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The nonequilibrium dynamics of mixing, oscillations, and equilibration is studied in a field theory of
flavored neutral mesons that effectively models two flavors of mixed neutrinos, in interaction with other
mesons that represent a thermal bath of hadrons or quarks and charged leptons. This model describes the
general features of neutrino mixing and relaxation via charged currents in a medium. The reduced density
matrix and the nonequilibrium effective action that describes the propagation of neutrinos is obtained by
integrating out the bath degrees of freedom. We obtain the dispersion relations, mixing angles and
relaxation rates of neutrino quasiparticles. The dispersion relations and mixing angles are of the same
form as those of neutrinos in the medium, and the relaxation rates are given by �1�k� �
�ee�k�cos2�m�k� � ����k�sin2�m�k�; �2�k� � ����k�cos2�m�k� � �ee�k�sin2�m�k� where ����k� are the
relaxation rates of the flavor fields in absence of mixing, and �m�k� is the mixing angle in the medium. A
Weisskopf-Wigner approximation that describes the asymptotic time evolution in terms of a non-
Hermitian Hamiltonian is derived. At long time � ��1

1;2 neutrinos equilibrate with the bath. The
equilibrium density matrix is nearly diagonal in the basis of eigenstates of an effective Hamiltonian
that includes self-energy corrections in the medium. The equilibration of ‘‘sterile neutrinos’’ via active-
sterile mixing is discussed.
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I. INTRODUCTION

Neutrinos are the central link between particle and nu-
clear physics, astrophysics and cosmology [1–5] and the
experimental confirmation of neutrino mixing and oscilla-
tions provide a first evidence for physics beyond the stan-
dard model. Neutrino mixing provides an explanation for
the solar neutrino problem [6–9], plays a fundamental role
in the physics of core-collapse supernovae [10–17] and in
cosmology [18]: in big bang nucleosynthesis (BBN)
[19], baryogenesis through leptogenesis [20–23], structure
formation [24–28], and possible dark matter candidate
[26–28].

The nonequilibrium dynamics of neutrino mixing, oscil-
lations, and equilibration is of fundamental importance in
all of these settings. Neutrinos are produced as ‘‘flavor
eigenstates’’ in weak interaction vertices but propagate as
a linear superposition of mass eigenstates. This is the
origin of neutrino oscillations. Weak interaction collisional
processes are diagonal in flavor leading to a competition
between production, relaxation, and propagation which
results in a complex and rich dynamics.

Beginning with pioneering work on neutrino mixing in
media [29–33], the study of the dynamical evolution has
been typically cast in terms of single particle ‘‘flavor
states’’ or matrix of densities that involve either a non-
relativistic treatment of neutrinos or consider flavor neu-
trinos as massless. The main result that follows from these
studies is a simplified set of Bloch equations with a semi-
phenomenological damping factor (for a thorough review
see [18]).

Most of these approaches involve in some form the
concept of distribution functions for ‘‘flavor states,’’ pre-
sumably these are obtained as expectation values of Fock
number operators associated with flavor states. However,
there are several conceptual difficulties associated with
flavor Fock states still being debated [34– 41].

The importance of neutrino mixing and oscillations,
relaxation and equilibration in all of these timely aspects
of cosmology and astroparticle physics warrant a deeper
scrutiny of the nonequilibrium phenomena firmly based on
quantum field theory.

The goals of this article.—Our ultimate goal is to study
the nonequilibrium dynamics of oscillation, relaxation, and
equilibration directly in the quantum field theory of weak
interactions bypassing the ambiguities associated with the
definition of flavor Fock states. We seek to understand the
nature of the equilibrium state: the free field Hamiltonian is
diagonal in the mass basis, but the interactions are diagonal
in the flavor basis; however, equilibration requires inter-
actions, hence there is a competition between mass and
flavor basis, which leads to the question of which is the
basis in which the equilibrium density matrix is diagonal.
Another goal is to obtain the dispersion relations and the
relaxation rates of the correct quasiparticle excitations in
the medium.

In this article we make progress towards these goals by
studying a simpler model of two ‘‘flavored’’ mesons rep-
resenting the electron and muon neutrinos that mix via an
off-diagonal mass matrix and interact with other mesons
which represent either hadrons (neutrons and protons) or
quarks and charged leptons via an interaction vertex that
models the charged current weak interaction. The meson
fields that model hadrons (or quarks) and charged leptons
are taken as a bath in thermal equilibrium. In the standard

*Electronic address: boyan@pitt.edu
†Electronic address: cmho@phyast.pitt.edu

PHYSICAL REVIEW D 75, 085004 (2007)

1550-7998=2007=75(8)=085004(23) 085004-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.75.085004


model the assumption that hadrons (or quarks) and charged
leptons can be considered as a bath in thermal equilibrium
is warranted by the fact that their strong and electromag-
netic interactions guarantee faster equilibration rates than
those of neutrinos.

This model bears the most relevant characteristics of the
standard model Lagrangian augmented by an off-diagonal
neutrino mass matrix and will be seen to yield a remark-
ably faithful description of oscillation and relaxational
dynamics in a thermal medium at high temperature. It
effectively describes the thermalization dynamics of neu-
trinos in a medium at high temperature such as the early
Universe for T * 3 MeV [3,18,19].

Furthermore, Dolgov et al. [42] argue that the spinor
nature of the neutrinos is not relevant to describe the
dynamics of mixing at high energies, thus we expect that
this model captures the relevant dynamics.

An exception is the case of neutrinos in supernovae, a
situation in which neutrino degeneracy, hence Pauli block-
ing, becomes important and requires a full treatment of the
fermionic aspects of neutrinos. Certainly the quantitative
aspects such as relaxation rates must necessarily depend on
the fermionic nature. However, we expect that a bosonic
model will capture, or at minimum provide a guiding
example, of the most general aspects of the nonequilibrium
dynamics. The results found in our study lend support to
this expectation.

While meson mixing has been studied previously [43],
mainly motivated by mixing in the neutral kaon and pseu-
doscalar �, �0 systems, our focus is different in that we
study the real-time dynamics of oscillation, relaxation, and
equilibration in a thermal medium at high temperature
including radiative corrections with a long view towards
understanding general aspects that apply to neutrino phys-
ics in the high temperature environment of the early
Universe.

While neutrino equilibration in the early Universe for
T * 3 MeV prior to BBN is undisputable [3,18,19], the
main questions that we address in this article are whether
the equilibrium density matrix is diagonal in the flavor or
mass basis and the relation between the relaxation rates of
the propagating modes in the medium.

The strategy.—The meson fields that model flavor neu-
trinos are treated as the ‘‘system’’ while those that describe
hadrons (or quarks) and charged leptons as the ‘‘bath’’ in
thermal equilibrium. An initial density matrix is evolved in
time and the bath fields are integrated out up to second
order in the coupling to the system, yielding a ‘‘reduced
density matrix’’ which describes the dynamics of correla-
tion functions solely of system fields (neutrinos). This
program pioneered by Feynman and Vernon [44] for
coupled oscillators (see also [45,46]) is carried out in the
interacting theory by implementing the closed-time path-
integral representation of a time-evolved density matrix
[47]. This method yields the real-time nonequilibrium

effective action [48] including the self-energy which yields
the ‘‘index of refraction’’ correction to the mixing angles
and dispersion relations [49] in the medium and the decay
and relaxation rates of the quasiparticle excitations. The
nonequilibrium effective action thus obtained yields the
time evolution of correlation and distribution functions and
expectation values in the reduced density matrix [48]. The
approach to equilibrium is determined by the long time
behavior of the two-point correlation function and its equal
time limit, the one-body density matrix. The most general
aspects of the dynamics of mixing and equilibration are
completely determined by the spectral properties of the
correlators of the bath degrees of freedom in equilibrium.

Brief summary of results.—
(i) We discuss the ambiguities in the definition of flavor

Fock operators, states and distribution functions.
(ii) The nonequilibrium effective action is obtained up

to second order in the couplingG�GF between the
system (neutrinos) and the bath (hadrons, quarks,
and charged leptons) in equilibrium. It includes the
one-loop matter potential contribution [O�G�] and
the two-loop [O�G2�] retarded self-energy. The ‘‘in-
dex of refraction’’ [49] is determined by the matter
potential and the real part of the space-time Fourier
transform of the retarded self-energy. The relaxation
rates of the quasiparticle excitations are determined
by its imaginary part. The nonequilibrium effective
action leads to Langevin-like equations of motion
for the fields with a noise term determined by the
correlations of the bath; it features a Gaussian
probability distribution but is colored. The noise
correlators and the self-energy fulfill a generalized
fluctuation-dissipation relation.

(iii) We obtain expressions for the dispersion relations
and mixing angles in medium which are of the
same form as in the case for neutrinos. The relaxa-
tion rates for the two types of quasiparticles are
given by

 �1�k� � �ee�k�cos2�m�k� � ����k�sin2�m�k�;

(1.1)

 �2�k� � ����k�cos2�m�k� � �ee�k�sin2�m�k�;

(1.2)

where ����k� are the relaxation rates of the flavor
fields in absence of mixing, and �m�k� is the mixing
angle in the medium.

(iv) A Weisskopf-Wigner description of the long time
dynamics in terms of an effective non-Hermitian
Hamiltonian is obtained. Although this effective
description accurately captures the asymptotic
long time dynamics of the expectation value of
the fields in weak coupling, it does not describe
the process of equilibration.
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(v) For long time � ��1
1;2 the two-point correlation

function of fields becomes time translational invari-
ant reflecting the approach to equilibrium. The one-
body density matrix reaches its equilibrium form at
long time; in perturbation theory it is nearly diago-
nal in the basis of eigenstates of an effective
Hamiltonian that includes self-energy corrections
in the medium, with perturbatively small off-
diagonal corrections in this basis. The diagonal
components are determined by the distribution func-
tion of eigenstates of this in-medium effective
Hamiltonian.

(vi) These results apply to the case of sterile neutrinos
with modifications to the dispersion relations and
relaxation rates arising from simple ‘‘sterility’’ con-
ditions. ‘‘Sterile neutrinos’’ equilibrate with the
bath as a consequence of active-sterile mixing
[27,28,50].

In Sec. II we introduce the model and discuss the ambi-
guities in defining flavor Fock operators, states, and distri-
bution functions. In Sec. III we obtain the reduced density
matrix, the nonequilibrium effective action, and the
Langevin-like equations of motion for the expectation
value of the fields. In Sec. IV we provide the general
solution of the Langevin equation. In Sec. V we obtain
the dispersion relations, mixing angles, and decay rates of
quasiparticle modes in the medium. In this section an
effective Weisskopf-Wigner description of the long time
dynamics is derived. In Sec. VI we study the approach to
equilibrium in terms of the one-body density matrix. In this
section we discuss the consequences for ‘‘sterile neutri-
nos.’’ Section VII summarizes our conclusions.

