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We study the evaporation of (4� n)-dimensional rotating black holes into scalar degrees of freedom on
the brane. We calculate the corresponding absorption probabilities and cross sections obtaining analytic
solutions in the low-energy regime and compare the derived analytic expressions to numerical results,
with very good agreement. We then consider the high-energy regime, construct an analytic high-energy
solution to the scalar-field equation by employing a new method, and calculate the absorption probability
and cross section for this energy regime, finding again a very good agreement with the exact numerical
results. We also determine the high-energy asymptotic value of the total cross section and compare it to
the analytic results derived from the application of the geometrical optics limit.
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I. INTRODUCTION

Among the motivations for consideration of higher-
dimensional theories [1,2] is that the leading candidates
(string theory and variants of it), for the unification of
gravity with the rest of the fundamental interactions at
the quantum level, are all formulated in a higher-
dimensional context. In these models, gravity propagates
in D � 4� n dimensions (bulk), while matter degrees of
freedom are confined to live on a 4-dimensional hypersur-
face (brane). In models with large extra dimensions [1], the
traditional Planck scale MPl � 1018 GeV is only an effec-
tive scale, related to the fundamental higher-dimensional
gravity scale M� through the relation M2

Pl �M
n�2
� Rn,

where R� �Vn�1=n is the effective size of the n extra spatial
dimensions. If R� ‘Pl � 10	33 cm, the scale M� can be
substantially lower than MPl. In that case, trans-Planckian
particle collisions could probe the strong-gravity regime
and possibly produce higher-dimensional black holes [3]
centered at the brane and extending in the bulk. For all the
classical laws of black hole physics to still hold, the mass
of the black hole MBH would have to be larger than M�.
Nevertheless, the properties of these higher-dimensional
black holes would still be modified compared to their 4-
dimensional analogues [4,5].

If M� is sufficiently low, such black holes may be
produced in ground-based colliders [6], although their
appearance in cosmic rays is possible as well [7] (for
reviews, see [5,8,9]). A black hole created in such trans-
Planckian collisions is expected to gradually lose its angu-
lar momentum and finally its mass through the emission of
Hawking radiation [10], consisting of elementary particles
of a characteristic thermal spectrum, both in the bulk and
on the brane. The emitted radiation from a higher-
dimensional black hole created in trans-Planckian colli-
sions has been studied both analytically and numerically.
Until recently, the Schwarzschild phase along with a vari-
ety of additional spherically symmetric black hole back-
grounds were the most commonly studied cases. Those

studies included the black hole emission of lower-spin
degrees of freedom [11–18] as well as gravitons [19–22],
both on the brane and in the bulk.

The complexity of the gravitational background around
an axially symmetric black hole, increased by the presence
of extra dimensions, deterred many researchers from in-
vestigating the radiation spectrum of a higher-dimensional
rotating black hole. However, during the last two years, a
plethora of studies of the Hawking radiation, emitted by
such a black hole, appeared in the literature [23–30]. These
works offered exact numerical results that supplemented
and generalized two early analytic works focused on the
particular case of a 5-dimensional rotating black hole
[31,32]. Nevertheless, to our knowledge, up to now no
work has performed a complete analytic study of the
emission of Hawking radiation from a rotating black hole
in an arbitrary number of dimensions.

In the present article, we consider the evaporation of a
(4� n)-dimensional rotating black hole into scalar degrees
of freedom on the brane. We calculate the corresponding
absorption probabilities and cross sections obtaining ana-
lytical solutions in both the high and low-energy regimes.
In Sec. II, we consider the metric corresponding to a
higher-dimensional rotating black hole and write down
the equation for scalar fields propagating in the
projected-on-the-brane background. In Sec. III, we focus
on the low-energy regime and solve analytically the scalar-
field equation employing the matching technique of com-
bining the far-field and near-horizon parts of the solution.
Subsequently, we derive an analytic expression for the
absorption probability and produce a set of plots exhibiting
its dependence on particle quantum numbers and topologi-
cal properties of spacetime. We proceed by deriving cor-
responding numerical plots and compare them to the
analytic ones, with excellent agreement. We finally derive
a low-energy, simplified expression for the absorption
cross section and confirm the universal behavior character-
izing the absorption of scalar fields in this particular energy
regime. In Sec. IV, we turn our attention to the high-energy
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regime. We construct an analytic high-energy solution to
the scalar-field equation by employing a new method in-
volving Kummer functions and calculate the absorption
probability at this energy regime. By using our analytic
results, we produce plots which we compare to the corre-
sponding numerical ones finding again a very good agree-
ment. In the same section, we determine, through
numerical integration, the exact asymptotic value of the
total absorption cross section at the high-energy regime.
We also include an analytic treatment of the geometrical
optics limit, which is expected to correspond to the high-
energy asymptotic regime. We derive expressions for the
absorption cross section in this limit for three distinct
kinematical cases and compare them with the exact nu-
merical results. Finally, in Sec. V, we state our conclusions.

