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Based on the proper-time renormalization group approach, the scalar and the quark number suscep-
tibilities in the vicinity of possible critical end points of the hadronic phase diagram are investigated in the
two-flavor quark-meson model. After discussing the quark-mass dependence of the location of such
points, the critical behavior of the in-medium meson masses and quark number density are calculated. The
universality classes of the end points are determined by calculating the critical exponents of the
susceptibilities. In order to numerically estimate the influence of fluctuations we compare all quantities
with results from a mean-field approximation. It is concluded that the region in the phase diagram where
the susceptibilities are enhanced is more compressed around the critical end point if fluctuations are
included.
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I. INTRODUCTION

Theoretical studies reveal an increasing richness in the
structure of the phase diagram of strongly interacting
matter. At high temperature T and/or quark chemical po-
tential � it is expected that the system undergoes a phase
transition from the ordinary hadronic phase to a chirally
restored and deconfined quark gluon plasma (QGP) [1,2].
Other phases such as a two-flavor (2SC) and color-flavor
locked (CFL) color-superconducting phase are predicted at
high densities and small temperatures. For small chemical
potential and high temperature recent lattice calculations
suggest the existence of mesonic bound states even above
the deconfinement phase transition temperature [3], indi-
cating a strongly coupled QGP.

Based on model calculations [4–7] as well as lattice
QCD simulations [8–10], the existence of a critical end-
point (CEP) in the phase diagram is suggested. This is the
endpoint of a first-order transition line in the �T;��-plane
and is a genuine singularity of the QCD free energy. Here
the phase transition is of second order, belonging to the
three-dimensional Ising universality class. Its precise loca-
tion, which is e.g. highly sensitive to the value of the
strange quark mass, is not known at present. It might be
accessible with current and future experimental facilities
and its observable implications in relativistic heavy-ion
experiments such as event-by-event fluctuations of suitable
observables are intensively discussed [11].

From lattice studies it is known that the dynamics of the
transition along the temperature axis is strongly affected by
the presence of light quarks. The transition temperature is
lowered substantially from its value in the pure gauge limit
of infinitely heavy quarks, mostly due to the nearly mass-
less up- and down quarks. This indicates a prominent role

of the (nearly exact) chiral SU�2�L � SU�2�R symmetry,
which is spontaneously broken to SU�2�V at small tem-
peratures and baryon densities. Indeed, a chiral phase
transition is observed numerically whose transition tem-
perature coincides with that for the deconfinement transi-
tion. In the limit of vanishing up- and down quark masses
and infinite strange quark mass, the chiral phase transition
is likely to be of second-order at vanishing � and the static
critical behavior is expected to fall in the universality class
of the Heisenberg O�4� model in three dimensions [12].

Lattice calculation of the QCD phase transition with
finite � is much more difficult. Because of the Fermion
sign problem, simulations of similar precision as at � � 0
are still lacking. From direct numerical evaluation of the
QCD partition function and its quantum-statistical analysis
[8,9] or from a Taylor expansion of the pressure around
� � 0 there is, however, evidence for a CEP at finite�. At
this point both the chiral- and the quark number suscepti-
bility diverge. The existence of a CEP in the �T;��-plane
implies that massless two-flavor QCD has a tricritical point
(TCP) at which the O�4� line of critical points ends. For
larger �’s the transition is then of first-order.

In an attempt to interpret the physical content of the
lattice results there is a variety of model studies of the CEP
and the critical region around it [13–18]. In future searches
for the CEP in heavy-ion reactions the size of the critical
region is especially important [19]. Most of these studies
rely in one way or another on a mean-field description of
the phase transition. As is well known, mean-field theory
very often fails to give the correct description of phase
transitions and fluctuations have to be included. An effi-
cient way to describe critical phenomena beyond mean-
field theory is the renormalization group (RG) method. It
can be used to describe the universal and nonuniversal
aspects of second-order as well as first-order phase tran-
sitions. In the context of the phase diagram of strongly*Electronic address: bernd-jochen.schaefer@uni-graz.at
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interacting matter the RG-method has been applied in [20]
using a two-flavor quark-meson model, which captures
essential chiral aspects of QCD.

Extending our previous analysis, the present work pri-
marily focuses on the question of how large the critical
regions around the TCP and CEP might be. The size of a
critical region is defined as the one where mean-field
theory breaks down and nontrivial critical exponents
emerge. A well-known criterion is the Ginzburg criterion
which estimates the size by some unknown coupling co-
efficients. It is based on an expansion of the singular part of
the free energy for a second-order phase transition. Since
the expansion coefficients, appearing in this criterion are
not known for strong interactions the Ginzburg criterion is
of limited use in the present context. Also universality
arguments are not helpful, if the underlying microscopic
dynamics is not well determined. This can be seen, for
example, in the � transition of liquid helium He4 and the
superconducting transition of metals. Both transitions be-
long to the same universality class of the O�2� spin model
but their critical regions defined by their corresponding
Ginzburg-Levanyuk temperature �GL, differ by several
orders of magnitude. For hadronic matter it is expected
that the critical region of the CEP is small [16]. Here, in
this work we will use the enhancement of the chiral and
scalar susceptibility as a criterion for the size of the critical
region.

The paper is organized as follows. In Sec. III a mean-
field analysis of the quark-meson model for two quark
flavors as an effective realization of the low-energy sector
of QCD is presented. After the derivation of the grand
canonical potential for the model, we calculate the phase
diagram and localize the CEP. The behavior of the scalar-
and pseudoscalar meson masses, the quark number density
and the scalar and quark number susceptibilities near the
CEP are investigated. In order to obtain a deeper under-
standing of the shape of the critical region around the CEP,
critical exponents are calculated. In Sec. IV we repeat the
calculation using the proper-time renormalization group
approach (PTRG) in order to assess the influence of fluc-
tuations. Finally, before summarizing in Sec. V, the size of
the critical regions around the CEP and TCP are deter-
mined and compared with the mean-field results.