II. THE MODEL

We consider a model of mesons with two flavors e, � in
interaction with a ‘‘charged current’’ denoted W and a
‘‘flavor lepton’’ �� modeling the charged current interac-
tions in the electroweak model. In terms of field doublets

 � �
�e

��

� �
; X �

�e
��

� �
; (2.1)

the Lagrangian density is
 

L � 1
2f@��T@����TM2�g �L0�W;�	

�GW�T 
 X�G�2
e�

2
e �G�

2
��

2
�; (2.2)

where the mass matrix is given by

 M 2 �
M2
ee M2

e�

M2
e� M2

��

 !
; (2.3)

where L0�W;�	 is the free field Lagrangian density forW,
� which need not be specified. The mesons �e;� play the
role of the flavored neutrinos, �e;� the role of the charged
leptons, and W a charged current, for example, the proton-

neutron current �p���1� gA�5�n or a similar quark cur-
rent. The couplingG plays the role ofGF. As it will be seen
below, we do not need to specify the precise form, only the
spectral properties of the correlation function of this cur-
rent are necessary.

Passing from the flavor to the mass basis for the fields
�e;� by an orthogonal transformation � � U���’

 

�e

��

� �
� U���

’1

’2

� �
; U��� �

cos� sin�
� sin� cos�

� �
;

(2.4)

where the orthogonal matrix U��� diagonalizes the mass
matrix M2, namely,

 U�1���M2U��� �
M2

1 0
0 M2

2

� �
: (2.5)

In the flavor basis M can be written as follows:

 M 2 � �M21�
�M2

2
� cos2� sin2�

sin2� cos2�

� �
; (2.6)

where we introduced

 

�M 2 � 1
2�M

2
1 �M

2
2�; �M2 � M2

2 �M
2
1: (2.7)

A. Mass and flavor states

It is convenient to take the spatial Fourier transform of
the fields ��; ’i and their canonical momenta 	� � _��;

i � _’i with � � e, � and i � 1, 2 and write (at t � 0),

 ��� ~x� �
1����
V
p

X
~k

��; ~ke
i ~k
 ~x; ’i� ~x� �

1����
V
p

X
~k

’i; ~ke
i ~k
 ~x

	�� ~x� �
1����
V
p

X
~k

	�; ~ke
i ~k
 ~x; 
i� ~x� �

1����
V
p

X
~k


i; ~ke
i ~k
 ~x:

(2.8)

In these expressions we have denoted the spatial Fourier
transforms with the same name to avoid cluttering of
notation, but it is clear from the argument which variable
is used. The free field Fock states associated with mass
eigenstates are obtained by writing the fields which define
the mass basis ’i in terms of creation and annihilation
operators,

 ’i; ~k �
1��������������

2!i�k�
p �ai; ~k � a

y

i;� ~k
	;


i; ~k �
�i!i�k���������������

2!i�k�
p �ai; ~k � a

y

i;� ~k
	;

(2.9)

with

 !i�k� �
������������������
k2 �M2

i

q
; i � 1; 2: (2.10)

The annihilation (ai; ~k) and creation (ay
i; ~k

) operators obey
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the usual canonical commutation relations, and the free
Hamiltonian in the mass basis is the usual sum of indepen-
dent harmonic oscillators with frequencies !i�k�. One can,
in principle, define annihilation and creation operators
associated with the flavor fields a�; ~k, a

y

�; ~k
, respectively, in

a similar manner:

 ��; ~k �
1����������������

2���k�
p �a�; ~k � a

y

�;� ~k
	;

	�; ~k �
�i���k�����������������

2���k�
p �a�; ~k � a

y

�;� ~k
	;

(2.11)

with the annihilation (a�; ~k) and creation (ay
�; ~k

) operators

obeying the usual canonical commutation relations.
However, unlike the case for the mass eigenstates, the
frequencies ���k� are arbitrary. Any choice of these fre-
quencies furnishes a different Fock representation; there-
fore, there is an intrinsic ambiguity in defining Fock
creation and annihilation operators for the flavor fields
since these do not have a definite mass. In
Refs. [36,38,39] a particular assignment of masses has
been made, but any other is equally suitable. The orthogo-
nal transformation between the flavor and mass fields
eqation (2.4), leads to the following relations between the
flavor and mass Fock operators,

 ae; ~k � cos��a1; ~kAe;1�k� � a
y

1;� ~k
Be;1�k�	

� sin��a2; ~kAe;2�k� � a
y

2;� ~k
Be;2�k�	; (2.12)

 a�; ~k � cos��a2; ~kA�;2�k� � a
y

2;� ~k
B�;2�k�	

� sin��a1; ~kA�;1�k� � a
y

1;� ~k
B�;1�k�	; (2.13)

where A�;i, B�;i are the generalized Bogoliubov coeffi-
cients
 

A�;i �
1

2

� �������������
���k�
!i�k�

s
�

�������������
!i�k�
���k�

s �
;

B�;i �
1

2

� �������������
���k�
!i�k�

s
�

�������������
!i�k�
���k�

s �
:

(2.14)

These coefficients obey the condition

 �A2
�;i � B2

�;i� � 1; (2.15)

which guarantees that the transformation between mass
and flavor Fock operators is formally unitary and both
sets of operators obey the canonical commutation relations
for any choice of the frequencies ���k�. Neglecting the
interactions, the ground state j0i of the Hamiltonian is the
vacuum annihilated by the Fock annihilation operators of
the mass basis,

 ai; ~kj0i � 0 for all i � 1; 2; ~k: (2.16)

In particular the number of flavor Fock quanta in the
noninteracting ground state, which is the vacuum of mass
eigenstates, is

 h0jay
e; ~k
ae; ~kj0i � cos2�

��e�k� �!1�k�	2

4�e�k�!1�k�

� sin2�
��e�k� �!2�k�	

2

4�e�k�!2�k�
; (2.17)

 h0jay
�; ~k
a�; ~kj0i � cos2�

����k� �!2�k�	
2

4���k�!2�k�

� sin2�
����k� �!1�k�	

2

4���k�!1�k�
; (2.18)

namely, the noninteracting ground state (the vacuum of
mass eigenstates) is a condensate of ‘‘flavor’’ states
[36,38,39] with an average number of ‘‘flavored particles’’
that depends on the arbitrary frequencies ���k�. Therefore
these ‘‘flavor occupation numbers’’ or ‘‘flavor distribution
functions’’ are not suitable quantities to study
equilibration.

Assuming that ���k� ! k when k! 1, in the high
energy limit A! 1; B! 0 and in this high energy limit

 

ae; ~k � cos�a1; ~k � sin�a2; ~k;

a�; ~k � cos�a2; ~k � sin�a1; ~k:
(2.19)

Therefore, under the assumption that the arbitrary fre-
quencies ���k� ! k in the high energy limit, there is an
approximate identification between Fock states in the mass
and flavor basis in this limit. However, such identification
is only approximate and only available in the asymptotic
regime of large momentum, but becomes ambiguous for
arbitrary momenta. In summary, the definition of flavor
Fock states is ambiguous; the ambiguity may only be
approximately resolved in the very high energy limit, but
it is clear that there is no unique definition of a flavor
distribution function which is valid for all values of mo-
mentum k and that can serve as a definite yardstick to study
equilibration. Even the noninteracting ground state fea-
tures an arbitrary number of flavor Fock quanta depending
on the arbitrary choice of the frequencies ���k� in the
definition of the flavor Fock operators. This is not a con-
sequence of the meson model but a general feature in the
case of mixed fields with similar ambiguities in the spinor
case [41].

We emphasize that while the flavor Fock operators are
ambiguous and not uniquely defined, there is no ambiguity
in the flavor fields �� which are related to the mass fields
’i via the unitary transformation (2.4). While there is no
unambiguous definition of the flavor number operator or
distribution function, there is an unambiguous number
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operator for the Fock quanta in the mass basis Ni�k� �

ay
i; ~k
ai; ~k, whose expectation value is the distribution func-

tion for mass Fock states.

III. REDUCED DENSITY MATRIX AND
NONEQUILIBRIUM EFFECTIVE ACTION

Our goal is to study the equilibration of neutrinos with a
bath of hadrons or quarks and charged leptons in thermal
equilibrium at high temperature. This setting describes the
thermalization of neutrinos in the early Universe prior to
BBN, for temperatures T * 3 MeV [3,18,19].

We focus on the dynamics of the ‘‘system fields,’’ either
the flavor fields �� or alternatively the mass fields ’i. The
strategy is to consider the time-evolved full density matrix
and trace over the bath degrees of freedom �, W. It is
convenient to write the Lagrangian density (2.2) as

 L ���; ��;W	 � L0��	 �L0�W;�	 �G��O�

�G�2
��

2
� (3.1)

with an implicit sum over the flavor label � � e, �, where

 O � � ��W: (3.2)

L0�
 
 
	 are the free Lagrangian densities for the fields��,
��, W, respectively. The fields �� are considered as the
system and the fields ��,W are treated as a bath in thermal
equilibrium at a temperature T � 1=�. We consider a
factorized initial density matrix at a time ti � 0 of the form

 �̂�0� � �̂��0�  e
��H0��;W	; (3.3)

where H0��;W	 is Hamiltonian for the fields �, W.
Although this factorized form of the initial density matrix
leads to initial transient dynamics, we are interested in the
long time dynamics, in particular, in the long time limit.
The bath fields ��, W will be ‘‘integrated out’’ yielding a
reduced density matrix for the fields �� in terms of an
effective real-time functional, known as the influence func-
tional [44] in the theory of quantum Brownian motion. The
reduced density matrix can be represented by a path inte-
gral in terms of the nonequilibrium effective action that
includes the influence functional. This method has been
used extensively to study quantum Brownian motion
[44,45], and quantum kinetics [46,48].

In the flavor field basis the matrix elements of �̂��0� are
given by

 h��j�̂��0�j�
0
�i � ��;0���;�0��; (3.4)

or alternatively in the mass field basis

 h’ij�̂’�0�j’
0
ji � �’;0�’i;’

0
j�: (3.5)

The time evolution of the initial density matrix is given by

 �̂�tf� � e�iH�tf�ti��̂�ti�e
iH�tf�ti�; (3.6)

where the total Hamiltonian H is

 H � H0��	 �H0��;W	 �HI��;�;W	: (3.7)

The calculation of correlation functions is facilitated by
introducing currents coupled to the different fields.
Furthermore, since each time evolution operator in
Eq. (3.6) will be represented as a path integral, we intro-
duce different sources for forward and backward time
evolution operators, referred to as J�, J�, respectively.
The forward and backward time evolution operators in
presence of sources are U�tf; ti; J��, U�1�tf; ti; J��,
respectively.