II. GRAVITATIONAL BACKGROUND AND FIELD
EQUATIONS

If one accepts the prospect of the creation of a micro-
scopic black hole during a high-energy particle collision,
then, due to a generically nonvanishing value of the impact
parameter between the two particles, the emergence of a
rotating black hole is the most natural outcome. As the
black hole is created in the framework of the higher-
dimensional theory, that is characterized by a strong gravi-
tational force, it will itself be a higher-dimensional object,
that ‘‘feels’’ the extra compact, spacelike dimensions.
Under the assumption that the black hole horizon rh is
significantly smaller than the size of the extra dimensions,
the spacetime around it may be approximated by one with a
single timelike dimension and (3� n) noncompact, space-
like ones. A black hole living in such a background can
have in general up to 
�n� 3�=2� angular momentum
parameters. However, here, we will be assuming that the
colliding particles are restricted to propagate on an infi-
nitely thin 3-brane, therefore, they will have a nonzero
impact parameter only along our brane, and thus acquire
only one nonzero angular momentum parameter about an
axis in the brane. The background around a higher-
dimensional rotating black hole with one angular momen-
tum parameter is given by the following Myers-Perry
solution [33]

 ds2 �

�
1	

�

�rn	1

�
dt2 �

2a�sin2�

�rn	1 dtd’	
�

�
dr2

	�d�2 	

�
r2 � a2 �

a2�sin2�

�rn	1

�
sin2�d’2

	 r2cos2�d�2
n; (1)

where

 � � r2 � a2 	
�

rn	1 ; � � r2 � a2cos2�; (2)

and d�2
n is the line-element on a unit n sphere. The mass

and angular momentum of the black hole are then given by

 MBH �
�n� 2�An�2

16�G
�; J �

2

n� 2
MBHa; (3)

with G being the (4� n)-dimensional Newton’s constant,
and An�2 the area of a (n� 2)-dimensional unit sphere
given by

 An�2 �
2��n�3�=2

�
�n� 3�=2�
: (4)

Since the creation of the black hole depends crucially on
the value of the impact parameter between the two highly
energetic particles [3], and that in turn defines the angular
momentum of the black hole, an upper bound can be
imposed on the angular momentum parameter a of the
black hole by demanding the creation of the black hole
itself during the collision. The maximum value of the
impact parameter between the two particles that can lead
to the creation of a black hole is [9]

 bmax � 2
�

1�
�
n� 2

2

�
2
�
	�1=�n�1��

�1=�n�1�; (5)

an analytic expression that is in very good agreement with
the numerical results produced in the third paper of
Ref. [3]. If we write J � bMBH=2, for the angular momen-
tum of the black hole, and use the following expression for
the black hole horizon

 rn�1
h �

�

1� a2
�

; (6)

that follows from the equation ��r� � 0, and the second of
Eqs. (3), we obtain

 amax
� �

n� 2

2
: (7)

In the above, we have defined, for convenience, the quan-
tity a� � a=rh. Equation (7), thus, puts an upper bound to
the value of the black hole angular momentum parameter,
which for n > 1 would have been unrestricted, contrary to
the cases of n � 0 and n � 1, where a maximum value of a
exists that guarantees the existence of a real solution for the
black hole horizon.