II. THE QUARK-MESON MODEL

The Lagrangian of the linear quark-meson model for
Nf � 2 light quarks q � �u; d� and Nc � 3 color degrees
of freedom reads
 

L � �q�i@6 � g��� i�5 ~� ~���q�
1
2�@��@

��� @� ~�@
� ~��

�U��; ~�� (1)

where the purely mesonic potential is defined as

 U��; ~�� �
�
4
��2 � ~�2 � v2�2 � c�: (2)

The isoscalar-scalar � field and the three isovector-
pseudoscalar pion fields ~� together form a chiral 4-
component field ~�. Without the explicit symmetry break-
ing term c in the potential the Lagrangian is invariant under
global chiral SU�2�L � SU�2�R rotations.

The four parameters of the model are chosen such that
the chiral symmetry is spontaneously broken in the vacuum
and the � field develops a finite expectation value h�i �
f�, where f� � 93 MeV is the pion decay constant.
Because of the pseudoscalar character of the pions the
corresponding expectation values vanish h ~�i � 0.

The Yukawa coupling constant g is usually fixed by the
constituent quark mass in the vacuum g � Mq=f�. Using
the partially conserved axial vector current (PCAC) rela-
tion, the explicit symmetry breaking parameter c is deter-
mined by c � M2

�f�, where M� is the pion mass. The
quartic coupling constant � is given by the sigma massM�
via the relation � � 1

2f2
�
�M2

� �M2
��. Finally, the parameter

v2 is found by minimizing the potential in radial direction,
yielding v2 � �2 � c=����. For the ground state where
h�i � f� this expression can be rewritten as v2 � f2

� �
M2
�=�. It is positive in the Nambu-Goldstone phase.

III. MEAN-FIELD APPROXIMATION

A. The thermodynamic potential

In a spatially uniform system the grand canonical po-
tential (per volume) � is a function of the temperature T
and of the quark chemical potential �. We confine our-
selves to the SU�2�f-symmetric case and set � � �u �

�d. This is a good approximation since flavor mixing
between the u- and d-quark in the vector channel is very
small.

The grand canonical potential is obtained as the loga-
rithm of the partition function, which is given by a path-
integral over the meson and quark/antiquark fields

 Z �
Z

D �qDqD�D ~� exp
�Z 1=T

0
dtd3x�L�� �q�0q�

�
:

(3)

To start with we evaluate the partition function in the
mean-field approximation similar to Ref. [21]. Thus we
replace the meson fields in Eq. (3) by their expectation
values in the action neglecting the quantum and thermal
fluctuations of the mesons. The quarks/antiquarks are re-
tained as quantum fields. The integration over the fermions
yields a determinant which can be calculated by standard
methods (see e.g. Ref. [22]). This generates an effective
potential for the mesons. Finally, one obtains

 ��T;�� � �
T lnZ

V
� U�h�i; h ~�i� ���qq�T;�� (4)

with the quark/antiquark contribution
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� �qq�T;�� � �qT
Z d3k

�2��3
fln�1� nq�T;���

� ln�1� n �q�T;���g (5)

where

 nq�T;�� �
1

1� exp��Eq ���=T�
(6)

resp. n �q�T;�� are the usual quark/antiquark occupation
numbers with n �q�T;�� � nq�T;���. The single-particle

energy is given by Eq �
������������������
~k2
�M2

q

q
and the effective con-

stituent quark mass byMq � gh�i. The number of internal
quark degrees of freedom is denoted by �q � 2NcNf �
12.

The divergent vacuum contribution which results from
the negative energy states of the Dirac sea has been ne-
glected in Eq. (5). It can be partly absorbed in the mesonic
potential up to a logarithmic correction which is largely
canceled by a similar logarithmic correction from the
quark/antiquark contribution. Accordingly, the omission
of the Dirac sea can influence the order of the phase
transition for small quark masses (see III B). Since in this
work we want to investigate the influence of quantum and
thermal fluctuations on top of a completely classical treat-
ment, where all fluctuations and the Dirac sea contribution
are neglected, we omit the latter in the mean-field treat-
ment. This omission of the vacuum contribution is in
contrast to a similar analysis in the Nambu-Jona-Lasinio
model where the vacuum contribution in the corresponding
grand canonical potential cannot be neglected due to the
finite momentum cutoff regularization [21].

Furthermore, we remark here that the same quark/anti-
quark contribution of the grand canonical potential can
also be obtained by an analytical integration of the corre-
sponding RG flow equation in mean-field approximation
[20]. In this simple approximation the mesonic RG flow is
neglected and the residual quark/antiquark flow is given by
 

@k� �qq � �
�qk

4

12�2

1

Eq

�
tanh

�Eq ��
2T

�
� tanh

�Eq ��
2T

��

� �
�qk4

6�2

1

Eq
�1� nq�T;�� � n �q�T;��	; (7)

which, after the scale integration towards the infrared, is
identical to Eq. (5) if the vacuum contribution is neglected.

