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The presence of the antisymmetric background field B�� leads to the noncommutativity of the Dp-
brane manifold, while the linear dilaton field in the form ��x� � �0 � a�x

� causes the appearance of the
commutative Dp-brane coordinate, xc � a�x

�. In the present article we consider the case where the
conformal invariance is realized by inclusion of the Liouville term. Then, the theory is conformally
invariant even in the presence of the world-sheet conformal factor F, and it depends on the new parameter,
the central charge c. As well as in the absence of the Liouville action, for particular relations between
background fields, the local gauge symmetries appear in the theory. They turn some Neumann boundary
conditions into the Dirichlet ones, and decrease the number of the Dp-brane dimensions.
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I. INTRODUCTION

When the ends of the open string are attached to a
Dp brane with antisymmetric Kalb-Ramond field B��,
the Dp-brane world volume becomes noncommutative
[1]. The presence of the linear dilaton field � [2–4] turns
one Dp-brane coordinate, xc � x�@��, to a commutative
one and the conformal part of the world-sheet metric, F, to
an additional noncommutative variable [3].

The possible breaking of the conformal invariance in the
open string theory by the boundary conditions has been
investigated in Ref. [4]. It was shown that, besides vanish-
ing of the � functions, in the case of the linear dilaton there
are additional conditions that dilaton gradient ai � @i�
must satisfy. It should be lightlike vector, either with
respect to the closed string metric, a2 � Gijaiaj � 0, or
with respect to the open string (effective) metric, ~a2 �

�G�1
eff �

ijaiaj � 0. The above restrictions decrease the num-
ber of the Dp-brane dimensions, turning some Neumann to
Dirichlet boundary conditions.

In the present paper we change the conditions for
quantum conformal invariance. The usual requirement is
vanishing of all three � functions corresponding to back-
ground fields, �G�� � �B�� � �� � 0. Here, we use the
fact that the vanishing of two� functions, corresponding to
the metric and antisymmetric field, �G�� � �B�� � 0, im-
plies that the third one, corresponding to dilaton field, is
constant, �� � c [5]. Instead of choosing this constant to
be zero, as we did in the previous paper [4], in this article
we add the Liouville term in order to cancel constant
contribution to the conformal anomaly. This approach is
more general because the theory and, particularly, the non-
commutativity parameter depend on arbitrary central
charge c. The advantage is the achievement of the confor-
mal invariance without the requirement for decoupling of

the conformal factor of the world-sheet metric, F.
Consequently, for c � 0 the presence of the field F in
boundary conditions does not break conformal invariance
as in Ref. [4].

In order to clarify notation and terminology we will
distinguish two descriptions of the open string theory. We
start with variable x� and background fieldG��, where the
theory is described by equations of motion and boundary
conditions. We are able to solve boundary conditions and
introduce the effective theory defined only by equations of
motion. This is again string theory, but in terms of effective
coordinates q� (symmetric under transformation �!
��) and effective background field Geff

��. Following
Seiberg and Witten [1], we use the names closed string
metric for G�� and open string metric for Geff

�� (the metric
tensors seen by the closed and open string, respectively).

The Liouville action itself is the kinetic term for the field
F. So, we are going to treat it equally with other variables.
In particular, we choose the Neumann boundary condition
for F. Note that, although by simple changes of variables
the new field ?F decouples, and the term with linear dilaton
disappears, the case is nontrivial because the new metric
?Gij and the corresponding effective one ?Geff

ij become
singular for �a2 � 1 and �~a2 � 1, respectively [� is a
useful constant defined in (2.10) proportional to the inverse
central charge]. We use the mark star ( ? ) to distinguish
description in terms of variables (xi, ?F) from that of (xi,
F).

Up to the changing of the conditions on the dilaton
gradient ai (a2 � 0! a2 � 1

� and ~a2 � 0! ~a2 � 1
� ),

there is a complete analogy of the noncommutativity prop-
erties with the cases of the previous paper [4]. Note that
here we have a whole one-parameter class of theories with
the same properties and, in particular, the result of the
previous paper has been obtained for (�! 1 , c � 0).

In the first case, 1� �a2 is a coefficient in front of the
velocity _x0 � ai _xi, so that condition �a2 � 1 produces the
standard canonical constraint. By simple analysis we con-
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clude that it is of the first class. For �~a2 � 1, some of the
constraints originating from the boundary conditions turn
from second class into first class constraints.

The first class constraints generate local gauge symme-
tries. They turn some of the initial Neumann boundary
conditions into Dirichlet ones and decrease the number
of the Dp-brane dimensions. String coordinates, which
depend on the effective ones but also on the corresponding
momenta, define the noncommutative subspace of
Dp brane. The noncommutativity parameter is proportional
to the antisymmetric field Bij. The field ?F decouples from
the rest. So, it plays the role of the commutative variable
instead the variable xc � aix

i in the case without the
Liouville term.

At the end of this paper, in the Concluding remarks, we
summarize the results of the investigation. Also there are
three appendixes. The first one is devoted to the projectors,
which help us to express the results clearly. In the second
appendix we introduce the redefined closed and open string
star metrics, while in the third one we discussed the sepa-
ration of the center of mass variables.

II. CONFORMAL INVARIANCE WITH THE HELP
OF LIOUVILLE ACTION

The action

 S�G�B��� � �
Z

�
d2�

�������
�g
p

��
1

2
g��G���x�

�
"���������
�g
p B���x�

�
@�x

�@�x
� ���x�R�2�

�
(2.1)

describes the evolution of the open string in the back-
ground consisting of the space-time metric G���x�, Kalb-
Ramond antisymmetric field B���x�, and dilaton scalar
field ��x� (for more details, see [6]). The world-sheet �
is parametrized by �� � ��; �� (� � 0, 1), and the
D-dimensional space-time by the coordinates x� (� �
0; 1; 2; . . . ; D� 1). The intrinsic world-sheet metric is
g��, and R�2� is the related scalar curvature.