In this work, we will focus on the propagation of scalar
fields in the gravitational background induced on the brane,
where all ordinary particles are assumed to live. The 4-
dimensional induced background will be the projection of
the higher-dimensional one onto the brane, and its exact
expression follows by fixing the values of the additional
azimuthal angular variables—introduced to describe the n
compact extra dimensions—to �i � �=2, for i �
2; . . . ; n� 1. Then, the induced-on-the-brane line-element
takes the form
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 ds2 �

�
1	

�

�rn	1

�
dt2 �

2a�sin2�

�rn	1 dtd’	
�

�
dr2

	 �d�2 	

�
r2 � a2 �

a2�sin2�

�rn	1

�
sin2�d’2: (8)

Note that although the above background is very similar to
the usual 4-dimensional Kerr one, it is not exactly the same
due to its explicit dependence on the number of additional
spacelike dimensions n. It is this dependence that will
cause brane quantities to depend on the number of dimen-
sions that exist transverse to the brane.

In order to study the propagation of fields in the above
background, we need to derive first their equations of
motion. We assume that the particles couple only mini-
mally to the gravitational background and have no other
interactions, therefore, they satisfy the corresponding free
equations of motion. The latter, for particles with spin 0,
1=2, and 1, propagating in the induced-on-the-brane gravi-
tational background (8), were derived in [5,32]. For scalar
fields, the field factorization

 ��t; r; �; ’� � e	i!teim’R!‘m�r�Tm‘ ��; a!�; (9)

where Tm‘ ��; a!� are the so-called spheroidal harmonics
[34], was shown to lead to the following set of decoupled
radial and angular equations:

 

d
dr

�
�
dR!‘m
dr

�
�

�
K2

�
	�m

‘

�
R!‘m � 0; (10)

 

1

sin�
d
d�

�
sin�

dTm‘ ��; a!�

d�

�

�

�
	

m2

sin2�
� a2!2cos2�� Em‘

�
Tm‘ ��; a!� � 0; (11)

respectively. In the above, we have defined

 K � �r2 � a2�!	 am; �m
‘ � Em‘ � a

2!2 	 2am!:

(12)

The angular eigenvalue Em‘ �a!� provides a link between
the angular and radial equation. Its expression, in general,
cannot be written in closed form, however, an analytic form
can be found [35] in terms of a power series with respect to
the parameter a!. We will return to this point in Sec. III.

By solving Eq. (10), we determine the radial part of the
field wave function, and, subsequently, the absorption
probability jA‘;mj

2 for the propagation of a scalar field
in the projected-on-the-brane background. This quantity
appears in the differential emission rates for Hawking
radiation emitted by the higher-dimensional black hole
on the brane. For example, the particle flux, i.e. the number
of particles emitted per unit time and unit frequency, has
the form

 

d2N
dtd!

�
1

2�

X
‘;m

1

exp
k=TH� 	 1
jA‘;mj

2; (13)

similar formulas may be written for the energy and angular
momentum emission rates. In the above, k and TH stand for

 k � !	m� � !	
ma

r2
h � a

2 ;

TH �
�n� 1� � �n	 1�a2

�

4��1� a2
��rh

;

(14)

with � the angular velocity of the black hole and TH its
temperature. The absorption probability jA‘;mj

2 depends
both on particle properties (energy !, angular momentum
numbers ‘, m, etc.) and gravitational background proper-
ties (number of extra dimensions n, black hole angular
momentum parameter a). As a result, it modifies the vari-
ous emission rates from the ones for a blackbody.
Equation (10) has been solved analytically only for the
case of a 5-dimensional rotating black hole (and then, only
in the low-energy regime) [32], and numerically in
[23,25,27] for arbitrary dimensions.1 In the next sections,
we will attempt to derive analytic results, both in the low-
and high-energy regimes, for the absorption probability for
scalar fields propagating in the 4-dimensional spacetime of
a brane embedded in the background of a rotating black
hole of arbitrary dimensionality.

III. GREYBODY FACTOR IN THE LOW-ENERGY
REGIME

In this section, we focus on the solution for the absorp-
tion probability in the low-energy regime. We will first
derive an analytic expression by using a well-known ap-
proximate method. We will then plot this expression to
reveal its dependence on a number of parameters, such as
the angular momentum numbers of the particle, the dimen-
sionality of spacetime, and the angular momentum of the
black hole. It also will be directly compared with the exact
numerical results derived earlier in the literature. We will
finally derive a compact analytic expression, valid in the
limit !! 0, and comment on the form of the correspond-
ing absorption cross section and its relation to the area of
the black hole horizon.