For the case of a massless free quark/antiquark gas
Eq. (5) can be integrated analytically with the result

 lim
Mq!0

� �qq�T;�� � �
�q
2

�
�4

12�2 �
�2T2

6
�

7�2T4

180

�
: (8)

In general, any phase transition is characterized by an
order parameter � which is identified here with the expec-
tation value of the sigma field. Its behavior is determined
by the corresponding classical equation of motion. It is

obtained by minimizing the potential � in radial
�-direction. This results in the gap equation

 

@�

@�
� 0 � �h�i�h�i2 � v2� � c� g	s (9)

where the scalar quark density 	s has been introduced

 	s � gh�i�q
Z d3k

�2��3
1

Eq
fnq�T;�� � n �q�T;��g: (10)

[23]
The quark density represents the source term in the

equation of motion and can also be calculated analytically
for vanishing masses. In this limit, one obtains for the
quark density

 lim
Mq!0

	s
Mq
� �q

�
T2

12
�
�2

4�2

�
: (11)

B. The phase diagram

The solution of the gap equation (9) determines the
behavior of the order parameter as a function of the tem-
perature and the quark chemical potential and thus allows
us to study the phase structure of the underlying two-flavor
quark-meson model.

In the vacuum we fix the model parameters to M� �
138 MeV, M� � 600 MeV, f� � 93 MeV, and Mq �

300 MeV which result in c
 1:77� 106 MeV3, v

87:6 MeV, �
 19:7, and g
 3:2.

For a physical pion mass (M� � 138 MeV) the model
exhibits a smooth crossover on the temperature axis and a
first-order chiral phase transition on the density axis. For
increasing temperatures this first-order transition line per-
sists up to a critical endpoint (CEP) where the chiral
transition becomes second order. Along the line of a first-
order phase transition the thermodynamic potential has two
minima of equal depth. These minima are separated by a
finite potential barrier making the potential nonconvex,
which is typical for a mean-field approximation. The
height of the barrier is largest at zero temperature and finite
quark chemical potential and decreases towards higher
temperature. At the critical endpoint the barrier disappears
(no latent heat) and the potential flattens. For temperatures
above the CEP the transition is washed out and a smooth
crossover takes place. With the parameters chosen above
the location of the CEP is found to be at Tc � 91:4 MeV,
�c � 223 MeV. In Fig. 1 the phase diagram in the com-
plete �T;��-plane is shown.

To study the influence of explicit chiral symmetry break-
ing we have varied the model parameters keeping the
Yukawa coupling g fixed. The resulting phase boundaries
are also shown in Fig. 1 for M� � 100 MeV and M� �
69 MeV (half of the physical pion mass). Reducing the
pion mass while keeping the Yukawa coupling fixed, the
CEP moves towards the T-axis. This is also the case if the
Yukawa coupling is increased and the pion mass is kept

SUSCEPTIBILITIES NEAR THE QCD (TRI)CRITICAL POINT PHYSICAL REVIEW D 75, 085015 (2007)

085015-3



fixed. Already for the pion mass M� � 69 MeV the CEP
disappears and chiral symmetry is restored via a first-order
transition for all temperatures and quark chemical poten-
tials. As a consequence this model does not have a tricrit-
ical point in the chiral limit (see also App. C in [24]). This
is in contradiction to universality arguments as well as
lattice QCD simulations. At vanishing quark chemical
potential, the effective theory for the chiral order parameter
is the same as for the O�4� model, which has a second-
order phase transition [22]. It is further expected that the
static critical behavior falls into the universality class of the
O�4�-symmetric Heisenberg model in three dimensions
[12].

But, as already stated in Ref. [21], within the mean-field
approximation the order of the phase transition in the chiral
limit of the linear quark-meson model strongly depends on
the values for the model parameters. The way how to
extrapolate towards the chiral limit is not unique. As we
shall see below, the mean-field approximation itself is also
questionable.

C. In-medium meson masses

To gain further physical insight into the critical behavior
of the model we have studied the ‘‘in-medium’’ meson
masses M��T;�� and M��T;��, which encode the critical
fluctuations of the matter. The in-medium meson masses
are defined by the second derivative of the grand canonical
potential w.r.t the corresponding fields at the global mini-
mum:

 M2
�i�T;�� �

@2��T;��
@�i@�i

��������min
;

M2
��T;�� �

@2��T;��
@�@�

��������min
:

In Fig. 2 the temperature dependence of the meson
masses for three different chemical potentials are shown.
The sigma mass always decreases with temperature in the
hadronic (chirally broken) phase and increases again at
high temperature. The pion mass does not vary much
below the transition but increases at high temperatures
similar to the sigma mass indicating the restoration of
chiral symmetry. The increase of the sigma and pion
mass at high temperature is driven by the asymptotic
behavior of the scalar quark density [see Eq. (11)] because
chiral symmetry restoration enforces a decrease of the
constituent quark mass. At large temperature the meson
masses degenerate and increase linearly with T. A similar
behavior is seen for the corresponding screening masses on
the lattice at � � 0 [25].

Figure 3 shows the chemical potential dependence of the
meson masses for three different temperatures analogous
to Fig. 2. For small temperatures a discontinuity is visible
in the evolution of the masses, signaling a first-order phase
transition. At T � 0 and small � the masses are constant
and equal to the vacuum masses which can also be seen
analytically. At the CEP the phase transition is of second
order. Second-order phase transitions are characterized by
long-wavelength fluctuations of the order parameter. Since
the order parameter is proportional to the scalar �-field,
the corresponding scalar sigma mass must vanish at this
point. In the vicinity of this point the sigma mass drops
below the pion mass and the potential flattens in the radial
direction. This behavior can clearly be seen in both Figs. 2
and 3. Since chiral symmetry is still explicitly broken the
pseudoscalar mass stays always finite. For temperatures
above the chiral transition the sigma mass drops below the
pion mass and increases with the chemical potential
(cf. Figs. 2 and 3). Close to �c for � � 300 MeV in
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FIG. 2. The pion and sigma masses as function of the tem-
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Fig. 2 the sigma mass drops rapidly with temperature and
jumps at the chiral transition.