There are three � functions corresponding to the space-
time metricG��, antisymmetric field B��, and dilaton field
�

 �G�� � R�� �
1
4B�	�B�

	� � 2D�a�; (2.2)

 �B�� � D	B	�� � 2a	B	��; (2.3)

 �� � 2
�
D� 26

6
�

1

24
B�	�B

�	� �D�a
� � 4a2;

(2.4)

which characterize the conformal anomaly of the sigma
model (2.1). The space-time Ricci tensor and covariant
derivative are denoted with R�� and D�, respectively,

while B�	� � @�B�	 � @�B	� � @	B�� is the field
strength for the field B�� and a� � @�� is the gradient
of the dilaton field.

It is known from Ref. [5] that vanishing of �G�� and �B��
implies constant value of the third � function, �� � c. We
choose a particular solution of Eqs. (2.2) and (2.3)
 

G���x� � G�� � const; B���x� � B�� � const;

��x� � �0 � a�x� �a� � const�: (2.5)

Then Eq. (2.4) produces the condition

 �� � 2
�
D� 26

6
� 4a2 � c; (2.6)

under which the above solution is consistent with all
equations of motion. On these conditions, the nonlinear
sigma model (2.1) becomes conformal field theory. There
exists a Virasoro algebra with central charge c.

The remaining anomaly, represented by the Schwinger
term of the Virasoro algebra, can also be canceled by
introducing a corresponding Wess-Zumino term, which
in the case of the conformal anomaly takes the form of
the Liouville action
 

SL � �
��

2�4
�2�

Z
�
d2�

�������
�g
p

R�2�
1

�
R�2�;

� � g��r�@�;
(2.7)

where r� is the covariant derivative with respect to the
intrinsic metric g��. An appropriate choice of the coeffi-
cient in front of the Liouville action makes the theory fully
conformally invariant and the complete action takes the
form

 S � S�G�B��� � SL: (2.8)

We choose a particular background, decomposing the
space-time coordinates x���� in Dp-brane coordinates de-
noted by xi����i � 0; 1; . . . ; p� and the orthogonal ones
xa����a � p� 1; p� 2; . . . ; D� 1�, in such a way that
G�� � 0 (� � i, � � a). For the other two background
fields we choose B�� ! Bij, a� ! ai; i.e. they are non-
trivial only on the Dp brane. The part of the action describ-
ing the string oscillation in xa directions decouples from
the rest.

Imposing the conformal gauge g�� � e2F���, we ob-
tain R�2� � �2�F and the action (2.8) takes the form

 S � �
Z

�
d2�

��
1

2
���Gij � ���Bij

�
@�xi@�xj

� 2���ai@�x
i@�F�

2

�
���@�F@�F

�
; (2.9)

where we introduce the useful notation

 

1

�
�

��

�4
��2
: (2.10)
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The field F is a dynamical variable with the Liouville
action as a kinetic term. In order to cancel the term linear
in F, we change the variables, F ! ?F � F� �

2 aix
i, and

obtain

 S � �
Z

�
d2�

��
1

2
��� ?Gij � �

��Bij

�
@�x

i@�x
j

�
2

�
���@�

?F@�
?F
�
: (2.11)

This is a standard form of the action without the dilaton
term and with the redefined Liouville term F ! ?F, and
redefined space-time metric ?Gij � Gij � �aiaj. The di-
laton dependence is now through the metric ?Gij.

We choose Neumann boundary conditions for the rede-
fined conformal factor of the intrinsic metric ?F. The field
?F completely decouples, as well as the coordinate xa, but
because of its Neumann boundary conditions, we will treat
it as a Dp-brane variable. In all cases it is a commutative
variable.

All nontrivial features of the model (2.11) follow from
the fact that the star metrics (?Gij and the corresponding
effective one ?Geff

ij ) are singular and consequently they
produce gauge symmetries of the theory. It is easy to check
that for �a2 � 1 and �~a2 � 1 we have det?Gij � 0 and
det?Geff

ij � 0, respectively.

III. NONCOMMUTATIVITY FOR REGULAR STAR
METRICS ?Gij AND ?Geff

ij (�a2 � 1 AND � ~a2 � 1)

In this section we will analyze the case when both the
metric ?Gij and the corresponding effective one ?Geff

ij are
nonsingular. Up to the field ?F, which is decoupled from
the other Dp-brane variables, there is complete formal
analogy with the case without dilaton field with substitu-
tion Gij !

?Gij. For completeness we present the main
steps of the procedure and add the parts corresponding to
?F.

A. Canonical Hamiltonian in terms of currents

The momenta canonically conjugated to the fields xi and
?F are

 
i � ��?Gij _xj � 2Bijx
0j�; 
 �

4�
�

? _F: (3.1)

Using the definition of the canonical Hamiltonian H c �

i _xi � 
? _F�L, we obtain

 Hc �
Z
d�H c; H c � T� � T�;

T� � �
1

4�

�
�?G�1�ij ?j�i

?j�j �
�
4

?j
��F�

?j
��F�

�
;

(3.2)

where

 

?j�i � 
i � 2� ?��ijx
0j;

?j
��F� � 
�

4�
�

?F0

�?��ij � Bij �
1
2
?Gij�

(3.3)

and the inverse metric �?G�1�ij is introduced in Eq. (B2).
From the basic Poisson bracket algebra

 fxi��;��; 
j��; ���g � 
ij
��� ���;

f?F��; ��; 
��; ���g � 
��� ���;
(3.4)

directly follows the current algebra
 

f?j�i;
?j�jg � �2� ?Gij


0;

f?j
��F�;

?j
��F�g � �

8�
�

0;

f?j�i;
?j
��F�g � 0;

(3.5)

while all opposite chirality currents commute and for
simplicity we define 
0 � @�
��� ���. Consequently,
the Poisson brackets between canonical Hamiltonian and
the currents ?j�i and ?j

��F� are proportional to their sigma
derivatives

 fHc;
?j�ig � �

?j0�i; fHc;
?j
��F�g � �

?j0
��F�: (3.6)

B. Boundary conditions as canonical constraints

We will use Neumann boundary conditions for the fields
xi and ?F. The boundary conditions are of the form
��0�i j



