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We present an expression for the leading-color (planar) four-loop four-point amplitude of N = 4
supersymmetric Yang-Mills theory in 4 — 2e dimensions, in terms of eight separate integrals. The
expression is based on consistency of unitarity cuts and infrared divergences. We expand the integrals
around € = 0, and obtain analytic expressions for the poles from 1/€® through 1/€*. We give numerical
results for the coefficients of the 1/€* and 1/€? poles. These results all match the known exponentiated
structure of the infrared divergences, at four separate kinematic points. The value of the 1/€* coefficient
allows us to test a conjecture of Eden and Staudacher for the four-loop cusp (soft) anomalous dimension.
We find that the conjecture is incorrect, although our numerical results suggest that a simple modification
of the expression, flipping the sign of the term containing {7, may yield the correct answer. Our numerical
value can be used, in a scheme proposed by Kotikov, Lipatov, and Velizhanin, to estimate the two
constants in the strong-coupling expansion of the cusp anomalous dimension that are known from string
theory. The estimate works to 2.6% and 5% accuracy, providing nontrivial evidence in support of the AdS/
CFT correspondence. We also use the known constants in the strong-coupling expansion as additional
input to provide approximations to the cusp anomalous dimension which should be accurate to under 1%
for all values of the coupling. When the evaluations of the integrals are completed through the finite terms,
it will be possible to test the iterative, exponentiated structure of the finite terms in the four-loop four-point
amplitude, which was uncovered earlier at two and three loops.
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L. INTRODUCTION

Maximally supersymmetric N° = 4 Yang-Mills theory
(MSYM) has attracted a great deal of theoretical interest
over the years. It is widely believed that the 't Hooft
(planar) limit of MSYM, in which the number of colors
N, is taken to infinity, is dual at strong coupling (A =
g>N, — o) to weakly coupled gravity in five-dimensional
anti—de Sitter space [1]. The duality implies that the full
quantum anomalous dimensions of various series of gauge-
invariant composite operators are equal to energies of
different gravity modes or configurations of strings in
anti—de Sitter space [2—6]. Heuristically, the Maldacena
duality conjecture hints that even quantities unprotected by
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supersymmetry should have perturbative series that can be
resummed in closed form. The strong-coupling limits of
these resummed expressions, possibly supplemented by
nonperturbative contributions, should match results for
the appropriate observables in weakly coupled supergrav-
ity or string theory.

This intuition does appear to apply to the higher-loop
on-shell scattering amplitudes of color-nonsinglet gluons,
even though the Maldacena conjecture does not directly
address on-shell amplitudes of massless colored quanta.
There is now significant evidence of a very simple structure
in the planar limit. In particular, the planar contributions to
the two-loop and three-loop four-gluon amplitudes have
been shown to obey iterative relations [7,8]: The dimen-
sionally regularized amplitudes (d = 4 — 2€) can be ex-
pressed in terms of lower-loop amplitudes, along with a set
of three constants for each order in the loop expansion.
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An analogous relation is conjectured to hold for generic
maximally helicity-violating (MHV) n-gluon scattering
amplitudes, to all loop orders [7,8]. The MHV amplitudes
are those for which two of the gluons have negative helicity
and the remaining (n — 2) have positive helicity, or the
parity conjugate case. Indirect evidence for the extension
to the n-point MHYV case was provided first by studying the
consistency of collinear limits at two loops [7]. Later, the
iteration relation was demonstrated to hold directly for the
two-loop five-gluon amplitude, for the ““even’ terms in the
amplitude [9] and, soon thereafter, for the “odd’ terms as
well, i.e. for the complete amplitude [10]. (Odd and even
refer to the behavior of the ratio of terms in the loop
amplitude to the tree amplitude, under parity.) After infra-
red divergences have been subtracted from the proposed
all-loop iterative relation, the resulting finite remainder is
neatly proportional to an exponential of the product of the
one-loop finite remainder with the so-called cusp anoma-
lous dimension. Presumably the weak-strong duality be-
tween anti—de Sitter space and conformal field theory
(AdS/CFT) plays a role in this simplicity.

The form of the proposed iterative structure of multiloop
planar MSYM is based on the understanding of how soft
and collinear infrared singularities factorize and exponen-
tiate in gauge theory [11-18]. For the pole terms in the
amplitudes, such behavior is universal, and holds in any
massless gauge theory. What is remarkable in planar
MSYM is that the finite terms in the MHV scattering
amplitudes can be organized into the same exponentiated
form as the divergent terms. In a nonsupersymmetric the-
ory, QCD, exponentiation of finite terms has also been
observed in the context of threshold resummation of the
Drell-Yan cross section [19]. In the case of four-gluon
amplitudes in MSYM, the behavior is valid for arbitrary
values of the scattering angle (ratio of #/s). For amplitudes
with more than four gluons, there are many kinematical
variables, and so the constraints imposed by the iterative
structure are even stronger. It is clearly of interest to test
whether this structure persists beyond three loops. In this
paper we shall provide an integral representation for the
planar four-loop four-gluon amplitude. Our result will
enable such a test to be performed at four loops, once the
relevant integrals have been evaluated to sufficiently high
order in €.

Another remarkable property of planar MSYM is the
integrability of the dilatation operator, interpreted as a
Hamiltonian, for many sectors of the theory. Integrable
structures were identified in anomalous dimension matri-
ces in QCD a while ago [20]. In planar MSYM, Minahan
and Zarembo [21] mapped the one-loop dilatation operator
for nonderivative single-trace operators to an integrable
spin-chain Hamiltonian, and used a Bethe ansatz to com-
pute the anomalous dimensions. Such integrable structures
have since been extended to higher perturbative orders for
various sectors of the theory [22—24]. They are also known
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to be present at strong coupling, from the form of the
classical sigma model on target space AdSs X S° [25].
(Berkovits has given a formal argument that the integra-
bility extends to the quantum level on the world sheet [26].)
The iterative structure of MSYM amplitudes may some-
how be related to integrability. If an infinite number of
conserved charges are present, the form of the quantum
corrections should be severely constrained, as it would be
by the proposed iterative structure [7,8]. An iterative struc-
ture may also arise in correlation functions of gauge-
invariant composite operators in planar MSYM [27]; but
its precise structure, if it exists in this context, has not yet
been clarified.

Integrability is a powerful computational tool.
Integrability, or in some cases, the assumption of integra-
bility, has been employed to compute a variety of one-loop
and multiloop anomalous dimensions in planar MSYM
from Bethe ansitze [21-23] and from the Baxter equation
[28,29]. One of the most interesting developments along
these lines has been the all-orders proposal of Eden and
Staudacher (ES), based on an asymptotic all-loop Bethe
ansatz [30], for the large-spin limit of the anomalous
dimensions of leading-twist operators in MSYM [31].
This quantity, yx(a;,), is also referred to as the cusp (or
sometimes, soft) anomalous dimension associated with a
Wilson line. Equivalently, it represents the leading large-x
behavior [32] of the DGLAP kernel P;(x) for parton
evolution, | — i,

%"'B(%)S(l —x)+..., asx— 1L

(1.1)

Pii(x) -

Taking Mellin moments, y(j) = — [ dxx/~'P(x), we see
that the cusp anomalous dimension gives the dominant
behavior of the leading-twist anomalous dimensions as
the spin j — oo,

v(j) = 37k(ay) In(j) + O(). (1.2)

From the asymptotic all-loop Bethe ansatz, ES derived
an integral equation for a fluctuation density &, from which
the cusp anomalous dimension can be determined. The
integral equation is straightforward to solve perturbatively
in «a,. In terms of the expansion parameter

gzNC — NCaS

a = 5

, (1.3)

87 27

the ES prediction for (one quarter of) the cusp anomalous
dimension is [31]

(1.4)
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Here f,(@) can be identified with the first of a series of
three constants (per loop order) appearing in the iterative
relation for the four-gluon amplitude [7,8]. The first three
terms of Eq. (1.6) agree with previously known results
[8,33—36], so the new predictions begin with the a* term.
The conjecture (1.5) has also been arrived at recently by
Belitsky, using a proposed generalization of the Baxter
equation to all loop orders [29].

In QCD the three-loop cusp (soft) anomalous dimension
has been computed by Moch, Vermaseren, and Vogt as part
of the impressive computation of the full leading-twist
anomalous dimensions [37] needed for next-to-next-to-
leading order evolution of parton distribution functions.
(Terms proportional to the number of quark flavors were
obtained first in Ref. [38].) Kotikov, Lipatov, Onishchenko,
and Velizhanin (KLOV) [35] made the inspired observa-
tion, based on evidence at two loops [39], that the MSYM
anomalous dimensions may be obtained simply from the
“leading-transcendentality’’ contributions in QCD. The
cusp anomalous dimensions are polynomials in the
Riemann ¢ values, £, = {(n), or their multi-index general-
izations, ¢, ,, . (The latter cannot show up below five
loops.) The degree of transcendentality of ), is just n, and
the transcendentality is additive for products of ¢ values.
At L loops, the leading-transcendentality contributions to
the cusp anomalous dimension have degree (or weight)
equal to 2L — 2. All MSYM leading-twist anomalous di-
mensions computed to date have had uniform, leading-
transcendentality, whereas the corresponding QCD results
contain an array of terms of lower transcendentality, all the
way down to rational numbers.

The KLOV conversion principle applies to the leading-
twist anomalous dimensions for any spin j, with an appro-
priate definition of leading transcendentality for the har-
monic sums S;(j) that appear in the results. Using
assumptions of integrability, Staudacher confirmed the
three-loop KLOV result through j = 70 [40,41], building
on earlier work of Beisert, Kristjansen, and Staudacher
[22] at j = 4. Eden and Staudacher extended this analysis
to the three-loop cusp anomalous dimension (the j — o
limit), in the course of arriving at their all-orders proposal
(1.5) based on integrability [31]. The three-loop cusp
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anomalous dimension in MSYM was independently deter-
mined from the 1/€* pole in the three-loop four-gluon
scattering amplitude [8], providing a confirmation of the
KLOV result in the limit j — co. An important feature of
the ES proposal (1.5) is that it is consistent with KLOV’s
observation that the MSYM anomalous dimensions are
homogeneous in the transcendentality, at least through
three loops.

The ES proposal emerges from mapping single-trace
gauge-invariant operators to spin chains. The dilatation
operator, whose eigenvalues are anomalous dimensions,
is mapped to the spin-chain Hamiltonian. The form of
the S matrix for this spin chain is fixed, up to an overall
phase, called the dressing factor [42], by the superconfor-
mal [PSU(2, 2|4)] symmetry of both AdSs X §°> and N =
4 supersymmetric gauge theory. At one and two loops,
superconformal symmetry in combination with explicit
calculations fixes the dressing factor to be 1. At higher
loops, it is not so constrained. A nontrivial dressing factor
is required by the strong-coupling behavior [42—44], and
there have been several recent investigations of it using
properties such as worldsheet crossing symmetry [45,46].
Yet the order in the weak-coupling expansion at which it
becomes nontrivial is still uncertain.

The presence of a dressing factor at three loops would
lead to a shift in the anomalous dimension at four loops.
For example, ES have proposed [31] a modification of the
asymptotic Bethe ansatz [30] at this order, with coefficient
[, which is consistent with the presently known integrable
structure. This modification alters the predicted four-loop
anomalous dimension in Eq. (1.6) to

73 n

Thus a calculation of the four-loop cusp anomalous dimen-
sion has the potential to probe a nontrivial dressing factor.
In a new preprint [47], Beisert, Eden, and Staudacher
(BES) have shown how to extend the above dressing factor
to all orders in the coupling, as well as to ensure its
consistency with other constraints. This leads to the pre-
diction that 8 = 3.

In this paper, we perform the four-loop calculation, in
order to test whether the ES all-orders proposal gives the
correct result, or to reveal how it needs to be modified if it
does not. We do so by evaluating the infrared poles of the
planar four-loop four-gluon scattering amplitude through
1/€2, the order at which the four-loop cusp anomalous
dimension appears. The form of the infrared singularities
at all loop orders is fully understood [15], up to a set of
constants that must be computed explicitly. At 1/€? this
undetermined constant is precisely the cusp anomalous
dimension appearing in the ES formula.

First, though, we need a representation of the planar
four-loop four-gluon amplitude. Rather than construct
this representation from Feynman diagrams, we shall em-
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ploy the unitarity method [48—52]. This method was also
used to construct the planar two- and three-loop amplitudes
[8,53]. Because the unitarity method builds amplitudes at
any loop order from on-shell lower-loop amplitudes, struc-
ture uncovered at the tree and one-loop levels can easily be
fed back into the construction of the higher-loop ampli-
tudes. We will find that the planar four-loop amplitude can
be expressed as a linear combination of just eight four-loop
integrals.

A very interesting feature of the integrals appearing in
the planar four-point amplitudes through four loops is that
they are all, in a well-defined sense, conformally invariant.
To analyze the conformal properties of potential four-loop
integrals, we make use of the recent description of such
integrals by Drummond, Henn, Sokatchev, and one of the
authors of this article [54].

Once we know what four-loop four-point integrals enter
into the amplitude, we must compute them explicitly
through O(e?). Here we make use of important recent
advances in multiloop integration [55-62]. In particular,
we use the program MB [62] to automatically extract poles
in € from the Mellin-Barnes representation of loop inte-
grals, and to integrate the resulting contour integrals. We
carry out the integrations analytically for coefficients of the
first five poles, 1/€® through 1/€*. These coefficients are
expressed in terms of well-studied functions, harmonic
polylogarithms (HPLs) [63,64], making it straightforward
to confirm the expected infrared structure for arbitrary
values of the scattering angle. For the coefficients of the
1/€* and 1/€? poles, our analysis is numerical. We evalu-
ate the amplitude at four kinematic points, (s, ) =
(-1, -1, (=1,-2), (=1,-3), and (—1,—15).
Numerical evaluation suffices because the expected behav-
ior is completely specified at order 1/€*, and specified up
to one unknown, but predicted, constant, f(4), at order
1/€>. We find consistent results from all four kinematic
points.

We also need to evaluate the infrared singular terms to
the same order 1/€2. These may be expressed in terms of
lower-loop amplitudes. For this purpose, we must expand
the one-, two-, and three-loop amplitudes to O(e*), O(€?),
and O(€°), respectively. Fortunately, these are precisely the
orders required to test the full iteration relation at three
loops, so the needed lower-loop expressions can all be
found, in analytic form, in Ref. [8]. (These results are
based partly on the earlier evaluation of the double-box
[55] and triple-ladder [57] integrals.)

We find that the ES conjecture is incorrect, although our
numerical results suggest that a simple modification of the
four-loop ES prediction may yield the correct answer. In
particular, if we flip the sign of the {5 term in their
prediction, we obtain a value within the error bars of our
result. If we choose to interpret the modification as a
dressing factor within the form taken in Ref. [31], it
suggests taking the value B = {3 for their parameter.
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This value would violate the apparent ‘““uniform transcen-
dentality’’ observed to date generally for quantities in the
N = 4 theory, for example, in the anomalous dimension
of the higher-twist operator Tr(X?Z%) + --- [31]. The
same value, B = {3, was suggested independently by
BES [47], based on properties of the spin-chain model.
This coincidence, modulo caveats we shall discuss in
Sec. VII, provides some support to violation of uniform
transcendentality in quantities other than the cusp anoma-
lous dimension. This possibility can be tested via other
perturbative computations; if uniform transcendentality is
nonetheless maintained, our result might instead imply that
the form postulated for the dressing factor in ES and else-
where [42,43,46,65—68] is not general enough.

We also use our four-loop results to investigate the
strong-coupling limit of the cusp anomalous dimension.
In the AdS/CFT correspondence, this quantity can be
computed from the energy of a long, folded string, spin-
ning in AdSs [69]. The first two coefficients in the strong-
coupling, large-N, limit of the cusp anomalous dimension
have been determined using a semiclassical expansion
based on this string configuration [33,69-71]. We shall
discuss how our four-loop result can be used to give a
remarkably accurate estimate for these coefficients. We
employ an approximate formula devised by Kotikov,
Lipatov, and Velizhanin [34,35] to interpolate between
the weak- and strong-coupling regimes. Using our four-
loop result as input to this formula, the first two strong-
coupling coefficients are estimated to within 2.6% and 5%,
respectively, of the values computed from string theory.
This agreement provides direct evidence in support of the
AdS/CFT correspondence as well as a smooth transition
between weak and strong coupling.

