both e � 1 and ~e � 1.
Even if e.g. we eliminate the gauge kinetic term in Scs by
setting e � 1, then the duality yields a finite ~e because, by
the particle-vortex prescription, the kinetic energy of ~A is
related to the kinetic energy of the z particles, and the latter
is finite. Because we are searching for a self-dual theory,
we need to keep both e and ~e finite. The implication of a
finite e (or ~e) is that the flux-attachment transformation
associated with the Chern-Simons term is ‘‘smeared out’’:
each z particle worldline has a total of 2�=� A� flux
attached, but this flux is spread out over a finite length
scale determined by e. This smearing also means that the
transformation 1=�! 1=�� 1 does not map the theory
onto itself. This transformation is the T operation defined
by Witten [28], who also found that T did not leave the
theory invariant. On the other hand, Fradkin and Kivelson
[24] claimed T invariance for their model, which was
defined in terms of infinitely thin particle and flux world-
lines on a lattice with long-range interactions. It is unclear
to us whether their model can be mapped to a local con-
tinuum action for a CFT.

Let us now consider correlators of the field theories
without a Chern-Simons term, in class A. As discussed
above, we choose the theory Scs to have e � 0 and � � 0,
so this describes the O(2) ’4 theory (the XY model). We
are interested in the CFT at some critical s � sc. The two-
point correlator of the U(1) current, C��, of Scs obeys
Eqs. (1.1) and (1.4) with a single constant K, and a single
set of functions KL;T�!; k�. Similarly, the dual theory, ~Scs

(which has ~e � 0, ~� � 0 and is the Abelian Higgs model),
has a correlator ~C��, and the corresponding ~K. Then the
analog of the duality considerations of Sec. II imply that

 KT�!; k� ~KL�!; k� �
1

4�2 ; KL�!; k� ~KT�!; k� �
1

4�2 ;

(B4)

and its T � 0 limit K ~K � 1=�4�2�. This theory in class A
is not self-dual, so the above relations do not allow us to
determine the conductivities ��!=T� and ~��!=T�, and
only constrain their product.

Next, we consider correlators of class B. The field theory
Scs defines a CFT at some s � sc, and we ask if this CFT
can be self-dual. At T � 0, we have to generalize the form
of the current correlator C�� from Eq. (1.1) to [24,27,28]

 C���p�jT�0 � K
������
p2

q �
��� �

p�p�
p2

�
�H����p

�; (B5)

where K, H are two real constants characterizing the CFT.
Note that, at the gapless conformal fixed point, there is no
simple relationship15 between the coupling constant � and
the constant H, although a theory in class B is expected to
have a nonzeroH. At T > 0, the generalization of Eq. (1.4)
is

 C���!; k� �
������
p2

q
�PT��K

T�!; k� � PL��K
L�!; k��

�H�!; k�����p�; (B6)

with 3 distinct functions of!=T and k=T on the right-hand
side; note that even the Hall conductivity (equal to
H�!; 0�) is a function of !=T [30]. Similarly, we can
also consider the dual-correlator ~C�� of the theory (B2)
and define a corresponding set of parameters ~K and ~H. The
analog [23–25,27,28] of the arguments in Sec. II shows the
following exact relationship between these parameters at
T � 0:

 �H � iK�� ~H� i ~K� � �
1

4�2 : (B7)

The real and imaginary parts of Eq. (B7) generalize the
T � 0 limit of Eq. (B4) to class B. For T > 0, we have

 

~K T�!; k� �
KT�!; k�
D�!; k�

; ~KL�!; k� �
KL�!; k�
D�!; k�

;

~H�!; k� � �
H�!; k�
D�!; k�

;

(B8)

with

 D�!; k� � 4�2�KT�!; k�KL�!; k� �H2�!; k��: (B9)

Note that Eqs. (B8) reduce to Eqs. (B4) when H � 0, and
to Eq. (B7) at T � 0.

For the class B model to be self-dual, we clearly need
~K � K and ~H � H. From Eq. (B7) we observe that this is

15The one-loop expression for H obtained from Scs is exact as
long as s � sc, but the CFT at s � sc has corrections at all orders
[30,76].
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only possible for K � 1=�2�� and H � 0. However, a
model with H � 0, which surely requires � � 0, is not
in class B. It is in class A, and we argued earlier that a
class A model could not be self-dual.

To conclude, although the model Scs, and its dual ~Scs,
define interesting CFTs, with their correlators obeying
Eqs. (B4), (B7), and (B8), we have shown that such
CFTs cannot be self-dual. This conclusion is in accord
with those of Kapustin and Strassler [41] and Witten [28]
on related models.