0 � 0 and ��0�j
0 � 0, where

 ��0�i �
@L

@�@�x
i�
� ���?Gijx

0j � 2Bij _xj�;

��0� �
@L

@�@�
?F�
� �

4�
�

?F0:

(3.7)

They can be rewritten in terms of the currents (3.3) as

 ��0�i � �
?��

?G�1�i
j ?j�j � �

?��
?G�1�i

j ?j�j;

��0� � 1
2	
?j
��F� �

?j
��F�
;

(3.8)

and treated as canonical constraints. Examining the con-
sistency of the constraints, with the help of the relations
(3.6), we obtain an infinite set of constraints. Using Taylor
expansion, we rewrite all the constraints at� � 0 in a more
compact �-dependent form
 

�i��� � �
?��

?G�1�i
j ?j�j���

� �?��
?G�1�i

j ?j�j����;

���� � 1
2	
?j
��F���� �

?j
��F�����
:

(3.9)

In the same way, we obtain similar expressions from the
constraints at � � 
. From the fact that the differences of
the corresponding constraints at � � 0 and � � 
 are also
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constraints, we conclude that all positive chirality currents
and, consequently, all variables are 2
 periodic functions.
Because of this periodicity the constraints at � � 
 can be
discarded (for more details see Ref. [3]).

We complete the consistency procedure finding the
Poisson brackets

 fHc;�ig � �0i; fHc;�g � �0; (3.10)

which means that there are no more constraints in the
theory.

The algebra of the constraints �A � ��i;�� has a simple
matrix form

 f�A���; �B� ���g � ��MAB
0; MAB �
?Geff

ij 0

0 4
�

 !
:

(3.11)

The space-time component, which we will call the effec-
tive or open string metric, is defined in Eq. (B3). The
determinant

 detMAB �
4

�
~AA detGeff

ij �
4

�

~A2

A
detGeff

ij ; (3.12)

is regular for ~A � 1� �~a2 � 0 and A � 1� �a2 � 0,
and all constraints are of the second class. The fields Gij

and Bij are chosen in such a way that detGeff
ij � 0.

C. Solution of the constraint equations

Let us introduce the common symbol for the coordinates
and their canonically conjugated momenta, CA �
�xi; ?F; 
i; 
�. It is useful to define the symmetric and
antisymmetric parts in � parity as

 OA��� � 1
2	C

A��� � CA����
;

�OA��� � 1
2	C

A��� � CA����
;
(3.13)

where to OA � �qi; ?f; pi; p� we will refer as the effective
variables. In terms of these variables, the constraints �i���
and ���� have the form
 

�i � 2�B?G�1�i
jpj � � ?Geff

ij �q0j � �pi;

� � �p�
4�
�

? �f0:
(3.14)

From

 �i��� � 0; ���� � 0; (3.15)

choosing integration constants �qi�� � 0� � 0 and ? �f�� �
0� � 0, we obtain the solution for string variables ex-
pressed in terms of the effective ones

 xi��� � qi��� � 2 ?�ij
Z �

0
d�1pj��1�; 
i � pi;

(3.16)

 

?F � ?f; 
 � p: (3.17)

Note that as we explained in Sec. I, the string variables xi

and 
i describe the string dynamics before solving con-
straints originating from boundary conditions, while the
effective ones, qi and pi, describe the string after solving
constraints.

The parameter ?�ij is defined as

 

?�ij � �1
��
?G�1

eff B
?G�1�ij � �1

��G
�1
eff

��0
TBG

�1 ��0
T�
ij;

(3.18)

where

 � ��0
T�i

j � 
i
j � �1� 1

~A
���0�i

j; (3.19)

and the projector ��0�i
j is introduced in Eq. (A4).

In terms of ?Gij, the parameter ?�ij has the same form
as the parameter �ij in terms of Gij in the case without
dilaton field. Note that in this approach the noncommuta-
tivity parameter ?�ij depends on central charge c.

D. Effective theory and noncommutativity relations

Let us introduce the effective currents

 

?~j�i � pi � �
?Geff

ij q
0j; ?~j��F� � p�

4�
�

?f0:

(3.20)

Using the solutions (3.16) and (3.17) we correlate them
with currents given in Eq. (3.3)

 

?j�i � �2�?��
?G�1

eff �i
j ?~j�j;

?j
��F� �

?~j��F�;

(3.21)

where �?G�1
eff �

ij is given in Eq. (B6). Substituting these
relations in the canonical Hamiltonian (3.2), we obtain

 T� � ~T�; H c �
~H c; (3.22)

where we introduced an effective energy-momentum ten-
sor and Hamiltonian
 

~T� � �
1

4�

�
�?G�1

eff �
ij ?~j�i

?~j�j �
�
4

?~j��F�
?~j��F�

�
;

~H c � ~T� � ~T�: (3.23)

The effective theory is defined in the phase space
spanned by the coordinates qi and momenta pi in the
new open string background Gij !

?Geff
ij , Bij ! 0, and

�! 0. The free field, which effective dynamics is de-
scribed by ?f and p, decouples from the rest.

From the basic string variables algebra (3.4), we calcu-
late the corresponding effective string one

 fqi��; ��; pj��; ���g � 
ij
s��; ���;

f?f��; ��; p��; ���g � 
s��; ���;
(3.24)

where 
s��; ��� � 1
2 	
��� ��� � 
��� ���
.

B. NIKOLIĆ AND B. SAZDOVIĆ PHYSICAL REVIEW D 75, 085011 (2007)

085011-4



Separating the center of mass variables according to
Appendix C, we obtain

 fXi���; Xj� ���g � ?�ij���� ���; (3.25)

 fXi���; ?F � ���g � 0; f?F ���; ?F � ���g � 0; (3.26)

where the function ��x� is given in Eq. (C5), and Xi and
?F are defined in (C3) and (C6), respectively.

The fields xi are noncommutative variables, while the
field ?F is a commutative one. So, the Dp brane is de-
scribed by p� 1 noncommutative and one commutative
degree of freedom.