An even better approximation for the cusp anomalous
dimension can be found by incorporating into the interpo-
lating formula the string predictions for the first two co-
efficients in the strong-coupling expansion. Based on our
success in accurately estimating the two leading strong-
coupling coefficients, we expect this improved approxima-
tion to be accurate to within a few percent, for all values of
the coupling. Curiously, our approximate formula predicts
that the third coefficient in the strong-coupling expansion
should be very small, and may even vanish. The formula
also predicts the numerical value of the five-loop coeffi-
cient. This value turns out to be extremely close to a simple
modification of the five-loop ES prediction, flipping the
signs of the terms containing odd { values, as at four loops.
We have confirmed our analysis using Padé approximants,
which also give insight into the complex analytic structure
of fo(a).

Our representation of the planar four-loop four-gluon
amplitude in terms of eight four-loop integrals can be used
for more than just the extraction of the cusp anomalous
dimension. As mentioned above, it can also be used to
check the proposed iterative structure at four loops. In
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order to do so, one would need to evaluate the integrals all
the way through the finite terms, O(€®), instead of just the
level carried out in this paper, @(e 2). One would also
need to evaluate all integrals appearing in the lower-loop
amplitudes to two orders higher in e.

This paper is organized as follows. In Sec. II we review
the iterative structure of MSYM loop amplitudes, com-
menting, in particular, on how the cusp anomalous dimen-
sion appears in the infrared singular terms. In Sec. III we
present the construction of the four-loop amplitude via the
unitarity method. In Sec. IV we give its representation in
terms of loop integrals. In Sec. V we establish the correct-
ness of this result, and also describe the conformal prop-
erties of the loop integrals. In Sec. VI we give analytical
results for the amplitudes through O(e~*) and numerical
results through O(e~2), allowing us to extract a numerical
value for the four-loop cusp anomalous dimension. The
four-loop anomalous dimension is then used in Sec. VII to
estimate the coefficients that appear at strong coupling and
also to estimate higher-loop contributions to the cusp
anomalous dimension. Our conclusions are given in
Sec. VIII. Two appendices are included, one presenting
Mellin-Barnes representations for the integrals appearing
in the four-loop amplitude, and one reviewing properties of
harmonic polylogarithms.

II. ITERATIVE STRUCTURE OF MSYM LOOP
AMPLITUDES

In this paper we consider the planar contributions to
gluonic scattering in MSYM with gauge group SU(N,),
that is, the leading terms as N, — c0. We do not discuss
subleading-color contributions; at present they do not ap-
pear to have a simple iterative structure [7].

The leading-color terms have the same color structure as
the corresponding tree amplitudes. The leading-N, contri-
butions to the L-loop SU(N,) gauge-theory n-point ampli-
tudes may be written as

- 2
AP = gnz|:26 78 NCT

G D> Tr(Tw .. Tw)
o

o€ES,/Z,

X AP (a(1), a(2), ..., a(n)), 2.1)

where vy is Euler’s constant, and the sum runs over non-
cyclic permutations of the external legs. In this expression
we have suppressed the (all-outgoing) momenta k; and
helicities A;, leaving only the index i as a label. This
decomposition holds for all particles in the gauge super-
multiplet, as they are all in the adjoint representation. The
color-ordered partial amplitudes A,, are independent of the
color factors, and depend only on the kinematics. For
MSYM, supersymmetric Ward identities [72] imply that
the four-gluon helicity amplitudes (+ + + +) and
(= + ++) (as well as their parity conjugates) vanish iden-
tically. Furthermore, the nonvanishing four-point (MHV)
amplitudes are all related by simple overall factors. Hence
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we do not need to specify the helicity configuration, i.e.
whether the color ordering is (— — + +) or (— + —+).
It is convenient to scale out a factor of the tree ampli-

tude, and work with the quantities M, ,(f) defined by

M (ps€) = AP (p)/AY (p).

Here p indicates the dependence on the external momenta,
p = {s12, 523, ...}, where s;,11) = (k; + k;1)* are invari-
ants built from color-adjacent momenta. The iteration re-
lation proposed in Ref. [8] then takes the form

(2.2)

M, (p) =1+ aM”(p; e)
L=1

(o]

= expl > a7 o1 16) + €
=1

+ EV(p; e))} 23)
In this expression, the factor
N
a =" (4me V) (2.4)
27

keeps track of the loop order of perturbation theory, and
coincides with the prefactor in brackets in Eq. (2.1). [It
becomes equal to a in Eq. (1.3) as € — 0.] The quantity
M,(f)(p; l€) is the one-loop amplitude, with the tree ampli-
tude scaled out according to Eq. (2.2), and with the sub-
stitution € — le performed. (That is, it is evaluated in
d = 4 — 2le.) Each f"(e) is given by a three-term series
in €, beginning at O(e’),

() = £ + efV + 253, (2.5)
The objects f(l), k=0,1,2, and C? are pure constants,
independent of the external kinematics p, and also inde-
pendent of the number of legs n. We expect them to be
polynomials in the Riemann values ¢, with rational coef-
ficients, and a uniform degree of transcendentality, which
isequal to 2] — 2 + k for f,((l), and 2/ for C. (Multiple zeta
values ¢, ,, = may also appear, but there are no indepen-
dent ones of weight less than eight, and so they can only
appear in f(()l) starting at five-loop order.) The f,(f) and CV
can be determined by matching to explicit computations.
The one-loop values are defined to be

V() =1,

The Eff)(p; €) are noniterating @(e) contributions to the

cV =0 E'(p;e)=0. (26

[-loop amplitudes, which vanish as € — 0, EE,I)(p; 0) = 0.
These terms contribute to the exponentiated form of the
amplitudes (2.3) even for € — 0 because they can appear
multiplied by the infrared-divergent parts of the one-loop
amplitude MY (p; le). After canceling the infrared diver-
gences between real emission and virtual contributions,
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such terms should not contribute to infrared-safe

observables.
The first two values of f)(€) in the three-term expan-

sion (2.5), namely f(()l) and f(l), can be identified with
quantities appearing in the resummed Sudakov form factor
[15],

=150 2.7)
I (1

=16y

The first object, f(l), is identified with the [/-loop cusp

anomalous dimension. The quantities g) and Gg) =
(2/l)f§1) are known through three loops [8,33-36,39],

(2.8)

@ 11
0 2

=1 =0

[see also Eq. (1.6)], and

2.9)

A

N A 10
g%) =0, (j(OQ) = =0, 6(3) =44+ ?5253-

(2.10)

A principal task of this paper is to compute f(04) and
compare the result with the prediction (1.6).
Equation (2.3) is equivalent [8] to

M (p;e) = XPIMP (p; )] + ()M (p; Le)

+c® + EP(p;e), .11)

where the quantities X, (L) — X;L)[M ,(,Z)] only depend on the
lower-loop amplitudes M (p; €) with [ < L. The x® can
be computed simply by performing the following Taylor
expansion,
XM = My — ln<1 +y aleP> 2.12)
=1

at term

Equations (2.11) and (2.12) express the L-loop amplitude
explicitly in terms of lower-loop amplitudes, plus constant
remainders. Here we need the values of X\ for L = 2, 3,
47

xPmMP] =1 MPP, (2.13)
Xm0 ] = =L MPOP + MM, (2.14)
X M1 =L MO - D PMY + M)

+ 1 [MPT. (2.15)

We note that the exponentiated result (2.3) leads to a
simple exponentiated form for suitably defined ‘‘finite

remainders” F’ ff) associated with the multiloop amplitudes
[8]. We define
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L D !

F(pse) =M = S 10m), (2.16)

=0

where the [U""(p;€) are iteratively defined divergent

terms, and ME,O) = |. After some algebra, one finds that

IP(p; €) and FIP(p; €) obey iterative relations very simi-

lar to Eq. (2.11). In the limit as € — 0, the relation for
F ZL)(p; €) becomes

Fi(p:0) = X LF (p: 0] + £ 1 (p: 0)F} (p:0) + ).
(2.17)

Because € has disappeared from Eq. (2.17), it can be solved
neatly for F\(p;0) for any L, in terms of the one-loop

remainder F’ ﬁl)(p; 0) alone [8]. The solution can be repre-
sented as

NgE

Foulp:0) =1+ S atFP(p;0)
L=1
= exp[ &l(f(()l)Fi(ll)(p;O) + CU))}
=1

1
= exp[z e @FD(p;0) + cw} (2.18)

where C(4) = ¥°, CYa’ and we used the relation (2.7) of

(()l) to the cusp anomalous dimension. The result for

FP(p;0) is given by the a’ term in the Taylor expansion
of the exponential.

Next we present the specific forms of the iterative am-
plitude relations (2.11) through four loops, specializing to
n = 4. The two-loop version is [7]

MP(pre) =1 M (p; OF + fR(e)M (p; 2) + C?

+ O(e), (2.19)
where
fO(e) = —(H + Ge+ Lied), (2.20)
and the constant C®@ is given by
c?=-1z (221

The three-loop version, explicitly verified in Ref. [8], is
M (p;e) = =4 My (p; OF + M (p; M (ps €)

+ (M (p;3€) + CO + O(e),
(2.22)

where

11
) = 7(4 + €(645 +5468) + €(c1ls + a2 83),
(2.23)

and the constant C® is given by
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341 2 17 2
oo — <R + §c1>g6 + (—3 + §c2>§32. (2.24)

The constants ¢; and ¢, are expected to be rational num-
bers. They drop out from the right-hand side of Eq. (2.22)

because of a cancellation between f(23) and C®. A compu-
tation of the three-loop five-point amplitude, or of the
three-loop splitting amplitude, could be used to determine
them.

The four-loop iteration relation would have the follow-
ing form,

M (pse) =4 My (p; 1 — [M{" (p; )P M (p3 )
+ M (p; M (p; €) + L MY (p; €) P
+ fO(OMP(pi4e) + CW + O(e).  (225)

As we shall not be computing the 1/€ and finite terms in
the present paper, we cannot do more here than verify the
(universal) divergent terms and extract the value of the
four-loop cusp anomalous dimension. We leave to future
work the important task of verifying Eq. (2.25), using the
integral form of the four-loop amplitude presented in this

paper.

III. CONSTRUCTION OF FOUR-LOOP PLANAR
MSYM AMPLITUDE

The unitarity method [48-52] is an efficient way to
determine the representations of loop amplitudes in terms
of basic loop integrals. The coefficients of the loop inte-
grals are obtained by sewing sets of on-shell tree ampli-
tudes. If we are using a four-dimensional form of the
unitarity method, the tree amplitudes can be significantly
simplified before sewing. At one loop, supersymmetric
amplitudes are fully determined from their four-
dimensional cuts, but, unfortunately, for higher loops no
such theorem has been proven. In the present calculation,
we will therefore use D-dimensional unitarity, for which
we will need the tree amplitudes to be evaluated without
assuming the four-dimensional helicity states for the ex-
ternal legs. These amplitudes are nonetheless simpler than
the completely off-shell amplitudes that would implicitly
arise in a conventional Feynman-diagram calculation. For
MSYM, a key feature is that the on-shell tree amplitudes
have the full N = 4 supersymmetry manifest, in the form
of simple S-matrix Ward identities [72]. It is impossible to
maintain the full N = 4 supersymmetry in any off-shell
formalism, because the superspace constraints imply the
equations of motion via the Bianchi identities [73]. The
unitarity method derives its efficiency from the ability to
use simplified forms of tree amplitudes to produce simpli-
fied loop integrands. [To maintain the supersymmetry, we
apply the four-dimensional helicity (FDH) scheme [74], a
variation on dimensional reduction (DR) [75], in perform-
ing the sum over intermediate gluon polarization states.]

PHYSICAL REVIEW D 75, 085010 (2007)

The unitarity method expresses the amplitude in terms
of a set of loop integrals. In general gauge theories, such as
QCD, the number of required integrals proliferates rapidly
as the number of loops increases, and sophisticated algo-
rithms based on integration-by-parts identities [76] have
been devised to relate such integrals to a smaller class of
master integrals, successfully through two loops [77].
Fortunately, the number of required integrals grows much
more slowly for gluon-gluon scattering in planar N = 4
super Yang-Mills theory. At L = 1, 2, 3, the respective
numbers are 1, 1, 2, and the required integrals are all shown
in Fig. 1. We will see that at L = 4 eight integrals are
required.

The result for the one-loop four-point amplitude is [78]

MV (e) = =110, 1), 3.1)
where the Mandelstam variables are s = (k; + k,)? and
t = (k, + k3)?. The factor of 1/2 in Eq. (3.1) follows from
our normalization convention for A,(,L), which is defined by
Eq. (2.1). The one-loop scalar box integral 7 (s, ¢) (multi-
plied by a convenient normalization factor), depicted in
Fig. 1, is

I0(s, 1) = stV (s, 1), (3.2)

where Igl)(s, t) is defined in Eq. (B1) of Ref. [8]. We absorb
the factor of st into the definition of the integrals we use,
because it cancels a factor of 1/(sf) appearing in the

explicit expression for Igl)(s, t), and matches the form in
which it appears in the MSYM amplitudes. This integral is
given in terms of HPLs in Eq. (B1) of that reference,
through the order we require here, ©@(e*). The higher-order
terms in € are needed to be able to evaluate terms in the
infrared/iterative representation (2.25) of the four-loop
amplitude through (e ?). For example, in the term
(MY (e)]* o« [ID(e)]* in Eq. (2.25), if one takes the lead-
ing 1/€* term from three of the four factors, then the
coefficient of €* in the fourth factor contributes to the
O(e?) term in the product.

The planar two-loop MSYM four-point amplitude is
given by [53]

2 3

T s X » Tl sesw] H

1 4 =
(D (2)

(3)a 3)b

FIG. 1 (color online). Integrals required for gg — gg scatter-
ing in planar MSYM at one loop (1), two loops (2), and three
loops [(3)a and (3)b]. The box (1), planar double-box (2), and
three-loop ladder (3)a integrals are scalar integrals, with no loop-
momentum dependent factors in the numerator. The tennis-court
integral (3)b contains a factor of (I, + I,)?, where [, and I, are
marked with arrows in the figure.
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MP(e) = L[IO(s, 1) + Iz, 5)] (3.3)

The two-loop scalar double-box integral, shown in Fig. 1,
is

I0(s, 1) = 21 (s, 1), (3.4)
where If)(s, t) is defined in Eq. (B4) of Ref. [8]. As at one
loop, we have rescaled the integral to remove the rational
prefactor. This integral was first evaluated through O(€®) in
terms of polylogarithms [55]. Because the infrared/itera-
tive expression (2.25) contains, for example, [Mff)(e)]2 o
[I®(e)]?, and because the expansion of 7?(e) begins at
order 1/€* we need its expansion through O(€?). This
expansion is presented in terms of HPLs in Eq. (BS) of
Ref. [8].
The three-loop planar amplitude is given by [8,53]

M (€) = —L[I01(s, 1) + 2I00(z, 5) + TD2(z, 5)

+ 2730, 1)]. (3.5)

The scalar triple-ladder and nonscalar “‘tennis-court” in-
tegrals, illustrated in Fig. 1, are

I = SPs, 0, I =521, 0,  (3.6)
where If )a(s, t) and If)b(s, t) are defined in Egs. (3.1) and
(3.2), respectively, of Ref. [8]. Because these integrals
multiply 7O in the term Mftl)(e)MfB)(e) in Eq. (2.25), we
need their expansion through O(e®). These expansions

were first carried out in terms of HPLs for If)"‘ in

Ref. [57], and for I‘(‘3 ® in Ref. [8]. The results are collected
in Egs. (B7) and (B9) of Ref. [8].

The coefficients of the integrals in the two- and three-
loop expressions (3.3) and (3.5) were originally determined
[53] using iterated two-particle cuts. Such cuts can be
evaluated to all orders in € because N = 4 supersymme-
try relates all nonvanishing four-point amplitudes; there-
fore precisely the same algebra enters as at one loop, for
which it leads to the amplitude (3.1). More generally, an
ansatz for the planar contributions to the integrands was
proposed in terms of a “rung-insertion rule” [53,79] to be
described below, which was based largely on the structure
of the iterated two-particle cuts. At three loops, the planar
integrals generated by the rung rule can all be constructed
using iterated two-particle cuts. Also, the three-loop planar
amplitude (3.5) has the correct infrared poles and a remark-
able iterative structure [8], so there is little doubt that it is
the complete answer.