A. Solving the field equation analytically

In what follows, we will use an approximate method and
solve first the radial equation of motion (10) at the two
asymptotic regimes: close to the black hole horizon (r ’
rh) and far away from it (r� rh). The two solutions will
then be stretched and matched in an intermediate zone to
create a smooth analytical solution extending over the
whole radial regime.

We first focus on the near-horizon regime and make the
following change of variable:

1The angular Eq. (11) was also solved numerically in [25], and
the angular distribution of the emitted radiation was found.
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 r! f�r� �
��r�

r2 � a2 )
df
dr
� �1	 f�r

A�r�

r2 � a2 ; (15)

where, for convenience, we have defined the function
A�r� � �n� 1� � �n	 1�a2=r2. Then, Eq. (10), near the
horizon (r ’ rh), takes the form
 

f�1	 f�
d2P

df2 � �1	D�f�
dP
df
�

�
K2
�

A2
�f�1	 f�

	
�m
‘ �1� a

2
��

A2
��1	 f�

�
P � 0; (16)

where now

 A� � �n� 1� � �n	 1�a2
�; K� � �1� a

2
��!� 	 a�m;

(17)

with !� � !rh. We also have defined the quantity

 D� � 1�
n�1� a2

��

A�
	

4a2
�

A2
�

: (18)

By making the field redefinition P�f� � f��1	
f��F�f�, Eq. (16) takes the form of a hypergeometric
equation [36]:

 f�1	 f�
d2F

df2 � 
c	 �1� a� b�f�
dF
df
	 abF � 0;

(19)

with

 a � �� ��D� 	 1; b � �� �; c � 1� 2�:

(20)

The power coefficients � and � will be determined by two
constraints (following from the demand that the coefficient
of F�f� is indeed 	ab) that have the form of second-order
algebraic equations, namely,

 �2 �
K2
�

A2
�

� 0; (21)

and

 �2 � ��D� 	 2� �
K2
�

A2
�

	
�m
‘ �1� a

2
��

A2
�

� 0: (22)

The general solution of the hypergeometric equation
(19), combined with the relation between P�f� and F�f�,
leads to the following expression for the radial function
P�f� in the near-horizon regime:
 

PNH�f� � A	f��1	 f��F�a; b; c; f� � A�f	��1	 f��

 F�a	 c� 1; b	 c� 1; 2	 c; f�; (23)

where A� are arbitrary constants. Solving Eq. (21), we
obtain the solutions

 �� � �
iK�
A�

: (24)

Near the horizon, r! rh and f�r� ! 0. Then, the near-
horizon solution (23) reduces to

 PNH�f� ’ A	f�iK�=A� � A�f�iK�=A�

� A	e
�iky � A�e

�iky; (25)

where, in the second part, we have used the definition for k
given in Eq. (14), and the tortoiselike coordinate y �
rh�1� a2

�� ln�f�=A�. Note, that although the coordinate y
is not identical to the usual tortoise-one, defined by
dr�=dr � �r

2 � a2�=��r�, used in Kerr-like backgrounds
[37], it holds that

 

dy
dr
�

�
A
A�

�
�r2
h � a

2�2

�r2 � a2�2

�
rh
r

�
n	2 dr�

dr
: (26)

Therefore, in the limit r! rh, the two become identical,
and the near-horizon asymptotic solution assumes, as ex-
pected, the free-wave form in terms of the tortoise-
coordinate [23,25,37]. Imposing the boundary condition
that no outgoing mode exists near the horizon, we are
forced to set either A	 � 0 or A� � 0, depending on the
choice for �. As the two are clearly equivalent, we choose
� � �	, and set A� � 0. This brings our near-horizon
solution to the final form

 PNH�f� � A	f��1	 f��F�a; b; c; f�: (27)

We finally turn to Eq. (22) for the � power coefficient. This
admits the solutions
 

�� �
1

2

�
�2	D�� �

���������������������������������������������������������������������
�D� 	 2�2 	

4K2
�

A2
�

�
4�m

‘ �1� a
2
��

A2
�

s �
:

(28)

The sign appearing in front of the square root will be
decided by the criterion for the convergence of the hyper-
geometric function F�a; b; c; f�, i.e. Re�c	 a	 b�> 0,
which demands that we choose � � �	.

