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We consider the quark-antiquark Green’s function in the Schwinger model with instanton contributions
taken into account. Thanks to the fact that this function may analytically be found, we draw out singular
terms, which arise due to the formation of the bound state in the theory—the massive Schwinger boson.
The principal term has a pole character. The residue in this pole contains contributions from various
instanton sectors: 0, �1, �2. It is shown that the nonzero ones change the factorizability property. The
formula for the residue is compared to the Bethe-Salpeter wave function found as a field amplitude. Next,
it is demonstrated, that apart from polar part, there appears in the Green’s function also the weak branch
point singularity of the logarithmic and dilogarithmic nature. These results are not in variance with the
universally adopted S-matrix factorization.
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I. INTRODUCTION

The Schwinger model (SM) [1], describing a massless
fermion field in interaction with a gauge boson in two
space-time dimensions, has become a very fruitful system
in field theory. Above all it possesses many of the features
one is likely to find in the theory of strong interactions.
Therefore, thanks to its relative simplicity, SM is expected
to be a perfect testing layout for the various nonperturba-
tive aspects of QCD. They involve confinement, topologi-
cal sectors, instantons, and condensates. Other interesting
and nontrivial features one should mention are the exis-
tence of anomaly and gauge boson nonzero mass genera-
tion without the need of introducing an auxiliary Higgs
field. Naturally some of these properties are related with
one another, being in fact different manifestations of the
same physical phenomena.

Another aspect that should be appreciated in SM is the
exact solvability of the equations, which allows one to
perform many calculations without unpleasant approxima-
tions and additional assumptions or simplifications. One
example is the quark propagator (the term ‘‘quark‘‘ means
here the fundamental fermion, due to its confinement
property), which has already been found by Schwinger,
but also other functions stand wide open. For instance, in
our previous work [2], we were able to obtain the explicit
formulas for the whole set of four-point Green’s functions.

A very troublesome and long-standing question in quan-
tum field theory is the consistent description of bound
states. The problem becomes particularly severe when
such a state has a relativistic character and retardation
effects in the interactions among constituent particles can-
not be neglected. Over half a century ago, the equation for
the bound state wave function—the so-called Bethe-
Salpeter equation—was formulated [3,4]. This equation
is, however, extremely complicated. First, it is a multi-
dimensional integral equation and these are always more

challenging than differential ones. Second, being an equa-
tion for the unknown bound state wave function, it re-
quires, as an input, the knowledge of the nonperturbative
propagators for ingredient particles and the interaction
kernel between them. Naturally no such quantities are
known in realistic field theories. From the very beginning
one is then doomed to extremely strong approximations.
As to the calculations in field theoretical models, there are
only a few examples (for instance, the so-called Wick-
Cutkosky Model [5]), where it is possible to find solutions
but even in that case one is forced to simplify the equation
either by neglecting relative time dependence or simplify-
ing the interaction kernel together with one-particle
propagators.

The other possibility in investigating bound states, in-
stead of solving the Bethe-Salpeter equation, is to consider
the four-point Green’s function in the appropriate channel,
and find the residue of the pole corresponding to a given
bound particle [6,7]. This residue is constructed just from
the Bethe-Salpeter wave functions. However, knowing the
full four-point function is usually as unlikely as solving
exactly the Bethe-Salpeter equation itself. One should then
all the more appreciate the SM, for which the exact form of
the Green’s function in question was found [2,8]. This is
the main reason why we decided to look for the bound state
singularity in this model, to analyze the nature of this
singularity, and to derive the formula for the Bethe-
Salpeter function. The calculation performed primarily in
Sec. III shows the complete agreement with general con-
siderations [6,7,9].

A certain new aspect appears, however, if one takes into
account that the SM is a topologically nontrivial theory
[10–15]. As it is well known, fermion Green’s functions
gain contributions from nonzero instanton sectors. This is
connected with the existence in the theory of the (infinite)
set of topological vacua, the superposition of which con-
stitutes the true ground state. The expectation values for
field operators in this new state become now sums of
matrix elements taken between various topological vacua.*Electronic address: torado@fuw.edu.pl

PHYSICAL REVIEW D 75, 085005 (2007)

1550-7998=2007=75(8)=085005(9) 085005-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.75.085005


If a given operator has nonvanishing off-diagonal ele-
ments, then they have to enter into the calculation, apart
from the main, diagonal contributions. Distinct topological
vacua correspond to different, and topologically inequiva-
lent, configurations of the gauge field, and the correspond-
ing transition between them is described by the instanton
field. There is a proportionality between the topological
index of a vacuum and the chiral charge and, therefore, off-
diagonal elements may appear only for the chirality variant
operators. To that category belong the products of fermion
fields and, consequently, we may expect the appearance of
certain new terms in the Green’s functions involving
quarks. The explicit calculations for the two- and four-
point functions has been done in [16], where these supple-
mentary terms were explicitly given.