We will only study correlation functions of the system
fields� (or’ in the mass basis); therefore, we carry out the
trace over the � and W degrees of freedom. Since the
currents J� allow us to obtain the correlation functions
for any arbitrary time by simple variational derivatives
with respect to these sources, we take tf ! 1 without
loss of generality. The nonequilibrium generating func-
tional is given by [46,48]

 Z �j�; j�	 � TrU�1; ti; J���̂�ti�U�1�1; ti; J��; (3.8)

where J� stand collectively for all the sources coupled to
different fields. Functional derivatives with respect to the
sources J� generate the time ordered correlation functions,
those with respect to J� generate the antitime ordered
correlation functions and mixed functional derivatives
with respect to J�, J� generate mixed correlation func-
tions. Each one of the time evolution operators in the
generating functional (3.8) can be written in terms of a
path integral: the time evolution operator U�1; ti; J�� in-
volves a path integral forward in time from ti to t � 1 in
presence of sources J�, while the inverse time evolution
operator U�1�1; ti; J�� involves a path integral backwards
in time from t � 1 back to ti in presence of sources J�.
Finally, the equilibrium density matrix for the bath
e��H0��;W	 can be written as a path integral along imagi-
nary time with sources J�. Therefore, the path-integral
form of the generating functional (3.8) is given by
 

Z�j�; j�	 �
Z
D�iD�0i��;i��i; �0i�

Z
D��D��DW�

�D��DW�eiS��
�;��;W�;J�

�
;J�� ;J�W 	 (3.9)

 

ti Φ+ , χ+ , W + , J +
a

Φ− , χ − , W − , J −
a

∞

ti − i β

FIG. 1. Contour in time for the nonequilibrium path-integral
representation.
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with the boundary conditions ��� ~x; ti� � �i� ~x�; ��� ~x; ti� � �0i� ~x�. The trace over the bath fields �, W is performed with
the usual periodic boundary conditions in Euclidean time.

The nonequilibrium action is given by
 

S���; ��; J��; J�� ; J�W	 �
Z 1
ti
dtd3x�L0���� � J���

� �L0���� � J���
�	

�
Z
C
d4xfL0��;W	 � J��� JWW �G��O� �G�2

��2
�g; (3.10)

where C describes the following contour in the complex
time plane: along the forward branch �ti;�1� the fields
and sources are ��, ��, J�� , along the backward branch
�1; ti� the fields and sources are ��, ��, J�� , and along the
Euclidean branch �ti; ti � i�� the fields and sources are
� � 0; ��, J�� . Along the Euclidean branch the interaction
term vanishes since the initial density matrix for the field �
is assumed to be that of thermal equilibrium. This contour
is depicted in Fig. 1.

The trace over the degrees of freedom of the � field with
the initial equilibrium density matrix entail periodic
boundary conditions for �, W along the contour C.
However, the boundary conditions on the path integrals
for the field � are given by

 ��� ~x; t � 1� � ��� ~x; t � 1� (3.11)

and

 ��� ~x; t � ti� � �i� ~x�; ��� ~x; t � ti� � �0i� ~x�:

(3.12)

The reason for the different path integrations is that
whereas the � and W fields are traced over with an initial

thermal density matrix, the initial density matrix for the �
field will be specified later as part of the initial value
problem. The path integral over �,W leads to the influence
functional for �� [44].

Because we are not interested in the correlation func-
tions of the bath fields but only those of the system fields,
we set the external c-number currents J� � 0; JW � 0.
Insofar as the bath fields are concerned, the system fields
� act as an external c-number source, and tracing over the
bath fields leads to

 Z
D��DW�D��DW�ei

R
C
d4xfL0��;W	�G��O��G�2

��2
�g

� heiG
R

C
d4x��O���2

��2
�i0 Tre��H

0��;W	: (3.13)

The expectation value in the right-hand side of Eq. (3.13)
is in the equilibrium free field density matrix of the fields
�, W. The path integral can be carried out in perturbation
theory and the result exponentiated to yield the effective
action as follows:

 

heiG
R

C
d4x��O���2

��2
�i0 � 1� iG

Z
C
d4xf���x�hO��x�i0 ��

2
��x�h�

2
��x�i0g

�
�iG�2

2

Z
C
d4x

Z
C
d4x0���x����x

0�hO��x�O��x
0�i0 �O�G3� (3.14)

This is the usual expansion of the exponential of the connected correlation functions, therefore this series is identified
with

 heiG
R

C
d4x��O���2

��2
�i0 � eiLif��

�;��	; (3.15)

where Lif���; ��	 is the influence functional [44], and h
 
 
i0 stand for expectation values in the bath in equilibrium. For
h���x�W�x�i0 � 0 the influence functional is given by

 Lif���; ��	 � G
Z
C
d4x�2

��x�h�2
��x�i0 � i

G2

2

Z
C
d4x

Z
C
d4x0���x����x0�hO��x�O��x0�i0 �O�G3�: (3.16)

In the above result we have neglected second order
contributions of the form G2�4

�. These nonlinear contri-
butions give rise to interactions between the quasiparticles
and will be neglected in this article. Here we are primarily
concerned with establishing the general properties of the
quasiparticles and their equilibration with the bath and not
with their mutual interaction. As in the case of mixed
neutrinos, the inclusion of a ‘‘neutrino’’ background may

lead to the phenomenon of nonlinear synchronization [51–
53], but the study of this phenomenon is beyond the realm
of this article.

We focus solely on the nonequilibrium effective action
up to quadratic order in the ‘‘neutrino fields,’’ from which
we extract the dispersion relations, relaxation rates, and the
approach to equilibrium with the bath of the quasiparticle
modes in the medium.
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The integrals along the contour C stand for the following expressions:

 G
Z
C
d4x�2

��x�h�
2
��x�i0 � V��

Z
d3x

Z 1
ti
dt��2�

� �x� ��
2�
� �x�	; (3.17)

where V�� are the ‘‘matter potentials’’ which are independent of position under the assumption of translational invariance,
and time independent under the assumption that the bath is in equilibrium, and

 

Z
C
d4x

Z
C
d4x0���x����x

0�hO��x�O��x
0�i0 �

Z
d3x

Z 1
ti
dt
Z
d3x0

Z 1
ti
dt0���� �x��

�
� �x

0�hO�� �x�O
�
� �x

0�i0

���� �x��
�
� �x

0�hO�� �x�O
�
� �x

0�i0 ��
�
� �x��

�
� �x

0�hO�� �x�O
�
� �x

0�i0

���� �x���� �x
0�hO�� �x�O�� �x

0�i0	 (3.18)

Since the expectation values above are computed in a
thermal equilibrium translational invariant density matrix,
it is convenient to introduce the spatial Fourier transform of
the composite operator O in a spatial volume V as

 O �; ~k�t� �
1����
V
p

Z
d3xei ~k
 ~xO�� ~x; t� (3.19)

in terms of which we obtain following the correlation
functions

 hO�
�; ~k
�t�O�

�;� ~k
�t0�i � TrO�;� ~k�t

0�e��H
0��;W	O�; ~k�t�

� G>
���k; t� t0� � G���� �k; t� t0�;

(3.20)

 

hO�
�; ~k
�t�O�

�;� ~k
�t0�i � TrO�; ~k�t�e

��H�O�;� ~k�t
0�

� G<
���k; t� t0�

� G���� �k; t� t0�

� G���;��k; t0 � t�; (3.21)

 

hO�
�; ~k
�t�O�

�;� ~k
�t0�i � G>

���k; t� t0���t� t0�

� G<
���k; t� t0���t0 � t�

� G���� �k; t� t0�; (3.22)

 

hO�
�; ~k
�t�O�

�;� ~k
�t0�i � G>

���k; t� t0���t0 � t�

� G<
���k; t� t0���t� t0�

� G���� �k; t� t0�: (3.23)

The time evolution of the operators is determined by the
Heisenberg picture of H0��;W	. Because the density ma-
trix for the bath is in equilibrium, the correlation functions
above are solely functions of the time difference as made
explicit in the expressions above. These correlation func-
tions are not independent, but obey

 

G���� �k; t; t0� � G���� �k; t; t0� �G���� �k; t; t0�

�G���� �k; t; t0� � 0: (3.24)

The correlation function G>
�� up to lowest order in the

coupling G is given by

 G >
���k; t� t0� �

Z d3p

�2	�3
hW~p� ~k�t�W� ~p� ~k�t

0�i

� h� ~p;��t��� ~p;��t0�i; (3.25)

where the expectation value is in the free field equilibrium
density matrix of the respective fields. This correlation
function is diagonal in the flavor basis and this entails
that all the Green’s functions (3.20), (3.21), (3.22), and
(3.23) are diagonal in the flavor basis.

The nonequilibrium effective action yields the time
evolution of the reduced density matrix; it is given by

 Leff���; ��	 �
Z 1
ti
dtd3x�L0���� �L0����	

� Lif���; ��	; (3.26)

where we have set the sources J� for the fields�� to zero.
In what follows we take ti � 0 without loss of generality

since (i) for t > ti the total Hamiltonian is time indepen-
dent and the correlations will be solely functions of t� ti,
and (ii) we will be ultimately interested in the limit t� ti
when all transient phenomena has relaxed. Adapting the
methods presented in Ref. [48] to account for the matrix
structure of the effective action, introducing the spatial
Fourier transform of the fields �� defined as in
Eq. (3.19) and the matrix of the matter potentials

 V �
Vee 0
0 V��

� �
; (3.27)

we find
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 iLeff��
�; ��	 �

X
~k

�
i
2

Z 1
0
dt� _��

�; ~k
�t� _��

�;� ~k
�t� ���

�; ~k
�t��k2��� �M2

�� � V����
�

�;� ~k
�t� � _��

�; ~k
�t� _��

�;� ~k
�t� ���

�; ~k
�t�

� �k2��� �M2
�� � V����

�

�;� ~k
�t�	 �

G2

2

Z 1
0
dt
Z 1

0
dt0���

�; ~k
�t�G���� �k; t; t0���

�;� ~k
�t0�

���
�; ~k
�t�G���� �k; t; t0���

�;� ~k
�t0� ���

�; ~k
�t�G���� �k; t; t0���

�;� ~k
�t0� ���

�; ~k
�t�G���� �k; t; t0���

�;� ~k
�t0�	

�
:

(3.28)

The ‘‘matter potentials’’ V�� play the role of the index
of refraction correction to the dispersion relations [49] and
is of first order in the coupling G whereas the contributions
that involve G are of order G2. As it will become clear
below, it is more convenient to introduce the Wigner center
of mass and relative variables
 

��� ~x; t� �
1
2��

�
� � ~x; t� ���� � ~x; t��;

R�� ~x; t� � ���� � ~x; t� ���� � ~x; t��;
(3.29)

and the Wigner transform of the initial density matrix for
the � fields
 

W ��0; �0� �
Z
DR0;�e

�i
R
d3x�0;�� ~x�R0;�� ~x�

� �
�

�0 �
R0

2
; �0 �

R0

2

�
(3.30)

with the inverse transform
 

�
�
�0 �

R0

2
; �0 �

R0

2

�
�
Z
D�0

�e
i
R
d3x�0

�� ~x�R0
�� ~x�

�W ��0; �0�: (3.31)

The boundary conditions on the� path integral given by
(3.12) translate into the following boundary conditions on
the center of mass and relative variables

 ��� ~x; t � 0� � �0
�; R�� ~x; t � 0� � R0

�: (3.32)

Furthermore, the boundary condition (3.11) yields the
following boundary condition for the relative field

 R�� ~x; t � 1� � 0: (3.33)

This observation will be important in the steps that follow.
The same description applies to the fields in the mass

basis. We will treat both cases on equal footing with the
notational difference that Greek labels �, � refer to the
flavor and Latin indices i, j refer to the mass basis.