D. Susceptibilities

In order to find a bound to the size of the critical region
around the CEP we calculate the quark number suscepti-
bility 
q and its critical behavior. In general, the quark
number susceptibility is the response of the quark number
density n�T;�� to an infinitesimal variation of the quark
chemical potential

 
q�T;�� �
@n�T;��
@�

: (12)

Before we study the thermodynamic properties of the
susceptibility, we start with an analysis of the (total) quark
number density n�T;��. It is defined by a derivative w.r.t.
the quark chemical potential of the grand canonical poten-
tial (4)

 n�T;�� � hqyqi � �
@��T;��
@�

� �q
Z d3k

�2��3
fnq�T;�� � n �q�T;��g: (13)

For T ! 0 and�! 0 respectively, the analytical results
for the quark number density are

 n�0; �� �
�q

6�2 ��
2 �M2

q�
3=2����Mq�; (14)

 n�T; 0� � 0: (15)

For a massless free quark gas one obtains for the density

 lim
Mq!0

n�T;�� �
�q
6
�
�
T2 �

�2

�2

�
: (16)

In Fig. 4 the quark number density in mean-field ap-
proximation is shown for three different temperatures
around the CEP. For T � Tc the slope tends to infinity at
� � �c which will yield a diverging susceptibility. For
temperatures below the critical one the system undergoes a
first-order phase transition and the quark number density
jumps. The slope of the quark density in the chirally
symmetric phase is almost constant for all temperatures
around the CEP. For temperatures above the CEP the
discontinuity vanishes at the transition and the density
changes gradually due to the smooth crossover. This pro-
duces a finite height of the quark number susceptibility 
q
which is calculated via Eq. (12). The resulting susceptibil-
ities are shown in Fig. 5.

For � � 0 the susceptibility 
q�T; 0� increases as the
quark massMq�T� decreases and reachesNfT2 atMq�T� �
0 for three colors. 
q diverges only at the CEP and is finite
everywhere else. The height of 
q decreases for decreasing
chemical potentials above the CEP towards the T-axis. For
temperatures below the CEP 
q is discontinuous and
jumps across the first-order transition line.

It is instructive to note that the quark number suscepti-
bility is proportional to the isothermal compressibility �T
via the relation

 �T � 
q�T;��=n2�T;��: (17)

In the vicinity of the critical point the quark number
density n is always finite but the susceptibility becomes
large. This indicates that the system is easy to compress
around the critical point [26].

It is also possible to express the quark number suscep-
tibility as an integral over the quark/antiquark occupation
numbers (6)

 

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 205  210  215  220  225  230  235  240

n 
[fm

-3
]

µ [MeV]

T<TcT=TcT>Tc

FIG. 4. The quark number density n in mean-field theory as a
function of the chemical potential � around the CEP for three
different temperatures. The temperatures are Tc 
 91 MeV and
T � Tc � 5 MeV.

 

0

 100

 200

 300

 400

 500

 600

 700

 800

0  50  100  150  200  250  300  350

m
as

s 
[M

eV
]

µ [MeV]

T=0

T=91 MeV

T=150 MeV

Mσ
Mπ

FIG. 3. Similar to Fig. 2: The pion and sigma masses as
functions of the chemical potential for three different tempera-
tures (T � 0, T � Tc 
 91, and T � 150 MeV).

SUSCEPTIBILITIES NEAR THE QCD (TRI)CRITICAL POINT PHYSICAL REVIEW D 75, 085015 (2007)

085015-5



 
q�T;�� �
�q
T

Z d3k

�2��3
fnq�T;���1� nq�T;���

� n �q�T;���1� n �q�T;���g (18)

with the corresponding limits

 
q�0; �� �
�q

2�2 �
��������������������
�2 �M2

q

q
����Mq�; (19)

 
q�T; 0� �
�q
T

Z d3k

�2��3
1

1� cosh�Eq=T�
; (20)

 lim
Mq!0


q�T;�� �
�q
6

�
T2 �

3�2

�2

�
� 
free

q : (21)

For an estimate of the critical region around the CEP we
have calculated the dimensionless ratio of the susceptibil-
ity and its massless free quark gas limit [cf. Eq. (21)]

 Rq�T;�� �

q�T;��


free
q �T;��

: (22)

Figure 6 shows a contour plot for two fixed ratios Rq in
the phase diagram near the CEP. A constituent quark mass
of roughly 300 MeV has been chosen. The region of
enhanced 
q is elongated in the direction parallel to the
first-order transition line.

In order to compare this behavior of the quark number
susceptibility around the CEP we repeat the previous
analysis with the scalar susceptibility. In general, static
susceptibilities are obtained of the dynamic response func-
tion 
ab�!; ~q� in the static and long wavelength limit

 
ab � �
1

V
@2�

@a@b
� lim

~q!0

ab�0; ~q�; (23)

where a, b denote external fields [24]. The scalar suscep-
tibility 
� corresponds to the zero-momentum projection
of the scalar propagator, which encodes all fluctuations of
the order parameter. The scalar susceptibility is related to
the order parameter by

 
� �
@h �qqi
@mq

� �
@2�

@m2
q
: (24)

As a function of temperature or quark chemical potential
the maximum of 
� should coincide with the most rapid
change in the chiral order parameter. One easily verifies
that the scalar susceptibility is related to the sigma mass via

� 
M�2

� .
Similar equations can also be formulated for the pseu-

doscalar susceptibility 
�, which is related to the order
parameter via a Ward identity

 
� � h �qqi=mq: (25)

In the chiral limit the divergence of the pseudoscalar
(transverse) susceptibility 
� in the broken phase signals
the appearance of massless (Goldstone) modes.