Now the question arises if, and how, these contributions
modify the behavior of the two-fermion Green’s function
close to the bound state singularity. To this question we
devote Sec. IVA (one instanton contributions) and
Sec. IV B (two instantons contributions). Our results in-
dicate two modifications. First, we see that the residue in
the polar term acquires new ingredients: the Bethe-Salpeter
wave function is modified—and this is quite obvious,
since it is defined through the product of the two quark
fields, which is sensitive to instanton background—and the
other term appears, which makes the residue nonfactoriz-
able. Yet, it may still be written as a sum of several
factorizable terms. Second, apart from the pole, we find
terms which show another type of singularity—branch
point singularity of the logarithmic and dilogarithmic na-
ture. These contributions are small in comparison with the
principal term, and in the usual bound state pole deriva-
tions [6,7], are neglected by the proof construction itself. In
the SM, we happily dispose the full Green’s function
without being obliged to make any additional assumptions
or simplifications, which usually remain beyond our con-
trol, and those terms survive.

On the other hand, the calculated instanton contributions
disappear for transition amplitudes between asymptotic
states and to that extent our results are in agreement with
the analyticity properties of the Smatrix [6,17–22]. For the
confined particles one cannot require the cluster decom-
position on the level of the Green’s function. The main
argument referring to the possible separation of certain
subgroups of particles into the distant space-time regions,
may be applied only for hadrons, but neither for individual
quarks nor even q �q structures, if they do not bear the
complete set of quantum numbers of a meson. It is then
not surprising that the quark Green’s function reveals much
richer analytical structure than the hadronic S matrix does.

Finally, in Sec. V we calculate directly the Bethe-
Salpeter wave function as a q �q field amplitude between
one-particle state of momentum P and the vacuum state,
and find that it corresponds to that obtained from the
residue of the factorizable part of the preceding section.

II. BASIC DEFINITIONS AND NOTATION

The Lagrangian of the Schwinger model, describing a
fermion (quark) field � in interaction with a gauge boson
A�, has the following form:

 L �x� � ���x��i��@� � g��A��x����x�

�
1

4
F���x�F���x� �

�
2
�@�A��x��2; (1)

where � fixes the gauge and g is the coupling constant. The
space-time has one time and one space dimension. In this
world, it is simplest to choose the quark field in the two-
component form. In this case, the 2� 2 Dirac gamma
matrices may have the representation given below:

 �0 �
0 1
1 0

� �
; �1 �

0 �1
1 0

� �
;

�5 � �0�1 �
1 0
0 �1

� �
:

(2)

For the metric tensor we choose the convention

 g00 � �g11 � 1;

and the antisymmetric symbol "�� is defined by

 "01 � �"10 � 1; "00 � "11 � 0: (3)

All the Green’s functions may be obtained by differentiat-
ing over external currents of the generating functional,
which is, as usual, defined by the Feynman path integral

 Z��; ��; J� �
Z

D�D ��DAei
R
d2x�L	 ���	 ���	J�A��:

(4)

As we have already written in the Sec. I, this theory is
topologically nontrivial. The true vacuum, which is usually
called the � vacuum, becomes a superposition of the infi-
nite set of degenerate vacua, bearing different topological
indices n [23,24]:

 j�i �
X1

n��1

ein�jni: (5)

In this new vacuum, the generating functional (4), which
constitutes the Feynman form of h�j�i�; ��;J, breaks into
pieces:

 Z��; ��; J� �
X1

k��1

eik�Z�k���; ��; J� : (6)

In this formula—contrary to (5)—the summation runs
over instanton number, i.e. k corresponds to the change
of the topological indices in the two vacua in the expres-
sion: h�j�i�; ��;J. Henceforth we will use the common sym-
bol j0i for denoting the true vacuum. In each of Z�k� ’s the
functional integration with respect to the gauge field A� is
restricted to a specific class of configurations bearing the
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Pontryagin index k. This construction has a formal sense
due to the mathematical complications connected with the
proper definition of the functional measure in the space of
gauge fields of finite action. This severe and fundamental

problem remains, however, beyond the concern of the
present work.