In terms of the spatial Fourier transforms of the center of
mass and relative variables (3.29) introduced above, inte-
grating by parts and accounting for the boundary condi-
tions (3.32), the nonequilibrium effective action (3.28)
becomes

 

iLeff��; R	 �
Z 1

0
dt
X
~k

f�iR�;� ~k�
���; ~k�t� � �k

2��� �M2
�� � V�����; ~k�t��g

�
Z 1

0
dt
Z 1

0
dt0
X
~k

�
1

2
R�;� ~k�t�K���k; t� t0�R�; ~k�t

0� � R�;� ~k�t�i	
R
���k; t� t0���; ~k�t

0�

�

� i
Z
d3xR0

�� ~x� _��� ~x; t � 0�; (3.34)

where the last term arises after the integration by parts in
time, using the boundary conditions (3.32) and (3.33). The
kernels in the above effective Lagrangian are given by [see
Eqs. (3.20), (3.21), (3.22), and (3.23)]

 K ���k; t� t0� �
G2

2
�G>

���k; t� t0� � G<
���k; t� t0�	;

(3.35)

 

i	R
���k; t� t0� � G2�G>

���k; t� t0� � G<
���k; t� t0�	

���t� t0� � i	���k; t� t0���t� t0�:

(3.36)

The term quadratic in the relative variable R can be
written in terms of a stochastic noise as

 

exp
�
�

1

2

Z
dt
Z
dt0R�;� ~k�t�K���k; t� t0�R�~k�t

0�

�

�
Z

D exp
�
�

1

2

Z
dt
Z
dt0�; ~k�t�K

�1
���k; t� t0�

� �;� ~k�t
0� � i

Z
dt�;� ~k�t�R�; ~k�t�

�
: (3.37)

The nonequilibrium generating functional can now be
written in the following form:
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Z �
Z
D�0

Z
D�0

Z
D�DRDW ��0; �0�DR0ei

R
d3xR0;�� ~x���0

�� ~x�� _��� ~x;t�0��P �	

� exp
�
�i

Z 1
0
dtR�;� ~k�t�

�
���; ~k�t� � �k

2��� �M2
�� � V�����; ~k�t� �

Z
dt0	R

���k; t� t0���; ~k�t
0� � �; ~k�t�

��
;

(3.38)

 P �	 � exp
�
�

1

2

Z 1
0
dt
Z 1

0
dt0�; ~k�t�K

�1
���k; t� t0��;� ~k�t

0�

�
: (3.39)

The functional integral over R0 can now be done, resulting in a functional delta function that fixes the boundary condition
_��� ~x; t � 0� � �0

�� ~x�. Finally the path integral over the relative variable can be performed, leading to a functional delta
function and the final form of the generating functional given by
 

Z �
Z
D�0D�0W ��0; �0�D�DP �	�

�
���; ~k�t� � �k

2��� �M2
�� � V�����; ~k�t�

�
Z t

0
dt0	���k; t� t0���; ~k�t

0� � �; ~k�t�
�

(3.40)

with the boundary conditions on the path integral on � given by

 ��� ~x; t � 0� � �0
�� ~x�; _��� ~x; t � 0� � �0

�� ~x�; (3.41)

where we have used the definition of 	R
���k; t� t0� in terms of 	���k; t� t0� given in Eq. (3.36).

The meaning of the above generating functional is the following: to obtain correlation functions of the center of mass
Wigner variable � we must first find the solution of the classical stochastic Langevin equation of motion

 

���; ~k�t� � �k
2��� �M2

�� � V�����; ~k�t� �
Z t

0
dt0	���k; t� t0���; ~k�t

0� � �; ~k�t�

��; ~k�t � 0� � �0
�; ~k

; _��; ~k�t � 0� � �0
�; ~k

(3.42)

for arbitrary noise term  and then average the products of � over the stochastic noise with the Gaussian probability
distribution P �	 given by (3.39), and finally average over the initial configurations �0� ~x�; �0� ~x� weighted by the Wigner
function W ��0;�0�, which plays the role of an initial phase space distribution function.

Calling the solution of (3.42) ��; ~k�t;; �i; �i�, the two-point correlation function, for example, is given by

 h��; ~k�t���;� ~k�t
0�i �

R
D�	P �	

R
D�0

R
D�0W ��0; �0���; ~k�t; ; �0; �0���;� ~k�t

0; ; �0; �0�R
D�	P �	

R
D�0

R
D�0W ��0; �0�

: (3.43)

In computing the averages and using the functional delta
function to constrain the configurations of � to the solu-
tions of the Langevin equation, there is the Jacobian of the
operator �d2=dt2 � k2���� �M2 � V�

R
dt0	ret�k; t�

t0� which, however, is independent of the field and the
noise and cancels between numerator and denominator in
the averages. There are two different averages:

(i) The average over the stochastic noise term, which up
to this order is Gaussian. We denote the average of a
functional F �	 over the noise with the probability
distribution function P�	 given by Eq. (3.39) as

 hhF ii �

R
DP�	F �	R

DP�	
: (3.44)

Since the noise probability distribution function is
Gaussian, the only necessary correlation functions

for the noise are given by
 

hh�; ~k�t�ii � 0;

hh�; ~k�t��; ~k0 �t
0�ii �K���k; t� t0��3� ~k� ~k0�;

(3.45)

and the higher order correlation functions are ob-
tained from Wick’s theorem as befits a Gaussian
distribution function. Because the noise kernel
K���k; t� t0� � ��t� t0� the noise is colored.

(ii) The average over the initial conditions with the
Wigner distribution function W ��0;�0� which
we denote as
 

A��0;�0	

�

R
D�0

R
D�0W ��0; �0�A��0;�0	R
D�0

R
D�0W ��0; �0�

: (3.46)
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Therefore, the average in the time-evolved reduced den-
sity matrix implies two distinct averages: an average over
the initial conditions of the system fields and average over
the noise distribution function. The total average is defined
by

 h
 
 
i � hh
 
 
ii: (3.47)

Equal time expectation values and correlation functions
are simply expressed in terms of the center of mass Wigner
variable � as can be seen as follows: the expectation values
of the field

 h��� ~x; t�i � Tr�� ~x; t���t�;

h��� ~x; t�i � Tr��t��� ~x; t�:
(3.48)

Hence, the total average (3.47) is given by

 h�� ~x; t�i � h�� ~x; t�i: (3.49)

Similarly, the equal time correlation functions obey

 h��� ~x; t���� ~x0; t�i � h��� ~x; t���� ~x0; t�i

� h��� ~x; t���� ~x0; t�i

� h��� ~x; t���� ~x0; t�i

� h�� ~x; t��� ~x0; t�i: (3.50)

Therefore, the center of mass variables � contain all the
information necessary to obtain expectation values and
equal time correlation functions.

A. One-body density matrix and equilibration

We study equilibration by focusing on the one-body
density matrix

 ����k; t� � Tr��0���� ~k; t����� ~k; t�

� Tr��t���� ~k; 0����� ~k; 0�; (3.51)

where

 ��t� � e�iHt��0�eiHt (3.52)

is the time-evolved density matrix. The time evolution of
the one-body density matrix obeys the Liouville-type equa-
tion

 

d
dt
����t� � �iTr�H;��t�	��� ~k; 0����� ~k; 0�: (3.53)

If the system reaches equilibrium with the bath at long
times, then it is expected that

 �H;��t�	 !
t!1

0: (3.54)

Therefore, the asymptotically long time limit of the one-
body density matrix yields information on whether the
density matrix is diagonal in the flavor or any other basis.
Hence we seek to obtain

 ����k;1� � Tr��1���� ~k; 0����� ~k; 0�

� h�� ~k�1���;� ~k�1�i; (3.55)

and to establish the basis in which it is nearly diagonal. The
second equality in Eq. (3.55) follows from Eq. (3.50), and
the average is defined by Eq. (3.47). To establish a guide
post, consider the one-body density matrix for the free
‘‘neutrino fields’’ in thermal equilibrium, for which the
equilibrium density matrix is

 �eq � e��H0�’	; (3.56)

whereH0�’	 is the free neutrino Hamiltonian. This density
matrix is diagonal in the basis of mass eigenstates and so is
the one-body density matrix which in the mass basis is
given by
 

�ij�k� �
1

2!1�k�
coth��!1�k�

2 	 0

0 1
2!2�k�

coth��!2�k�
2 	

0@ 1A;

i; j � 1; 2: (3.57)

Therefore, in the flavor basis the one-body density matrix
is given by

 ����k� � U���
1

2!1�k�
coth��!1�k�

2 	 0

0 1
2!2�k�

coth��!2�k�
2 	

0@ 1AU�1���; �;� � e;�: (3.58)

This simple example provides a guide to interpret the
approach to equilibrium. Including interactions there is a
competition between the mass and flavor basis. The inter-
action is diagonal in the flavor basis, while the unperturbed
Hamiltonian is diagonal in the mass basis; this of course is
the main physical reason behind neutrino oscillations. In
the presence of interactions, the correct form of the equi-
librium one-body density matrix can only be obtained from
the asymptotic long time limit of the time-evolved density
matrix.