However, beyond three loops—and even at three loops
for nonplanar contributions—the rung rule generates
graphs that cannot be obtained using iterated two-particle
cuts. It is less certain that the rung rule gives the correct
results for such contributions. Indeed, we shall see that
there are additional, non-rung-rule contributions to the
planar amplitude beginning at four loops.

PHYSICAL REVIEW D 75, 085010 (2007)

Nevertheless, we start constructing the planar four-loop
MSYM amplitude using the diagrams generated by the
rung rule. According to this rule, each diagram in the
planar L-loop amplitude can be used to generate planar
(L + 1)-loop diagrams as follows: First, one generates a set
of diagrams by inserting a new line joining each possible
pair of internal lines. Next, one removes from this set all
diagrams with triangle or bubble subdiagrams. Besides the
scalar propagator associated with the new line, one also
includes an additional numerator factor for the diagram,
beyond that inherited from the L-loop diagram, of i(/; +
1,)?. Here [, and [, are the momenta flowing through each
of the legs to which the new line is joined. Each distinct
(L + 1)-loop contribution is counted once, even if it can be
generated in multiple ways. (Contributions corresponding
to identical graphs but with different numerator factors
should be counted as distinct.) Rung-rule diagrams have
also been referred to as ‘““Mondrian diagrams’ because of
their visual similarity [8].

At one loop, the only no-triangle graph for the four-point
process is the box graph depicted in Fig. 1. In going to two
loops, there is only one inequivalent way to add a rung to
the box graph without creating a triangle. Connecting
opposing sides of the box, we form the planar double
box in Fig. 1. (One might also imagine attaching a propa-
gator between two adjacent external legs. However, this
operation yields the same double box.) To generate the
three-loop graphs, we add a rung, either vertically or
horizontally, to one of the boxes of the two-loop box
diagram, thus yielding the triple ladder integral (3)a and
tennis-court integral (3)b of Fig. 1. (Attaching a propagator
between external legs again gives nothing new.) Of course,
there are several permutations of external legs present for
any given type of graph; all of them are produced by the
rung rule. Here we are identifying only the topologically
distinct integrals that arise.

What happens when we try to add rungs to the three-loop
integrals? There are two inequivalent ways to add a rung
inside either the leftmost or the rightmost box of the triple-
ladder integral in Fig. 1; these give the integrals of
Figs. 2(a) and 2(c). Adding a vertical rung inside the
middle box does not yield a topologically distinct integral.
Adding a horizontal rung inside the middle box yields the
integral of Fig. 2(d). Inserting a vertical rung inside the
upper-right box of the tennis-court integral in Fig. 1 gives
us Fig. 2(e), and a horizontal one, Fig. 2(b). Finally, adding
a horizontal rung inside the left-side box of the tennis-court
integral gives us a new kind of integral, shown in Fig. 2(f),
which has no two-particle cuts.

The propagators and momentum numerators present in
the integrals in Figs. 2(a)—2(e) are determined by the two-
particle cuts, as depicted in Figs. 3(i) and (ii). That is, the
rung rule is guaranteed to be correct for them. There is no
such guarantee for the integral in Fig. 2(f), which has no
two-particle cut with real external momenta. In order to
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FIG. 2 (color online).
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“Rung-rule” contributions to the leading-color four-loop amplitude, in terms of integral functions given in

Eqgs. (A9)—(A14). An overall factor of st has been suppressed in each figure, compared with the definitions in Eqs. (A9)—(A14).

check it, we need to compute a three-particle cut. We chose
to perform the generalized-unitarity cut of Fig. 3(iv), a
threefold cut with a central three-particle cut and two
secondary two-particle cuts. This cut reveals that the
rung rule is more robust than might have been expected,
based on its origin in iterated two-particle cuts: The rule
does in fact give the correct form for the numerator of the
integral in Fig. 2(f), even though no two-particle cut can
detect it.

Because we have no proof that the (—2¢)-dimensional
parts of loop momenta are unimportant to the computation,
we perform these calculations in D dimensions. For this
purpose, we need tree amplitudes with (some of) the
external states kept in general dimension. In the three-
particle cuts, one has contributions from three-gluon states,
and from states with gluons and fermion (gluino) pairs
crossing the cut, in addition to states with scalar pairs or
fermion pairs and a lone scalar. In principle, one could
evaluate these cuts by computing all the required ampli-
tudes, and summing over the particle multiplet. However, it

19 00 |

(i)

"l bl g

(iv) v) (vi) |

(iii)

FIG. 3 (color online). Generalized cuts that provide informa-
tion about the planar four-loop amplitude. (i) A two-particle cut
separating a tree amplitude from a three-loop amplitude. (ii) A
two-particle cut separating a one-loop amplitude from a two-
loop amplitude. (iii) A “3—3” cut separating the amplitude into
a product of three tree amplitudes. (iv) An “‘upper-2—3—lower-
2” cut separating the amplitude into a product of four tree
amplitudes. (v) A “lower-2—-3-lower-2” cut. (vi) A “3—
lower-3" cut.

is easier to use a trick. The trick takes advantage of the fact
that the MSYM multiplet, consisting of the gluon, four
Majorana fermions, and six real scalars, can also be under-
stood as a single N = 1 multiplet in ten dimensions.
Instead of summing over the multiplet seen as the N =
4 multiplet in four dimensions, we sum over the N = 1
multiplet in ten dimensions. This trick reduces the number
of types of intermediate states one has to consider, though
of course the total number of states is unchanged. The loop
momenta are, in any event, kept in D dimensions. (The
trick is compatible with the FDH regularization scheme
[74], where the momenta are taken to be in D dimensions,
but the number of states in the loops is kept at the four-
dimensional value.)

The cut of Fig. 3(iv) also reveals the presence of a non-
rung-rule integral, shown in Fig. 4(d,). The integral has, of
course, no two-particle cuts, but it can be obtained from the
integral topology of Fig. 2(d) by canceling two propaga-
tors, labeled 10 and 13. The integral of Fig. 2(f) could also
have been checked using another generalized-unitarity cut,
the twofold three-particle cut of Fig. 3(iii). This cut also
reveals the presence of the ‘““four-square” integral, shown
in Fig. 4(f,). This integral can be obtained from the topol-
ogy of Fig. 2(f) by canceling the propagator labeled 13.
The cut of Fig. 3(iii) also detects the integral of Fig. 4(d,).

Under mild assumptions, which we discuss in Sec. V, it
is sufficient to compute two additional multiple cuts,
shown in Figs. 3(v) and (vi), in order to rule out any

st

(d,) (,)

FIG. 4 (color online). Non-rung-rule contributions to the
leading-color four-loop amplitude, in terms of integral functions
defined in Egs. (A15) and (A16). Integral (d,) follows the
labeling of integral (d) in Fig. 2, and integral (f,) follows the
labeling of integral (f). An overall factor of st has been sup-
pressed in each figure, compared with Eqs. (A15) and (A16).
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additional contributions. We have computed these cuts, and
we indeed find that no additional integrals appear.

IV. INTEGRAL REPRESENTATION OF THE
FOUR-LOOP PLANAR AMPLITUDE

We find that the four-loop planar amplitude is given by

MP(E) = < [19(s, 1)+ 191 5) + 210, 1)

+2I0(t, 5) + 21€)(s, 1) + 219z, 5)

+ JO(s, 1) + IO(1, 5) + 419, 1)

+419(t, 5) + 2I0(s, 1) + 210(z, 5)
—2J@)(5, 1) — 2I@D)(z, 5) — I®)(s, )] (4.1)

The rung-rule integrals 7@ through J® are depicted in
Fig. 2. The two additional integrals, 74 and J®), de-
picted in Fig. 4, do not follow from the rung rule, and were
detected using generalized cuts with at least one three-
particle channel, as discussed in Sec. III.

The integrals appearing in the four-point amplitude are
defined generically, for diagram “(x),” by

StN'W
2 y
1P
j
4.2)
|

IW(s, 1) = (—ieY m4/2)* /d"pddqdduddv
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where p, ¢, u, v are the four independent loop integration
variables, and d = 4 — 2¢. The product in the denominator
of Eq. (4.2) runs over the labels of internal lines in the
graph (x). [For graphs (b) and (c), line 11 corresponds to a
numerator factor, so it should be excluded from this prod-
uct. Similarly, lines 10 and 13 are to be omitted from the
denominator product for graph (d,), and line 13 from the
product for graph (f,).] Each line carries momentum p;,
which is some linear function of p, ¢, u, v and the external
momenta. The line label j is shown next to each internal
line. The numerator factor N is also shown explicitly, to
the left of the graph for (x). We have omitted an overall
factor of st from N'™ in the figure, in order to avoid
cluttering it.

For the quadruple-ladder graph (a), and for the non-
rung-rule graphs (dy) and (f,), N® is completely inde-
pendent of the loop momentum, and so it may be pulled
outside of the integral. For the other graphs, at least one
factor in 2N depends on the loop momenta. In generating
a Mellin-Barnes representation for these integrals, we think
of these factors as additional “propagators’ appearing in
the numerator instead of the denominator. Accordingly, we
attach a line label j to each such factor. The presence of
such a factor is also indicated graphically by a pair of
parallel arrows, marking the lines whose momenta are
summed, then squared, to generate the numerator factor.

For example, the quadruple ladder integral (a) is defined
by

d?pdégdiudiv

J@ = (—ie6777'*d/2)4s4tf

P*(p — k)*(p — ki — k2)*q*(p — 9)*(q — ky — ky)?

(P T ey 2 prpy ey ey T Sy

. _ d?p d4g dud?v s*t
= (—ieV a2y £ 1—61113 7 4.3)
j=1Pj
Similarly, integral (b) is defined by
](b) — (_iEEyW_d/2)4St2f ddpddqdduddv [(U + kl)2]2
Pp = k) (p—v = k)¢ (p— 9)*(qg — v — k)
X 2 2 2.2 2 2
u (g —u)(u—v—k)*(u+ kv’ (v — kp)*(v — ky — k3)
(e iy d?pdiqdiudivsi(p?,)? wa)
et 2 2 2 10 2 .
ppPuPulli= P

The double arrows indicate that, in this case, the numerator

factor appears squared, (p})? = (lz+ [,0)* =[(v +

ki) .

V. ESTABLISHING THE CORRECTNESS OF THE
INTEGRAND

In this section we justify the result (4.1) for the four-loop
planar amplitude, based upon our evaluation of the unitar-

[

ity cuts. Because we have not evaluated all possible uni-
tarity cuts, we have to impose some mild assumptions
about the types of integrals that should be present. We
will see that another, stronger assumption of conformal
invariance also holds for the individual integrals that ap-
pear, although we do not require it. In addition, as we shall
see in the next section, the agreement of the infrared
singularities through (e 2) with their known form
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[15]—up to the one unknown constant at O(e~?)—pro-
vides a nontrivial consistency check on our construction.

The analysis determining the integrand of the four-loop

four-point amplitude proceeds in several steps:
(i) We assume that there are no integrals with triangle or
bubble subgraphs.

(i) We classify the four-loop planar integrals of this type
topologically. We begin with the subset of graphs
having only cubic vertices, from which we can ob-
tain the remaining graphs.

(iii)) We construct a set of generalized cuts capable of
detecting all such integrals. That is, each such inte-
gral, when restricted to the generalized cut kinemat-
ics, should be nonvanishing for at least one cut in the
set. For it to be nonvanishing, it must have a propa-
gator present for each line being cut. We used this set
of cuts to deduce the terms in the expression (4.1).
Indeed, we find that each such cut of the expression
is completely consistent with our evaluation of the
cut. This step confirms the result, under the ‘“‘no-
triangle’” assumption.

(iv) Alternatively, we consider the result of assuming that
only conformally invariant integrals contribute,
when the external legs are taken off shell so that
the integrals become well defined (finite) in four
dimensions. Such integrals were considered recently
in Ref. [54]. We find that the conformal-invariance
assumption is a powerful one; it allows all eight
integrals contributing to Eq. (4.1) to be present, while
forbidding all but two of the additional no-triangle
integrals. The potential contributions of these re-
maining two integrals are easily ruled out by exam-
ining the two-particle cuts.

Next we elaborate on each step in the analysis.

A. Unitarity construction

Our assumption, that there are no integrals with triangle
or bubble subgraphs in multiloop N = 4 super-Yang-
Mills theory, is sometimes referred to as the ‘“no-triangle
hypothesis.” (Such an assumption also appears to be ap-
plicable to JN' = 8 supergravity, at least at one loop [80].)
We now discuss evidence in favor of this hypothesis. First,
notice that a bubble subgraph would lead to an ultraviolet
subdivergence. In the absence of cancellations between
different integral topologies, such subdivergences are for-
bidden by the finiteness of MSYM [81]. Keep in mind that
all cancellations between different particles in the super-
multiplet have already been taken into account, so the
coefficients of all bubble integrals should indeed be zero.

Next, suppose there were a triangle subgraph in some
multiloop integral. Excise a region around the triangle,
cutting through open propagators attached to the integral.
This excised region represents a one-particle-irreducible
triangle-type contribution to a one-loop n-particle scatter-
ing amplitude. If all n cut legs are gluons, then we know

PHYSICAL REVIEW D 75, 085010 (2007)

that such a contribution is forbidden in MSYM, for arbi-
trary n, by applying loop-momentum power counting to a
computation of the one-loop amplitude using background-
field gauge [48,82]. However, in the present case some of
the n legs might be associated with other fields of the N =
4 supermultiplet. Supersymmetry Ward identities [72]
typically relate many such amplitudes to the gluonic
case, but we do not know of a general proof. Thus we do
not claim to have a full proof that all topologies with
triangle subgraphs are absent, although we strongly suspect
that it is the case.

We now wish to classify the four-loop planar integrals
containing no triangle or bubble subgraphs. We can per-
form this classification first for the subset of such graphs
that have only cubic (three-point) vertices, for the follow-
ing reason: If a graph contains a quartic or higher-point
vertex, we can ‘‘resolve’ the vertex into multiple three-
point vertices by moving some of the lines attached to the
vertex. Such a procedure never decreases the number of
propagators associated with a given loop. Therefore a no-
triangle graph will remain a no-triangle graph under this
procedure. So, if we know all the no-triangle graphs with
only cubic vertices, we can get every remaining no-triangle
graph by sliding cubic vertices together until they coincide,
a procedure known as “‘canceling propagators.”

The cubic subset can be classified iteratively in the
number of loops using the Dyson-Schwinger equation. In
order to use the Dyson-Schwinger approach for the case at
hand, the planar four-loop four-point amplitude, we also
need to classify the planar cubic no-triangle graphs of the
following types: one loop for the number of legs n up to 7,
two loops for n up to 6, and three loops for n up to 5. The
result is that there are a total of 13 planar cubic four-loop
four-point no-triangle graphs. Of the 13 graphs, seven are
one-particle irreducible. Six of these seven have the topol-
ogy of the rung-rule graphs shown in Fig. 2. The seventh is
shown in Fig. 5. Note that here we are only classifying
graphs, and not yet specifying the loop-momentum poly-
nomials associated with each graph.

The six one-particle-reducible graphs can be obtained by
sewing external trees onto four-loop graphs with either two
or three external legs. (There are no planar cubic no-
triangle graphs at four loops with fewer than two external
legs.) From the point of view of the cuts, these one-parti-

NN

(2)

FIG. 5. The only one-particle-irreducible, purely cubic, four-
loop, four-point graph with no triangle or bubble subgraphs,
besides the rung-rule graphs in Fig. 2.
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cle-reducible graphs are equivalent to certain of the non-
cubic graphs obtained by canceling external propagators,
so we shall defer their description briefly.

The next step is to cancel propagators between vertices
in the cubic graphs in Figs. 2 and 5. That is, we merge
adjacent three-point vertices into four-point (or higher-
point) vertices by eliminating the line(s) between them,
while insisting on at least four propagators around every
subloop. This procedure is also straightforward to carry
out. It generates the two non-rung-rule graphs in the ex-
pression (4.1), shown in Fig. 4, as well as the 16 additional
graphs shown in Fig. 6. We have given each graph a
notation which indicates the rung-rule graph [or graph
(g)] from which it can be generated by canceling one or
more propagators. For example, graph (bs) is found by
canceling propagators 13 and 14 in rung-rule graph (b), and
graph (eg) is found by canceling propagators 8 and 11 in
rung-rule graph (e).