Keeping the above in mind, we may represent the q �q
Green’s function as the appropriate functional derivative of
Z:

 Gab;cd�x1; x2; x3; x4� � h0jT��a�x1��b�x2� ��c�x3� ��d�x4��j0i � N
�4Z

� ��a�x1�� ��b�x2���c�x3���d�x4�

���������; ��;J�0
; (7)

where N is a constant ensuring that h0j0i�; ��;J�0 � 1. In the
following, we are only interested in singularities that may
be associated with bound states, and hence, throughout this
work, by G we understand only the connected part of this
function.

Because of the fact that Z expands in the sum of Z�k�’s,
the same refers also to the Green’s function. However, this
sum is now limited only to the low values of k. Contrary to
the expression expfi

R
d2x� ���	 ����g, which contains

arbitrary high powers of � and �� and, therefore, contrib-
utes to all sectors in (6), the four-fermion function gets
terms with at most k � �2. This is due to the fact that four-
fermion fields can change the chirality of the state by (at
most) 4, and the topological vacuum index is a half of the

chiral charge [23]. In the following sections we investigate
in detail all possible terms.

III. QUARK-ANTIQUARK BOUND STATE
WITHOUT TOPOLOGICAL CONTRIBUTIONS

In this section we will concentrate on the 0-instanton
term of the function Gab;cd�x1; x2; x3; x4�. It is a great merit
of the Schwinger model that this function may be found
exactly in an explicit and analytic way. The details of our
calculation have already been given in [2] and we will not
elaborate on them here, but instead recall only the final
result:

 

G�0�ab;cd�x1; x2; x3; x4� �
1
2fSac�x1 � x3�Sbd�x2 � x4� 	 �S�x1 � x3��5�ac�S�x2 � x4��5�bdg

� expfig2���x1 � x2� � ��x1 � x4� � ��x2 � x3� 	 ��x3 � x4��g

	 1
2fSac�x1 � x3�Sbd�x2 � x4� � �S�x1 � x3��5�ac�S�x2 � x4��5�bdg

� expf�ig2���x1 � x2� � ��x1 � x4� � ��x2 � x3� 	 ��x3 � x4���g �

� x3 $ x4

c$ d

�
; (8)

where the index (0) refers to the instanton number. The
function ��z� is defined through the two-dimensional mo-
mentum integral

 ��z� �
Z d2p

�2	�2
�1� eipz�

�p2 � g2=		 i
��p2 	 i
�
; (9)

and may be expressed in terms of the MacDonald or
Hankel function, depending on whether z is space- or
timelike, but the above representation is more suitable
for us. We recall that in 2D the coupling constant g is
dimensionfull and the quantity �2 � g2=	 plays a role of
the mass squared of the so-called Schwinger boson—a q �q
bound state we are interested in.

The object S�x� in (8) is the full quark propagator, which
has the known form

 S�x� � S0�x� exp��ig2��x�� ; (10)

with S0�x� � �
1

2	
x6

x2�i"
being the free propagator. The

term ‘‘full’’ used above means here ‘‘full in the 0-instanton
sector,’’ i.e. it is given in the form of the original Schwinger

works [1]. However S—bilinear in �’s—must later get
contributions from the nontrivial topological configura-
tions [16].

Now we will concentrate on the structure of the q �q
function (8) and try to reveal whether it has a pole in the
t channel. To this goal we introduce new space-time var-
iables X, Y, x, and y, defined in the following way:

 

X � 1
2�x1 	 x3�; x � x1 � x3;

Y � 1
2�x2 	 x4�; y � x2 � x4:

(11)

Thanks to the translational invariance, which manifests
itself through the dependence of G on xi � xj’s only, we
have the following three independent variables: Z � Y �
X, x, and y. From the four terms present in (8), the two
explicitly written are of interest for us, since the two other,
obtained by the antisymmetrization, contribute to the sin-
gularities not in t, but eventually in the u channel. The first
of the two interesting terms, denoted by I, takes the form
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G�0�I�Z; x; y� � 1
2fS�x� 
 S�y� 	 �S�x��

5� 
 �S�y��5�g expfig2���� Z	 �x� y�=2�� ��� Z	 �x	 y�=2�

� ��� Z� �x	 y�=2�	 ��� Z� �x� y�=2��g; (12)

where we made use of the evenness of �: ��x� � ���x�.
For brevity we omitted the spinor indices, and used the
tensor product notation, which should not cause any con-
fusion. The pole corresponding to the bound state should
be found in the complex plane of P2, where P is the two-
momentum canonically conjugated to Z. The matrical part
depends only on the relative coordinates x and y and enters
into the residue of this pole, but does not influence its
position. Let us then perform the Fourier transform over
Z of the exponent containing � functions. Making use of
(9) we my write the quantity in question as