In Fig. 7 the contour region of the normalized scalar
susceptibility

 Rs�T;�� �

��T;��

��0; 0�

(26)

is shown for four fixed ratios around the CEP. Again we
observe an elongated critical region in the phase diagram,
where 
� is enhanced in the direction parallel to the first-
order transition line. The deeper reason for this feature can
be understood by a study of the critical exponent of the
susceptibility at the critical point which will be done in the
next section.
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E. Critical exponents

Since the quark-meson model in mean-field approxima-
tion does not exhibit a tricritical point in the chiral limit we
focus on the critical behavior of the susceptibility in the
vicinity of the CEP. At that point the quark number sus-
ceptibility diverges with a certain critical exponent. But a
crucial observation is the following: In general, the form of
this divergence depends on the route by which one ap-
proaches the critical point [27]. For the path asymptotically
parallel to the first-order transition line the divergence of
the quark number susceptibility scales with an exponent
�q. In mean-field approximation one expects �q � 1 for
this path. For any other path, not parallel to the first-order
line, the divergence scales with the exponent 
 � 1� 1=�.
Thus, in mean-field approximation 
 � 2=3 because � � 3
and therefore �q > 
. This is the reason for the elongated
shape of the critical region in the phase diagram (cf. Figs. 6
and 7) and why 
q is enhanced in the direction parallel to
the first-order transition line.

In order to confirm this behavior we have calculated the
critical exponent of the quark number susceptibility 
q
numerically. We have used a path parallel to the �-axis
in the �T;��-plane from lower � towards the critical �c 

223 MeV at fixed temperature Tc 
 91:4 MeV. Figure 8
shows the logarithm of 
q as a function of � close to the
CEP for a fixed constituent quark mass. Using a linear
logarithmic fit we obtain

 ln
q � �
 lnj���cj � r; (27)

where the term r is independent of �. We observe scaling
over several orders of magnitude (only two orders are
shown in the Figure) and obtain 
 � 0:64� 0:02, which
is in good agreement with the mean-field prediction 
 �
2=3. The scaling close to the critical point is also demon-
strated in Fig. 8. The onset of scaling is around lnj��
�cj<�1 which is not shown in the figure.

IV. PROPER-TIME RG APPROACH

In this section we study the phase diagram of the quark-
meson model within the PTRG approach in the chiral limit
as well as for realistic pion masses. In order to study the
influence of fluctuations we will repeat the calculations of
all previous quantities near the critical endpoint in the
phase diagram.

As we have seen, the mean-field approximation fails to
properly describe the expected critical physics in the chiral
limit (at least for the parameter set chosen). We will show,
that this is remedied in the RG approach and a second-
order transition in the chiral limit at finite temperature and
zero chemical potential is found. This transition lies in the
O�4� universality class, as expected. For nonzero chemical
potential the second-order transition ends in a TCP and
becomes a smooth crossover for finite quark (pion) masses
with a CEP. Thus, by variation of the pion mass the
relationship and the correlations between the TCP and
the CEP’s can be studied. In addition, the influence of
fluctuations on the susceptibilities and the critical region
around the CEP can be assessed.

In order to include fluctuations we use the proper-time
renormalization group (PTRG) method [28–33]. In the
vacuum, the PTRG flow equation for the scale-dependent
effective action �k��	 is governed by the self-consistent
equation

 @t�k��	 � �
1

2

Z 1
0

d�
�
�@tfk��k

2�	 tr exp�����2�k ��	�;

where ��2�k represents the full inverse propagator and is
given by a second functional derivative w.r.t. the field
components �. The smearing function is labeled by
fk��k2� and tr denotes a four-dimensional momentum in-
tegration and a trace over all given inner spaces (e.g. Dirac,
color and/or flavor-space). Details and the generalization to
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finite temperature and chemical potential can be found e.g.
in Refs. [20,29].

For the quark-meson model (1) the resulting flow equa-
tion for the scale-dependent grand canonical potential
�k�T;�� is given by
 

@t�k�T;�� �
k5

12�2

�
3

E�
coth

�
E�
2T

�
�

1

E�
coth

�
E�
2T

�

�
2NcNf
Eq

�
tanh

�Eq ��
2T

�

� tanh
�Eq ��

2T

���
; (28)

with the pion-E� �
��������������������
k2 � 2�0k

q
, the �-meson E� �������������������������������������������

k2 � 2�0k � 4�2�00k

q
and quark energies Eq �����������������������

k2 � g2�2
p

. The primed potential denotes the
�2-derivative of the potential, i.e., �0k :� @�k=@�2 and
correspondingly the higher derivatives.

We solve the flow equation (28) by discretizing the
generally unknown potential �k on a �2-grid. For details
concerning the numerical implementations we refer the
interested reader to Refs. [20,34] and references therein.

For the results presented below we have chosen an UV
cutoff � � 500 MeV and have fixed the quartic coupling
to � � 11:5 in order to reproduce a pion decay constant
f� 
 87 MeV in the chiral limit. The running of the
Yukawa coupling g is neglected here and fixed to g �
4:2 in order to reproduce a constituent quark mass of the
order of 370 MeV. Note, that this value of the quark mass is
roughly 100 MeV larger than the one used in the previous
work [20]. As a consequence, the tricritical point in the
phase diagram moves to larger temperatures and smaller
chemical potentials.