IV. NONCOMMUTATIVITY FOR SINGULAR
?Gij (�a2 � 1)

In order to express the velocities in terms of the canoni-
cal momenta, the coefficients in front of the velocities must
be different from zero. But the metric ?Gij in front of _xi in
(3.1) is singular for �a2 � 1 [see Eqs. (B1) and (B7)].
Consequently, a primary constraint appears in the theory
[7]. For �a2 � 1 the projector

 gij � �P
0
TG�ij; (4.1)

takes the role of the metric in the subspace defined by the
regular part of ?Gij.

A. Canonical Hamiltonian and gauge symmetry

Combining the coordinates xi and their canonically
conjugated momenta 
i (3.1) as

 

?j � ai
i � 2�aiBijx
j0 � ��1� �a2�ai _xi; (4.2)

we conclude that, for �a2 � 1, ?j does not depend on
velocities and consequently, it is a constraint of the theory.

The canonical Hamiltonian H c � 
i _xi � 
? _F�L in
terms of currents has the form
 

H c � T� � T�;

T� � �
1

4�

�
�g�1�ij ?j�i

?j�j �
�
4

?j
��F�

?j
��F�

�
;

(4.3)

where

 

?j�i � 
i � 2��Bij �
1
2gij�x

0j (4.4)

is obtained from (3.3) by imposing �a2 � 1, and

 �g�1�ij � �G�1P0
T�
ij (4.5)

is the metric inverse of (4.1) in the subspace defined by the
regular part of ?Gij.

The constraint ?j can be rewritten in terms of the current
?j�i as

 

?j � ai ?j�i: (4.6)

According to the Dirac theory for the constrained systems,
we introduce the total Hamiltonian

 HT �
Z
d�H T; H T �H c � �

?j; (4.7)

where � is a Lagrange multiplier. From the current algebra
(3.5) we have

 f?j�i;
?jg � 0; f?j

��F�;
?jg � 0) fHT; ?jg � 0;

(4.8)

which means that ?j is a first class constraint.
Consequently, there is a gauge symmetry in the theory.

Using expression for the gauge transformation of an
arbitrary observable X, generated by symmetry generator
G

 
�X � fX;Gg; G �
Z
d����� ?j���; (4.9)

in this particular case we obtain
 


�x
i � ai�; 
�

?F � 0;


�
i � 2�ajBji�
0; 
�
 � 0:

(4.10)

B. Solution of constraints for particular gauge fixing

From the gauge transformations (4.10), it follows

 
�x0 � 
��aixi� � a2�; (4.11)

and we conclude that x0 � 0 is a good gauge condition.
After gauge fixing, we can treat ?j and x0 as second class
constraints. Implementing the conditions x0 � 0 and ?j �
0, the current ?j�i changes as

 

?j�i ! j�i � 
i � 2���ijx
0j ���ij � Bij �

1
2Gij�;

(4.12)

and the boundary conditions (3.8) take the form

 ��0�i � ���G
�1�i

jj�j � ���G
�1�i

jj�j;

��0� � 1
2	
?j
��F� �

?j
��F�
:

(4.13)

As in the previous section, after Dirac consistency proce-
dure, we obtain the �-dependent form of the boundary
conditions at � � 0
 

�i��� � ���G�1�i
jj�j��� � ���G�1�i

jj�j����;

���� � 1
2	
?j
��F���� �

?j
��F�����
: (4.14)

Similar expressions from the constraints at � � 
 are
solved by periodicity of all variables.

Let us mark the complete set of the constraints with
�A � ��i;��. The matrix form of the constraint algebra is

 f�A���; �B� ���g � ��MAB

0; MAB �

Geff
ij 0

0 4
�

 !
;

(4.15)

where Geff
ij is defined after Eq. (B3). Since we assume that
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detGeff
ij � 0, we conclude that all constraints are of the

second class.
In terms of the effective variables defined in Eq. (3.13),

the constraint equations �i��� � 0 and ���� � 0 have the
form

 �p i � 0; �q0i � 2
��G

�1
eff BG

�1�ijpj; (4.16)

 �p � 0; ? �f0 � 0: (4.17)

Because the first class constraints and gauge fixing behave
like second class constraints, from ?j � 0 and x0 � aix

i �
0, we get additional equations
 

aipi � 2��aB�i �q0i � 0; ai �pi � 2��aB�iq0i � 0;

q0 � aiqi � 0; �q0 � ai �qi � 0: (4.18)

Combining the first equation in (4.16) with the second one
in (4.18) we have q01 � �aB�iq

0i � 0. The fourth equation
in (4.18) and the second equation in (4.16) give p1 �
�~aB�ipi � 0, while the second equation in (4.16) and the
first one in (4.18) produce p0 � ~aipi � 0. From here we
conclude that the string phase space is spanned by the
following coordinates and momenta:

 �qT�i � �?PT�
i
jq
j � Qi; �
T�i � �?PT�i

jpj � Pi;

(4.19)

where the projector ?PT is defined in (A8) for �~a2 � 1 and
~a2 � 0. Decomposing �qi into a directions along �aB�i and
ai and the orthogonal ones

 �q 0i � �q0i0 � �q0i1 � � �qT�
0i; (4.20)

from the second Eq. (4.16) we obtain

 � �qT�0i � �2 ?�ijPj; �q0i1 �
2
��G

�1
eff

?P1BG
�1�ijPj;

(4.21)

where the tensor

 

?�ij � �1
��G

�1
eff

?PTBG
�1 ?PT�

ij; (4.22)

is antisymmetric.
Choosing the integration constants qi1�� � 0� � 0,

�qi�� � 0� � 0, and ? �f�� � 0� � 0, the final solution of
the Eqs. (4.16), (4.17), and (4.18) takes the form

 xiDp
��� � Qi��� � 2 ?�ij

Z �

0
d�1Pj��1�; 


Dp

i � Pi;

(4.23)

 x0 � 0; 
0 � 0;

x1��� �
2

�
�~aB2G�1�i

Z �

0
d�1Pi��1�; 
1 � 0;

(4.24)

 

?F � ?f; 
 � p: (4.25)

Similar as in (4.19), we introduced the notation

 xiDp
� �?PT�

i
jx
j; 


Dp

i � �
?PT�i

j
j; (4.26)

while x0, x1, 
0, and 
1 are defined in Eq. (A14). The
solution for x1 satisfies Dirichlet boundary conditions at
� � 
, x1�� � 
� � 0, as a consequence of the periodic-
ity of the momenta Pi.