APPENDIX C: NORMALIZATION OF GAUGE
FIELD ACTION ON AdS4

The R-symmetry gauge field can be thought of as arising
from Kaluza-Klein reduction of an 11-dimensional super-
gravity solution on a regular positive curvature Sasaki-
Einstein manifold X of real dimension seven. The size of
the gauge group is determined by the isometry group of X.
For instance, when X � S7, the group is SO(8). By defini-
tion, Sasaki-Einstein manifolds have at least one U(1)
isometry. In this section, we normalize the U(1) R-
symmetry gauge field action in terms of the 11-
dimensional gravitational coupling using results of
Ref. [77]. Although the identification of this gauge field
as a combination of metric and F4 form perturbations in
D � 11 supergravity predates Ref. [77] (see [78]),
Ref. [77] provides a convenient starting point for consid-
ering issues of normalization. The normalization is not
sensitive to temperature, and hence it is convenient to
work here at T � 0.

To first order, the vector potential A perturbs the 11-
dimensional metric as follows:

 ds2 �
r2

L2 ��dx
�dx � L2 dr

2

r2 � 4L2ds2
X; (C1)

where

 ds2
X �

�
q
4

�
2
�
d �

4

q
��

2

q
A
�

2
� ha �bdz

ad �zb: (C2)

The Minkowski tensor �� runs over the three coordinates
x0, x1, and x2. Together the coordinates xi and r give four-
dimensional anti-de Sitter space with radius of curvature
L.16 Here ha �b is a Kähler-Einstein metric on a complex
three-dimensional manifold we will call V. Setting A � 0,
X would be a U(1) fibration over the threefold, giving rise
to a real seven-dimensional Sasaki-Einstein manifold. The
one form � is constructed such that d� � 2! where ! is
the Kähler form on V. With the angle  constrained to lie
between 0 and 2�, the integer q obeys the relation ! �
�qc1=4 where c1 is the first Chern class of the U(1)
fibration. In general q � 1, but in certain cases where
c1�V� is divisible, q may be more. For instance, in the

case of S7, X is a U(1) fibration over CP3 and q � 4. In
[77], the relation between  and A was fixed by setting the
R-charge of a holomorphic four-form associated to the
cone over X to two. This four-form has a dual field theory
interpretation as a superpotential. The relation between A
and  fixes the normalization of the gauge field action.

In addition to this perturbed metric, the RR four-form F4

is also perturbed by A:

 F4 �
3r2

L3 d
3x ^ dr� 4L3�?4dA� ^!: (C3)

Here d3x � dx0 ^ dx1 ^ dx2, and ?4 is the Hodge dual in
the AdS4 directions only. With A � 0, F4 can be thought of
as the electric flux from a stack of M2-branes spanning the
xi coordinates.

With these formulae for F4 and ds2 in hand, we can
normalize the gauge field. The 11-dimensional supergrav-
ity action is
 

1

2�2

Z
d11x

�������
�g
p

R�
1

4�2

Z �
F4 ^ ?F4

�
1

3
A3 ^ F4 ^ F4

�
: (C4)

The first two terms both give contributions to jFj2, where
F � dA. In particular, in making A nonzero, the Ricci
scalar becomes

 R � ~R�
L2

4
jFj2 �

21

2L2 ; (C5)

where jFj2 � FABFAB and ~R is the scalar curvature in the
AdS4 directions. Meanwhile, the four-form produces a
term of the form

 F4 ^ ?F4 � �

�
9

L2 �
3

2
L2jFj2

� �������
�g
p

d11x: (C6)

We cannot simply reduce the 11-dimensional action to
an effective four-dimensional action as can be seen from
the form of R and jF4j

2. Combining (C5) and (C6) in (C4)
leads to a Maxwell term jFj2 of the wrong sign. The reason
Kaluza-Klein reduction does not commute with computing
the equations of motion is related to the fact that the
Bianchi identity dF4 � 0 imposes the equation of motion
d ? F � 0 on the gauge field.