B. Generalized fluctuation-dissipation relation

From the expressions (3.35) and (3.36) in terms of the
Wightmann functions (3.20) and (3.21) which are averages
in the equilibrium density matrix of the bath fields ��;W�,
we obtain a dispersive representation for the kernels
K���k; t� t0�; 	R

���k; t� t0�. This is achieved by writing
the expectation value in terms of energy eigenstates of the
bath, introducing the identity in this basis, and using the
time evolution of the Heisenberg field operators to obtain
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 G2G>
���k; t� t0� �

Z 1
�1

d!�>��� ~k;!�e
i!�t�t0�;

G2G<
���k; t� t0� �

Z 1
�1

d!�<��� ~k;!�e
i!�t�t0�

(3.59)

with the spectral functions

 �>��� ~k;!� �
G2

Zb

X
m;n

e��EnhnjO�; ~k�0�jmi

� hmjO�;� ~k�0�jni��!� �En � Em��;

(3.60)

 �<��� ~k;!� �
G2

Zb

X
m;n

e��EmhnjO�;� ~k�0�jmi

� hmjO�; ~k�0�jni��!� �Em � En��; (3.61)

where Zb � Tre��H� is the equilibrium partition function
of the bath and in the above expressions the averages are
solely with respect to the bath variables. Upon relabelling
m$ n in the sum in the definition (3.61) and using the fact
that these correlation functions are parity and rotational
invariant [54] and diagonal in the flavor basis we find the
Kubo-Martin-Schwinger relation [54]

 �<���k;!� � �>���k;�!� � e�!�>���k;!�: (3.62)

Using the spectral representation of the ��t� t0� we find
the following representation for the retarded self-energy

 	R
���k; t� t0� �

Z 1
�1

dk0

2	
eik0�t�t0� ~	R

���k; k0� (3.63)

with

 

~	 R
���k; k0� �

Z 1
�1

d!
��>���k;!� � �<���k;!�	

!� k0 � i�
:

(3.64)

Using the condition (3.62) the above spectral representa-
tion can be written in a more useful manner as

 

~	 R
���k; k0� � �

1

	

Z 1
�1

d!
Im~	R

���k;!�

!� k0 � i�
; (3.65)

where the imaginary part of the self-energy is given by

 Im ~	R
���k;!� � 	�>���k;!��e�! � 1	 (3.66)

and is positive for !> 0. Equation (3.62) entails that the
imaginary part of the retarded self-energy is an odd func-
tion of frequency, namely,

 Im ~	R
���k;!� � �Im~	R

���k;�!�: (3.67)

The relation (3.66) leads to the following results which will
be useful later

 �>���k;!� �
1

	
Im~	R

���k;!�n�!�;

�<���k;!� �
1

	
Im~	R

���k;!��1� n�!�	;

(3.68)

where n�!� � �e�! � 1	�1 is the Bose-Einstein distribu-
tion function. Similarly from the definitions (3.35) and
(3.59) and the condition (3.62) we find

 K ���k; t� t0� �
Z 1
�1

dk0

2	
eik0�t�t0� ~K���k; k0�; (3.69)

 

~K ���k; k0� � 	�>���k; k0��e
�k0 � 1	; (3.70)

whereupon using the condition (3.62) leads to the general-
ized fluctuation-dissipation relation

 

~K ���k; k0� � Im~	R
���k; k0� coth

�
�k0

2

�
: (3.71)

Thus we see that Im~	R
���k; k0�; ~K���k; k0� are odd and

even functions of frequency, respectively.
For the analysis below we also need the following

representation [see Eq. (3.36)]

 	���k; t� t0� � �i
Z 1
�1

ei!�t�t
0���>���k;!�

� �<���k;!�	d!

�
i
	

Z 1
�1

ei!�t�t
0� Im~	R

���k;!�d! (3.72)

for which its Laplace transform is given by

 

~	 ���k; s� �
Z 1

0
dte�st	���k; t�

� �
1

	

Z 1
�1

Im~	R
���k;!�

!� is
d!: (3.73)

This spectral representation, combined with (3.65), leads
to the relation

 

~	 R
���k; k0� �

~	���k; s � ik0 � ��: (3.74)

The self-energy and noise correlation kernels ~	, ~K are
diagonal in the flavor basis because the interaction is
diagonal in this basis. Namely, in the flavor basis
 

~	�k;!� �
~	ee�k;!� 0

0 ~	���k;!�

0@ 1A;

~K � �1� 2n�!�	 Im~	�k;!�

�
~Kee�k;!� 0

0 ~K���k;!�

0@ 1A:
(3.75)
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In the mass basis these kernels are given by

 

~	 �
1

2
�~	ee �

~	���1�
1

2
�~	ee �

~	���

�
cos2� sin2�
sin2� � cos2�

� �
; (3.76)

and

 

~K �
1

2
� ~Kee �

~K���1�
1

2
� ~Kee �

~K���

�
cos2� sin2�
sin2� � cos2�

� �
: (3.77)

IV. DYNAMICS: SOLVING THE LANGEVIN
EQUATION

The solution of the equation of motion (3.42) can be
found by Laplace transform. Define the Laplace transforms
 

~��; ~k�s� �
Z 1

0
dte�st��; ~k�t�;

~�; ~k�s� �
Z 1

0
dte�st�; ~k�t�

(4.1)

along with the Laplace transform of the self-energy given
by Eq. (3.73). The Langevin equation in Laplace variable
becomes the following algebraic matrix equation:

 ��s2 � k2���� �M2
�� � V�� �

~	���k; s�	 ~��; ~k�s�

� �0;�; ~k � s�0;�; ~k �
~�; ~k�s�; (4.2)

where we have used the initial conditions (3.41). The
solution in real time can be written in a more compact
manner as follows. Introduce the matrix function

 

~G�k; s� � ��s2 � k2�1�M2 � V� ~	�k; s�	�1 (4.3)

and its anti-Laplace transform

 G���k; t� �
Z
C

ds
2	i

~G���k; s�est; (4.4)

where C refers to the Bromwich contour, parallel to the
imaginary axis in the complex s plane to the right of all the
singularities of ~G�k; s�. This function obeys the initial
conditions

 G���k; 0� � 0; _G���k; 0� � 1: (4.5)

In terms of this auxiliary function the solution of the
Langevin Eq. (3.42) in real time is given by

 ��; ~k�t; �0; �0;� � _G���k; t��0
� ~k
�G���k; t��0

�; ~k

�
Z t

0
G���k; t0��; ~k�t� t

0�dt0;

(4.6)

where the dot stands for derivative with respect to time. In

the flavor basis we find

 

~G f�k; s� � S�k; s�
�
�s2 � �!2�k� � �	�k; s��1�

�M2

2

�
cos2�� 
�k; s� � sin2�
� sin2� � cos2�� 
�k; s�

� ��
;

(4.7)

whereas in the mass basis we find

 

~Gm�k;s� � S�k;s�
�
�s2� �!2�k�� �	�k;s��1�

�M2

2

�
1�
�k;s�cos2� 
�k;s� sin2�


�k;s� sin2� �1�
�k;s�cos2�

� ��
;

(4.8)

where �M2 and �M2 were defined by Eq. (2.7) and to
simplify notation we defined

 �!�k� �
������������������
k2 � �M2

p
; (4.9)

 

�	�k; s� � 1
2�

~	ee�k; s� � Vee � ~	���k; s� � V���;

(4.10)

 
�k; s� �
~	ee�k; s� � Vee � ~	���k; s� � V��

M2
2 �M

2
1

; (4.11)

and
 

S�k; s� �
�
�s2 � �!2�k� � �	�k; s��2 �

�
�M2

2

�
2

� ��cos2�� 
�k; s��2 � �sin2��2	
�
�1
: (4.12)

In what follows we define the analytic continuation of
the quantities defined above with the same nomenclature to
avoid introducing further notation, namely,
 

�	�k;!� � �	�k; s � i!� ��;


�k;!� � 
�k; s � i!� ��:
(4.13)

Their real and imaginary parts are given by

 

�	 R�k;!� � 1
2�	R;ee�k;!� � 	R;���k;!� � Vee � V��	;

(4.14)

 

�	 I�k;!� � 1
2�	I;ee�k;!� � 	I;���k;!�	; (4.15)

 


R�k;!� �
1

�M2 �	R;ee�k;!� � 	R;���k;!�

� Vee � V��	; (4.16)

 
I�k;!� �
1

�M2 �	I;ee�k;!� �	I;���k;!�	: (4.17)

We remark that while the matter potential V is of order G,
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	 is of order G2. Therefore, in perturbation theory

 

�	 R�k;!� � �	I�k;!�; 
R�k;!� � 
I�k;!�:

(4.18)

This inequality also holds in the standard model, where the
matter potential is of order GF [49] while the absorptive
part that determines the relaxation rates is of order G2

F.
This perturbative inequality will be used repeatedly in the
analysis that follows, and we emphasize that it holds in the
correct description of neutrinos propagating in a medium.

V. SINGLE PARTICLES AND QUASIPARTICLES

Exact single particle states are determined by the posi-
tion of the isolated poles of the Green’s function in the
complex s plane. Before we study the interacting case, it
proves illuminating to first study the free, noninteracting
case.

A. Free case: G � 0

To begin the analysis, an example helps to clarify this
formulation: consider the noninteracting case G � 0 in
which �	 � 0; 
 � 0. In this case ~Gf;m�k; s� have simple
poles at s � �i!1�k� and �i!2�k� where

 !i�k� �
������������������
k2 �M2

i

q
; i � 1; 2: (5.1)

Computing the residues at these simple poles we find in the
flavor basis

 Gf�k; t� �
sin�!1�k�t�
!1�k�

R�1���� �
sin�!2�k�t�
!2�k�

R�2����;

(5.2)

where we have introduced the matrices

 R �1���� �
cos2� � cos� sin�

� cos� sin� sin2�

� �

� U���
1 0
0 0

� �
U�1���; (5.3)

 R �2���� �
sin2� cos� sin�

cos� sin� cos2�

� �

� U���
0 0
0 1

� �
U�1���: (5.4)

In the mass basis

 Gm�k; t� �
sin�!1�k�t�
!1�k�

0

0 sin�!2�k�t�
!2�k�

0@ 1A (5.5)

with the relation

 Gf�k; t� � U���Gm�k; t�U�1��� (5.6)

and U��� is given by (2.4). Consider for simplicity an
initial condition with �0 � 0; �0 � 0 in both cases, flavor

and mass. The expectation value of the flavor fields �� in
the reduced density matrix (3.47) is given by

 

*
�e; ~k�t�
��; ~k�t�

 !+
� �cos�!1�k�t�R

�1����

� cos�!2�k�t�R�2����	
�0
e; ~k

�0
�; ~k

0@ 1A (5.7)

and that for the fields in the mass basis is

 

�
�1�k; t�
�2�k; t�

� �	
�

�0
1; ~k

cos�!1�k�t�

�0
2; ~k

cos�!2�k�t�

0
@

1
A: (5.8)

These are precisely the solutions of the classical equations
of motion in terms of flavor and mass eigenstates, namely,
 

�e�k; t� � cos�’1�k; t� � sin�’2�k; t�

���k; t� � cos�’2�k; t� � sin�’2�k; t�;
(5.9)

where

 ’1�k; t� � ’1�k; 0� cos!1�k�t;

’2�k; t� � ’2�k; 0� cos!2�k�t
(5.10)

for vanishing initial canonical momentum and the initial
values are given in terms of flavor fields by
 

’1�k; 0� � cos��e�k; 0� � sin����k; 0�

’2�k; 0� � cos����k; 0� � sin��e�k; 0�:
(5.11)

Inserting (5.10) with the initial conditions (5.11) one rec-
ognizes that the solution (5.7) is the expectation value of
the classical equation of motion with initial conditions on
the flavor fields and vanishing initial canonical momentum.