C. Effective theory and noncommutativity

In terms of the effective currents

 

?~j�i � Pi � ��?PTGeff�ijQ0j;
?~j��F� � p�

4�
�
f0;

(4.27)

the currents ?j�i and ?j��F� given in (3.3) and (4.4) can be
expressed as

 

?j�i � �2���G�1
eff �i

j ?~j�j;
?j��F� �

?~j��F�:

(4.28)

Substituting these relations in (4.3), we obtain the effective
Hamiltonian
 

~H c � ~T� � ~T�;

~T� � �
1

4�

�
�G�1

eff
?PT�

ij ?~j�i
?~j�j �

�
4

?~j��F�
?~j��F�

�
:

(4.29)

The expressions for the effective current ?~j�i and the
energy-momentum tensor ~T� show that the effective met-
ric and its inverse are of the form

 geff
ij � �

?PTG
eff�ij; gijeff � �G

�1
eff

?PT�
ij: (4.30)

Therefore, the string propagates in the subspace defined by
the projector ?PT in the background

 Gij ! geff
ij ; Bij ! 0; �! 0: (4.31)

The effective dynamics of the string is described by the
effective variables: coordinates Qi and momenta Pi, which
satisfy the algebra

 fQi���; Pj� ���g � �?PT�
i
j
��� ���: (4.32)

The conformal part of the effective world-sheet metric ?f
and its momentum p are canonical variables for the scalar
degree of freedom which decouples from the rest.

Using the solutions (4.23) and (4.25), and introducing
the center of mass variables according to Appendix C, the
noncommutativity relations take the form

 fXiDp
���; XjDp

� ���g � ?�ij���� ���; (4.33)

 

fXiDp
��; ��; ?F ��; ���g � 0;

f?F ��; ��; ?F ��; ���g � 0;
(4.34)
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where the tensor ?�ij and the function ��x� are defined in
(4.22) and (C5).

The solutions for x0 and x1 satisfy the Dirichlet bound-
ary conditions and decrease the number of the Dp-brane
dimensions from p� 2 to p. There is one commutative
variable, the conformal part of the intrinsic metric ?F, and
p� 1 noncommutative ones xiDp

.

V. NONCOMMUTATIVITY FOR SINGULAR
?Geff

ij (� ~a2 � 1)

For ~A � 1� �~a2 � 0 and A � 1� �a2 � 0 the com-
plete canonical analysis as well as the consistency proce-
dure for the constraints, performed in Sec. III, can be
repeated here. The difference appears in the separation of
the first from the second class constraints as a consequence
of the singularity of matrix MAB (3.12).

A. From the second to the first class constraints

Using the expression for effective metric (B4), we obtain

 

?Geff
ij ~aj � ~Aai; ?Geff

ij �~aB�
j �

~A
A
�aB�i; (5.1)

so that, for ~A � 0 and A � 0, ~ai and �~aB�i are singular
vectors of the metric ?Geff

ij . According to Eq. (3.11) we
expect that two constraints originating from the boundary
conditions turn into the first class.

In order to investigate the theory with constraints, we
introduce the total Hamiltonian
 

HT �
Z
d�H T;

H T �H c � �
i����i��� � ��������;

(5.2)

where H c is defined in (3.2), �i and � are defined in (3.9),
and �i and � are Lagrange multipliers. We decompose �i

using the projectors �?P̂0�i
j, �?P̂1�i

j, and �?P̂T�i
j, defined

in Appendix A

 �i � ��T�
i � 2	1�~aB�

i �	2 ~ai; (5.3)

where ��T�i � �
?P̂T�

i
j�

j, 	1 � �
2�

1��a2 �aB��, and 	2 �

��a��. The consistency conditions fHT;�i���g � 0 and
fHT;����g � 0 enable us to calculate the coefficients

 �0 � �
�
4�

�0; ��0T�
i � �

1

�
�G�1

eff
?P̂T�

ij�0j; (5.4)

while the coefficients 	1 and 	2 remain undetermined.
The total Hamiltonian takes the form

 

HT � Hc �
Z 


0
d�	��T�i��T�i � ���	1�1 �	2�2


� H0 �
Z 


0
d��	1�1 �	2�2�; (5.5)

where

 �1 � 2�~aBG�1�i�i; �2 � ~ai�i: (5.6)

Since the constraints �1 and �2 are multiplied by the
arbitrary coefficients 	1 and 	2, they are of the first class.
On the other hand, ��T�i and �, multiplied by the deter-
mined multipliers, are of the second class.

By direct calculation, from (3.11), we have
 

f�1;�ig � 0; f�1;�g � 0;

f�2;�ig � 0; f�2;�g � 0;
(5.7)

which is a confirmation that �1 and �2 are of the first class.
Calculating the algebra of the constraints �A �

f��T�i;�g we obtain

 f�A; �Bg � ��MAB

0; MAB �

�?P̂TGeff�ij 0
0 4

�

 !
:

(5.8)

Because the projector �?P̂T�i
j is orthogonal to the vectors

ai and �aB�i, we conclude that the rank of MAB is not
greater than p. Assuming that the rest of the matrix MAB is
regular, its rank as well as the number of the second class
constraints are equal to p.