Some graphs in Fig. 6 can be generated from more than
one cubic graph. In fact, five of the six one-particle-
reducible cubic graphs mentioned earlier are equivalent,
upon canceling external propagators, to diagrams in Fig. 6,
namely, graphs (b,), (d3), (ds), (¢;), and (g;). Hence we do
not provide a separate figure for the one-particle-reducible
cubic graphs. The sixth graph has the form of a massless
version of graph (ds), sewn as an external bubble to a four-
point tree graph. Such integrals vanish in dimensional
regularization, so we need not consider them.

To complete the direct justification of the four-loop
result (4.1), given the no-triangle assumption, we just
need to show that each graph appearing in Figs. 2 and 4—
6 can be detected by at least one of the generalized cuts we
have computed, out of the six cuts shown in Fig. 3. Table I
summarizes some of the cuts that detect the no-triangle
graphs. For some of the graphs, other cuts also detect them,
but for brevity they were not listed in the table. Almost all
graphs appear in multiple cuts. Only two of the graphs, (b,)
and (eg), appear in a unique cut, the “3-lower-3” cut
labeled (vi) in Fig. 3.

TH o T A T/ N

®) (®,) (®,) (by) ) @)

A A <Bx A TH A

) ) dg) ) (e,) )

N 1T N A

(e,) (e,) (eg) (€8]

FIG. 6. No-triangle planar four-loop graphs, in addition to
those given in Figs. 2 and 4. The notation indicates how a given
graph here can be derived from a rung-rule graph in Fig. 2, or
else from graph (g) in Fig. 5, by canceling propagators.
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TABLE I. The no-triangle graphs, and some of the cuts from
Fig. 3 that detect them. (In some cases, the diagram must be
rotated or flipped first.)

Graph Cuts Graph  Cuts Graph  Cuts
(a) @@, (i), Gi)) | (b)) (), (vi) | (ds) (i), (iid), (iv)
(b) @, (v) (by) (@), (vi) | (er) (), (id), (iv)

(© (), @), Gii), Gv)| (b3) (), (VD) | (ep)
() (i), (i), (v) | (by) (vi) (e3) (), (vi)
() (@, (i), (v), (vi)| (cy) (), (i), (V)| (eq) (i), (vi)
® (iii), (iv), (vi) | (dy) (i), (iiD), (V)| (es) (D), (iid), (iv)
(dy) (ii1), (iv) (d3) (@, (iid), (iv)| (eq) (vi)

(f2) (ii1), (vi) dy) @, GiD), Gv)| (@ (@), (vi)
(g1) (@), (vi)

(iii), (iv)

B. Conformal properties

We have finished our justification of the representation
(4.1) for the four-loop planar amplitude. In the rest of this
section we would like to examine the consequences of
making a stronger assumption than the no-triangle hy-
pothesis. This assumption is that each of the integral
functions that appears is conformally invariant. Here we
are inspired by the discussion of conformally invariant
integrals by Drummond, Henn, Sokatchev, and one of the
authors of this article [54]. Although the requirement of
conformal invariance is natural because of the conformal
invariance of the theory in four dimensions, we do not have
a proof that these integrals are the only ones that can appear
in the amplitudes. Nevertheless, as we shall see, the con-
formal properties offer a rather useful guide. (It is possible
that extensions of the conformal-invariance analysis in
Ref. [83] could be used to prove that only such conformally
invariant integrals can be present.)

We actually wish to study the conformal properties of
the integrals in four dimensions, yet they are ill defined
there because of the infrared divergences associated with
on-shell, massless external legs. We therefore adopt a
different infrared regularization of the integrals by taking
the external legs off shell, letting kl2 #0,i=1,2, 3,4,
instead of using a dimensional regulator as in the rest of the
paper. We demand that each integral that appears be con-
formally invariant. Actually, the integrals need only trans-
form covariantly, carrying conformal weights associated
with each of the external legs, in such a way that they can
be made invariant by multiplying by appropriate overall
factors of s or ¢. In canceling the conformal weights using
the external invariants, we should not use any factors that
vanish as the external legs return on shell, in the limit k% —
0. Such factors would lead to power-law divergences or to
vanishings of the integrals that are too severe, compared to
the typical logarithmic dependences on k? from the known
form of infrared singularities. Thus integrals that require
powers of k? to be conformally invariant should not appear
in any on-shell amplitude. This on-shell restriction turns
out to be a powerful one.
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The net result of the conformal-invariance requirement
will be that, besides the eight integrals already present in
Eq. (4.1) and Figs. 2 and 4, remarkably only two other
potential conformal integrals survive. The first of them is
the (ds) graph from Fig. 6. This graph has the structure of a
potential propagator correction at four loops. However, in
the context of the gg — gg scattering amplitude of the
N = 4 theory, it can be excluded very simply, without
computing any generalized cuts. One only has to use the
structure of the three-loop amplitude, and the simplest two-
particle cut, cut (i) in Fig. 3, to see that it cannot be present.
The second of the additional potential integrals has the
topology of integral (d) in Fig. 2, but it has a different
numerator factor, to be described below. This new integral,
(d), is also easy to exclude using the same two-particle

cut (i) in Fig. 3. |

PHYSICAL REVIEW D 75, 085010 (2007)

It is rather striking that every integral identified via the
unitarity cuts is conformally invariant, and that there are
only two other conformal integrals, which can be elimi-
nated easily via two-particle cuts. Furthermore, the two
integrals that are not present differ from the eight that are
present in how the conformal invariance is achieved, as we
shall discuss below.

To analyze the conformal-invariance properties, we
shall use changes of variables as suggested in Ref. [54].
(The same conformal integrals appear in coordinate-
space correlators of gauge-invariant operators [27];
the coincidence is presumably an accident of there
being a limited number of conformal integrals.) As an
example, consider the two-loop double box depicted in
Fig. 1,

d*pdiq

IQ(s, 1) = (—ie“’w‘z)zszt[

We have taken d = 4, with the k; off shell to serve as an
infrared regulator. Next, use the change of variables,

ky = x41, ky = x12, k3 = xa3,
5.2)
ky = X34, P = X5, q = Xea»
where x;; = x; — x;. This choice of variables automati-

cally ensures that momentum is conserved, k; + k, +
ky + k4 = 0. Note that the external invariants become

S = (kl + k2)2 = X%4, = (k2 + k3)2 = x%3. (53)

Performing the change of variables (5.2) in the double box,
we obtain

2 —(—: 22,4 .2 4. 44
IO(xy, x3, x3, x4) = (—iem2)2x3 23, fd x5 d*xg

1

X - (5.4)

2 22 2 2
X45X15%25X46X36X62%56

The principal conformal-invariance constraints on inte-
grals constructed from the invariants x?; are exposed by
performing an inversion on all points, x/* — x%/x?. (We
cannot impose such an inversion on the k; directly, because
it would violate the constraint of momentum conservation.)

Under the inversion, we have

2 4 4
X7 d X5 d X6
X2 — dxs — —22, dtg — —>. (5.5)
ij 2.0 8 8
X7x; x5 x5

It is easy to see that the planar double-box integral is
invariant under inversion, ie. J®(x, xy x3, x4) —
I®(xy, x5, x3, x,4). For this result to hold, it is important
that the unintegrated points x;, x,, x3, x4 appear in the
numerator just enough times to cancel their appearance in
the denominator. The integrated points x5, x4 each appear

PA(p — k) (p — ki — k2)*q* (g — k)2 (g — k3 — ks)*(p + @)*

5.1)

{
four times in the denominator. The dimensionally regu-
lated version of the conformally invariant integral
I@(x,, x,, x3, x4) is precisely the form in which the two-
loop double box appears in the two-loop planar amplitude
(3.3).

In order to analyze the conformal properties of integrals
beyond two loops, it is helpful to follow the discussion of
Ref. [54], and introduce a set of dual diagrams [84]. We
construct the dual to a diagrammatic representation of a
planar loop-momentum integral by placing vertices corre-
sponding to the x; at the centers of the loops and in between
pairs of external lines. Denominator factors of x,zj are
denoted by drawing dark, solid (blue) lines between the
corresponding vertices. Numerator factors are denoted by
drawing dotted lines between the corresponding vertices.
One solid line crosses each propagator in a loop. The
conformal weight in each x; variable is then given by the
number of solid lines entering the corresponding vertex,
less the number of dotted lines. A conformally invariant
integral will have weight four at each internal vertex (to
balance the weight of the integration measure), and weight
zero at each external vertex. In the diagrams, we shall omit
one dotted line connecting external vertices x, and x4, and
another one connecting x; and x3, in order to simplify the
presentation. These two omitted lines correspond to the
overall factor of st = x3,x2, omitted from the momentum-
space diagrams in Figs. 2 and 4. Expressions for integrals
in terms of the x; variables can be read off quickly from the
dual diagrams (and vice versa).

For example, Fig. 7 contains the diagram dual to the
double box. Each of the solid lines starting at an x; and
ending at an x; corresponds to a factor of 1/ xl?j appearing in
Eq. (5.4), while the dotted line corresponds to a factor of
x3, = 5. With this identification the dual figure is in direct

085010-13



BERN, CZAKON, DIXON, KOSOWER, AND SMIRNOV

FIG. 7 (color online). The two-loop planar double box and its
dual diagram. The double box is represented by light colored
lines and the dual diagram by dark (blue) lines. A dark line
connecting x; with x; represents the factor l/x%j. A dotted line
signifies a numerator factor of xfj. The momentum correspond-
ing to any x;; is given by the sum of momenta of the light lines
crossing the dark line joining x; and x;. An overall factor of st
has been removed for clarity.

correspondence with Eq. (5.4), after removing one overall
factor of st = x3,x7; (in order to reduce the visual clutter in
the diagram). Because the number of solid lines minus the
number of dotted lines at each of the two internal vertices
x5 and x4 is four, the integral is conformally invariant with
respect to these points. Similarly, since each of the external
points x;, X,, X3, x4 has one more solid line than dotted line
emanating from it, the conformal weight is unity. If we
multiply back by the x3,x3; factor removed previously,
then we obtain an integral which is conformally invariant
with respect to the external as well as internal points.

The assumption of conformal invariance for the integrals
immediately implies the “no-triangle” rule for the
momentum-space diagrams. A loop with only three propa-
gators would necessarily result in a negative weight for the
x point corresponding to the loop momentum, because only
three lines enter the dual diagram vertex. That negative
weight can only be eliminated by additional denominator
powers of x—that is, by additional propagators which
would turn the triangle subgraph into at least a box
subgraph.

By placing the dual diagrams on top of the original
momentum-space diagrams, we can read off directly the
change of variables between the x;; and the momenta: x;; is
just the sum of the momenta of each momentum-space line
crossed by the dual line running from x; to x;. In the rung-
insertion rule, when a rung is inserted between two parallel
lines with momenta /; and /,, to go from an L-loop con-
tribution to an (L + 1)-loop one, the loops on either side of
the parallel lines have acquired a new propagator. Hence
each of their dual x vertices has a new solid line emanating
from it. The rung-rule momentum-insertion factor of i(/; +
1,)? is represented by a dotted line stretching between the
two vertices, so it restores the conformal invariance for
those two loops. This property may help to explain the
form of the rung rule.

Let us now focus on four-loop four-point integrals. We
may find all conformally invariant integrals by drawing the
set of all dual diagrams that have conformal weight zero
with respect to all x;. Again to prevent cluttering the

PHYSICAL REVIEW D 75, 085010 (2007)

FIG. 8 (color online).
st has been removed.

The rung-rule dual diagrams. A factor of

diagrams in Figs. 8 and 9 with dotted lines, we have
removed a factor of st from the figures. The complete list
of conformal four-loop integrals, as it turns out, contains
the rung-rule diagrams of Fig. 8, the non-rung-rule dia-
grams of Fig. 9, and the two extra integrals shown in
Fig. 10.!

Because conformal invariance in the sense discussed
above implies the no-triangle rule, the complete list of
candidate graphs for conformal integrals is given by the
same no-triangle list described above, namely, the dia-
grams in Figs. 2 and 4-6. Upon attempting to draw the
dual diagrams to Figs. 5 and 6, we find that, in all cases
except (ds), either it is impossible to add dotted or even
solid lines so as to obtain a conformally invariant integral,
or the obtained conformally invariant cases are equivalent
to previously included cases, or else conformal invariance
can only be achieved by adding solid or dotted lines con-
necting neighboring external vertices. The latter lines are
not admissible, however, because differences of neighbor-
ing external x points correspond to individual external
momenta k;. The corresponding factors are then k2. Their
presence would lead to an unwanted power-law vanishing
or divergence of the integral in the on-shell limit.

Figure 11 illustrates two examples of dual diagrams that
cannot be made conformal, or that reduce to previous
cases. First consider the graph labeled (bs). The internal
dual points all have weight four, so no dotted lines can
attach to them. The dotted line shown between external
points x; and x3 reduces the x; weight to zero and the x3
weight to one. It is nonvanishing in the massless limit.
However, there is no other numerator factor available that
is nonvanishing in this limit, to further reduce the confor-
mal weights of external legs x5 and x,. In particular, x§4 =
k3 — 0 in the on-shell limit.

'Tt is possible to dress diagram (f) in Fig. 8 with dotted lines in
a second way, but that dressing is related simply to the one
shown by the exchange of legs k; and k3, or in other words s <
t.
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/)

Ve

V

(dz) (fZ)

FIG. 9 (color online). The non-rung-rule dual diagrams. A
factor of st has been removed.

(ds)

FIG. 10 (color online). The two four-loop dual integrals, in
addition to those given in Figs. 2 and 4, that survive the require-
ment of conformal invariance. Both integrals are ruled out by
two-particle cuts. In this case, no factor of st has been removed.

As a second example, consider the graph labeled (d;) in
Fig. 11. Here there is one pentagon subgraph, and hence
one internal x point to which a dotted line can attach. The
dotted line shown can be used to reduce the conformal
weight of x, from three to two, which would then balance
its weight with that of the opposite external point x,.
(Balanced opposing weights can always be reduced to
zero using powers of s = x3, or 1 = x};.) However, this
choice of dotted line merely cancels the propagator that it
crosses, and thereby reduces the (d;) graph to the (d,)
graph in Fig. 9, which we already know is conformally
invariant and present in the four-loop planar amplitude.
Without using the dotted line shown, it is impossible to
balance the x, conformal weight, in the massless limit, so
the only surviving possibility reduces to an existing
integral.

It is curious that the two conformally invariant integrals
represented in Fig. 10, which are not present in the planar
four-loop four-point amplitude, can be distinguished from
the eight in Figs. 8 and 9 that are present, by the fact that

they do not have explicit overall factors of both s and t. As
|

4 35
IO, 1) = (1) 4}— +
(s.5)=(=1 {968 72€’

10

18777 10

432¢%  9¢€°
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x

(b,) (d,)

FIG. 11 (color online). Two examples of dual diagrams which
do not lead to new conformal integrals in the on-shell limit, for
reasons discussed in the text.

drawn in Fig. 10, they have three powers of s, but no
powers of ¢. The integral (d’) has the same basic topology
as (d) in Fig. 9, but the dotted lines emanating from the two
pentagon loops are connected to external legs x; and x;3
instead of to each other. So it has two ‘“‘rung-rule-type”
numerator factors involving the squares of the sums of
three loop momenta, but no power of 7. At the moment,
however, we have no good argument why explicit factors
of both s and ¢ have to be present in order that an integral be
present in the four-point amplitude.

VI. ANALYTIC AND NUMERICAL RESULTS

Our next task is to evaluate the integrals entering the
four-loop planar amplitude (4.1) in a Laurent expansion
around € = 0. For the case at hand, massless gluon-gluon
scattering in N = 4 super-Yang-Mills theory, all of the
integrals encountered can be evaluated through three loops
in terms of a class of functions known as harmonic poly-
logarithms or HPLs [63]. We expect this class of functions
to continue to suffice at four loops. We know it suffices
through O(e™*), for which we have analytic results.