 FI�P; x; y� �
Z
d2ZeiPZe�4ig2

R
�d2p=�2	�2�e�ipZI1�p;x;y�;

(13)

where I1�p; x; y� �
sin�px=2� sin�py=2�
�p2��2	i
��p2	i
�

. Expanding the expo-
nent in series, we can execute the Z integration obtaining

 FI�P; x; y� �
X1
n�1

��4ig2�n

n!
In�P; x; y� 	 �2	�

2��2��P�:

(14)

The In’s satisfy the following recurrent relation:
 

In�q; x; y� �
Z d2p

�2	�2
sin�px=2� sin�py=2�

�p2 ��2 	 i
��p2 	 i
�

� In�1�q� p; x; y�: (15)

It is obvious that I1�p; x; y� has a pole at p2 � �2. The
other singularity is at p2 � 0. But what about terms of
higher n? Do they alter the behavior at p2 � �2? Let us
first construct I2�p; x; y�. According to (15) it has the form
 

I2�q; x; y� �
Z d2p

�2	�2
sin�px=2� sin�py=2�

�p2 ��2 	 i
��p2 	 i
�

� I1�q� p; x; y�: (16)

The possible singularities in q2, exhibited in I2, can come
from the singularities of the integrand functions. There are
four of them: obliviously p2 � 0, p2 � �2, and the other
two originating from I1. These are �p� q�2 � 0 and �p�
q�2 � �2. It is not possible to satisfy all these four or even
three conditions simultaneously, so the singular points may
appear only as a result of the merging of two singularities.
In accordance with Landau procedure [6,25,26], we intro-
duce two parameters (� and �) satisfying �, � � 0, and
�2 	 �2 � 0. With the assumption �p	 ��p� q� � 0,
the following possibilities occur:

(1) �p2 � 0 and ��q� p�2 � 0. If one of the parame-
ters equals zero, then we get p � 0 or p� q � 0
and the eventual singularity is canceled by the sine
functions present in the numerator in (16), either by

that explicitly written or by the one hidden in the
formula for I1. If both parameters are nonzero, one
can easily obtain q2 � ��	�� �

2p2 � 0. Thus, there
may only arise a contribution to the singularity at
q2 � 0. It cannot, however, be worse than that in I1.

(2) ��p2 ��2� � 0 and ��p� q�2 � 0. If � � 0, we
have q � p and, in general, one might get a con-
tribution to the pole at q2 � �2 (actually it would
become a branch point), but it does not happen
because of the sine functions becoming zero for q�
p � 0. If � � 0, we obtain p � 0, which stays in
contradiction with the assumption p2 � �2. For �,
� � 0, we find �2p2 � �2�p� q�2, which is in-
compatible with p2 � �2 and �p� q�2 � 0.

(3) �p2 � 0 and ���p� q�2 ��2� � 0. This case is
almost identical with the previous one and need not
be separately considered.

(4) ��p2 ��2� � 0 and ���p� q�2 ��2� � 0. If one
of the parameters is zero, then we find a contra-
diction of �p	 ��p� q� � 0, with either p2 �
�2 or �p� q�2 � �2. What remains is to assume
�, � � 0. If so, we have �2p2 � �2�p� q�2 and
after canceling the arising factors �2 on both sides,
we get � � �. This leads to q � 2p and a singu-
larity emerges now at q2 � 4�2. This is the two-
particle singularity.

Summarizing, we observe that in I2 the pole at �2 dis-
appears and a new singularity arises at �2��2. Now we are
in a position to carry out a proof by induction: the assumed
singularities under the integral in (15) are p2 � 0, p2 �
�2, �p� q�2 � 0, and �p� q�2 � ��n� 1���2. We have
again four possibilities, the analysis of which is identical as
above, except the last point, where we now get the equation
�2 � �n� 1�2�2. This leads to q � np and q2 � n2�2.
Hence, the conclusion is that the singularity corresponding
to n intermediate particles (q2 � n2�2) is present only in
In. This means that the pole at�2 may be simply picked up
from the first term of the expansion (14).