B. Gauge symmetry and solution of constraints

The gauge transformations have the form of the
Eq. (4.9), with the generator

 G �
Z 


0
d���1�1 � �2�2�; (5.9)

where �1 and �2 are the parameters of the local trans-
formations. The constraints

 �1 � ~aipi � 2�~aBG�1�i �pi;

�2 � ~ai �pi � 2�~aBG�1�ipi;
(5.10)

generate the gauge transformations of the effective varia-
bles

 
qi � ~ai��1�s � 2�~aBG�1�i��2�s; 
 ?f � 0; (5.11)

 
 �qi � ~ai��2�a � 2�~aBG�1�i��1�a; 
 ? �f � 0;

(5.12)

where the indices ‘‘s’’ and ‘‘a’’ denote � symmetric and
antisymmetric parts of the parameters �1 and �2. The
particular gauge transformations

 
q0 � ~a2�1s; 
 �q0 � ~a2�2a;


q1 �
1

2�
��a2 � 1��2s; 
 �q1 �

1

2�
��a2 � 1��1a;

(5.13)

enable us to choose good gauge fixing

 q0 � 0; �q0 � 0; q1 � 0; �q1 � 0: (5.14)
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Now, the first class constraints and gauge conditions
behave like second class constraints. So, the full set of
expressions, �i and � (3.14), vanishes as second class
constraints.

Choosing the integration constants �qi�� � 0� � 0 and
? �f�� � 0� � 0, from �i � 0, � � 0, and gauge condi-
tions (5.14), we get the solution

 xiDp
��� � Q̂i��� � 2 ?�ij

Z �

0
d�1P̂j��1�; 


Dp

i � P̂i;

(5.15)

 

x0 � 0; 
0 � 0; x1 � 0;


1 � 0; ?F � ?f; 
 � p:
(5.16)

For Q̂i, P̂i, xiDp
, and 


Dp

i we used the similar notation as in
(4.19) and (4.26)
 

�qT�i � �
?P̂T�

i
jq
j � Q̂i; �pT�i � �

?P̂T�i
jpj � P̂i;

xiDp
� �?P̂T�

i
jx
j; 


Dp

i � �
?P̂T�i

j
j; (5.17)

but now using the projector �?P̂T�i
j instead of �?PT�i

j. The
vector components x0; x1; 
0, and 
1 are introduced in
Eq. (A14), and the tensor ?�ij

 

?�ij � �1
��G

�1
eff

?P̂TBG
�1 ?P̂T�

ij; (5.18)

is manifestly antisymmetric.

C. Effective theory

Let us introduce the effective currents

 

?~j�i � P̂i � ��
?P̂TGeff�ijQ̂

0j; ?~j��F� � p�
4�
�

?f0;

(5.19)

and correlate them with the currents defined in Eq. (3.3)
 

?j�i � �2���G�1
eff �i

j ?~j�j � 4���G�1
eff

?P̂1B�i
jP̂j;

?j
��F� �

?~j��F�: (5.20)

Substituting these relations in the expression for energy-
momentum tensor (3.2) we obtain

 T� � ~T�; H c � ~T� � ~T� �
~H c; (5.21)

where

 

~T � � �
1

4�

�
�G�1

eff
?P̂T�

ij ?~j�i
?~j�j �

�
4

?~j��F�
?~j��F�

�
:

(5.22)

The effective theory lives in the background Gij !

geff
ij � �

?P̂TGeff�ij, Bij ! 0, and �! 0. The string dy-
namics is described by the effective variables Q̂i, P̂j, ?f,
and p.

D. Noncommutativity

From the algebra (3.24), we obtain the algebra of the
effective variables

 fQ̂i���; P̂j� ���g � �?P̂T�
i
j
s��; ���; (5.23)

where 
s��; ��� is defined after Eq. (3.24).
As in the two previous cases, ?F is decoupled and takes

the role of the commutative variable. Introducing the center
of mass variables according to Appendix C, with the help
of the Eqs. (5.15), we have

 fXiDp
��; ��; XjDp

��; ���g � ?�ij���� ���; (5.24)

where the antisymmetric tensor ?�ij is given in Eq. (5.18).
It follows from (5.15) and (5.16) that x0 and x1 are fixed

and, consequently, satisfy Dirichlet boundary conditions
and decrease the number of Dp-brane dimensions. All
other p� 1 Dp-brane coordinates are noncommutative.

VI. CONCLUDING REMARKS

In this article we used the possibility to establish the
conformal invariance adding the Liouville term to the
action, instead to use the third space-time equation of
motion, �� � 0. We showed that this change preserves
main results of the previous paper [4]: (1) existence of the
local gauge symmetries, which decrease the number of the
Dp-brane dimensions; (2) the number of the commutative
and noncommutative variables.

In fact, the Liouville action cancels the remaining con-
stant anomaly �� � c after imposing the first two space-
time equations of motion, �G�� � 0 � �B��. It also makes
the conformal part of the world-sheet metric, F, dynamical
variable. The theory becomes bilinear in F, with the qua-
dratic Liouville term and linear term with the dilaton field.
It is easy to change the variables, F ! ?F � F� �

2 aix
i, so

that term linear in F disappears. As a consequence, the
quadratic term in xi appears which changes the metric
tensor, Gij !

?Gij � Gij � �aiaj. For particular values
of the square of the vector ai, with respect to the closed
string metric, a2 � 1

� , and to the effective one, ~a2 � 1
� , the

corresponding star metrics become singular [see Eqs. (B7)
and (B8)].

We analyzed three cases: (1) �a2 � 1, �~a2 � 1,
(2) �a2 � 1, �~a2 � 1, and (3) �~a2 � 1, �a2 � 1. In all
cases the field ?F decouples, so it is a commutative vari-
able. The rest part of the action formally has the same form
as in the dilaton free case, where the regular metric Gij is
substituted by the metric ?Gij, which can be singular for
some choices of the background fields. The case (1) cor-
responds to such values of parameters that the star metric
?Gij is regular. So, everything behaves as in the dilaton free
case. In particular, all Dp-brane coordinates xi are
noncommutative.
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The singularities of the star metrics have different influ-
ences to the canonical constraints. In the case (2), ?Gij is
coefficient in front of the velocity _xi, so its singularity
produces standard canonical constraint. In the case (3),
the algebra of the constraints originating from boundary
conditions, closed on ?Geff

ij . So, the singularity of ?Geff
ij

changes the character of the constraints, turning some of
them from the second to the first class. According to
Appendix B, ?Gij has one singular direction ai, while
?Geff

ij has two singular directions, ~ai and �~aB�i.
Therefore, in the case (2) there is one and in the case (3)
there are two first class constraints.