A. The phase diagram

In the present work we have also generalized previous
results in the chiral limit [20] to finite pion masses. The
resulting phase diagrams for the chiral limit and for physi-
cal pion masses M� 
 130 MeV are both shown in Fig. 9.
In the chiral limit a second-order phase transition (dashed
line) belonging to the O�4�-universality class is found. For
zero chemical potential we find a critical temperature Tc 

170 MeV for two massless quark flavors, in good agree-
ment with lattice simulations [35]. For increasing chemical
potential the second-order transition line ends in a TCP
(bullet).

For our choice of parameters the location of the TCP is
at Ttc 
 80 MeV and �t

c � 268 MeV. For temperatures
below the TCP the phase transition changes initially to a
first-order transition (solid line). For temperatures below
Ts 
 10 MeV two phase transitions with a further tricrit-
ical point (labeled as ‘‘2nd TCP’’ in the figure) emerge as
already described in Ref. [20]. A larger constituent quark

mass pushes the location of the TCP towards the tempera-
ture axis and the location of the splitting point down
towards the chemical potential axis. All qualitative prop-
erties of the two phase transitions below the splitting point
survive. Only the area bounded by the transition lines is
reduced for increasing quark masses (cf. phase diagram in
Ref. [20]).

As the pions become massive the TCP turns into a CEP.
For each value of the pion mass there is a corresponding
CEP. In an extended, three-dimensional �T;�;m�� phase
diagram these points arrange into a critical line (the ‘‘wing
critical line’’). It is expected that the static critical behavior
of this line falls into the universality class of the Ising
model in three dimensions corresponding to the one-
component �4-theory in 3D. For the coupling constants
listed above we obtain M� 
 123 MeV, M� 
 520 MeV,
and Mq 
 390 MeV in the vacuum and the location of the
CEP is at Tcc 
 61:5 MeV and �c

c 
 313:1 MeV. A better
fit to the physical pion mass can be accomplished by a fine
tuning of the initial coupling constants. Later a comparison
with the results of the previous mean-field analysis is
made. We therefore tried to fix the coupling constants in
such a way to obtain almost the same vacuum meson
masses, constituent quark mass and pion decay constant
as in the mean-field approximation. Although there are
slight deviations in these numbers all qualitative state-
ments will stay valid.

Compared to recent lattice and other model studies
(cf. Fig. 6 in Ref. [2]) the location of the TCP and con-
sequently of the CEP is at lower temperatures due to
omission of other degrees of freedom in the quark-meson
model.

For any finite value of the symmetry breaking parameter
c in the potential (2) the critical O�4�-line is immediately
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washed out and turns into a smooth crossover line which is
not visible in the phase diagram. For temperatures below
the CEP a first-order curved transition line is found which
persists down to the �-axis. In the chiral limit below the
splitting point, the right second-order transition turns into a
crossover for finite quark masses and is again not visible in
the phase diagram anymore. Analogously, the second tri-
critical point, if it exists, should turn into a critical point.
Some remnants of this critical point can indeed be seen in
the vacuum expectation value and meson masses. But a
detailed analysis of this point is postponed to a future work.
In the following we focus of the region around the TCP and
CEP.

B. In-medium meson masses

The scale-dependent in-medium sigma and pion masses
are determined by the curvature of the potential � at the
global minimum �0 via the relations

 M2
�;k � 2�0kj���0

; M2
�;k � �2�0k � 4�2�00k �j���0

:

(29)

In Fig. 10 the meson masses are shown as a function of
temperature for two different chemical potentials similar to
Fig. 2. For � � 0 the sigma mass drops relatively quickly
with temperature while the pion mass are almost constant
in the chirally broken phase. This behavior is very similar
to a PTRG analysis with another smearing function and a
truncation of the meson potential (cf. Fig. 14 in [29]). For
� � �c

c 
 313 MeV and at T � 0 the sigma mass is al-
most degenerate with the pion mass M� 
 150 MeV (see
Fig. 10). For increasing temperatures, the sigma mass
jumps to almost its vacuum value as it crosses the first-
order phase transition. In the vicinity of the CEP around
T 
 60 MeV the sigma mass drops below the pion mass

and vanishes at the critical point. At this point the potential
in the radial direction around the global minimum becomes
flat. As in the mean-field approximation the slope of the
sigma mass as function of temperature (or of the chemical
potential) at the CEP tends to infinity.

In Fig. 11 the meson masses parallel to the �-axis for
three different temperature slices (T � 1, T � Tcc , and T �
150 MeV) in the phase diagram are shown. For T �
1 MeV the sigma mass is constant and slightly before the
first-order transition a melting of the mass takes place.

Because of the curved first-order transition line the
critical chemical potential at the CEP around T 

61 MeV coincides with the critical chemical potential at
T � 1 MeV.

One important observation is that the sigma mass drops
to zero around the CEP much faster if fluctuations are
included.

C. Susceptibilities

In the vicinity of critical phenomena, fluctuations that
are neglected in a mean-field approximation become more
and more important. In order to study the modifications,
induced by the fluctuations, we have recalculated the quark
number density and susceptibilities within the RG method.
It should be recapitulated that, in contrast to the mean-field
approximation, this method yields a TCP in the phase
diagram for the chiral limit.

In the following we begin our investigations with the
chiral limit. In Fig. 12 the density n is shown as function of
� for three different temperatures around the TCP.