Now we need to apply the same to the second expression
in the Green’s function (8). Again we take out the exponent
and perform the Fourier transform, the resulting expression
being called FII�P; x; y�. Happily both exponents differ
only by the sign, so we are able to immediately write
down the final result. The total contribution (i.e. I	 II)
to the bound state pole in G�0� is

 G�0�b:s:�P; x; y� � �4i	�S�x��5� 
 �S�y��5�

�
sin�Px=2� sin�Py=2�

P2 ��2 	 i

: (17)
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We see the perfect factorization of the residue, and the
quantity

 �P�x� � �2
����
	
p

S�x��5 sin�Px=2� (18)

plays a role of the Bethe-Salpeter amplitude [3,4,7] or the
wave function. The minus sign is chosen for later conve-
nience. Note that this quantity is found explicitly and
exactly, without any simplification referring neither to the
relative time x0 nor to the structure on the interaction
kernel. It is an essential point, since even in the simplified
model theories, one usually is limited to the case of the so-
called ‘‘equal time wave function’’ (i.e. defined only on the
hypersurface x0 � 0 in the center of mass frame), which
neglects retardation effects and consequently leads to the
nonrelativistic bound state, or ladder approximation for the
interaction kernel. On the other hand, the function (18) is a
fully relativistic object.

IV. TOPOLOGICAL CONTRIBUTIONS TO THE
QUARK-ANTIQUARK BOUND STATE

As it has been mentioned, the vacuum in the Schwinger
model is nontrivial: it is a superposition (5) of vacua
corresponding to various topological numbers. As a con-
sequence, all chirality changing operators—and to that
class the product of fermion fields belongs—which have
nonvanishing matrix elements between different topologi-
cal vacua, acquire contributions from nonzero instanton
sectors. We recall here that if the theory contains massless
fermions (at least one)—and this is just the case of the
Schwinger model—the amplitude of the spontaneous tun-
neling between different topological vacua vanishes
[23,27]. Mathematically it is expressed through zero value

of the Euclidean Dirac operator determinant det�i@6 � eA6 �,
because of the appearance of zero eigenvalues when A�

bears the instanton index [24,27–30]. The functional in-
tegral over fermionic degrees of freedom, corresponding to
the transition amplitude in question, is then zero and the
tunneling phenomenon disappears. This does not mean,
however, that the notion of � vacuum is useless, since
topological vacua (contrary to the � vacuum) violate clus-
ter property [31]. We are then fated to use (5) and must put
up with modification in the fermion Green’s functions

The contributions to the four-point function were al-
ready found in our previous work [16]. Below we will
concentrate on the eventual bound state pole in the
formulas.

A. 1-instanton sector

By virtue on the Atiyah-Singer index theorem [24,27–
30], the massless Dirac operator in the external field bear-
ing nonzero instanton number k has zero modes. In the
present section we consider the case of k � �1, for which
there is only one such mode. Its detailed form may be
found in the literature [10,13,32], and we will not recall it
here. This mode gives now its contribution while calculat-
ing the Feynman path integral (4). Since it corresponds to
the zero eigenvalue, it disappears from the quadratic part of
the Lagrangian and remains only in source terms. Because
of the Grassmann character of the quark fields, of the four
differentiations in (7), two must be saturated by sources
multiplying zero modes. The other two are performed in a
common way. The result for the four-point function, with
both k � 	1 and k � �1 instanton numbers taken into
account, obtained in [16], is

 

G�1��x1; x2; x3; x4� � �
ig

8	3=2
e�E�cos�� i�5 sin�� 
 S0�x2 � x4�

� ��1 
 1� �5 
 �5�eig
2���x1�x3����x2�x4����x1�x4�	��x1�x2�	��x2�x3����x3�x4��

	 �1 
 1	 �5 
 �5�eig
2���x1�x3����x2�x4�	��x1�x4����x1�x2����x2�x3�	��x3�x4��� 	 antisymmetrization:

(19)

The antisymmetrization runs here both over ‘‘initial,’’ i.e. x1 and x2, and ‘‘final,’’ i.e. x3 and x4 (accompanied by the
appropriate spinor indices change), variables in G�x1; x2; x3; x4�. Thus (19) gets three more terms, which are not explicitly
written here for brevity. One of them (with the simultaneous substitution 1$ 2 and 3$ 4) again contributes to the pole in
the t channel, the other two only in the u channel and will be omitted. Introducing center of mass and relative variables
(11), similarly as it was done in Sec. III, we obtain for the first term in (19)
 