In both cases the first class contstraints are the symmetry
generators. After the gauge fixing, gauge conditions and
the first class constraints can be considered as second class
constraints. Solving all second class constraints (both the
original ones and the first class constraints with gauge
conditions), we obtain the string coordinates in terms of
the effective ones.

The solutions (3.16), (4.23), and (5.15) have the same
general form

 xiDp
��� � Qi��� � 2?�ij

Z �

0
d�1Pj��1�: (6.1)

The string coordinates xiDp � �
?PDp

�ijx
j are expressed in

terms of the effective canonical variables

 Qi � �?PDp
�ijq

j; Pi � �
?PDp

�i
jpj; (6.2)

satisfying the algebra

 fQi���; Pj� ���g � �?PDp
�ij
s��; ���: (6.3)

In the second and third case, the string coordinates x0 �
�n0�ixi � aixi and x1 � �n1�ixi � �aB�ixi satisfy Dirichlet
boundary conditions and decrease the number of the Dp-
brane dimensions. It is known that boundary conditions are
usually imposed on spacelike variables. Because the coor-
dinates x0 and x1 satisfy Dirichlet boundary conditions, it is
important to clarify the nature of the vectors �n0�i and �n1�i.
Let us first introduce explicit dependence on the string
slope parameter �0 � 1

2
� , by simple redefinition of dilaton
field �! �0�. Then the singularities of metrics ?Gij and
?Geff

ij occur at a2 � 1
��02 and ~a2 � 1

��02 , respectively, and
from (2.6) and (2.10) we obtain

 

1

��02
�
��

4
�
D� 26

24�0
� a2: (6.4)

From the first singularity condition the a2 dependence
disappears and we obtain that string must be critical, D �
26. Because there are no conditions on �n0�i and �n1�i, we
can choose them to be spacelike variables, n2

0 � a2 > 0
and n2

1 � ��aB
2a�> 0. From the second singularity con-

dition, with the help of the relation ~a2 � a2 � 4~aB2a �
4aB2a� 16~aB4a, we obtain the conditions for the vectors
�n0�i and �n1�i to be spacelike

 n2
0 � ~a2 �

D� 26

24�0
> 0; n2

1 � 4~aB4a�
D� 26

96�0
> 0:

(6.5)

For D � 26, in order to satisfy these conditions, it is
enough to choose ~a2 
 0 and ~aB4a 
 0.

The string components xiDp
are noncommutative degrees

of freedom, because they depend on the effective coordi-
nates and momenta. The noncommutativity relation be-
tween the Dp-brane coordinates has the same form in all
three cases
 

fXiDp
��; ��; XjDp

��; ���g � ?�ij���� ���;

	XiDp
��� � xiDp

��� � �xiDp
�cm
:

(6.6)

The interior of the string is commutative and noncommu-
tativity occurs on the string end points. The noncommuta-
tivity parameter ?�ij in the first case is given in (3.18),
while in the other two cases it can be expressed in terms of
the projectors ?PDp

 

?�ij � �1
��G

�1
eff

?PDp
BG�1 ?PDp

�ij: (6.7)

All important results of this analysis are presented in
Table I where DDp is the number of the Dp-brane dimen-
sions, the symbol VDbc is related to variables with Dirichlet
boundary condition, and the effective metrics are denoted
by geff

ij . All projectors are defined in Appendix A.
Let us stress that the solution of the boundary conditions,

the number of the Dp-brane dimensions, the number of the
commutative and noncommutative coordinates as well as
the form of the noncommutativity parameter, in the ap-
proach with the Liouville action are the same as in the
approach presented in Ref. [4]. There are two formal
differences. When we deal with the Liouville action, the
gauge symmetries appear for �a2 � 1 and �~a2 � 1 when
star metrics, ?Gij and ?Geff

ij , are singular instead for a2 � 0

and ~a2 � 0 in the absence of the Liouville term. Also some

TABLE I. Dp-brane features dependence on background fields.

Case DDp �?PDp
�i
j VDbc xiDp

geff
ij

�~a2 � 1, �a2 � 1 p� 2 
i
j . . . xi ?Geff

ij
�a2 � 1, �~a2 � 1 p �?PT�i

j x0, x1 �?PTx�
i �?PTGeff�ij

�~a2 � 1, �a2 � 1 p �?P̂T�i
j x0, x1 �?P̂Tx�

i �?P̂TGeff�ij
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commutative and noncommutative variables switched the
roles, x0 !

?F and F ! x0.
The inclusion of the Liouville term produces few advan-

tages. First, there are only two space-time equations of
motion (originated from �G�� � 0 and �B�� � 0) instead of
three ones without Liouville. Second, the presence of F
does not break the closed string conformal invariance.
Consequently, there is no possibility that F-dependent
open string boundary conditions break this invariance
and there is no need for additional restrictions on back-
ground fields, as in the absence of the Liouville term.
Finally, the complete solution including noncommutative
parameter and effective variables depends on an additional
parameter, the central charge c.

It is interesting to mention that the effect of boundary
conditions reduces the dimension of Dp brane by 2, from p
to p� 2, as well as double T duality. In fact any T duality
relates Dp brane wrapped around compact direction with
radius R to the D�p� 1�-brane with dual compact radius
~R. So, two T dualities along x0 � aixi and x1 � �aB�ixi

with compactification radii R0 and R1, could transform
Dp brane to D�p� 2� brane with compactified radii ~R0

and ~R1. Possible deeper understanding of our result in
terms of T dualities is under investigation.
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APPENDIX A: PROJECTORS

In this appendix we introduce projector operators in
order to separate noncommutative and nonphysical varia-
bles on the Dp brane as well as to express the noncommu-
tativity parameter.