For temperatures below the tricritical Ttc n jumps due to
the first-order transition. Above the tricritical temperature
there is a kink in the density due to the second-order nature
of the transition. In the symmetric phase n grows almost
linearly. At the TCP the slope of the density when ap-
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proached from the broken phase, diverges thus yielding a
divergent susceptibility. This is demonstrated in Fig. 13
where the chemical potential dependence of the quark
number susceptibility is shown for three different fixed
temperatures around the TCP.

In the chiral limit, the susceptibility always jumps across
the first- or the second-order transition. In Fig. 13 the
second-order transition jump of 
q is drawn with solid
lines. Far below the chiral phase transition 
q is sup-
pressed. In the restored phase 
q tends towards the value
of the massless free quark gas, 
free

q , Eq. (21).
When we now leave the chiral limit and investigate the

phase diagram around the CEP, the critical behavior of the
transition changes. In contrast to the behavior of the quark
number density around the TCP it does not have any kink at
finite quark masses (cf. Fig. 14).

For temperatures below the critical Tcc , the density jumps
again at the phase transition due to its first-order character.
But above the CEP the discontinuity vanishes at the tran-
sition and the system runs through a smooth crossover. For
temperatures above Tcc , the slope of the density is always
finite, except exactly at Tcc where it diverges yielding a
divergent quark number susceptibility at this point. Thus,
the divergence of 
q survives even at finite quark masses.
The finite slope results in a finite peak of 
q which is
shown in Fig. 15 where the quark number susceptibility for
three different temperatures around the CEP, similar to
Fig. 13, is displayed.

Below the chiral transition, the susceptibility is again
suppressed and in the restored phase it tends towards 
free

q

of a massless free quark gas. Only at the first-order tran-
sition there is a discontinuity. In contrast to the chiral limit,
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the quark susceptibility is a smooth continuous function for
temperatures above the CEP.

On the lattice a similar behavior of the quark suscepti-
bility is seen [36,37]. At � � 0, 
q increases smoothly
near the critical temperature. At finite chemical potential it
develops a pronounced dip but with increased error bars
around the transition temperature. On the other side, a
significant peak in the isovector channel is not seen on
the lattice. Thus, this indicates that only one scalar degree
of freedom becomes massless at this point. Also universal-
ity arguments predict that the susceptibility diverges at
both the TCP and CEP with certain but different critical
exponents. At the TCP 
q should show a power-law be-
havior with a critical exponent �q. Since the TCP belongs
to a Gaussian fixed point mean-field exponents are
expected.

In the chiral limit the susceptibility 
q always has a
discontinuous jump across the critical O�4�-transition line.

q is larger below the O�4�-line (in the chirally broken
phase) than in the restored phase. At any finite � the
susceptibility has a cusp at the critical O�4�-transition
line. The peak of this cusp on the critical line as ap-
proached from the broken phase becomes higher and
higher as we increase �. Finally, it diverges exactly at
the TCP, while the potential and thus the pressure will
stay finite. Only at � � 0, the quark number susceptibility
is a continuous function across the phase boundary.

On the other side, as already mentioned, in the chirally
symmetric phase, 
q tends towards the value of the mass-
less free quark-gas susceptibility 
free

q . The deviations are
caused by the residual meson interaction in this phase.

D. Critical exponents

For finite quark masses it is expected that the universal-
ity class of the critical points changes. In order to deter-
mine the universality class of the TCP and CEP we have
also calculated the corresponding critical exponents of the
quark number susceptibility. In determining the critical
exponent we proceed in exactly the same way as described
in the mean-field section. The calculation of the first and
second derivative of the potential for the quark number
density and susceptibility is again determined numerically
with an adaptive step size algorithm in order to minimize
rounding and truncation errors.

We again begin the analysis with the chiral limit. We
have used a path parallel to the �-axis in the �T;��-plane
from lower � towards the TCP. Note, that in the
�T;��-plane the first-order transition line and the critical
O�4�-line at the TCP are asymptotically parallel and are not
parallel to either the T- or �-axis.

Using a linear logarithmic fit of 
q in the vicinity of the
TCP we obtain the critical exponent �q � 0:53 which is
shown in Fig. 16. The region where the scaling starts is
rather small j���t

cj< 10�0:5 
 0:3 MeV. This expo-

nent is consistent with mean-field theory which predicts a
critical exponent �q � 1=2. This is also expected due to
the Gaussian fixed point structure of the TCP.

Leaving the chiral limit, the universality class of the
CEP is that of the three-dimensional Ising model. Using
again a path parallel to the �-axis from lower � towards
the CEP we repeat the calculation of the critical exponent.
In Fig. 17 
q is shown versus the distance from the CEP. It
is interesting to see, that there seems to be two different
scaling regimes, which we indicated with two linear fit
functions in the figure.

The slope for the data points changes between
10�0:5 MeV< j���c

cj< 100:5 MeV. We have fitted the
data for j���c

cj< 10�0:5 MeV and >100:5 MeV sepa-
rately and obtained the critical exponent 

 0:74 (solid
line) for j���c

cj< 10�0:5 
 0:3 MeV. For j���c
cj>

100:5 MeV we also see a linear behavior for several orders
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of magnitude. If there is a proper scaling behavior of the
susceptibility in this region, the slope would be consistent
with an exponent of 

 0:77 (dashed line). This change of
the exponents could be interpreted as a crossover of differ-
ent universality classes [38]. One possibility for this cross-
over phenomenon is that the CEP is somehow affected by
the TCP. In Ref. [16] a similar crossover phenomenon
between different universality classes in the framework
of the CJT potential for QCD in improved-ladder approxi-
mation is seen: As they approach the CEP for realistic
quark masses (mq 
 5 MeV), the critical exponent change
gradually from those of the tricritical point to those of the
3D Ising model via those of the CEP in the mean-field
approximation. In mean-field theory one expects 
 �
�=�� � 2=3. They find a crossover from the nontrivial
critical exponent 
 � 0:57� 0:01 to the mean-field expo-
nent 
 � 0:68� 0:02. Contrary to this work, we find a
crossover from 
 � 0:77 to 
 � 0:74. Thus, at the CEP the
susceptibility diverges with the critical exponent 

 0:74.
This exponent is consistent with the one of the 3D Ising
universality class 
 � 0:78 and is definitely different from
the mean-field value 
 � 2=3. Note also, that the mean-
field exponent of a bicritical point (CEP) are in general
different from those of a tricritical point. In order to
complete the analysis here we summarize the critical ex-
ponents of different approaches in Table I.