G�1�Ia�Z; x; y� � �
ig

8	3=2
e�E��cos�� i�5 sin��eig

2��x� 
 S�y���1 
 1� �5 
 �5�

� expfig2����� Z	 �x	 y�=2�	 ��� Z	 �x� y�=2�	 ��� Z� �x	 y�=2�

� ��� Z� �x� y�=2��g; (20)

The last exponent in the above, per analogiam to (13), may now be written in the form

 e4g2
R
�d2p=�2	�2�e�ipZJ1�p;x;y�; (21)
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where J1�p; x; y� �
cos�px=2� sin�py=2�
�p2��2	i
��p2	i
� . Now we might intro-

duce Jn’s and consider the recurrent relation similar to
(15), but it is unnecessary. Because of the presence of the
sine function in the numerator, we can directly apply the
analysis of Sec. III and come to the result that the contri-
bution to the bound state comes only from the first term of
the series for the exponent (21). As to the second term (in
our nomenclature it would be called Ib) in (19) the ex-
ponent has only the sign inverted and need not be elabo-
rated on. Their joint effect is then simply to cancel 1 
 1 in
(19) and to double �5 
 �5. Their contribution to the bound
state is therefore

 G�1�Ib:s:�P; x; y� � i�e�E�eig
2��x�e�i�

5��5� 
 �S�y��5�

�
cos�Px=2� sin�Py=2�

P2 ��2 	 i

; (22)

where, instead of cos�� i�5 sin�, we have written e�i�
5�.

The antisymmetrized term, which is left so far, has an
analogous form, but with x and y swapped, and tensor
products inverted. Our final result in this sector is
 

G�1�b:s:�P; x; y� �
i�e�E

P2 ��2 	 i

f�eig

2��x�e�i�
5��5�


 �S�y��5� cos�Px=2� sin�Py=2�

	 �S�x��5� 
 �eig
2��y�e�i�

5��5�

� sin�Px=2� cos�Py=2�g: (23)

Thanks to the quark field being massless, which results in
the chiral invariance of the initial Lagrangian, the depen-
dence on the parameter � may be gauged away, so one

might simply put � � 0. Comparing the two obtained
equations (17) and (23) we see that introducing a new
Bethe-Salpeter amplitude in the form

 �P�x� � �2
����
	
p

S�x��5 sin�Px=2�

	
�

2
����
	
p e�Eeig

2��x�e�i�
5��5 cos�Px=2�; (24)

the residue factorization in the pole will be restored, i.e.
one will have

 Gb:s:�P; x; y� �
�P�x� 
�P�y�

P2 ��2 	 i

(25)

if the 2-instanton sector contributes to the bound state a
term (with the appropriate constant coefficient):

 �eig
2��x�e�i�

5��5� 
 �eig
2��y�e�i�

5��5� cos�Px=2�

� cos�Py=2�:

As we shall see in the following section, this is actually the
case, but it contributes also other terms that modify the
factorization and even change the character of the singu-
larity at P2 � �2.

B. 2-instanton sector

In the 2-instanton sector there are two zero modes of the
the Dirac operator [10,13,27,28,32]. Now all of the differ-
entiations in (7) are saturated with sources standing with
zero modes. The 2-instanton contribution to the Green’s
function, which was evaluated in [16], has the form

 

G�2��x1; x2; x3; x4� � �
g4

256	4 e
4�E�e2i��1� �5� 
 �1� �5��x0

2 	 x
1
2���x

0
4 	 x

1
4�

	 e�2i��1	 �5� 
 �1	 �5���x0
2 	 x

1
2��x

0
4 	 x

1
4�� expfig2���x1 � x4� 	 ��x2 � x3� 	 ��x1 � x2�

	 ��x3 � x4� 	 ��x1 � x3� 	 ��x2 � x4��g 	 antisymmetrization: (26)

Using again the variables Z, x, and y, performing the required antisymmetrization, and replacing � functions with
integral formula (9), we obtain, with the additional use of the identity e�i��

5
�1� �5� � ei��1� �5�:

 

G�2��Z; x; y� � �
�4

64	2 e
4�E��eig

2��x�e�i�
5�� 
 �eig

2��y�e�i�
5���

�

��
Z2 �

1

4
�x� y�2

�
�5 
 �5 	

1

2

�
Z2 �

1

4
�x� y�2

�
��1� �5� 
 �1	 �5� 	 �1	 �5� 
 �1� �5��

�
1

2
"��Z��x� y���1 
 �5 	 �5 
 1�

�
exp

�
4	i�2

Z d2p

�2	�2
1� e�ipZ cos�px=2� cos�py=2�

�p2 	 i
��p2 ��2 	 i
�

�
; (27)

with "�� being the antisymmetric symbol defined in (3).
Now we will show that the first term (i.e. Z2 times �5 
 �5)
gives just the contribution needed to restore the factoriza-
tion (25).