We now turn our attention to the far-field regime.
Making the assumption that r� rh, and keeping only
the dominant terms in the expansion in terms of 1=r, the
radial equation (10) takes the form

 

d2P

dr2
�

2

r
dP
dr
�

�
!2 	

Eml � a
2!2

r2

�
P�r� � 0; (29)

where Eml is the angular eigenvalue. The substitution
P�r� � 1��

r
p ~P�r� brings the above into the form of a Bessel

equation for ~P�r�, and the overall solution in the far-field
limit can be written as

 PFF�r� �
B1���
r
p J��!r� �

B2���
r
p Y��!r�; (30)

where J� and Y� are the Bessel functions of the first and

second kind, respectively, with � �
��������������������������������������
Eml � a

2!2 � 1=4
q

,
and B1;2 integration constants.
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In order to construct an analytic solution extending over
the whole radial regime, we need to smoothly match the
two asymptotic solutions, derived above, in some inter-
mediate regime. Before doing so, we first need to extrapo-
late (stretch) the two solutions towards this regime. To this
end, we shift the argument of the hypergeometric function
of the near-horizon solution from f to 1	 f by using the
relation [36]
 

PNH�f� � A	f��1	 f��
�

��c���c	 a	 b�
��c	 a���c	 b�

F�a;b;a� b	 c� 1; 1	 f�

� �1	 f�c	a	b
��c���a� b	 c�

��a���b�

F�c	 a;c	 b;c	 a	 b� 1; 1	 f�
�
: (31)

The function f�r� may be alternatively written as

 f�r� � 1	
�

rn	1

1

r2 � a2 � 1	
�
rh
r

�
n	1 �1� a2

��

�r=rh�
2 � a2

�

;

(32)

where we have used the horizon equation, ��rh� � 0, in
order to eliminate � from the above relation. In the limit
r� rh, the �r=rh�2 in the denominator of the second term
above is dominant, and the whole expression goes to unity
for n � 0. Thus, in the limit f ! 1, the near-horizon
solution (31) takes the form

 PNH�r� ’ A1r
	�n�1�� � A2r

�n�1����D�	2�; (33)

with

 A1 � A	
�1� a2
��rn�1

h ��
��c���c	 a	 b�
��c	 a���c	 b�

A2 � A	
�1� a2
��rn�1

h �	���D�	2� ��c���a� b	 c�
��a���b�

:

(34)

Next we need to stretch the far-field asymptotic solution
(30) towards small values of the radial coordinate. Then, in
the limit !r! 0, we find
 

PFF�r� ’
B1�

!r
2 �

������������������������
Eml �a

2!2�1=4
p

���
r
p

��
��������������������������������������
Eml � a

2!2 � 1=4
q

� 1�

	
B2

�
���
r
p ��

��������������������������������������
Eml � a

2!2 � 1=4
q

�



�
!r
2

�
	

������������������������
Eml �a

2!2�1=4
p

: (35)

We notice that both ‘‘stretched‘‘ asymptotic solutions
have reduced to power-law expressions in terms of the
radial coordinate r; however, the different power coeffi-

cients prevent the exact matching. In order to overcome
this obstacle, we will expand these power coefficients in
the limits �!rh�2 � 1 and �a=rh�2 � 1. It is these approx-
imations that will limit the validity of our result for the
absorption probability to the low-energy and low-angular-
momentum regime. Note, however, that in order to im-
prove the accuracy of our result, no approximation will be
made in the arguments of the Gamma functions involved in
Eqs. (33) and (35). In order to follow the aforementioned
line of action, we need to know the analytic expression for
the angular eigenvalue Eml . According to [35], this may be
written as a power series in terms of the parameter (a!),
namely,

 Eml �
X1
n�0

flmn �a!�
n: (36)

For the purposes of our analysis, we have calculated the
coefficients flmn up to fifth order, and found the result
 

Eml � l�l� 1� � �a!�2

2m2 	 2l�l� 1� � 1�

�2l	 1��2l� 3�
� �a!�4



�
2
	3� 17l�l� 1� � l2�l� 1�2�2l	 3��2l� 5��

�2l	 3��2l� 5��2l� 3�3�2l	 1�3

�
4m2

�2l	 1�2�2l� 3�2

�
1

�2l	 1��2l� 3�

	
3l�l� 1�

�2l	 3��2l� 5�

�

�
2m4
48� 5�2l	 1��2l� 3��

�2l	 3��2l� 5��2l	 1�3�2l� 3�3

�
� . . . ; (37)

with flm1 � flm3 � flm5 � 0. The above form will be used at
every place where Eml appears in Eqs. (33) and (35). The
only exception will be in the power coefficients, where
terms of order �a!�2, or higher, will be ignored. Following
these assumptions, the two power coefficients in Eq. (33)
reduce to
 