Instead, we must reduce the 11-dimensional equations of
motion and from the effective four-dimensional equations
of motion reconstruct a four-dimensional action. Along
with Maxwell’s equations for F, the 11-dimensional equa-
tions of motion reduce to

 RMN � 2L2

�
FM

PFNP �
1

4
gMNjFj

2

�
�

3

L2 gMN; (C7)

which can be obtained from the four-dimensional action

 Seff �
1

2�2
4

Z
d4x

�������
�g
p

�
~R� L2FMNF

MN �
6

L2

�
: (C8)

16The relation to R in the body of the paper is 2L � R.
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Assuming that the four and 11-dimensional gravitational
couplings are related by the volume of the compact mani-
fold X,

 

1

2�2
4

�
�2L�7 Vol�X�

2�2 ;

and using the standard normalization for � (3.3), we find
that the action for the gauge field becomes

 �

���
2
p
N3=2

23�5
Vol�X�

Z
d4x

����������
�g4
p

jFj2: (C9)

The volume of a seven-sphere is Vol�S7� � �4=3.
While in the case of more highly symmetric spaces, the

R-symmetry gauge field transforms under a larger group,
based on the underlying Sasaki-Einstein structure, this
U(1) subgroup is in some sense the most geometrically
natural.

We conclude this section by explaining, for the case of
S7, which U(1) subgroup of SO(8) we have extracted.
Earlier, we stated that the U(1) is normalized in reference
to a holomorphic four-form on the cone over the Sasaki-
Einstein space. For S7, the cone is C4, and the four-form
� � dX1 ^ dX2 ^ dX3 ^ dX4 where the Xa are complex
coordinates on C4. Giving � R-charge two means each Xa
will have R-charge one-half and will transform under the
U(1) group action as Xa ! ei�=2Xa for some phase angle �
which runs from zero to 2�.

The Lie algebra for SO(8) has four generators �a in its
Cartan subalgebra which we can choose to act on the Xa as
exp�i��a��Xb� � 	abei�=2Xa. With this normalization,
tr�a�b �

1
2	ab. Comparing with the action of our special

U(1) subgroup, we see that our U(1) Lie algebra element �
is a sum of the �a: � �

P
a�a. Thus, tr�2 � 2.

APPENDIX D: ANALYTIC SOLUTION

At zero momentum, the mode equation (3.19) for
M�u� � Myy�u� takes the form

 f�u�@u�f�u�@uM�u� � w
2M�u� � 0; (D1)

with f�u� � 1� u3. By introducing a new coordinate z �R
u
0 d~u=f�~u�, the equation simplifies,

 @2
zM�z� � w2M�z� � 0; (D2)

with the boundary condition M�z � 0� � 1 at the bound-
ary, and the outgoing condition at the horizon z � 1. The
solution is

 M�z� � eiwz: (D3)

That it corresponds to outgoing waves can be seen from the
fact that in the function e�i!�t�z� the wave front moves
toward larger z, i.e. closer to the horizon as t increases.
Therefore we find

 M�u� � exp
�
iw
Z u

0

d~u
f�~u�

�
: (D4)

The leading asymptotics for u near zero is M�u� � 1�
iwu. From the AdS/CFT prescription (3.14) we immedi-
ately find

 Cyy�w; 0� � �T�w; 0� � �L�w; 0� � �i�w: (D5)

This agrees with the result for conductivity in Sec. III C, as
it should.

APPENDIX E: GAUGE FIELD WITH A DILATON

Consider a U(1) gauge field on a four-dimensional
manifold M with an action of the form

 S � �
1

2g2
4D

Z
M
e�2
F ^ ?F: (E1)

There are a number of interesting 2� 1 dimensional field
theories which have a dual R-symmetry gauge field of this
type—for example the M2-brane theory at finite R-charge
chemical potential and the D2-branes in type IIA string
theory. Here F is the two-form gauge field,
 a dilaton like
scalar, and g4D the coupling. The Maxwell equations can
be written elegantly as dF � 0 and d ? e�2
F � 0. There
is an equivalent S-dual theory where the roles of F and
~F � ?e�2
F are interchanged and we send g4De
 !
~g4De

~
 � 1=�g4De
�:

 S � �
1

2~g2
4D

Z
M
e2
 ~F ^ ? ~F: (E2)

The point we would like to emphasize is that when 
 is a
constant, the theory is almost self-dual in the sense that the
equations of motion for F and ~F are identical. When 
 is
not a constant, the equations of motion for F and ~F are
identical up to sending 
! �
.

We would like to investigate the consequences of this
duality in the context of the AdS/CFT correspondence
where this gauge field is interpreted as a bulk field corre-
sponding to some global U(1) symmetry on a 2� 1 di-
mensional boundary theory. To this end, we assume the
metric takes the diagonal form

 ds2 � �gtt�u�dt
2 � du2 � gxx�u��dx

2 � dy2�; (E3)

where the metric components are only radially dependent
on a coordinate we call u. By diffeomorphism invariance,
we can always set guu � 1. The boundary is taken to be
located at u � 0 and the interior for u > 0 with a horizon at
u � uh > 0. We will assume that as u! 0, �gtt � gxx �
c2=u� where �>�2.