The projectors on the direction ni and on the subspace
orthogonal to vector ni are

 ���i
j �

nin
j

n2 ; ��T�i
j � 
i

j � ���i
j; (A1)

where ni � gijnj and n2 � nini. The transposed operator
is

 �i
j � gik�k

lglj: (A2)

1. Case ni � ai and gij � Gij
For ni ! �n0�i � ai and gij ! Gij we obtain

 

���i
j ! �P0�i

j �
aia

j

a2 ;

��T�i
j ! �P0

T�i
j � 
i

j � �P0�i
j:

(A3)

2. Case �n0�i � ai and �n1�i � �aB�i and gij � Geff
ij

Let us construct the projector orthogonal to the vectors
�n0�i � ai and �n1�i � �aB�i with respect to the effective
metricGeff

ij . These two vectors are mutually orthogonal and
it is enough to use the projectors on the direction ai

 ��0�i
j �

ai~aj

~a2 ; (A4)

and on the direction �aB�i

 ��1�i
j �

4

~a2 � a2 �Ba�i�~aB�
j; (A5)

to construct the projector orthogonal on them

 ��T�i
j � 
i

j � ��0�i
j � ��1�i

j: (A6)

In the case when �a2 � 1 we have

 �?P1�i
j � ��1�i

jj�a2�1 �
4�

�~a2 � 1
�Ba�i�~aB�

j; (A7)

 �?PT�i
j � ��T�i

jj�a2�1 � 
i
j � �?P0�i

j � �?P1�i
j; (A8)

where by definition we put

 �?P0�i
j � ��0�i

j �
ai~a

j

~a2 : (A9)

Similarly for �~a2 � 1 we get

 �?P̂0�i
j � ��0�i

jj�~a2�1 � �ai~a
j;

�?P̂1�i
j � ��1�i

jj�~a2�1 �
4�

1� �a2 �Ba�i�~aB�
j;

(A10)

 �?P̂T�i
j � ��T�i

jj�~a2�1 � 
i
j � �?P̂0�i

j � �?P̂1�i
j:

(A11)

An arbitrary contravariant vector xi decomposes as

 xi � �x0�
i � �x1�

i � �xT�i; �x0�
i � ��0�

i
jx
j;

�x1�
i � ��1�

i
jx
j; �xT�i � ��T�

i
jx
j;

(A12)

as well as an arbitrary covariant vector 
i
 


i � �
0�i � �
1�i � �
T�i; �
0�i � ��0�i
j
j;

�
1�i � ��1�i
j
j; �
T�i � ��T�i

j
j: (A13)

It is useful to introduce the following notation for the
projections of vectors xi and 
i:

 x0 � �n0�ix
i � aix

i; x1 � �n1�ix
i � �aB�ix

i;


0 � ~ni0
i � ~ai
i; 
1 � ~ni1
i � �~aB�
i
i:

(A14)

APPENDIX B: THE STAR METRICS ?Gij AND ?Geff
ij

Here we are going to introduce the expressions for the
redefined metrics in the presence of the Liouville action,
?Gij and ?Geff

ij . The metric ?Gij is defined as
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?Gij � Gij � �aiaj � �P
0
T � AP0�i

kGkj;

A � 1� �a2;
(B1)

while, for A � 0, its inverse is

 �?G�1�ij � Gij �
�

1� �a2 a
iaj � Gik

�
P0
T �

1

A
P0

�
k

j
:

(B2)

The effective metric ?Geff
ij has the same form as in the

dilaton free case up to the substitution Gij !
?Gij

 

?Geff
ij �

?Gij � 4�B?G�1B�ij

� Geff
ij � �aiaj �

4�

1� �a2 �Ba�i�aB�j; (B3)

where Geff
ij � Gij � 4BikG

klBlj. In terms of the projectors,
we have

 

?Geff
ij � ��T � ~A�0 �A�1�i

kGeff
kj ; (B4)

where

 

~A � 1� �~a2; A �
~A
A
�

1� �~a2

1� �a2 : (B5)

With the help of (B4), for ~A � 0 and A � 0, we obtain

 �?G�1
eff �

ij � �G�1
eff �

ik
�
�T �

1
~A

�0 �
1

A
�1

�
k

j

� �G�1
eff �

ij �
�

1� �~a2 	~a
i~aj � 4�B~a�i�~aB�j
:

(B6)

According to Eq. (B1) the determinant of ?Gij is of the
form

 det?Gij � A detGij; (B7)

while the determinant of the effective metric ?Geff
ij (B4) is

 det ?Geff
ij �

~AA detGeff
ij �

~A2

A
detGeff

ij : (B8)

For A � 0, we have det?Gij � 0 and the vector ai is
singular for the metric ?Gij, what is obvious from

 

?Gija
j � Aai: (B9)

For ~A � 0 and A � 0 the effective metric ?Geff
ij is sin-

gular. From the relations

 

?Geff
ij ~aj � ~Aai; ?Geff

ij �~aB�
j �

~A
A
�aB�i; (B10)

follows that ~ai and �~aB�i are singular vectors of the star
effective metric.

APPENDIX C: SEPARATION THE CENTER OF
MASS VARIABLE

We will explain separation the center of mass variable
and define the corresponding functions ��x� and ��x�. Let
variable xi satisfies the Poisson bracket

 fxi��; ��; xj��; ���g � 2 ?�ij���� ���; (C1)

where the function ��x� is defined as

 ��x� �

8<
:

0 if x � 0;
1=2 if 0< x< 2
;
1 if x � 2
:

(C2)

Separating the center of mass variable

 xicm �
1




Z 


0
d�xi���; xi��� � xicm � Xi���; (C3)

we obtain

 fXi��; ��; Xj��; ���g � ?�ij���� ���; (C4)

where the function ��x�

 ��x� � 2��x� � 1 �

8<:
�1 if x � 0;
0 if 0< x< 2
;
1 if x � 2
;

(C5)

is different from zero only on the string end points.
The same procedure can be applied to variable ?F���

with notation

 

?F��� � ?Fcm � ?F ���: (C6)
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