A. Analytic expressions through O(e™4)

The analytic results for the four-loop integrals were
obtained with the help of the MB program [62]. We let x =
—t/s and L = In(—x). Through O(e™*) the results, ex-
pressed in terms of the HPLs defined in Appendix B, are

1
+ e8| Hooa o) = LHo, () 5 (L2 + P H() + oL = 0

23 1169
48 240 }

+ 964[_22Ho,0,0,1(x) — Ho1.1(x) = Ho1.0,1(x) = Hy001(x) + L(16Hq 0, (x) + Hy 11 (x) + Hy g (x))

2 77_2
= L2010 () + Hy () = T (THo () + Hy () = LHL(0) + 3 LB, (0 + G109

97 2339

- §§3L 3600 7 i| + @(63)},

(6.1)
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4 17 53 , 211 8 25
O (s, ) = (—n)*l—+ —5L+— 7 |+ —| H LH + (1> + 7)H +—L3
19,0 = (el ts b i+ 502 = i |+ g o) — LHo @) + 302+ w0+ 2
45 601 8 71
“a” L — —53} [ 10H ,,0,1(x) — Ho0,1,1(x) — Hp 10,1 (x) — Hy 0,1 (x) + L<§H0,0,1(x)
L2 /31 2 15 73
+ Hpy1(x) + Hyg(x) ) — —Hy,(x) + Hy 1 (x) | — 3Hy,(x) + Hy ;(x) — —LH,(x) + —L
2\ 4 2 8 96
53 L* 1579 743
+ =13 + ———HL———a* |+ O3 .
L T G — - SRl et |+ 0 ) ©2)

I<°)(s,t)=(—t)_45{4+13L+ ! [Lz 29772} 8 [HOOl(x) LHO,l(x)+%(L2+w2)H1(x)— i

9e8  24¢’ 18€° 3 9¢° 24
772 1175 8 73 107
+ E - ﬁé} [ 1 — Ho00,1(x) = Hop1,1(x) — Hy1,01(x) — Hy 0,1 (x) + L<TH0,0,1(X)

17

2

+H011(X)+H101(X)> 2( 4 12

o)+ H1000) = (B a0+ 10,0 = L) = 517

29 L* 253 5663
+ =13 + + - 41+ 0(e? .
L)+ G0 + e =Sl - st |+ o) 63)
4 11 1 169 10 1 3
(d) — (— *46_+ + 2 _ 77,2 + = 2+ 2 _ 73
190G, = (=)o b e Lt g | 12 = g |+ | Haua (9 = LHo (9 + 302 + 7)H 9 = o
11 10 11 5
%07 L —%53} [ 5H0001(X) H0,0,1,1(x)_H0,1,0,1(X)—H1,0,0,1(x)+L<§Ho,o,1(x)
14 ) 7 27
 Ho1 )+ Hio10) = 5 (o Hou) + 100) = 2 () + 10 = L) ~ 1)
31 3 271 101
+ L3 + + —L*f—— + -3 .
G0 L)+ GH W + Lt =Tl - gt |+ o) (64)
4 3 25 49 8 L3
(e = (—f) %] + + | = 2 + (12 + 72
1960 = (= elte L [ S0 - [ g ) Lo + 502+ a0 - 57
41 1657 8 25 47
%67 L _mé} [ 4H0001(x) Ho,o,1,1(x)_H0,1,o,1(x)_H1,0,0,1(X)+L<§Ho,o,1(x)
1 7 11 5
+ Hy (%) +H101(x)> > (2 Hy;(x) +H11(x)> 3 <4H01(X) + Hy(x) — LHl(x) EL )
41 13 107 7153
4+ 3 + T4 77 4 + -3 .
B PH + GH0) — o1 =l 4608O7T} (e )}, (6.5)

(s, 1) = (_t)%{ 8 107 +L[49 235

4 1 7
5 F Tael | T 3™ | aes| Hooa (9~ LHui(9+ 302 + w9~ L

144

11 1001 4 13 23
L fz} —[_ — Ho,0,01(x) = Ho,1,1(x) — Ho1,01(x) — Hy0,1(x) + L<ZH0,0,1(X)

12 2
11 13 19
+H0,1,1(x)+H1,o,1(x)>_—(5H01(x)+H11(x))_ (g Hoa0)+ ) — ) — 2 17)
17 5 1405 4253, _
o P + GHW — e LA =2 L+ o }+ O(e 3)}, 6.6)
2 1 11 )
1@ (s, 1) = (=) {—36543 " 64[ JOL+ T } + O 3)}, 6.7)
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.I<f2)(s t) = (_t) 4 { 6 + ﬁL + —6[%L2 - 108 772j| + ﬁ[HO’O’I(x) LH()I(X) + — (L2 + 7T2)H (x) + mL?’
199 1073 8 5
YV L — mfs} 4[ Hy0,1(x) = Hog1,1(x) — Ho101(x) — Hyg01(x) + L<5H0,0,1(X)
L 15 5\ 11,
+H0,1,1(x)+H1,0,1(x)>_—(4H01(x)+H11(X)) <H11(x) LH1(X)+mL >+EL H,(x)
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Using Eq. (4.1), together with the above results for the integrals, the total four-loop planar amplitude, Mff), has the

expansion

13
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2
38

4 1
— L+ |:L2
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3€’ €
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4 1
’I'T2 +—5 HO’O,I()C)_LHO’](X)+—(L2+77'2)H1()C)+——
3e 2 4

L’ 5
677214

4 5
fz} —4[_Ho,o,0,1(x) — Ho1,1(x) = Ho10,1(x) = Hyg0,1(x) + L(EHO,O,I(X) + Hpy1(x) + Hl,o,l(x)>

L a0+ 00 = 2 (10 -

637
17280
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In Table II we present the numerical values of the eight
integrals appearing in the four-loop planar amplitude,
evaluated at the point (s, 1) = (—1, —1), through O(e2).
The values through @(e™*) can be found easily from the
analytic expressions given above. The numerical values for
€3 and €2 were obtained using the CUBA numerical
integration package [85], which is incorporated into the
MB program [62]. In the table, we also give the total value

of the amplitude M, (4), according to Eq. (4.1).

(_ 1, - 1)
Next we need to compare our results for Eq. (4.1) with

the prediction (2.25) based on the known structure of the
infrared poles. To do this, we evaluate the lower-loop

B. Values of lower-loop amplitudes at (s, ¢t) =

3 LH (x) + 5L2> + EL3H (x) + &H, (x) +

L4
- fs

16 12

(6.9)

{
amplitudes, using formulas from Ref. [8], at the symmetric
kinematical point (s, r) = (—1, —1), through the accuracy
needed to evaluate Eq. (2.25) to O(e?). At this point, a
limited number of analytic expressions appear, built out of
In2, 7, &, &s, Li4(%), Lis (%), Li(,(%), and the harmonic sum
[86]

- (21"
> —

Hh=1 2

5o = 8(=5, -1y = 3 L

i=1 4

= 0.987441426 40329971377 ....

(6.10)

The one-loop amplitude Mf‘l)(s, t; €) in Eq. (3.1), eval-
uated at (s, f) = (—1, —1), has the e-expansion,

TABLE II. Numerical values of individual four-loop integrals, and M(4), at (s, f) = (—1, —1). The uncertainties at orders € > and
€2 are indicated in parentheses. (The presence of two digits in parentheses signifies the uncertainty in the last two digits of the central
value.)

Integral €8 €’ €0 €73 € €3 €2

(a) 4/9 0 —4.27225931 —11.30789527 —18.44325855 —58.84504(10) —180.852(3)
(b) 4/9 0 —4.82057067 —10.53107909 3.00827162 67.625 84(13) 190.235(3)
(c) 4/9 0 —5.300343 10 —10.38082198 12.55376125 81.91311(64) 99.292(5)
(d) 4/9 0 —3.861025 80 —7.70172456 —16.940031 84 —80.03212(51) —52.555(21)
(e) 4/9 0 —4.477876 07 —8.45252237 —4.13769237 —11.60392(20) 28.823(9)
() 8/9 0 —10.737764 05 —16.904 069 21 46.68731190 219.08111(12) 364.167(7)
(dy) 0 0 0 —0.80137127 248032408 36.23672(11) 132.811(13)
) 16/9 0 —21.475528 10 —35.41088096 92.923 65579 521.48787(31) 1314.856(12)
Mff) 2/3 0 —7.128047 62 —13.64293336 2.642769 20 27.34123(13) 33.278(7)
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2 2 N o1 2 49 1
ML L= -5+ i+ e<1 In2 + —2§3> + 62<—2Li4<—> w2+ T+ —774> + e3<2Li5<§)

3 2 1 2) 12 3 720
1 m? at 245 62 n 7 1 1
—— 2+ —In*2+_—In2-"—7*G +—{ )+ € —2Lig( = | + —Liy( = | — =—=1In®2
R R T LR PV 55) E( 16(2) 6 14(2) 360
5 mt 7 343 b
+ 2 P2 - 2 - a2 -T2 - T ) 4 o 6.11
tag T2 T g2 m g TG In2 =5 10080> (€) (6.11)

2
=2 + 6.579736267392905746 1 + 11.133 742693 869 288271 € + 7.155 662485 145574914 0€>

— 5.760 188 577 405 266 135€> — 23.794 568 007 684 383 734€* + O(€°). (6.12)

The two-loop amplitude Mff)(s, t; €) in Eq. (3.3) is given by

2 571 37 1 1 2 4 1 1
Mf)(—l,—l;e)=——l+g<—7721n2—?§3>~I—4Li4<§>+gln42——7721n22—%+e<—4Li5<§>+—ln52

e 4ée 3 30
2 43 77 3919 ! 22 ! 1
- §7T21n3 2+ ﬁ7741n2 + EW2§3 - W{s) + E2<_7S6 + 4L16<§> + ?W2L14<§> + @11’162
m? 59 307 4319 541
+ 2 1n*2 — = 22 + 2 4+ T2 T 26) 4 3 .
4ln 2 2407Tln 2 247T§31n2 288 {3 64807T> O(e’) (6.13)
2 12.337005501361698274 21.666456936 158779398
=== 5 - . — 4.299835058463 1215560
€ €
+ 30.635795 346 547106 621€ + 68.218 654436238 118 625€> + O(€%). (6.14)
The three-loop amplitude Mff)(s, t; €) in Eq. (3.5) is given by
4 77 1 71 1 1 1 2 89 1 1
G_1 1.0y = — —AT; _ _ i
M4 ( 1, 1,6)— ﬁ"'@"'z( 21112"'?53)"'?( 4Ll4<§> gln42+§7r2ln22 mﬂ4>+z<4L15<5>
1 2 73 3779 8621 (1 91 (1
- %lns 2+ §7Tzln3 2— %74 In2 — 43—272§3 + 1—20§5> + 14S6 - 4Ll6<§> - K’TTZLL‘(E)
1 83 191 1385 43159
— 92 — 21?2 4 — 71?2 — 2372 In2 — 2 4 6 4 1
1802 T g TN 2 3T 2 - BmLIn2 — S oasage ™ T O ©.15)
_ i 11.514 538467 937 585056 n 21.065428484 578982255 1.622878 1926783846589
3eb et e’ €’
40.219043 687209 842734
- — 67.305777 557207060997 + O(e). (6.16)

€

The iterative formula for the four-loop amplitude in terms of the lower-loop amplitudes is given in Eq. (2.25). Inserting the
values at (s, 1) = (—1, —1) of M(l), Mff), and Mff), we obtain

* é(‘l“% + gL%(%) + %WZLMG> + %mﬁ 2+ S—é#ln‘* 2- %szlnz )
" %Wzé 2 %532 - 12002705690 m _é 54)) TOE 6.17)
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_ 0.666 666 666 666 666 666 67 _ 7.128047623 0089812249  13.642933 355332790075

ed €

e

n 2.642769 199290309 8962 N 27.341074205440151100 1

et e

Comparing Eq. (6.18) with the last row of Table II, we
verify the pole behavior of the four-loop amplitude
MY (—1, —1; €) precisely through O(e~*). The agreement
at O(e~3) is good to 5 digits. At O(e~2), we can extract the
value of fg”. We obtain

W = —29.335 + 0.052. (6.19)

This value should be compared with that predicted by Eden
and Staudacher, from Eq. (1.6),

73
@ _
fo les 2520

= —26.404 825523390660965 .. ..

at + 2
(6.20)

The results do not agree. The difference can be expressed
as

IO = s + A, 6.21)

AfS = —2.930 +0.052.... (6.22)
We can also parametrize the difference A f(()4) as a multiple
of the weight-six expression {7. Making this parametriza-
tion, we find that

1

+ —2(29.611 139840724282137 — ¢ g4>> + 0.
€

(6.18)

r= —2.028 £0.036.... (6.24)

This result is quite suggestive. To about 1.5% precision on

the value of the correction term A f, (4), itis equal to —2{7, a
result which would have the net effect of flipping the sign
of the {; term in the Eden-Staudacher prediction (1.5),
while leaving the w° term unaltered. Of course, the ES
prediction follows directly from an integral equation, and
so flipping the sign of the {3 term is not possible without
other modifications. In Sec. VIII we discuss possible rea-
sons for the discrepancy.

C. Cross checks at asymmetrical kinematical points

In order to cross check our numerical evaluation of the
integrals at the symmetric kinematical point (s, ) =
(—1, —1), as well as check the behavior of the O(e?)
and O(e ?) terms in the planar four-loop amplitude as a
function of the scattering angle, we have performed the
numerical analysis of the last subsection at three additional
kinematical points, (s,7) = (=1, —-2), (=1, —3), and
(=1, —15).

We have used the expressions for the lower-loop ampli-
tudes in Ref. [8] to numerically evaluate the infrared-based
iterative formula (2.25) at the asymmetric kinematical
points (s, 1) = (=1, =2), (=1, =3), and (—1, —15). The

4
Af(()) =3 (6.23)  results are
|
" 2 092419624075  6.64759460909 423222757233 _ 1589245103368
M, (=1L =25 €)|yer. = ﬁ - & - 6 - & p
16119146 13046 _ 1 1
+ ! + —2<1.312 83053842 — - g4>> + 0@, (6.25)
€ € 8
. 2 146481638489 592109866220 0.72092946726  19.05722201166
M (=1, =35 )lier, = 55 — - +
4 72 lier. = 373 & 6 & p
486152575608 _ 1 I
4+ 280152 1008 —2<—5.615 81265989 — g4>) + 0@, (6.26)
€ € 8
" 2 361073360147 _ 020548826868  14.13192416428 _ 7.417006295 11
M4 (_1, _15, 6)|iter. :ﬁ_ 67 + 3 + 65 + 64
48.55010675803 1 1
- ! + —2(43.611 97714 — {;") + 0@, 6.27)
€ € 8

Numerical evaluation of the eight four-loop integrals from Figs. 2 and 4 gives the following results for the amplitude

MY (we omit the 1/€® through 1/€* poles, as they agree analytically),
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MP (=1, -2;€) = O(e 8-+ e %) +

MP(—1,-3,e) = 0(e -4 +

Mff)(—l, —15;€) = O(e™®---€7%) —

Comparing these sets of numbers at O(e~3), we observe
good agreement at all points; the (s, 1) = (—1, —2) point is
slightly off, at 1.9¢, but the other two points are within 1.

At O(e?), we can express the agreement in terms of the
parameter r introduced in Eq. (6.23). At the asymmetric
kinematical points, we extract the values

r= —2.059 £ 0.036, (s,) =(—1,-2), (6.31)
r = —2.062 % 0.045, (s,0)=1(—1,-3), (6.32)
r=—2.074 = 0.104, (s,0) =(—1,—15). (6.33)

These values are all consistent, within errors, with the
value (6.24) extracted at (s, f) = (—1, —1). [The values at
different points, however, have an unknown correlation
between them, because the integrals contain pieces that
are independent of the kinematics, and the numerical in-
tegration for each value of (s, r) was performed with the
same sequence of quasirandom integration points. This
means the results for r from the various kinematic points
cannot be combined to reduce the error.]