	�n� 1�� ’ l�O�!2
�; a

2
�; a�!��;

�n� 1����D� 	 2� ’ 	�l� 1� �O�!2
�; a

2
�; a�!��:

(38)

while the power coefficient in Eq. (35) takes the form

 

��������������������������������������
Eml � a

2!2 � 1=4
q

’

�
l�

1

2

�
�O�a2

�!
2
��: (39)

By using the above results, one can easily show that both
Eqs. (33) and (35) reduce to power-law expressions with
the same power coefficients, rl and r	�l�1�. By matching
the corresponding coefficients, we determine the integra-
tion constants B1;2 in terms of the other parameters of the
theory. Their ratio, which, as we shall see, appears in the
expression of the absorption probability jAl;mj

2, is found
to be
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B �
B1

B2
� 	

1

�

�
2

!rh�1� a2
��

1=�n�1�

�
2l�1


��������������������������������������
Eml � a

2!2 � 1=4
q �2�

��������������������������������������
Eml � a

2!2 � 1=4
q

����� ��D� 	 1����� ����2	 2�	D��

��2��D� 	 2���2� �	 �	D����1� �	 ��
: (40)

The last step in our calculation of the absorption proba-
bility involves the expansion of the far-field solution (30)
to infinity (r! 1). This leads to

 PFF�r� ’
1�����������

2�!
p

�
�B1 � iB2�

r
e	i�!r	��=2��	��=4��

�
�B1 	 iB2�

r
ei�!r	��=2��	��=4��

�

� A�1�in

e	i!r

r
� A�1�out

ei!r

r
: (41)

As expected, at large distances from the black hole, where
the effect of the angular momentum parameter a is almost
negligible, the solution for the scalar field reduces to a
spherical wave, as in the Schwarzschild case [11,23,25].
Then, the absorption probability is defined through the
expression

 jAl;mj
2 � 1	

��������A
�1�
out

A�1�in

��������
2
� 1	

��������B1 	 iB2

B1 � iB2

��������
2

� 1	

��������B	 iB� i

��������
2
�

2i�B� 	 B�
BB� � i�B� 	 B� � 1

:

(42)

The above result, together with the expression for B given
in Eq. (40), is our main analytic result for the absorption
probability for scalar fields valid in the low-energy and
low-angular-momentum regime. It can be checked easily
that it reduces smoothly to the corresponding result for a
scalar field propagating in a Schwarzschild-like, higher-
dimensional background projected onto the brane [11], if
we set a � 0.

B. A comparison with the exact numerical solution

In this section, we proceed to study in detail the prop-
erties of the absorption probability jAl;mj

2, as this was
derived above by using purely analytic arguments. To this
end, we will plot our main result, given by Eqs. (40) and
(42), as a function of the energy parameter !rh and for a
variety of values of the other parameters of the theory,
namely, the angular momentum numbers �l;m� of the
scalar particle and the topological parameters �a�; n� of
the spacetime. At the same time, a direct comparison of our
low-energy analytic result to the exact numerical value for
jAl;mj

2—derived in [9,23,25] for the purpose of comput-
ing the Hawking radiation emission spectra—will be per-

formed in order to examine the range of validity of our
approximations.

In Fig. 1, we plot the absorption probability jAl;mj
2 for

scalar particles, for fixed angular momentum of the black
hole (a� � 0:4) and number of extra dimensions (n � 2),
and for a variety of modes with different angular momen-
tum numbers �l;m�. Throughout our paper, our analytic
results will be plotted by using solid lines while the exact
numerical results, reproduced from [9,23,25], will be de-
noted by dashed lines. In Fig. 1, both sets of lines are
shown for all modes, and the agreement between them at
low energy is indeed remarkable. Although a small devia-
tion appears when the energy parameter is taken beyond
the low-energy regime, the qualitative agreement between
the two sets of results remains excellent.