It is convenient to separate the positive (particles) and
negative (antiparticles) frequency components by consid-
ering an initial condition with �0

�; ~k
� 0, in such a way that

the time dependence is determined by phases correspond-
ing to the propagation of particles (or antiparticles).
Without mixing (� � 0) this is achieved by choosing the
following initial conditions:

 �0
�; ~k
� �i���k��

0
�; ~k

(5.12)

for particles (� ) and antiparticles (� ), respectively, as in
Eq. (2.11). This choice of initial conditions leads to the
result
 

hh��; ~k�t�ii �
�
R
�1�
�����

�
cos�!1�k�t�� i

���k�

!1�k�
sin�!1�k�t�

�

�R
�2�
�����

�
cos�!2�k�t�

� i
���k�

!2�k�
sin�!2�k�t�

��
�0
�; ~k
: (5.13)
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It is clear from (5.13) that no single choice of frequen-
cies ���k� can lead uniquely to time evolution in terms of
single particle/antiparticle phases e�i!1;2�k�t. This is a con-
sequence of the ambiguity in the definition of flavor states
as discussed in detail in Sec. . However, for the cases in
which jM2

1 �M
2
2j � �k

2 � �M2�, relevant for relativistic
mixed neutrinos, and for K0 �K0 and B0 �B0 mixing, the
positive and negative frequency components can be ap-
proximately projected out as follows. Define

 �!�k� �
������������������
k2 � �M2

p
(5.14)

in the nearly degenerate or relativistic regime when
j�M2j= �!2�k� � 1

 !1�k� � �!�k�
�

1�
�M2

4 �!2�k�
�O

�
�M2

�!2�k�

�
2
�

;

!2�k� � �!�k�
�

1�
�M2

4 �!2�k�
�O

�
�M2

�!2�k�

�
2
�
:

(5.15)

Taking ���k� � �!�k� and choosing, for example, the
negative sign (positive frequency component) in (5.13) we
find

 h��; ~k�t�i �
�
R
�1�
�����e

�i!1�k�t � R
�2�
�����e

�i!2�k�t

�O

�
�M2

�!2�k�

��
�0
�; ~k
: (5.16)

Consider the following initial condition

 �0
~k
�

�0
e; ~k
0

 !
: (5.17)

Neglecting the corrections in (5.16) we find

 jh��; ~k�t�ij
2 � sin22�sin2

�
�M2

4 �!�k�
t
�
�0
e; ~k
�O

�
�M2

�!2�k�

�
2
;

(5.18)

which is identified with the usual result for the oscillation
transition probability �e ! �� upon neglecting the
corrections.

B. Interacting theory, G � 0

For G � 0, the self-energy as a function of frequency
and momentum is in general complex, the imaginary part
arises from multiparticle thresholds. When the imaginary
part of the self-energy does not vanish at the value of the
frequency corresponding to the dispersion relation of the
free particle states, these particles can decay and no longer
appear as asymptotic states. The poles in the Green’s
function move off the physical sheet into a higher
Riemann sheet, the particles now become resonances.

Single particle states correspond to true poles of the
propagator (Green’s function) in the physical sheet, which

are necessarily away from the multiparticle thresholds.
This case is depicted in Fig. 2.

Let us consider the Green’s function in the flavor basis
Eq. (4.7). The single particle poles are determined by the
poles of S�k; s� on the imaginary axis away from the
multiparticle cuts. These are determined by the roots of
the following equations:

 

�2
1�k� � �!2�k� � �	R�k; �1�k��

�
�M2

2
��cos2��
R�k; �1�k���2 � �sin2��2	1=2;

(5.19)

 

�2
2�k� � �!2�k� � �	R�k; �2�k��

�
�M2

2
��cos2��
R�k; �2�k���2 � �sin2��2	1=2;

(5.20)

along with the conditions

 

�	 I�k; �1;2�k�� � 0; 
I�k; �1;2�k�� � 0; (5.21)

where the subscripts R, I refer to the real and imaginary
parts, respectively. Evaluating the residues at the single
particle poles and using that the real and imaginary parts of
the self-energies are even and odd functions of frequency,
respectively, we find

 

s
=

iω
−

∋ ∋

s
=

iω
+

(s

FIG. 2. Bromwich contour in s plane. The shaded region
denotes the cut discontinuity from multiparticle thresholds
across the imaginary axis, the filled circles represent the single
particle poles.
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 Gf�k; t� � Z�1�k
sin��1�k�t�

�1�k�
R�1����1�m �k��

� Z�2�k
sin��2�k�t�

�2�k�
R�2����2�m �k�� �Gf;cut�t�;

(5.22)

where Gf;cut�t� is the contribution from the multiparticle
cut, the matrices R�1;2� are given by (5.3) and (5.4), and
�1;2
m �k� are the mixing angles in the medium

 

cos2�im�k� �
cos2�� 
R��i�k��

��cos2�� 
R�k; �i�k���2 � �sin2��2	1=2
;

sin2�im�k� �
sin2�

��cos2�� 
R�k; �i�k���2 � �sin2��2	1=2
:

(5.23)

for i � 1, 2. The wave function renormalization constants
are given by

 Z�i�k �
�

1�
1

2!
� �	0R�k;!� � ��1�i

�M2

2

� cos2�im�k�
0R�k;!��
�
�1

!��i�k�
; (5.24)

where the prime stands for derivative with respect to !. At
asymptotically long time the contribution from the cut
Gf;cut�t� � t

�� where � is determined by the behavior of
the self-energy at threshold [55,56].

In perturbation theory and in the limit �!�k�2 � j�M2j
the dispersion relations (5.19) and (5.20) can be solved by
writing

 ��i�k� � �� �!�k� � �!i�k��: (5.25)

We find

 �!i�k� �
�	R�k; �!�k��

2 �!�k�
� ��1�i

�M2

4 �!�k�
�%�k�; (5.26)

where we defined

 %�k;!� � ��cos2�� 
R�k;!��2 � �sin2��2	1=2; (5.27)

and the shorthand

 

�%�k� � %�k;! � �!�k��: (5.28)

To leading order in the perturbative expansion and in
�M2= �!2�k� we find ��1�m �k� � ��2�m �k� � �m�k�. Gathering
these results, we find the dispersion relations and mixing
angles in the medium to be given by the following rela-
tions:

 �1�k� � �!�k� �
�	R�k; �!�k��

2 �!�k�
�
�M2

4 �!�k�
�%�k�; (5.29)

 �2�k� � �!�k� �
�	R�k; �!�k��

2 �!�k�
�
�M2

4 �!�k�
�%�k�; (5.30)

and

 

cos2�m�k� �
cos2��
R�k; �!�k��

��cos2��
R�k; �!�k���2 � �sin2��2	1=2
;

sin2�m�k� �
sin2�

��cos2��
R�k; �!�k���2 � �sin2��2	1=2
:

(5.31)

These dispersion relations and mixing angles have exactly
the same form as those obtained in the field theoretical
studies of neutrino mixing in a medium [49,57].

C. Quasiparticles and relaxation

Even a particle that is stable in the vacuum acquires a
width in the medium through several processes, such as
collisional broadening or Landau damping [54]. In this
case there are no isolated poles in the Green’s function in
the physical sheet, the poles move off the imaginary axis in
the complex s plane on to a second or higher Riemann
sheet. The Green’s function now features branch cut dis-
continuities across the imaginary axis perhaps with iso-
lated regions of analyticity. The inverse Laplace transform
is now carried out by wrapping around the imaginary axis
as shown in Fig. 3, and the real-time Green’s function is
given by

 G���k; t� �
i
	

Z 1
�1

d!ei!t Im ~G���k; s � i!� ��:

(5.32)

Under the validity of perturbation theory, when the in-
equality (4.18) is fulfilled we consistently keep terms up
to O�G2� and find the imaginary part to be given by the
following expression

 

s
=

iω
−

∋ ∋

s
=

iω
+

(s

FIG. 3. Bromwich contour in s plane. The shaded region
denotes the cut discontinuity from multiparticle thresholds
across the imaginary axis.
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 Im ~G�k;s� i!� ��

�
�A�D��� �D�����B�D�D� ������

�D2
� ��

2
���D

2
� ��

2
��

;

(5.33)

where we have introduced

 D��k;!� � �!2 � �!2
k �

�	R�k;!� � 1
2�M

2%�k;!�;

(5.34)

 

���k;!� � 1
2�1� cos2�m�!; k��	I;ee�k;!�

� 1
2�1� cos2�m�!; k��	I;���k;!�: (5.35)

	R;I are the real and imaginary parts of the self-energy,
respectively, with

 


R�k;!� �
1

�M2 �	R;ee�k;!��Vee�	R;���k;!��V��	;

(5.36)

and

 A�k;!� � ��!2 � �!2
k �

�	R�k;!�1	 �
�M2

2

�
cos2��
R�k;!� � sin2�

� sin2� � cos2�� 
R�k;!�

� �
;

(5.37)

 B �k;!� �
	I;���k;!� 0

0 	I;ee�k;!�

� �
: (5.38)

The denominator in (5.33) features complex zeroes for

 D��k;!� � ���k;!� � 0: (5.39)

Near these zeroes Im ~G�k; s � i!� �� has the typical
Breit-Wigner form for resonances. The dynamical evolu-
tion at long times is dominated by the complex poles in the
upper half !� plane associated with these resonances. In
perturbation theory the complex poles of Im ~G�k; s � i!�
�� occur at

 ! � ��1�k� � i
�1�k�

2
(5.40)

and

 ! � ��2�k� � i
�2�k�

2
; (5.41)

where �1;2�k� are given by (5.19) and (5.20) and

 

�1�k�
2
�
���k;�1�k��

2�1�k�
�
���k; �!�k��

2 �!�k�
;

�2�k�
2
�
���k;�2�k��

2�2�k�
�
���k; �!�k��

2 �!�k�
:

(5.42)

These relaxation rates can be written in an illuminating
manner

 �1�k� � �ee�k�cos2�m�k� � ����k�sin2�m�k�; (5.43)

 �2�k� � ����k�cos2�m�k� � �ee�k�sin2�m�k�; (5.44)

where

 ����k� �
	I;���k; �!�k��

�!�k�
(5.45)

are the relaxation rates of the flavor fields in absence of
mixing. These relaxation rates are similar to those pro-
posed within the context of flavor conversions in super-
novae [58], or active-sterile oscillations [28,50,59].