In summary, our numerical integration of the four-loop
planar integrand results in a value of the cusp anomalous
dimension,

2 11
f()(a) = 72 CAZZ + @ W4d3
T3 s (1+nr¢ + - (6.34)
- m — r .
<2520 3) ’

where r is given in Egs. (6.24), (6.31), (6.32), and (6.33).
All values are consistent with the appealing value of r =
—2, which corresponds to the value B = {; for the
dressing-factor parameter 8 in Eq. (1.7). As noted above,
this value would merely flip the sign of the ¢ term in the
ES prediction (1.5). However, we obviously cannot ex-
clude, on numerical grounds alone, nearby rational or tran-
scendental numbers. For example, it is conceivable that r
takes on the value r = —5/(2{3) = —2.0797.... This
value would correspond to a rational dressing-factor pa-
rameter, B =5/4, and would violate the KLOV
maximum-transcendentality principle. On the other hand,
additional evidence points toward r = —2 as the correct
analytical value, as we shall discuss in the next section.

16.11929 * 0, 4.985 * 0,
6.11929 : 0.00008  4.985 20006+@(€_1)’ 6.28)
€ €
4.8617 + 0. 1.943 * 0.
86 300003_ 943 20008+@(6_1)’ 6.29)
€ €
48.5499 + 0.0002 | 47.29 + 0.02
&3 g T O (6.30)

VII. ESTIMATING STRONG-COUPLING
BEHAVIOR

Kotikov, Lipatov, and Velizhanin (KLV) [34] made an
intriguing proposal for approximating the cusp anomalous
dimension [or, equivalently, f(@)], for all values of the
coupling a. They suggested combining perturbative infor-
mation with the knowledge from string theory [69] that, at
large values of the coupling, f, has square-root behavior,
fo ~ ~Ja. They proposed the following approximate rela-
tion as a means for incorporating the known analytic
behavior,

2n
Zcmw (7.1)

where the constants C, can be fixed using perturbative
information. As we shall discuss below, they can also be
fixed using strong-coupling information. As more infor-
mation becomes available, the integer n can be increased.
The strong-coupling square-root behavior of f is auto-
matlcally imposed by the fact that 4" ~ C,,[fo(a@)]*" at
large a. Similarly, the weak-coupling linear behavior fol-
lows from 4" ~ C,[fy(a)]"* at small a.

KLV used the approximation (7.1) for n = 1, together
with the one- and two-loop expressions for the cusp
anomalous dimension, to write (for the case of a super-
symmetric regulator)

2
A=m+%ﬁw. (7.2)

This formula makes the weak-coupling predictions (be-
yond two loops)

2 4
Z oA T T 5 6 8 A5
L R T L TR T
7 R
- ﬁ’ﬂloaﬁ + , (73)

as a — 0, and it predicts coefficients in the strong-coupling
expansion, as

. 2B a3
fo= %—\/% -+ o@a?) (7.4)
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=~ 1.1027\/§ —0.30396 + O(a~'/?). (7.5)

The coefficients of the leading [33,69,70] and sublead-
ing [71] terms in this expansion are predicted from string
theory to be

a 3In2

fo= 5_ 4

+ 0(a='7?) (7.6)

=~ \/% —0.165476700 11448 + O(a~'/?). (7.7)

As noted by KLV, the leading coefficient is estimated
correctly to 10% by the formula (7.2). The subleading
coefficient is off by almost a factor of 2, however.

What happens as we incorporate more perturbative in-
formation? Using the three-loop value for the cusp anoma-
lous dimension, and setting n = 2 in Eq. (7.1), gives the
approximation

~ 772 ~ 774 ~
a? = (fo)* + —(fo) + = (fo)*. (7.8)
3 60
This approximation makes the weak-coupling predictions
(beyond three loops)

2
7 AP S VORI | B
= _ + - -
Jom @ =g g™ “ 080"
329 ¢ 169 0.6
— - +..., .
21600 " ¢ 194407 “ 79
as @ — 0, and has the strong-coupling expansion
~ 2 a 5
fo =—151/4\/§——2+ O@a'?) (7.10)
T 2 7
=~ 1.2529\/§ —0.50661 + O(a~'/?). (7.11)

For both the leading and next-to-leading coefficients in the
strong-coupling expansion, the three-loop approximation
(7.8) leads to a larger disagreement with the string predic-
tion (7.7) than the two-loop version (7.2) does. We also
note that the numerical value of the four-loop coefficient
predicted by Eq. (7.8) is —27.595, which is a bit closer to
our result than the ES prediction is, but still about 6% off.

Despite the somewhat discouraging results from includ-
ing the three-loop values, we proceed to incorporate our
four-loop cusp anomalous dimension into the n = 3 ver-
sion of the approximation, obtaining

2 4
ad = (fo)* + 7%(]%)4 + 717_50?0)5

7° _ 2\( 7 \6
+ (ﬁ 3(1 + r)§3>(fo) . (7.12)
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Here we have introduced the same coefficient » defined in
Eq. (6.23), which is constrained to be quite close to —2 by
our numerical result (6.24). The weak-coupling expansion
of this formula predicts (beyond four loops)

~ .o mn ., 73 N
fo=a-— ?az +?w#4a3 - (—2520 -1+ r)§32>a4
1769 4
+ 8 _ 1+ 2 72 \A5
(11340077 U Hnm 53)“
4111 13
- W——0+nm3)ac+...,
<4536OO7T T ‘3)“

(7.13)

as a — 0. The strong-coupling expansion is given by

- 4
S VN L
fo=e \g 720

2

T 0 2
to (ot 1+ NG )™V S+ 0@G™), (7.
256(2835 (1 r)é)“ \/; 0@, (714

where

63
@ =2+

.1
3024 8 (7.15)

and we have given one more term in the expansion than
before. Curiously, with the ES value r = 0, the approxi-
mate relation (7.12) breaks down, because « is negative,

and hence a /% is not real.
For r = —2, formula (7.14) becomes
- a 2
fo=1.025 50\/; —0.157356 — 0.056239 8\/;
a
+ O(a™). (7.16)

The numerical agreement between Eq. (7.16) and the
string-theory result in Eq. (7.7) is quite impressive: The
leading coefficient agrees within 2.6%, and the subleading
coefficient within 5%. The coefficient of the term propor-

tional to \/2/—& in Eq. (7.16) is fairly small. As we discuss
below, an improved estimate suggests that it may be con-
siderably smaller, or perhaps even vanish.

In the KLV type of approximation, the predicted value of
the strong-coupling coefficients depends quite sensitively
on the value of the four-loop contribution to the anomalous
dimension. For example, if we scale the numerical value of
the four-loop contribution as follows,

73
(4) — — + 6 4 72
0 (1 5)(25207T {3 >, (7.17)

then instead of Eq. (7.16) we find at strong coupling
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Fo~(0.8597725 + 10.98558)‘1/6\/§

1
© 6.33501 + 81.19956

+ 0@ %), (7.18)

which exhibits a strong sensitivity under just a few percent
change in the four-loop contribution. More generally, the
sensitivity of the strong-coupling prediction to the higher-
loop orders used in a KLV approximation allows us to test
whether a given ansatz appears compatible with strong
coupling, as we discuss below.

In Fig. 12 we plot these estimates as a function of the
coupling, and we also display the strong-coupling limit
(7.7) predicted by string theory. As noted above, the ap-
proximation (7.2) using only two-loop information works
quite well, in fact better than the three-loop approximation
(7.8). However, the behavior of the four-loop formula
(7.12) is clearly extremely close to the string-theory pre-
diction. For this curve, or rather band, we have varied the
parameter r between —2.05 and —1.95, consistent with
Eq. (6.24).

We have constructed two further approximations by
incorporating the knowledge of the precise strong-coupling
coefficients. Matching the four-loop perturbative informa-
tion and the leading strong-coupling coefficient gives the
approximation

&t = (o)t + 370 + g (o)

23 ) )
" (@” -4+ ’)532>(fo)7 +16(F)8.  (7.19)

It has the weak-coupling expansion

Approximate Cusp Anomalous Dimension in Planar MSYM
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FIG. 12 (color online). Approximations to the cusp anomalous
dimension in planar MSYM based on the formula (7.1) and
perturbative information through two loops (dotted line), three
loops (dot-dash line), and four loops (solid line). Also shown is
the strong-coupling prediction from string theory (dashed line).
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P T U (T3 "
=a-— +— i — (= (1 +
Joma= @t gpma (252077 ( r)@)
4747 3
+ =1+ rm 3 - 48
3024007 2
5023 20
— 2+ Nt <Y 2\s6
<544 320" (L4 r)ym T )“
+..., (7.20)

as a — 0. If we add the next-to-leading strong-coupling
coefficient as another constraint, we obtain the approxima-
tion

4
= (o + 2200 + TGy

17
+ (50477 — 501+ r)§3>(fo)8

+ 202 (7)o 4 (7

(7.21)

with the weak-coupling expansion

. 7o, 73
A~ + - 4"3 _ (7 6 _ 1+ 2 \ A4
fo=a=-ga 180 ma (252077 ( r)§3>a
727 481n2
—Z(1+ 2 _ ~5
<45 360 L0+ )“
13387, 341
_ -1+ 4 #2
<1 3608007 1800 T 74

3
— 887In2 + ?)aé _— (7.22)

as a— 0.
We may also use the improved approximation (7.21) to

determine subleading terms in the strong-coupling expan-
sion. We have

. e 3m2 /o178l
L — 2
fo \g e <1612807T 327"

-+ r)§32>\/% L oG,

For r = —2, this expression evaluates to

(7.23)

Fo= \E 016548—0000693\[4—(9( 1. (7.24)

The first two numerical coefficients automatically repro-
duce the input [33,69-71] from string theory, Eq. (7.7), so
the content of this equation is in the coefficient of \/2/a.
Quite interestingly, this coefficient is very small, suggest-
ing that it may even vanish in the exact expression. It is an
intriguing question whether such a tiny or vanishing result
could be obtained from string theory.

We plot these two approximations, for r = —2, along
with the four-loop approximation (7.12), in Fig. 13.
Obviously, they are extremely close to one another. As a
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Approximate Cusp Anomalous Dimension in Planar MSYM
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FIG. 13 (color online). Approximations to the cusp anomalous
dimension in planar MSYM based on the formula (7.1), four-
loop perturbative information, and zero, one, or two constants
from the strong-coupling expansion.

measure of that, the values they predict for the five-loop
planar cusp anomalous dimension (for r = —2) are 167.03,
166.34, and 165.25, corresponding to the three approxima-
tions in Egs. (7.13), (7.20), and (7.22). We expect the last of
these numbers to be the most accurate, given that Eq. (7.22)
uses all available information at both strong and weak
coupling.

Can we use these approximations to guide corrections to
the ES prediction at higher loops? As a first step, consider
the five-loop ES prediction in Eq. (1.6). The ES numerical
value is 131.22, which disagrees significantly with the
prediction of our approximate formula (7.22). However,
we can modify the five-loop ES prediction (1.6) in a
manner analogous to the modification required at four
loops to fit the value r = —2. We flip the signs of the terms
containing ¢, values for odd n, and leave untouched the
terms containing only even ¢ values (those terms contain-
ing only 7’s and rational numbers). Then the terms con-
taining {3 and/or {5 in the five-loop coefficient in Eq. (1.6)
acquire the same sign as the 7% term, instead of the
opposite sign, giving an analytic expression through five
loops:

) . o 11 . 73 .
f(x)n0d1ﬁed(a) =4 — ?aZ + mﬂAaS _ (2520 77.6 + §32>a4
887 a?
+ 8+ —2+10 Q>+ -
(56 7007 36 93{5)“

(7.25)

The numerical value of the five-loop coefficient in
Eq. (7.25), 165.65, agrees with the five-loop coefficient in
our approximate formula (7.22) to a remarkable 0.25%.
This excellent agreement in turn reinforces the notion that
r = —2 gives the correct analytical value of the four-loop
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coefficient. [We remark that a similar procedure at three
loops, using the approximation (7.1) for n = 4 and incor-
porating the two leading strong-coupling coefficients,
works very well to estimate the next perturbative term: It
predicts a four-loop coefficient of 30.22, which compares
nicely with our result (6.19).]

We now continue this procedure to higher loops, com-
paring various predictions to our approximate formula. To
obtain the ES prediction to higher-loop order, we use the
integral equation from which Eq. (1.6) is derived [31],

Ji (+2a1)

V2at
where the fluctuation density &(¢) is obtained by solving
the integral equation,

t [Jl(\/%t)

2at

£@) = a — 482 f " d 6 (1) (7.26)
0

a(t) = —

—2a f © arR(V2at, «/2_&#)&(#)} (7.27)
0

with the kernel

_ i@)Jo(1') = Jo(0)d, (&)

K, 1) P

(7.28)

where J, and J; are standard Bessel functions.
Solving this equation perturbatively through 12 loops,
we find the numerical values of the ES prediction to be
55 = 4 — 1.64494% + 5.95284° — 26.405a* + 131.224°
— 705.54a% + 4021.9a7 — 23974.4%
+ 1.4800 10°a° — 9.3958 10°4!°

+6.1024 10°a'"" — 4.0387 107a'> + ---,  (7.29)

as @ — 0. The values in Eq. (7.29) may be contrasted to the
ones obtained from the weak-coupling expansion of our
approximate formula (7.21) (with r = —2),

a — 1.64494% + 5.95284° — 29.2954*
+165.254° — 1002.7a% + 6379.34’

—41997.a% +2.8371 10°a° — 1.9555 10%4'°
+1.3699 107a" —9.7237 107a'> + - -+, (7.30)

approx __
fo =

as a — 0. The agreement between Egs. (7.29) and (7.30) at
five loops and beyond is rather poor. This disagreement is
not surprising, given that the ES four-loop value, used as
input into our approximate formula (7.30), differs signifi-
cantly from our calculation.

We have evaluated further terms in the weak-coupling
expansion of our approximate formula (7.21), up to 75
loops. The ratio of the nth term to the (n — 1)st term in
the series slowly settles down to a value near (—8)—at 75
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loops it is (—7.95)—suggesting a radius of convergence of
1/8, and a nearest singularity on the negative real axis at
d. = —1/8. This value does appear to agree with the
location of the nearest singularity in the original ES equa-
tion [47,87].

What happens if we generalize the four- and five-loop
sign flips in the ES prediction, and require that all contri-
butions at a given loop order come in with the same sign?

Doing so, we obtain

fodified ES — 4 — 1.64494% + 5.952843 — 29.2954*
+ 165.654° — 1007.24° + 6404.747
—42020.4% + 2.8223 10°4°
— 1.9307 10%4'0 + 1.3406 107a'!

—9.4226 10742 + - - -, (7.31)

as @ — 0. This modified formula is much closer to our
approximate expression (7.30), differing even at 12 loops
by only 3%. Of course, we have no reason to expect this
naive modification of signs in the ES formula to be correct
to all-loop orders, though it appears to get the numerically
largest contributions correct. Indeed, if we use this series to
systematically construct KLV approximations with larger
values of n in Eq. (7.1) as more terms are kept, the large a
coefficients do not settle to the string values (7.6). For
example, using the weak-coupling series (7.31) up to eight
loops as input to the KLV approximation (7.1) with n =7
leads to a prediction at strong coupling,

Fo~0.959 68\/% — 0081182+ O@@'?), (7.32)

which compares poorly with either the string result (7.7) or
with the four-loop prediction (7.16). It is noteworthy that
the series (7.31) corresponds to the contemporaneous pro-
posal in Ref. [47]. (We have checked agreement through 30
loops.) In order to improve the agreement of the higher-
loop KLV approximations with the string-theory strong-
coupling coefficients, further modifications to the proposal
are needed. Similar conclusions follow from the investiga-
tion of a sequence of Padé approximants, as discussed
below.

The surprisingly good agreement of Eqs. (7.30) and
(7.31) does, however, suggest that a simple repair of the
integral equation is possible. As a trivial example, by
modifying the kernel in Eq. (7.27) to K(~2at, —+/2at’),
we obtain

frodified K — 4 — 1.64494% + 5.95284° — 29.295a*
+ 165.65a° — 1011.9a% + 6490.047
— 43050.a% + 2.9271 10°8° — 2.0282 10%4'°
+ 1.4265 107" — 1.0156 10%4'2 + - - -,
(7.33)

PHYSICAL REVIEW D 75, 085010 (2007)

as @ — 0, which is in fairly good agreement with our
approximate result. Although this ad hoc modification
should only be taken as an illustration, it does show how
one can use our approximate formula (7.30) to guide
corrections to the ES integral equation. (It also suffers
from the problem that strong-coupling extrapolations do
not match the string values.) A proposed modification of
the integral equation, valid through @(4?) and leading to a
modification in the anomalous dimension at @(d*), is given
in Egs. (89) and (91) of Ref. [31]. The choice B = {3
corresponds to r = —2 in Eq. (6.23), as can be seen from
Eq. (92) of the same reference. This is also the choice
preferred by crossing symmetry in the strong-coupling
limit of the dressing factor, within the family of modifica-
tions newly studied in Ref. [47].