One could suspect that there might be some cancella-
tions among various expressions in the formula (27).
Below we shall argue that the cancellation that would
lead to complete disappearance of any term is not possible
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due to their independent matrical structure. Only cancella-
tions among specific matrix elements—but not matrices as
a whole—are admissible. Consider, namely, the expres-
sion
 

a�5 
�5	 b��1� �5� 
 �1	 �5� 	 �1	�5� 
 �1��5��

	 c�1
�5	�5 
 1� (28)

and multiply it first by �1	 �5� 
 �1	 �5� and second by
�1� �5� 
 �1� �5�. We obtain �a	 2c��1	 �5� 
 �1	

�5� 	 b � 0 and �a� 2c��1� �5� 
 �1� �5� 	 b � 0, re-
spectively. On the other hand if we take the double trace
(i.e. over first matrix and over second matrix in the tensor
product indices), we get a � 0	 8 � b	 0 � c. This shows
that the three tensors listed in (28) are really independent.

Let us observe now that the quantity in the last exponent
of (27), after rearranging the terms under the integral (the
integrand function will be called below M) and partially
executing it, may be rewritten in the following way:

 4	i�2
Z d2p

�2	�2
M�Z; p; x; y� � �2�E � ln���2Z2=4� � 4	i

Z d2p

�2	�2
e�ipZ

1

p2 ��2 	 i


	 4	i�2
Z d2p

�2	�2
e�ipZ

1� cos�px=2� cos�py=2�

�p2 	 i
��p2 ��2 	 i
�
: (29)

If we expand, as before, the exponent of the last two terms
and take the Fourier transform over Z, it becomes obvious
that both of them contribute to the pole at P2 � �2. The
further analysis is again identical to that of Sec. III, except
for the difference that now there is additional cancellation
between the integrals in (29). Finally, all the factors com-
bine together in (27) and we obtain the expected term

 

�i�2

4	
e2�E�eig

2��x�e�i��
5
�5� 
 �eig

2��y�e�i��
5
�5�

�
cos�Px=2� cos�Py=2�

P2 ��2 	 i

: (30)

This is exactly what we needed for (25). This is not,
however, the whole story. The similar contribution comes
from the second matrical term in (27), which also contains
Z2. Since we have already saturated (25) this supplemen-
tary part violates the factorization. It has the following
form:
 

�i�2

8	
e2�E�eig

2��x�e�i��
5

 eig

2��y�e�i��
5
�

� ��1� �5� 
 �1	 �5� 	 �1	 �5� 
 �1� �5��

�
cos�Px=2� cos�Py=2�

P2 ��2 	 i

: (31)

Because of the above mentioned lack of cancellations
among independent matrix structures, this term must sur-
vive. Moreover, it cannot cancel with the �x� y�2 term
with the same matrical coefficient since, contrary to (31),
the latter disappears for x � y. Besides, it does not con-
tribute to the bound state pole at all. This can be easily
argued as follows: After rearrangements identical to (29)
one gets the additional 1=Z2 coming from the logarithm in
the exponent. This can be neutralized if we act with the
two-dimensional d’Alambert operator in variable P. When
this is done, we obtain a first order pole at P2 � �2. Now

the question is the following: given a function f satisfying
@2
Pf�P� �

1
P2��2 , does f also display a pole? The answer is

negative. It may easily be found that f�P� � Li2�P
2=�2�

and dilogarithm has a limit	2=6 when its argument goes to
unity. Therefore it may be neglected in comparison with
the polar term. One should emphasize, however, that
although the dilogarithmic function has a well-defined
limit, it is not an analytic function in this point. It is a
branch point and the function has a cut on the half-line
��2;1�. The presence of cos�Px=2� cos�Py=2� does not
change the conclusions, since cosine is an analytic func-
tion, and may only make things better. On the other hand
for x � y � 0 cosines can be replaced with unities and a
branch point arises. Such terms are usually lost in the
common approach, where one fishes out only the polar
contribution of the bound state.

For the term proportional to "��Z��x� y��, similar
argumentation is applicable, with a difference that we
now have to do with a logarithmic function, which again
may be neglected if compared to the polar term. Hence, as
we see, due to the topological background, not only non-
factorization appears, but also the character of the singu-
larity in P2 � �2 is slightly changed.