Focusing now on the dependence of the absorption
probability on particle parameters, we observe that, simi-
larly to the Schwarzschild case [11], it is again the lowest
partial wave, with l � 0, that dominates in the low-energy
regime, with all higher modes increasingly suppressed.
This behavior is valid for all values of a� and n, as long
as attention is focused on the low-energy regime. Looking
next at the relative behavior of modes with the same
angular momentum number l but different number m, we
easily note that the modes with m< 0 are the dominant
ones with increasing m causing suppression. We also ob-
serve that, for modes with m � 0, the absorption probabil-
ity always remains positive, while, for modes with m> 0,
a negative-valued region for jAl;mj

2 always appears in the
low-energy regime. The latter effect is due to the so-called
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FIG. 1 (color online). Absorption probability jAl;mj
2 for

brane scalar particles, for n � 2, a� � 0:4, and for the modes
(from left to right) �l � m � 0�, �l � 1; m � 	1; 0; 1�, and �l �
2; m � 	2;	1; 0; 1; 2�. The solid lines correspond to our ana-
lytic results, and the dashed lines to the exact numerical ones.
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superradiance [38]—the enhancement of the amplitude of
an incoming wave by a rotating black hole that results in a
reflection probability larger than unity, and thus a negative
absorption probability according to jAl;mj

2 � 1	
jRl;mj

2. We will say a little more on the origin of this
effect in the following subsection.

We now turn to the dependence of the absorption proba-
bility on the parameters of spacetime. In Fig. 2, we depict
the behavior of jAl;mj

2 in terms of the angular momentum
parameter a� and number of extra dimensions n. We have
chosen the indicative case of l � 1, and, in Fig. 2(a), depict
the behavior of the m � 	1 (from central to left) and m �
1 (from central to right) modes, for a range of values of a�.
Then, in Fig. 2(b), we present all three modes, withm � 0,
�1, for various values of n. As before, both the analytic,
low-energy results as well as the exact numerical ones are
shown. Again, the agreement between the two sets of
results in the low-energy regime is remarkably good. The
alert reader may note that, in general, the agreement be-
tween the two sets is improving as n increases: this is due
to the fact that, according to Eq. (32), an increase in the
number of extra dimensions improves the accuracy of the
assumed behavior of the function f�r� at infinity, and
consequently our approximation. In addition, terms that
have been neglected during the matching of the two
asymptotic solutions under the low-energy and low-a�
assumption, such as the K2

�=A2
� in Eq. (28), become even

smaller for large values of n, thus improving the accuracy
of our analysis.

According to Fig. 2(a), for fixed n, the nonsuperradiant
modes, with m � 0 (although not shown, the m � 0 mode
exhibits a behavior similar to the m � 	1) are enhanced
with the angular momentum of the black hole in the low-
energy regime, while the superradiant modes, with m> 0,
are suppressed both in the superradiant and nonsuperra-

diant energy regime. Turning to Fig. 2(b), we note that, for
fixed a�, an increase in the number of extra dimensions n
also leads to an enhancement of the value of the absorption
probability for the nonsuperradiant modes. For the super-
radiant ones, the behavior of jAl;mj

2 depends on the
energy regime we are looking at; while it is suppressed
in the superradiant regime, it is enhanced in the nonsuper-
radiant one. From both figures, it becomes obvious that the
superradiant effect becomes more important as either a� or
n increases. This enhancement, for brane-localized scalar
particles, both in terms of the angular momentum of the
black hole and the dimensionality of spacetime was noted
also in the literature [23,24,28].

C. The low-energy asymptotic limit of the cross section

Our last task regarding the behavior of the absorption
probability jAl;mj

2 in the low-energy regime will be the
derivation, from Eqs. (40) and (42), of a compact analytic
expression valid in the limit !! 0. This simplified ana-
lytic expression will be used to explain some of the features
discussed in the previous subsection. In addition, from this,
the asymptotic low-energy value of the corresponding
absorption cross section for scalar fields in the background
of a projected-on-the-brane rotating black hole also will be
determined.