We will calculate two-point functions of the U(1) current
J corresponding to this global symmetry. Introducing a
vector potential F � dA, the retarded two-point function
can be found using the method described in Sec. III B.
Namely, one looks for the solution to the field equation for
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A� of the form vector potential of the form

 A��x; t; u� � eip�xM�
��p; u�A0

��p�; (E4)

where M�
��p; u� satisfies the radial component of the

equation of motion for A�. Furthermore, M�
��p; 0� � 	��

and M�
� satisfies the outgoing boundary condition at the

horizon u � uh. If the kinetic term for A� can be written as

 �
1

2g2
4D

Z
du d3xG�u��A0��

2 (E5)

then

 C���k� � �
1

g2
4D

lim
u!0

G�u�
@
@u
M���p; u�: (E6)

In particular, we take A��x; t; u� to satisfy the equation
of motion

 @A�e
�2
 �������

�g
p

gABgCD�AB;D � AD;B� � 0; (E7)

and fix a radial gauge Au � 0. We also choose p� �
�!; k; 0�. In this gauge, the equation of motion for Ay
becomes
 

@u�e
�2
 �������

�g
p

gxxA0y � k
2 �������
�g
p

�gxx�2e�2
Ay

�!2 �������
�g
p

gxxgtte�2
Ay � 0: (E8)

Because of the constraint on �, the near boundary behavior
of Ay (u� 0) is governed by an expansion of the form

 Myy�p; u� � �1�O�u�� � u1��=2B�1�O�u��: (E9)

In the case where � is an even integer, the two series will
overlap, leading to logarithmic terms in the first series,
which complicate the story but should not alter it in any
fundamental way. The constant B is a complicated func-
tion of ! and k which is determined by fixing outgoing
boundary conditions at the horizon u � uh. For Ay, the
function G�u� in (E5) is

�������
�g
p

gxx which near the boundary
scales as cu��=2 where c depends on the precise form of
our metric. By absorbing
�0� into the value of g4D, we can
choose 
�0� � 0. From this expansion and the form of
G�u�, clearly

 Cyy �
1

g2
4D

�1� �=2�cB: (E10)

In our gauge, Ay can be reinterpreted as a radial mag-
netic field, Bu � Fxy � �ikAy. By electric-magnetic dual-
ity, replacing 
 with �
, the equation of motion for Bu
(E8) must be the same as the equation of motion for Eu �
��?e�2
F�xy �

�������
�g
p

gtte�2
A0t:

 

@u�e
2
 �������
�g
p

gxxE0u � k
2 �������
�g
p

�gxx�2e2
Eu

�!2 �������
�g
p

gxxgtte2
Eu � 0: (E11)

We thus know that Eu has the near boundary expansion

 Eu � E0
ueip�x��1�O�u�� � u1��=2 ~B�1�O�u��: (E12)

The tilde over B indicates it was derived from (E8) having
replaced 
 with �
. In the case 
 � const, B � ~B. We
now use Gauss’s law to constrain the boundary behavior of
E0
u. The equation of motion following from taking the

index C � t in (E7) is

 �
�������
�g
p

gtte�2
A0t�
0 � k

�������
�g
p

gttgxxe�2
�!Ax � kAt� � 0:

(E13)

From the near boundary behavior, we find that

 E0
u�1� �=2� ~B � �

k
c
�!A0

x � kA
0
t �: (E14)

We can run a similar analysis of the component A0x and
construct a full boundary action. We find that

 Sb � �
1

2g2
4D

Z
R3
d3x

�
Bc�1� �=2��A0

y�
2

�
1

~Bc�1� �=2�
�k2�A0

t �
2 �!2�A0

x�
2 �!kA0

t A0
x�

�
:

(E15)

From this normalization, we conclude that the remaining
two-point functions are

 Ctt � �
1

g2
4D

k2

c�1� �=2� ~B
; (E16)

 Cxt � �
1

g2
4D

k!

c�1� �=2� ~B
; (E17)

 Cxx � �
1

g2
4D

!2

c�1� �=2� ~B
: (E18)

In the special case where
 is a constant and hence ~B � B,
we find that

 CttCyy � �
1

g4
4D

k2; CxtCyy � �
1

g4
4D

k!;

CxxCyy � �
1

g4
4D

!2:

(E19)
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