It is useful to investigate other approximation schemes,
to make sure that our results are not significantly biased by
the form of the KLV approximate formula (7.1). A well-
known method for incorporating information from differ-
ent expansion regions—here from both weak and strong
coupling—is that of Padé approximants, which fit a func-
tion to a ratio of polynomials in a suitable variable. In the
complex a plane, we expect that f(a) has poles or branch
cuts. As discussed earlier, there is evidence from the be-
havior of the KLV approximation and the ES kernel that the
singularity nearest the origin is at 4. = —1/8. For the
purposes of constructing the Padé approximant, however,
we will model the singularities by a branch cut terminating
on the negative real axis at the point —£&2/8. This assump-

tion leads us to introduce a variable u = /1 + 8a/£7, and
define the [(m + 1)/m] Padé approximant by

N0+N]u+...+Nmu’"
1+Du+...+D,u™’
(7.34)

fg(m-%—l)/m](u) _ (M . 1)

The relative degrees of the numerator and denominator
polynomials are fixed by the strong-coupling requirement
fo ~ +/@ ~ u. The factor of (u — 1) comes from the van-
ishing of f, at @ = 0. The remaining 2m + 1 constants can
be fixed by perturbative data, or by a mix of weak- and
strong-coupling data. Note that, when m increases by 1,
two more input numbers are required.
Consider first the [3/2] Padé approximant,

NO +N1M +N2M2

3/2
E/](u)=(u_l) 1+D1M+D2M2’

(7.35)

which is implicitly a function of £, which parametrizes the
location of the cut termination on the negative real axis. We
solve for Ny, Ny, N,, Dy, and D, as a function of &, using
the two strong-coupling coefficients in Eq. (7.6), plus the
one-, two-, and three-loop coefficients. We then expand the
result in 4 in order to estimate the four-loop coefficient.
This procedure will give us information about £. The four-
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loop coefficient is plotted in Fig. 14. The value ¢ =1 is
picked out rather clearly by this plot, as the (approximate)
first location where the curve crosses the value f(()4) =
—(7375/2520 + 2) = —29.2947 (for r = —2). At £ =
1, formula (7.35) predicts —29.521. The second crossing is
a spurious feature of the Padé, and the third crossing, near
& = 2, is highly implausible, based on the strong growth in
the perturbative coefficients already at four loops, not to
mention at higher orders in the KLV approximate formulas.

In Fig. 15 we plot the ratio of the [3/2] Padé to the KLV
approximate formula (7.21), for various values of £ near 1
that produce four-loop coefficients that are not too far from
—29.2947. Except for the pathological case of & = 1.05,
all the ratios are within about 1% of unity. For the preferred
value of & =1, the [3/2] Padé agrees with the KLV
approximate formula everywhere to within about 0.1%.
We also investigated the [4/3] Padé, for & = 1. This ap-
proximant requires two more input terms, namely, the four-
and five-loop coefficients. We used the ‘sign-flipped”
values in Eq. (7.25). The resulting expression predicts the
six-loop coefficient to be —1005.5, in quite good agree-
ment with the value of —1002.7 in Eq. (7.30). On the other
hand, a plot of this function reveals a singularity on the
positive real axis, at u = 4.791, which is an artifact of a
positive root to the cubic denominator polynomial. (The
quadratic denominator polynomial in the [3/2] Padé for
& = 1 has complex roots, relatively far from the real axis.)
We also constructed a sequence of Padé approximants
(7.34) to see how the strong-coupling coefficients are
predicted by the proposed sign-flipped sequence (7.25).
As with the KLV approximation, we do not find any con-
vergence to the string values (7.6). For example, the [4/3]
Padé, based on the first seven loops in Eq. (7.25), estimates

[3/2] Pade Prediction of Four—Loop Coefficient
—26 — e B prr i e B
I I I I

T R

£,®

30—

L [3/2] Pade prediction
_30}—

Lo L L
0.0 0.5 1.0
£

FIG. 14 (color online). Value estimated for the four-loop cusp
anomalous dimension f(()4) by the [3/2] Padé approximant (7.35),
as a function of the parameter ¢ controlling the point at which
the cut is assumed to terminate, 4 = — &2/8.
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[3/2] Pade over Best KLV Approximation
1.02 T T T T T T

ratio

FIG. 15 (color online).

Ratio of the [3/2] Padé approximant
(7.35), as a function of the parameter £, to the KLV approximate
formula (7.21), as a function of the coupling a.

fo=0956 96\/§ —0.061164 + O(a='/?), (1.36)

which is close to the KLV estimation (7.32), and signifi-
cantly different from the string values.

In summary, the different nature yet very similar nu-
merical results from the Padé approximation method gives
us confidence that the KLV approximation (7.21) is good to
better than a percent for all values of the coupling. It also
gives confirming evidence that the singularity nearest the
origin is located at 4, = —1/8.

VIII. ANALYSIS AND CONCLUSIONS

Using unitarity, we constructed the planar four-loop
four-gluon amplitude in MSYM, and verified the structure
of its infrared divergences through 1/€2. At order 1/€> we
were able to numerically test the prediction of Eden and
Staudacher for the four-loop cusp anomalous dimension.
Our result disagrees with their prediction. Using an ap-
proximate interpolating formula due to Kotikov, Lipatov,
and Velizhanin [34], with the first four loop orders as input,
we were able to estimate the first two coefficients of the
strong-coupling expansion, coming to within 2.6% and 5%
of the string-theory prediction. Improving the approximate
formula by using the string predictions as additional input,
we obtained a formula for the cusp anomalous dimension
which we expect to be valid for all couplings, to better than
1%. We have confirmed this using Padé approximations.
Not surprisingly, given the disagreement at four loops, at
higher orders the weak-coupling expansion of our approxi-
mate formula (7.21) has large disagreements with the ES
prediction (7.29).
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There are a number of conceivable reasons for the
discrepancy at four loops, which we shall examine briefly
in turn:

(i) Different definition of the coupling g.

(ii) Difference between the cusp anomalous dimension

defined for spacelike vs. timelike kinematics.
(iii)) Breakdown of integrability.
(iv) The wrapping problem.

(v) The dressing factor.

We expect the latter reasons to be more likely than the
former.

In principle, our result could differ from the ES result
simply because we are expanding in coupling constants
that differ beginning at three loops, say &’ = a + xo{3a*
for the appropriate value of x,. We use the classical cou-
pling as our expansion parameter, so if this explanation is
correct, the asymptotic Bethe ansatz would have to be
using a different coupling. For example, in the magnon
dispersion relation, discussed in Eq. (2.18) of Ref. [67], a
parameter is adjusted to match the perturbative coupling of
MSYM, via the relation a8 = @/2. [Here o and B de-
scribe the action of two central charges adjoined to an
SU(2|2) algebra acting on the spin chain.] If this simple
substitution were to have corrections starting at order &*, it
would lead to a four-loop discrepancy between the ES
prediction from integrability and our direct calculation in
MSYM.

Suppose our result and the ES result corresponded to
cusp anomalous dimensions of different signature, i.e. one
spacelike and one timelike. Could this difference account
for the different values? According to the results of
Dokshitzer, Marchesini, and Salam [88], it cannot, because
the leading large-x limits of the spacelike and timelike
DGLAP kernels should be identical, to all loop orders.

Integrability of the dilatation operator, interpreted as a
spin model Hamiltonian, has not been proven to hold to all
orders. However, the fact that there are very similar inte-
grable structures at very strong gauge coupling—in the
classical sigma model [25] and even in its quantum cor-
rections [26]—suggests that integrability should persist.

Generically, a wrapping problem can occur if one tries to
apply a Bethe ansatz solution for a spin interaction that has
longer range than the number of spin sites, which is equal
to the twist J. Because the range of the interaction in-
creases with the loop order, at fixed J this problem be-
comes more severe with increasing loop order. It may well
be that the wrapping problem prevents the asymptotic
Bethe ansatz from being applied to short (twist-two) op-
erators, even if it can be used for longer ones. The wrap-
ping problem is generically supposed to arise at order 4’2
for operators of twist J. It is only other symmetries that
protect the one-, two-, and three-loop cusp anomalous
dimensions from being affected by the wrapping problem.

It is quite possible that the discrepancy is resolved by the
so-called “‘dressing factor,” an overall phase for the AdS/
CFT S matrix, which is consistent with integrability, the
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PSU(2,2|4) symmetry, crossing symmetry, etc. The strong-
coupling expansion of the dressing factor is known to be
nontrivial. Indeed, the first two terms in the semiclassical
expansion of the dressing factor on the string side have
been worked out [42—44]. There have also been very
interesting recent analyses of the properties of the dressing
factor under the worldsheet crossing symmetry [45,46].
However, it remains unclear at which order in the weak-
gauge-coupling expansion the dressing factor becomes
nontrivial. If the reason for the discrepancy is indeed the
dressing factor, then we now know it begins at four loops.

Eden and Staudacher made a specific proposal for mod-
ifying the asymptotic Bethe ansatz. They proposed a dress-
ing factor containing a parameter S, thereby modifying the
kernel of their integral equation. This leads to a shift in the
four-loop cusp anomalous dimension proportional to 8. If
this proposal is correct, we determine the value of this
parameter to be close to, if not exactly, 8 = £5.

Anomalous dimensions of many other classes of opera-
tors are linked through the PSU(2,2[4) symmetry, and are
therefore affected by a nontrivial dressing factor. As just
one example, the anomalous dimension of the operator
O = Tr(X?Z3) + ..., where X and Z are two of the three
complex scalar fields in MSYM, is altered by an amount
proportional to 3, to have the form [31]

115
4a — 682+ 178° — (T + 8,8)&4 b @B

Thus the Eden-Staudacher proposal for the resolution of
the discrepancy could be tested by a direct computation of
the four-loop anomalous dimension of @. For B8 = 3, it
would appear to result in a nonuniform transcendentality
for this quantity [31]. (A caveat is that one needs to account
also for the transcendentality assignment of harmonic sums
[35], which are sums of rational numbers.) As pointed out
by Eden and Staudacher, a nonzero value of 8, through its
effect on the anomalous dimension of O, apparently rules
out the Hubbard model Hamiltonian as a candidate for the
SU(2) dilatation operator beyond three loops [89].

The Eden-Staudacher modification is the lowest-order
term of a general form for the dressing factor S|, =
exp(2i6(xy, x,)), with

e(xkr xj) = Z Z cr,u(Qr(xk)Qv(xj) - qv(xk)Qr(xj))y

r=2v=r+l1

(8.2)

suggested in the literature [42,43,46,65—68]. In this equa-
tion, the ¢, are the spin-chain charges,

q,(x) = (8.3)

e )

and the x;- are rapidities entering into the Bethe ansatz by
which the spin chain has been solved at lower orders.
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All known quantities, anomalous dimensions or ampli-
tudes, in the N = 4 supersymmetric theory have a uni-
form transcendentality. That is, all polylogarithms or zeta
constants at a given order in the perturbative expansion
have the same polylog weight or transcendentality. The ES
proposal deviates from this observed property in some
quantities, such as Eq. (8.1).

Is the dressing phase in Eq. (8.2) general enough to
accommodate our expectations for the N =4 theory?
As noted by Eden and Staudacher, maintaining uniform
transcendentality with purely rational coefficients requires
every power of r or # in their integral equation to come
along with a power of the coupling g. Now, the coefficient
of the §32 terms, which we wish to modify, arises from a
term in the kernel proportional to ##'. This term is odd in 7'.
Such a term cannot arise from Fourier transforming a lone
charge ¢, because we are interested in symmetric densities,
and hence will ultimately take the symmetric part of this
transform. The symmetric part is either zero (for ¢, with r
odd) or a symmetric function of #. In Eq. (8.2), every term
is linear in a charge ¢(x;), and so it cannot lead to the
modifications we need. We must therefore seek a more
general dressing factor, or else introduce nonrational
coefficients.

Very interestingly, in a contemporaneous paper, Beisert,
Eden, and Staudacher [47] have done just the latter, in such
a way that, at least for the anomalous dimension under
consideration, uniform transcendentality is maintained.
This leads to a modified integral equation of the ES type
for the cusp anomalous dimension. At four loops the
resulting anomalous dimension is in complete agreement
with our direct computation of this quantity. Their proposal
is compatible with integrability and with the KLOV tran-
scendentality principle for the cusp anomalous dimension,
and violates perturbative Berenstein-Maldacena-Nastase
(BMN) scaling [4] starting at four loops. At five loops their
proposal also matches our prediction of this coefficient,
given in Eq. (7.25), based on using both KLV [34] and Padé
approximations. At higher-loop orders, their proposal cor-
responds to Eq. (7.31) and appears to properly incorporate
the numerically largest contributions. That is, it matches
reasonably well our approximate expression (7.30).
However, we find that successive KLV and Padé approx-
imations, based on truncations at increasingly higher or-
ders, through 13 and 11 loops, respectively, do not match
the strong-coupling string results. This indicates a tension
between the weak- and strong-coupling results, and sug-
gests to us that further modifications may be necessary. The
question merits further study.

We remark that, assuming the KLOV conversion prin-
ciple, our result for the leading-color four-loop cusp
anomalous dimension also predicts a piece of the corre-
sponding result in QCD. Which piece? At three loops and
below, the QCD result is a polynomial in the SU(N,)
Casimir operators C4 and Cr, while the MSYM result is
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composed solely of C4 = N, so it has no subleading-color
terms. The MSYM result provides one constraint on the
leading-transcendentality parts of the coefficients of the
color factors in QCD, such that, after the group-theory
Casimirs have been set to the values Cr = C, = N, the
leading-color terms are equal to the MSYM result. Starting
at four loops, however, there are color factors that cannot
be reduced to polynomials in C,4 and Cp. The relevant
color factors are those of L-loop propagator diagrams.

In MSYM, any triangle subdiagram leads to a group-
theory factor of Cy,, times a lower-loop group-theory fac-
tor. So the question is, when do no-triangle propagator
diagrams first appear? At three loops, there is one non-
planar no-triangle propagator diagram, but its color factor
vanishes identically using the Jacobi identity (see e.g.
Ref. [52]). At four loops, Fig. 6 (ds) illustrates the unique
such planar graph (when the two pairs of external lines on
the left and right sides of the graph are each replaced with
single lines). There are a number of nonplanar graphs as
well. Hence the cusp anomalous dimension in MSYM can
now have subleading-color terms. Presumably the KLOV
principle will apply with respect to the leading-color,
planar terms, once the fermionic color factors in the
QCD result are shifted from the fundamental to adjoint
representation. But will it also apply to subleading-color
terms? If conformal invariance is the main issue [35], then
it should. But if planarity is important, perhaps it will not.
Of course, the question is a moot one until the cusp
anomalous dimension in QCD and the subleading-color
part of that in MSYM are both known at four loops. Similar
remarks apply to the four-loop form-factor quantity Gg‘).

In order to confirm that the four-loop cusp anomalous
dimension is given exactly by the O(a*) term in Eq. (7.25),
it would be important to evaluate it analytically. To do so,
the four-loop integrand (4.1) would have to be evaluated
analytically through O(e™?) instead of only through
O(e™*) as done here. It would also be extremely interesting
to evaluate the four-loop integrand through O(e), to ex-
plicitly check the four-loop iteration relation (2.25) for
scattering amplitudes [7,8].

The program MB [62] can be used to express the coef-
ficients at each order in the Laurent expansion in € as a sum
of finite contour integrals. However, the number of such
integrals increases rapidly with a decreasing inverse power
of €. This property, along with an increase in dimension-
ality of the integrals, makes it harder to compute the
integrals purely numerically, requiring a substantial in-
crease in computational resources for the same relative
level of accuracy. For example, the order € 2 term in
Mff) in Table II has a relative precision of 2 X 1074, 40
times larger than that of the order e 3 term, despite having
had significantly more computing resources applied to it.
Although a brute-force computation of the 1/€ and €°
terms could probably be completed with sufficient resour-
ces, it would be considerably lengthier than the present
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computation. Accordingly, we believe that additional ana-
Iytic work would be rather desirable before proceeding
further.