It is also interesting that the value j���c
cj 
 0:5 MeV

where the slope of the data points changes to a mean-field
scaling in Ref. [16] is comparable to our value.

E. The critical region

We are now able to compare the impact of the quantum
and thermal fluctuations on the shape of the region around
the critical points in the phase diagram. We repeat the
calculation of the contour plot of Figs. 6 and 7 in the
framework of the RG approach. The result for the scalar
susceptibility around the CEP for the same four ratios Rs as
in the mean-field approximation is shown in Fig. 18.

As in the mean-field case the region is elongated in the
direction of the first-order transition line, but it is now
much more compressed. For example, choosing a ratio of
Rs � 15, the corresponding susceptibility covers an inter-
val from �0:04 to 0.02 in the reduced chemical potential
direction and an interval from �0:1 to 0.4 in the tempera-
ture direction. In the mean-field case the same ratio covers
an interval from �0:8 to 0.1 in the � direction and from
�0:15 to 0.6 in the T direction. While the interval in the

temperature direction is comparable in both cases, the
effect in the chemical potential direction is dramatic. In
the RG calculation the interval is shrunken by almost 1
order of magnitude, despite the fact that the corresponding
critical exponents are quite similar!

An similar result is obtained for the critical region of the
quark number fluctuations. In order to compare the critical
region around the CEP with the one around the TCP we
show the quark number susceptibility in Fig. 19 in a larger
sector of the phase diagram containing both critical points.

The CEP is far away from the TCP at larger values of the
chemical potential and smaller temperature as expected.
Because of the sharp transition lines in the chiral limit the
critical region around the TCP is chop off in the chirally
symmetric phase. Whether there is a robust effect of the
TCP on the CEP as stated in Ref. [16] is not seen in this

TABLE I. Critical exponents for the 3D Ising model.

� � � � � � Ref.

mean-field 0 1=2 1 3 1=2 0 [38]

-exp. (5 loops) 0.11 0.327 1.24 4.80 0.631 0.04 [39]
num. sim. 0.12 0.31 1.25 5.20 0.64 0.06 [40]
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work. But this important issue including the quark mass
dependence of the susceptibilities is postponed to a further
analysis.

V. SUMMARY AND CONCLUSION

Using a Wilsonian renormalization group approach, we
have analyzed the phase diagram of hadronic matter in the
two-flavor quark-meson model. This model captures es-
sential features of QCD, such as the spontaneous breaking
of chiral symmetry in the vacuum and can therefore yield
valuable insight into the critical behavior, associated with
chiral symmetry. Of special importance is the emergence
of a CEP which is intensely discussed at present, in con-
nection with fluctuation signals in heavy-ion collisions.
Here the size of the critical region around the CEP is of
special importance. Most studies of this issue, available in
the literature, have been performed in the mean-field ap-
proximation, which neglects thermal and quantum fluctua-
tions. These can be assessed, however, in the RG approach
which is able to correctly predict critical exponents in the
vicinity of critical points of the phase diagram.

The main results of this work can be summarized as
follows:

(1) From universality arguments it is expected that the
quark-meson model (and most likely QCD) has a
TCP in the chiral limit. For the parameter set chosen
in this paper, a mean-field calculation is not able to
find such a point, while the RG predicts its exis-
tence. The expected critical behavior is also repro-
duced. Because of the Gaussian fixed-point
structure at the TCP mean-field exponents are ex-
pected what we could verify.

(2) When effects of finite current quark masses (finite
pion masses) are included, a CEP emerges in both
the mean-field and the RG calculation. By analyzing
the scalar- and quark number susceptibilities we find

that the RG calculation yields nontrivial critical
exponents, consistent with the expected 3D Ising
universality class. Close to the CEP our exponent
is consistent with the Ising class but we also see a
novel crossover phenomenon.

(3) As a consequence of fluctuations, the size of the
critical region around the CEP is substantially re-
duced, as compared to mean-field results. This is
particularly true in the �-direction, where a shrink-
age by almost 1 order of magnitude is observed.
This may have consequences for the experimental
localization of the CEP in the phase diagram since it
further complicates its detection through event-by-
event fluctuations.

The success of the RG approach in predicting the ex-
pected critical behavior of the thermodynamics in the
quark-meson model encourages us to pursue the issue of
the existence of a CEP in the phase diagram of strongly
interacting matter and its location in the (T;�)-plane fur-
ther. It is known from lattice studies that the strange quark
plays a major role. We therefore intend to extend the
analysis to three quark flavors [41]. One of the drawbacks
of the quark-meson model is the lack of explicit gluonic
degrees of freedom, which are known to play a big role in
the thermodynamics of QCD and are associated with con-
finement aspects of the theory. One possibility to incorpo-
rate such effects is the coupling of the quark-meson model
to Polyakov-loop model [42,43], as put forward in [44].
Work in this direction is in progress [45].
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