We carry out the frequency integral in (5.32) by approx-
imating the integrand as a sum of two Breit-Wigner
Lorentzians near ! � ��1;2�k� with the following result
in the flavor basis,
 

Gf�k; t� � Z�1�k e
���1�k�=2�t

�
sin��1�k�t�

�1�k�
R�1���m�k��

�
~��k�

2

cos��1�k�t�
�1�k�

R�3���m�k��
�

� Z�2�k e
���2�k�=2�t

�
sin��2�k�t�

�2�k�
R�2���m�k��

�
~��k�

2

cos��2�k�t�
�2�k�

R�3���m�k��
�
; (5.46)

where again we have used the approximation j�M2j �
�!2�k� and introduced

 R �3���� � sin2�
sin2� cos2�
cos2� � sin2�

� �

� sin2�U���
0 1
1 0

� �
U�1��� (5.47)

and

 ~��k� �
	I;ee�k; �!�k� �	I;���k; �!�k��

�M2 �%�k�
: (5.48)

Under the assumption that 	R;�;� � 	I;�;� it follows
that ~��k� � 1. As in the previous section, we can approxi-
mately project the positive frequency component by choos-
ing the initial condition (5.12) with �� � �!�k�, leading to
the result
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h��; ~k�t�i � e�iW�k�t�� ���k�=2�t
�
Z�1�k e

i
!�k�t��
��k�=2�t
�
R�1���m�k�� � i

~��k�
2

R�3���m�k��
�

� Z�2�k e
�i
!�k�t��
��k�=2�t

�
R
�2�
�;���� � i

~��k�
2

R�3���m�k��
�
�O

�
�M2

�!2�k�

��
�0
�; ~k
; (5.49)

where

 W�k� � �!�k� �
�	R�k; �!�k��

4 �!�k�
; (5.50)

 

���k�
2
�

1

4 �!�k�
�	I;ee�k; �!�k� �	I;���k; �!�k�	; (5.51)

 
!�k� �
�M2 �%�k�

4 �!�k�
; (5.52)

 


��k�
2

�
cos2�m
4 �!�k�

�	I;ee�k; �!�k� �	I;���k; �!�k�	:

(5.53)

With the initial condition (5.17) we now find the long
time evolution of the transition probability �e ! ��

 

jh��; ~k�t�ij
2 �

sin22�m�k�
4

�e��1�k�t � e��2�k�t

� 2e��1=2���1�k���2�k��t cos�2
!�k�t�	�0
e; ~k
;

(5.54)

where we have neglected perturbatively small terms by
setting Z�i� � 1; ~��k� � 0 in prefactors. The solution
(5.49) can be written in the following illuminating form:

 h��; ~k�t�i � e�iW�k�t�� ���k�=2�tU��m�k��
Z�1�k e

i
!�k�t��
��k�=2�t 0

0 Z�2�k e
�i
!�k�t��
��k�=2�t

 !
U�1��m�k���

0
�; ~k
; (5.55)

where

 U ��m�k�� �
cos�m�k��1� i~��k�� sin�m�k��1� i~��k��
� sin�m�k� cos�m�k�

� �
; (5.56)

 U�1��m�k�� �
1

�1� i cos�m�k�~��k��
cos�m�k� � sin�m�k��1� i~��k��
� sin�m�k� cos�m�k��1� i~��k��

� �
: (5.57)

Obviously the matrix U is not unitary.

D. Long time dynamics: Weisskopf-Wigner
Hamiltonian

A phenomenological description of the dynamics of
mixing and decay for neutral flavored mesons, for example
K0

�K0; B0
�B0 relies on the Weisskopf-Wigner (WW) ap-

proximation [60]. In this approximation the time evolution
of states is determined by a non-Hermitian Hamiltonian
that includes in a phenomenological manner the exponen-
tial relaxation associated with the decay of the neutral
mesons. This approach has received revived attention re-
cently with the possibility of observation of quantum me-
chanical coherence effects, in particular, CP violation in
current experiments with neutral mesons [61]. In Ref. [62]
a field theoretical analysis of the (WW) approximation has
been provided for the K0

�K0 system.
The form of the solution (5.55) suggests that a (WW)

approximate description of the asymptotic dynamics in
terms of a non-Hermitian Hamiltonian is available. To
achieve this formulation we separate explicitly the fast

time dependence via the phase e�i �!�k�t for the positive
and negative frequency components, writing

 � ~k�t� � e�i �!�k�t��~k �t� � e
i �!�k�t��~k �t�; (5.58)

where ��~k �t� the amplitudes of the flavor vectors that
evolve slowly in time. The solution for the positive fre-
quency component (5.49) follows from the time evolution
of the slow component determined by

 i
d
dt

��~k �t� �H w��~k �t�; (5.59)

where the effective non-Hermitian Hamiltonian H is
given by
 

H w �
�M2

4 �!�k�

� cos2� sin2�

sin2� cos2�

 !
�

	R�k; �!�k�� � V

2 �!�k�

� i
	I�k; �!�k��

2 �!�k�
; (5.60)

with
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 	R�k; �!�k�� � V �
	R;ee�k; �!�k�� � Vee 0

0 	R;���k; �!�k�� � V��

� �
; (5.61)

 	I�k; �!�k�� �
	I;ee�k; �!�k�� 0

0 	I;���k; �!�k��

� �
: (5.62)

The (WW) Hamiltonian H w can be written as

 H w �

� �	R�k; �!�k��
4 �!�k�

� i
���k�
2

�
1�

�M2 �%�k�
4 �!�k�

��cos2�m�k� � i~��k�� sin2�m�k�
sin2�m�k� �cos2�m�k� � i~��k��

� �
; (5.63)

where we have used the definitions given in Eqs. (5.27),
(5.28), (5.31), (5.48), and (5.51). It is straightforward to
confirm that the Wigner-Weisskopf Hamiltonian can be
written as

 H w �U��m�k��
���k� 0

0 ���k�

� �
U�1��m�k��; (5.64)

where U��m�k�� is given in (5.56) and using the definitions
given in Eqs. (5.50), (5.51), (5.52), and (5.53) the complex
eigenvalues are

 ���k� � W�k� � �!�k� � i
���k�
2
�

�

!�k� � i


��k�
2

�
:

(5.65)

The solution of the effective equation for the slow
amplitudes (5.59) coincides with the long time dynamics
given by (5.49) when the wave function renormalization
constants are approximated as Z�i�~k � 1. Therefore, the
(WW) description of the time evolution based on the
non-Hermitian Hamiltonian H w (5.60) effectively de-
scribes the evolution of flavor multiplets under the follow-
ing approximations:

(i) Only the long time dynamics can be extracted from
the Weisskopf-Wigner Hamiltonian.

(ii) The validity of the perturbative expansion, and of
the condition �M2 � �!�k�2.

(iii) Wave function renormalization corrections are ne-
glected Z�i� � 1 and only leading order corrections
of order ~��k� are included.

While the Weisskopf-Wigner effective description de-
scribes the relaxation of the flavor fields, it misses the
stochastic noise from the bath, therefore, it does not reli-
ably describe the approach to equilibrium.

VI. EQUILIBRATION: EFFECTIVE
HAMILTONIAN IN THE MEDIUM

As discussed in Sec. III A we study equilibration by
focusing on the asymptotic long time behavior of the
one-body density matrix or equal time correlation function,
namely,

 lim
t!1
h��; ~k�t���;� ~k�t�i: (6.1)

In particular we seek to understand which basis diagonal-
izes the equilibrium density matrix.

Consider general initial conditions �0 � 0 and �0 � 0,
in which case the flavor field ��; ~k�t� is given by Eq. (4.6)
with Gf�k; t� given by Eq. (5.46). For t� ��1

1;2 , the first
two contributions to (4.6) which depend on the initial
conditions fall off exponentially as e���1;2=2�t and only the
last term, the convolution with the noise, survives at
asymptotically long time, indicating that the equilibrium
state is insensitive to the initial conditions as it must be.

To leading order in the perturbative expansion in G, and
in the limit �M2= �!2�k� � 1, we can approximate
��1�m �k� � ��2�m �k� � �m�k�, where the effective mixing
angle in the medium �m�k� is determined by the relations
(5.31). Similarly we can approximate the wave function
renormalization constants as Z�1��k� � Z�2��k� � Z�k� with

 Z�k� �
�

1�
1

2!

�
�	0R�k;!� � ��1�i

�M2

2

� cos2�m�k�

0
R�k;!�

��
�1

!� �!�k�
; (6.2)

where the prime stands for derivative with respect to !.
Thus, Gf�k; t� and Gm�k; t� are related by

 Gf�k; t� � Z�k�U��m�Gm�k; t�U�1��m�; (6.3)

where Gm�k; t� is given by
 

Gm�k; t� �

sin��1�k�t�
�1�k�

e���1�k�=2�t 0

0 sin��2�k�t�
�2�k�

e���2�k��=2�t

0@ 1A
�

~��k�
2

sin2�m�k�
�
e���2�k�=2�t cos��2�k�t�

�2�k�

� e���1�k�=2�t cos��1�k�t�
�1�k�

� 0 1

1 0

 !
: (6.4)

It is useful to define the quantities hm�t; !� and ~�; ~k�!�
as follows:

 hm�t; !� �
Z t

0
e�i!t

0
Gm�k; t�dt0 (6.5)
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and

 �; ~k�t� t
0� �

Z �1
�1

ei!�t�t
0� ~�; ~k�!�d!; (6.6)

with the noise average in the flavor basis given by
 

hh~�; ~k�!�
~�;� ~k�!

0�ii � ~K���k;!���!�!0� � Im~	R
���k;!� coth

�
�!
2

�
��!�!0�: (6.7)

We find it convenient to introduce

 

~K m�k;!� � U�1��m� ~K�k;!�U��m�: (6.8)

The approach to equilibrium for t� ��1
1;2 can be established from the unequal time two-point correlation function, given

by

 lim
t;t0!1

h��; ~k�t���;� ~k�t
0�i � Z2�k�U��m�

�Z �1
�1

d!ei!�t�t
0�hm�1; !� ~Km�k;!�hm�1;�!�

�
U�1��m�; (6.9)

where we have taken the upper limit t! 1 in (6.6). The
fact that the correlation function becomes a function of the
time difference, namely, time translational invariant, indi-
cates that the density matrix commutes with the total
Hamiltonian in the long time limit. The one-body density
matrix is obtained from (6.9) in the coincidence limit
t � t0.