The information provided in this paper offers a guide to
further progress in determining the integrable structure of
planar MSYM, as well as in studying the transition from
weak to strong coupling. For the cusp anomalous dimen-
sion, the striking match between the first two coefficients
of the strong-coupling expansion, as estimated by us, using
our four-loop result as input to the KLV approximation
[34], and as obtained from string theory [33,69-71], pro-
vides good evidence that we have an excellent numerical
understanding of this anomalous dimension at any cou-
pling. The same approximation strongly suggests that the
correct analytic forms of the four- and five-loop perturba-
tive coefficients are the ones given in Eq. (7.25). These
types of approximations can also be useful for checking
whether a given ansatz for higher-order terms in the weak-
coupling expansion is consistent with the known string-
theory strong-coupling results. This should help in finding
the correct integral equation describing the MSYM cusp
anomalous dimension. Another intriguing result from the
extrapolation to strong coupling is that the next term in the
expansion [@(a~'/2)] should be very small and may even
vanish. Finally, the remarkably good numerical properties
of the approximate formulas indicate that the transition
between weak and strong coupling is smooth for planar
N = 4 super-Yang-Mills theory.
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Note added in proof.—After our paper appeared, a nu-
merical solution to the new integral equation proposed in
Ref. [47] was provided by Benna, Benvenuti, Klebanov,
and Scardicchio [92]. They used this solution to extract the
first two terms in the strong-coupling expansion of the
solution numerically. An analytic value for the leading
coefficient in the strong coupling expansion has also
been given in Ref. [93]. These results agree with the
predictions from string theory [69,71]. This provides
strong evidence for the correctness of the new integral
equation, whose perturbative expansion was independently
proposed in Eq. (7.25). It suggests that the KLV and Padé
approximations used in this paper, while working very well
at low orders, are not sufficiently flexible to fit the very
high order behavior of the solution to the new integral
equation, and extrapolate it properly to strong coupling.
On the other hand, the KLV approximation (7.21), based on
known results through four loops, turns out to be a quite
accurate representation of the full cusp anomalous dimen-
sion: it lies within 0.2% of the numerical solution for all
values of the coupling.

APPENDIX A: EVALUATING FOUR-LOOP
INTEGRALS BY MB REPRESENTATION

To obtain Laurent expansions in € for our integrals, we
use the Mellin-Barnes (MB) technique, which has been
successfully applied in numerous calculations (see, e.g.,
Refs. [8,55,57-59] and chapter 4 of Ref. [60]). It relies on
the identity

1 _j’ﬁ+im Y? F()\+z)F(—z)$ (AD)

X+ g XAF2 () 27’

where —ReA < 8 < (. This identity basically replaces a
sum over terms raised to some power with a product of
factors.

It is convenient to keep arbitrary powers of propagators
and numerator factors in each of the MB representations.
In this way, one can check the MB representations by
setting some of the indices to zero, in order to obtain a
simpler integral whose value is already known. Also, we
can obtain the values of the two non-rung-rule integrals of
Fig. 4 from two of the rung-rule integrals of Fig. 2 by
setting some of the indices to zero.

We define a four-loop integral with general indices as

F9ay, ..., a,;s, t;€) = (—ie€Y = d/2)*
d?p d?gdiuddv

_— A2
o B

where p, ¢, u, v are the four independent loop momenta,
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and n; is the number of indices corresponding to the p?
propagator and numerator factors in a given graph. For
each graph (x) the labels correspond to the propagator and
numerator labels of Fig. 2. In this notation a numerator
factor is indicated by negative indices.

Experience shows that a minimal number of MB inte-
grations for planar diagrams is achieved if one introduces

e4ey(_ 1)a(_s)87a*4e
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MB integrations loop by loop, i.e. one derives a MB
representation for a one-loop subintegral, inserts it into a
higher two-loop integral, etc. This straightforward strategy
provides the following MB representations for the
Feynman integrals corresponding to graphs of Fig. 2,
with general powers of the propagators and irreducible
numerators:

[(ay; + z1)

(A3)

1 +ioo +ioo 1 £\z7
F@(ay, ... ap;;s, t;,€) = . f f dz-(—)
! 13 F(a])r(él- - a9111y12y13 - 26) (27Tl)11 —joo —joo jl:[1 1 N
=2,57,9,11,12,13
re- dg 12,13 — € — Zl,z)r(z —dg11,12 — € Z1,3)
lﬂ(alo - Zz)r(as - Z3)F(a6 - ZS)F(CM — Z6)
% [(ag + 21230 (ag 11,1213 = 2+ € + 2123 (210 — 2) (24 — 24)
I'(4 —asgio— 2 + 21034 — as67 — 2€ + 2456)1'(4 — a1 53 — 2€ + 259 10)
« I'2—as—as—€+z+23— 2 —26)[(as910 =2+ €= 2103+ 2456)
F(flz. - Z9)F(611 - Zs)
X T(ay + 27)1(z7 = 210)T (2 —ag7 — € — 2310 + 245)(2 — a1, — € + 2510 — 27)
XTQR—ay7 —€— 2910 T ) (@103 =2+ €+ 27 = 23010 (2 —az3 — €+ 2910 — 27)
X T(a7 + 2501012 — as 10 — € + 210 — z45)[(as + z4 + 25 + 26)
X T(aser =2+ €= 2456 T 280100 [] T(=2)
=2.3,5,6,7,8,9
467(_1)(1(_5,)8*(1*46 1 +ico tico 12 £\ 2012
FOay,, ... ay;s t,€) = ¢ - f f dz-<—> '
! ! I1 L(a)T(4 — ay567 — 2€) Qmi)1? ) —ico —ioo ]l:[l s

j=2,4,5,6,7,9,12

X

I8 —a+a;—4e—z912)

(10 —a — 5€ — z9)T'(ay; — z10)[(a; — z)
I(ag + z910) (a3 — 210 + 21212 — as67 — € — 2122 — ag57 — € — 213)

F(4 —aj,3 —2€+ 2123 (a1g — 24511 (ag — z6)I'(az — 2z3)

% (a7 + 21230 (ags67 — 2+ € + 212300 (2011 — 25)1(2 — ayp1314 — € + 2481011 — 212)

[(ajg — z7)T'(4 — agg 10 — 2€ + 2567)

% las + 2112 —ay5 — € + 213 — 257)(ay + 256 7)1 (a1s — 24511 + 212)
I'(ai234567891011 =6+ 3€ + z4801011)

XTQ2—aj,—€e+z1p = z568) (258 =2 (@123 =2+ € = 2103 + 25678)

XT(2—ago— €+ 256 = 201012 = @910 — € + 257 = 29)[(a — 8 + 4€ + z912)

X T(agg10 =2+ €= 2567 + 291011)

I(-z), (Ad)

j=2,3,4,67,8,9,10,11,12
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F(c)(al, ..

F(d)(al, .

F(e)(al,...

Q143 8, 15 €)

,dy5;8, 1, €)=
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e*er(—1)%(—¢)8aae 1 [ﬂ'oo /‘Jrioo ﬁ d (S)ZS,&II
= - e Zil—
l_[ F(aj)r(4 — a4s567 T 26) (2771)11 —ioo —io j=1 ! !

Jj=24,5,6,7,8,12

U(ayy — 210+ 2)TQ2 —ays7 — € — 24 3)
C(ay — z10)(a; — 2)T(4 —ay 53 — 2€ + 2123)
I'(2—ase; —€— 2104 (as + 214 (567 =2+ €+ 21032 —ay3 — €+ 213 — 25)
e - a1,23,4567891011 — 4€ — z5)(ag — zg)I'(ayo — 24‘7)F(a3 —z3)
T(ay + 2562 —a1p — €+ 215 = 25670 (257 —2) (@123 =2+ € — 2103 + 2567)
I(aip3456711 =4+ 2€+ 24567)(10 —a — Se — z55)[(a13 — 20)

XT(6 —ajr3456791011 —3€ —258)'(8 —a+ajp, —4e —z551)'(a — 8+ 4e + z5511)

X T(ayg + zg10 — 247 (@13 + 211 — 20)T'(2 — ago 10 — € + 2467 — 28910 (@7 + 2123)

1
XTQ2 = apiz1s — €+ 2910 — 21 (a9 — 26 + 239) l_[ ['(—z)), (AS)
j=2

€Y (—1)4(—s)B a4 1 Hioo oo 18 T\
s A1438, 1 €)= i
@i 5,1 €) [1 [(a)l'(4—ays67 —2€) 2mi)'* j*ioo /1"‘” Jl:! Z/<s>

j=24,5,67.9,12
% I'(ai; + z1)1 (a9 + 214)1 (214 — 211)
I'(a; = 2)l'(4 —a153 —2€ + 2153)(a13 = 25,10)
I'2—aser—€—212412—ays7 —€—z135)'(as + z145) (ay567 =2+ €+ 212345)
I(ay; — z8)l(ag = 24012 T(8 = a1234567.11.12.13,14 — 4€ = 2467,0) 1 (@10 — 27,13)
I'2—agi0—€+z711,13 = 22— a3 — €+ 213 — 26810 (ar + 2678) (a7 + 2123)

XT(ago10 =2+ €—2470111213 + 2182 — a1, — €+ 215 — 2679)
XT(6—=ainsa567.11,1214 —3€ = 2456791011136 = a1234567,12,13,14 = 3€ —2467.89,11.12)

XTQ2—age— €+ 2491112~ 214)(@1234567,11,121314 — 6+ 3€ + 2467011,1213)] (269,10 — 21)

yyyyyy

X I T(~z)), (A6)
j=2,3,45,6,7,8,9,10,12,13,14

e*er(—1)2(—s)8-a"4e 1 +ioo tico 12 Az
- lQ[ [ l_[de<—>
I1 F(a)I'(4—ass67—2€) Qmi)'* ) -ico —ico s
=2,4,5,6,7,9,11
I(ag + 212l (2 —ase7 — € — 2121 (a7 + 2153)
I'(ayg— 21 (@) — )T —ay 53 — 2+ 253)
I'2—ays7—€—z134)(ay567 =2+ €+ 215312 —a;,—€+21,—256)
F(as - Z6,10)F(a13 - Z7)F(d3 - 13)F(8 —a1234567,11,12,13,14 — de — 25,6)F(a12 - Z4,8)
I(ay +2567) 02 —ays — €+ 23— 2578) (258 —2) (@103 =2+ € — 2103 T 25678)
I(a23456714 =412+ 245678 (a15s —250)[(4 —ago 1015 — 2€ + 2569,10.11)

XT'(6— a1,234,567,1213,14 ~ 3€ — Z5,6,9,10)F(a&9,10,15 —2+te—2z560101 T zi)l(as + 210 — 25,9)
XT'Q2- a1z — €1 2478 ~ 291 D2 - dg 1015 — € T 25911 — Z12)

XT(a1p3456711,121314 — 60+ 3€+256091011)(2 —agg 15 — €+ 256910 — 212)

12
X T(as + 21 (a3 — 27 + 29,1011 (@1, — 248 + 29) l_[r(—Zj), (A7)
j=2
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dey(_1\a( — \8—a—4e
F(a,, .. eV (=1)(=s)
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. a15; S, 15 €) =

1 +ico +ioo ﬁd £\2s56
- zZil -
nle F(aj)r(4 —ajn3a T 2e)I'(4 — Aas67,8 — 2¢) (2771)14 f—ioo f—ioo =1 ]<S)

I'(2—ag7s — € — 211,13 (ag + z11,14)

X

F(4113 - ZlO,lZ)F(all - Z14)F(010 - Z3,13)
F'2—ases — € —z11,1210(ag + 211121300 (@13 + 21034 — 210121 (ay; + 245 — 214)

(a4 — Z7)F(a9 - Zz,s)r(an — z29)I'(6 — 4123491015 — Je+ <1,2,3,4,11,13 — Z7,9,10)
[(ayy + 205 — 27)1(4 — asgr811,1314 — 2€ — 223451113 T 27,10 (@9 — 208 + 26)

['(as — Z4,11)F(6 — d56,7,8,11,12,13,14 — 3e+ 27910 — 211,13)

,,,,,

XT(4—aip34015 —2€+ 210411 — 2679100 (@4 + 27910 (a2 + 278)

XTQ2—ay101314 — € = Zip4as5 T 270101214 (@1234 =2+ €+ 2759,10)

X T(ai3491015 —4+2€ = 212341113 T 267,9,10) l_[F(_Zj)’

14
(A8)
j=1

where a4,5,6,7 = dy + das + ag + a, a = za,-, 211,12,13 = 211 + 212 + 213 etc.
From these general integrals, by choosing appropriate indices, we may then obtain the eight integrals that appear in the

four-loop amplitude,

J@O = ¢qF@(1 1,1, 1,1,1,1,1,1,1,1, 1, 155, 75 €),

)

(A9)

IO =s2F® (11,1, 1,1, 1,1,1,1,1, =2, 1,1, LI;s, 1; €), (A10)
J9 = $3tFO, 1,1, 1, 1,1, 1,1, 1,1, =1, 1,1, 155, £; €), (A11)
JO = 3FO(1, 1,1, L1, L1, 1L, 1,1, 1,1, 1, =158, 15 €), (A12)
JO© = ¢2tFO(1,1,1,1,1,1,1,1,1,1,1,1,1, -1, —L;s, £; €), (A13)
JO = }Yiir(l)sth(f)(l, LL,L1,L1,L1L,L1L1,1—1+mn —1;ste€), (A14)
s2F9(1,1,1,1,1,1,1,1,1,0,1,1,0,0; 5, 1; €), (A15)

I =22F0(1,1,1,1,1,1,1,1,1,1,1,1,0,0,0; 5, 1; €). (A16)

For the case of integral (f), in order to obtain a valid
analytic continuation to the region € — 0 using MB [62],
it turns out that we first need to perform an analytic
continuation in one of the indices, by an auxiliary parame-
ter 7). After the analytic continuation we may set n — 0.

APPENDIX B: HARMONIC POLYLOGARITHMS

We express the leading poles in the integrals and the
amplitudes in terms of HPLs [63], generalizations of ordi-
nary polylogarithms [94]. Here we briefly summarize their
definitions; see Ref. [63] for a more complete treatment.

[
Routines for numerically evaluating HPLs may be found in

Refs. [64,86].
The HPLs of weight n are denoted by H, ,, , (x) =

H(ay, ay, ..., a,;x), with a; € {1,0, —1}. They are defined
recursively by
Hypoa @ = [ d1F OH, 0,0, (BD
where
1 1
fe1(0) :]T, folx) ==, (B2)
Fx X
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Hi(x) = FIn(1 ¥ x), Hy(x) = Inx, (B3)

provided that at least one of the indices a; is nonzero. For
all a; = 0, one defines

1
Hy,_o(x) = —'ln"x. (B4)
n.
For weight less than or equal to 4, any HPL having only

the parameters a; = 0 and 1 can be expressed [63] in terms
of the standard polylogarithms [94],

) Zj .
Li,(z) = E sz
j=1] 0

Liy(z) = — ﬁ:% In(1 — 1),

AL, 0
(BS)

with n =2, 3, 4, and where z may take the values x,
1/(1 = x),or —x/(1 — x). (For n < 4, polylogarithm iden-
tities imply that not all values are required.) For the four-

PHYSICAL REVIEW D 75, 085010 (2007)

loop results presented in Sec. VIA through O(e™*), we
indeed need only a; € {0, 1}, and weights up to four. In
Sec. VIB, however, we give analytic results for lower-loop
amplitudes at the symmetric point (s,7) = (=1, —1)
through O(e~2), in which we encounter weights up to
six. In the Euclidean region for the planar four-point
process, namely s < 0, t <0, u > 0, with the identification
x = —t/s, the argument x of the harmonic polylogarithms
will be negative.

The HPLs obey sets of identities [63] that allow the
removal of trailing zeroes from the string of parameters
a;. The remaining H, ,, , (x) with a, =1 are well be-
haved as x — 0; in fact, they all vanish there. Integrals
appear in the MSYM amplitudes with both arguments (s, 7)
and (7, 5), so we also need a set of identities relating
harmonic polylogarithms with argument x = —¢/s to
those with argument y = —s/t = 1/x. These identities
are given in Ref. [63]. A few directly relevant examples
may be found in the first appendix of Ref. [8].
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