These results do not, however, contradict the S-matrix
pole factorization [17–21]. The S matrix describes the
transition amplitudes among physical asymptotic states.
In the Schwinger model these are the Fock states of
Schwinger bosons. Consequently, we are limited only to
the current-current Green’s functions and this requires
putting x, y! 0, and taking the trace over spinor indices
with �� 
 �� matrices. Since the trace of an odd number of
�’s is zero, it is easy to observe that the only contribution to
the pole comes now from (17) and factorization reappears
[10]. This is what should be expected since the vector
current does not couple to instantons.

Summarizing, that part of the full q �q Green’s function,
in which one is limited to the polar terms, has the form
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iGb:s:�P; x; y� �
1

P2 ��2 	 i

��P�x� 
�P�y� 	����P �x�


��	�P �y� 	��	�P �x� 
����P �y��; (32)

with

 ����P �x� �
�

2
�������
2	
p e�Eeig

2��x�e�i��
5
�1� �5�; (33)

and �P�x� given by (24).

V. WAVE FUNCTION AS A FIELD AMPLITUDE

The question arises, how the obtained results harmonize
with the Bethe-Salpeter wave function defined as an am-
plitude of fields. Fortunately in the Schwinger model we
have all tools, which allow us to find it explicitly even in
the nontrivial topological sectors. Let us then consider the
amplitude in question:

 �P�x1; x2� � h0jT���x1� ���x2�jPi: (34)

The calculation of this quantity turns out to be very simple,
if one already knows the expression for the full quark
propagator in the instanton background [16]:

 Sfull�x� � S�x� 	
ie

4	3=2
�cos�� i�5 sin��e�E	ie

2��x�:

(35)

The state jPi is the one Schwinger boson state of two-
momentum P, and (34) is expressible, thanks to the for-
mulas of the LSZ formalism, through the vertex function. It
is known that, thanks to the two gauge symmetries [U�1�
and UA�1�], the vertex function may in turn entirely be
constructed from the quark propagator. This is a miracle of
the Schwinger model. One then gets

 

�P�x1; x2� � i
����
	
p
�e�iPx1�5S�x1 � x2�

	 e�iPx2S�x1 � x2��
5�: (36)

If we now substitute for the quark propagator the expres-
sion Sfull, we obtain the formula for the amplitude �P in all
instanton sectors in question: 0, �1 (recall that we now
have to do with an object bilinear in quark fields). We now
pass to the CM and relative coordinates: x1 � X	 x=2 and
x2 � X� x=2, and introduce a wave function by separat-
ing the uniform motion of the bound particle as a whole,
from the internal motion: �P�x� � eiPX��x1; x2�. Finally
we obtain

 �P�x� � �2
����
	
p

S�x��5 sin�Px=2�

	
�

2
����
	
p e�Eeig

2��x�e�i��
5
�5 cos�Px=2�: (37)

This amplitude wave function entirely agrees with that
found in (24) from the factorizable part of the bound state
residue.

VI. SUMMARY

In conclusion, we would like to recapitulate our main
results. We have found analytically the polar contribution
to the q �qGreen’s function. In the topologically trivial case,
the residue turns out to be factorizable, which is commonly
taken for granted. Out of this we obtained the formula for
the Bethe-Salpeter wave function. The situation turned out
to be different, if one considers the one- or two-instanton
background. We have obtained an expression for the resi-
due in this case and found that the BS function has been
modified by the � vacuum structure. The full polar term
may now be written as a sum of several factorizable terms.
One sees that, apart from the formation of the bound state
(Schwinger boson), there appears also another way for a
pair q �q, not bearing meson quantum numbers, to travel
over the space. They may jump from one instanton to the
other. This phenomenon is possible in there are at least two
instantons.

Moreover, if one takes into account also these compo-
nents that are usually neglected for P2 ! �2 as being
small in comparison with that revealing a pole, one finds
another type of singularity—a branch point connected
with the appearance of logarithmic and dilogarithmic func-
tions. They arise because of long-range correlations in the
condensed vacuum.

All of these instanton contributions vanish if we con-
sider the S-matrix elements, i.e. only transition amplitudes
for the ‘‘physical’’ asymptotic states. These, in the
Schwinger model, are Fock states of one or more bosons.
The four-point (quark) function is then replaced with the
current-current function, for which it is shown that simple
pole structure as well as factorization of the residue reap-
pear. The analytical structure of the Green’s function may
then be more intricate than that of the S matrix, especially
for topologically nontrivial theory.
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