Performing the integration over !, we obtain after a
lengthy but straightforward calculation

 lim
t!1
h��; ~k�t���;� ~k�t�i � Z2�k�U��m�

�
�11�k� �12�k�
�21�k� �22�k�

� �
U�1��m�;

(6.10)

wherein

 �11�k� �
1

2�1�k�
coth

�
��1�k�

2

�
; �22�k� �

1

2�2�k�
coth

�
��2�k�

2

�
; (6.11)

and to the leading order of �M2=!�k�2 � 1, we find �21 � �12��1 ! �2� where

 �12�k� �
1

2�1�k�
coth

�
��1�k�

2

�
sin2�m�k�

~��k���k�

1� ���k��2
; ��k� �

2�1�k���1�k� � �2�k��

�M2 �%�k�
: (6.12)

Since ~��k� � 1, it is obvious that �12�k� and �21�k� are perturbatively small compared with �11�k� and �22�k�, in either
case ��k� � 1 or ��k� � 1. The asymptotic one-body density matrix (3.55) then becomes

 ��;��k;1� � U��m�
Z

2�1�k�
coth���1�k�

2 � �

� Z
2�2�k�

coth���2�k�
2 �

0@ 1AU�1��m�; � & O�G2�; (6.13)

where we neglected corrections of O�G2� in the diagonal matrix elements.
Neglecting the perturbative off-diagonal corrections, the one-body density matrix commutes with the effective

Hamiltonian in the medium which in the flavor basis is given by

 Heff�k� � �!�k�
1 0
0 1

� �
�
�M2

4 �!�k�
� cos2� sin2�

sin2� cos2�

� �
�

1

2 �!�k�
	R;ee�k; �!�k�� � Vee 0

0 	R;���k; �!�k�� � V��

� �
:

(6.14)

This effective in-medium Hamiltonian can be written in a more illuminating form

 Heff�k� � U��m�
�1�k� 0

0 �2�k�

� �
U�1��m�; (6.15)

NONEQUILIBRIUM DYNAMICS OF MIXING, . . . PHYSICAL REVIEW D 75, 085004 (2007)

085004-19



where �1;2�k� are the correct propagation frequencies in
the medium given by Eq. (5.29) and (5.30).

This effective Hamiltonian includes the radiative cor-
rections in the medium via the flavor diagonal self-energies
(forward scattering) and apart from the term proportional
to the identity is identified with the real part of the
Weisskopf-Wigner Hamiltonian H w given by Eq. (5.60).
This form highlights that the off-diagonal elements of the
one-body density matrix in the basis of eigenstates of the
effective Hamiltonian in the medium are perturbatively
small. The unitary transformation U��m� relates the flavor
fields to the fields in the basis of the effective Hamiltonian
in the medium.

Comparing this result to the free field case in thermal
equilibrium, where the one-body density matrix in the
flavor basis is given by Eq. (3.58), it becomes clear that
in the long time limit equilibration is achieved and the one-
body density matrix is nearly diagonal in the basis of the
eigenstates of the effective Hamiltonian in the medium
(6.14) with the diagonal elements determined by the dis-
tribution function of these eigenstates.

This means that within the realm of validity of pertur-
bation theory, the equilibrium correlation function is
nearly diagonal in the basis of the effective Hamiltonian
in the medium. This result confirms the arguments ad-
vanced in [41]. Since the effective action is quadratic in
the ‘‘neutrino fields’’ higher correlation functions are ob-
tained as Wick contractions of the two-point correlators,
hence the fact that the two-point correlation function and
consequently the one-body density matrix are diagonal in
the basis of the eigenstates of the effective Hamiltonian in
the medium guarantee that all higher correlation functions
are also diagonal in this basis.

On ‘‘sterile neutrinos’’

The results obtained in the previous sections apply to the
case of two ‘‘flavored neutrinos’’ both in interaction with
the bath. However, these results can be simply extrapolated
to the case of one ‘‘active’’ and one ‘‘sterile’’ neutrino that
mix via a mass matrix that is off diagonal in the flavor
basis. By definition a sterile neutrino does not interact with
hadrons, quarks, or charged leptons; therefore, for this
species there are no radiative corrections. Consider for
example that the ‘‘muon neutrino’’ represented by ��

does not couple to the bath, but it does couple to the
‘‘electron neutrino’’ solely through the mixing in the
mass matrix. Since the interaction is diagonal in the flavor
basis, the decoupling of this ‘‘sterile neutrino’’ can be
accounted for simply by imposing the following ‘‘sterility
conditions’’ for the matter potential V and the self-energies

 V�� � 0; 	R;�� � 0; 	I;�� � 0: (6.16)

All of the results obtained above for the dispersion rela-
tions and relaxation rates apply to this case by simply
imposing these ‘‘sterility conditions.’’ In particular it fol-

lows that

 �1�k� � �ee�k�cos2�m�k�; �2�k� � �eesin2�m�k�;

(6.17)

where �ee�k� is the relaxation rate of the active neutrino in
absence of mixing. This result highlights that in the limit
�! 0 the in-medium eigenstate labeled ‘‘2’’ is seen to
correspond to the sterile state, because in the absence of
mixing this state does not acquire a width. However, for
nonvanishing vacuum mixing angle, the ‘‘sterile neutrino’’
nonetheless equilibrates with the bath as a consequence of
the ‘‘active-sterile’’ mixing, which effectively induces a
coupling between the sterile and the bath [27,28,50,58,59].
The result for �2�k�, namely, the relaxation rate of the
sterile neutrino is of the same form as that proposed in
Refs. [27,28,50,58,59]. The result for the sterile rate �2�k�
compares to those in these references in the limit in which
perturbation theory is valid, namely, 	ee�k�=�M2 �%�k� � 1
since the denominator in this ratio is proportional to the
oscillation frequency in the medium.

VII. SUMMARY OF RESULTS AND CONCLUSIONS

In this article we studied the nonequilibrium dynamics
of mixing, oscillations, and equilibration in a model field
theory that bears all of the relevant features of the standard
model of neutrinos augmented by a mass matrix off diago-
nal in the flavor basis. To avoid the complications associ-
ated with the spinor nature of the neutrino fields, we
studied an interacting model of flavored neutral mesons.
Two species of flavored neutral mesons play the role of two
flavors of neutrinos; these are coupled to other mesons
which play the role of hadrons or quarks and charged
leptons, via flavor diagonal interactions that model charged
currents in the standard model. These latter meson fields
are taken to describe a bath in thermal equilibrium, and the
meson-neutrino fields are taken to be the system. We obtain
a reduced density matrix and the nonequilibrium effective
action for the ‘‘neutrinos’’ by integrating out the bath
degrees of freedom up to second order in the coupling in
the full time-evolved density matrix.

The nonequilibrium effective action yields all the infor-
mation on the particle and quasiparticle modes in the
medium, and the approach to equilibrium.

Summary of results:
(i) We obtain the dispersion relations, mixing angles,

and relaxation rates of the two quasiparticle modes
in the medium. The dispersion relations and mixing
angles are of the same form as those obtained for
neutrinos in a medium [49,57].

(ii) The relaxation rates are found to be

 �1�k� � �ee�k�cos2�m�k� � ����k�sin2�m�k�;

(7.1)
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 �2�k� � ����k�cos2�m�k� � �ee�k�sin2�m�k�;

(7.2)

where

 ����k� �
	I;���k; �!�k��

�!�k�
(7.3)

are the relaxation rates of the flavor fields in absence
of mixing and 	I;�;� are the imaginary parts of the
neutrino self-energy which is diagonal in the flavor
basis. These relaxation rates are similar in form to
those proposed in Refs. [28,50,58,59], within the
context of active-sterile conversion or flavor con-
version in supernovae.

(iii) The long time dynamics is approximately de-
scribed by an effective Weisskopf-Wigner approxi-
mation with a non-Hermitian Hamiltonian. The
real part includes the ‘‘index of refraction’’ and
the renormalization of the frequencies and the
imaginary part is determined by the absorptive
part of the second order self-energy and describes
the relaxation. While this (WW) approximation
describes mixing, oscillations, and relaxation, it
does not capture the dynamics of equilibration.

(iv) For time t� ��1
1;2 , the two-point function of the

neutrino fields becomes time translational invariant
reflecting the approach to equilibrium. The asymp-
totic long time limit of the one-body density matrix
reveals that the density matrix is nearly diagonal in
the basis of eigenstates of an effective Hamiltonian
in the medium (6.14) with perturbatively small off-
diagonal corrections in this basis. The diagonal
components in this basis are determined by the
distribution function of these eigenstates.

(v) Sterile neutrinos: these results apply to the case in
which only one of the flavored neutrinos is active
but the other is sterile. Consider, for example, that
the ‘‘muon neutrino’’ is sterile in the sense that it
does not couple to the bath. This sterile degree of
freedom is thus identified with the in-medium ei-
genstate 2 because in the absence of mixing � � 0
its dynamics is completely free. The sterility condi-
tion corresponds to setting the matter potential
V�� � 0 and the self-energy 	�� � 0 with a con-

comitant change in the dispersion relations. All the
results obtained above apply just the same, but with
����k� � 0, from which it follows that �2�k� �
�ee�k�sin2�m�k�. The final result is that sterile neu-
trinos do thermalize with the bath via ‘‘active-
sterile’’ mixing. If the mixing angle in the medium
is small, the equilibration time scale for the ‘‘sterile
neutrino’’ is much larger than that for the active
species, but equilibration is eventually achieved
nonetheless. This result is a consequence of
‘‘active-sterile’’ oscillations which effectively indu-
ces an interaction of the sterile neutrino with the
bath [27,28,50,58,59].

Although the meson field theory studied here describes
quite generally the main features of mixing, oscillations
and relaxation of neutrinos, a detailed quantitative assess-
ment of the relaxation rates and dispersion relations do
require a full calculation in the standard model.
Furthermore there are several aspects of neutrino physics
that are distinctly associated with their spinorial nature and
cannot be inferred from this model. While only the left
handed component of neutrinos couple to the weak inter-
actions, a (Dirac) mass term couples the left to the right
handed component, and through this coupling the right
handed component develops a dynamical evolution.
Although the coupling to the right handed component is
very small in the ultrarelativistic limit, it is conceivable that
nonequilibrium dynamics may lead to a substantial right
handed component during long time intervals. The study of
this possibility would be of importance in the early
Universe because the right handed component may thereby
become an active one that may contribute to the total
number of species in equilibrium in the thermal bath thus
possibly affecting the expansion history of the Universe.

Another important fermionic aspect is Pauli blocking
which is relevant in the case in which neutrinos are degen-
erate, for example, in supernovae.

These aspects will be studied elsewhere.
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