We start our analysis by noticing that, according to
Eq. (40), in the limit !! 0, B�!	�2l�1� and, therefore,
BB� � i�B� 	 B� � 1. Then, Eq. (42) simplifies to

 jAl;mj
2 ’

2i�B� 	 B�
BB�

� 2i
�

1

B
	

1

B�

�
: (43)

Substituting for B using Eq. (40), and the fact that � is
purely imaginary, yields
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FIG. 2 (color online). Absorption probability jAl;mj
2 for brane scalar particles (a) for the modes �l � 1; m � 	1; 1�, for n � 2 and

a� � �0; 0:2; 0:4; 0:6; 0:8�, and (b) for the modes �l � 1; m � 	1; 0; 1�, for a� � 0:4 and n � �1; 2; 4; 7�. The solid lines correspond to
our analytic results, and the dashed lines to the exact numerical ones.
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jAl;mj
2 �
	2i��!rh=2�2l�1

�l� 1
2��

2�l� 1
2�

��2��D� 	 2�

�1� a2
��
	
�2l�1�=�n�1����2	 2�	D��


1

���� ��D� 	 1���	�� ��D� 	 1����� ����	�� ��

 
��2� �	 �	D����	�� ��D� 	 1���1� �	 ����	�� ��

	 ��2	 �	 �	D������ ��D� 	 1���1	 �	 ������ ��� � �1  �2  �3; (44)

where �1, �2, and �3 are defined as the quantities separated by the two multiplicative symbols ( ). Focusing first our
attention to �3, and using the Gamma function relation ��z���1	 z� � �= sin�z [36], this can be written as

 �3 �
	�2 sin�2��� sin��2��D��

sin���� ��D�� sin��	�� ��D�� sin���� �� sin��	�� ��
: (45)

From the factor!2l�1 in Eq. (44), it becomes clear that the expression for the absorption probability at the very low-energy
regime is dominated by the lowest partial waves, a property that is in accordance with the results presented in the previous
subsection. Then, assuming thatm is small and a� < 1, the limit!! 0 is equivalent to �! 0. Expanding terms in �3 and
�2 to linear order in � gives

 �3 � 	
2�3� sin��2��D��

sin2����D��sin2��
; �2 �

1

����D� 	 1�2����2
: (46)

Using the additional Gamma function relation ��z���	z� � 	�=z sin�z allows the overall expression for the low-energy
limit of the absorption probability to be written as

 jAl;mj
2 �

4��!rh=2�2l�1K�sin2��2��D���
2�2��D� 	 2��2�1	 ���2	D� 	 2��

A��1� a2
��
	
�2l�1�=�n�1���l� 1

2��
2�l� 1

2��
2���D� 	 1�sin2����D��

: (47)

In the above, we also have used the definition � �
	iK�=A�, where, from Eq. (17),

 K� � �1� a
2
��!� 	 a�m � rh�1� a

2
���!	m��: (48)

By using Eq. (28), one may easily conclude that the
quantity (2	D� 	 2�) is always positive, while the
same also holds for A� � �n� 1� � �n	 1�a2

�, for all
values for a� and n > 0. Therefore, the overall sign of
jAl;mj

2 is determined by the sign of K�, or equivalently
of (!	m�). A negative sign for the latter combination
arises only form> 0, and denotes the occurrence of super-
radiance, with jAl;mj

2 acquiring a negative value. The
superradiance domain arises in the low-energy regime
and extends over the range of values 0<!<!s � m�.
The larger the value of the angular momentum parameter
a�, the larger the rotation velocity � of the black hole, and
thus the more extended the superradiance regime becomes.
This is indeed in agreement with the behavior found in the
previous subsection.

In what follows, we focus on the dominant s-wave with
l � m � 0. As we will see, this will be the only partial
wave with a nonvanishing low-energy asymptotic value of
the absorption cross section. In order to simplify further
Eq. (47), we need also to expand the expression of � in the
limit !! 0. It is easy to see that, in this limit, � � 0�
O�!2�, which then allows us to write

 jA0j
2 �

4�!rh�2�1� a2
��

A��1� a
2
��
	1=�n�1��2	D��

� . . . : (49)

The corresponding absorption cross section for the domi-
nant partial wave is then given by [39]

 �0 �
�

!2 jA0j
2

� 4��r2
h � a

2�
�1� a2

��
1=�n�1�


�n� 1� � �n	 1�a2
���2	D��

� . . . :

(50)

According to the above result, the absorption cross section
for the lowest mode l � 0 reduces to a nonvanishing
asymptotic value, as !! 0. We may easily see, from
Eq. (47), that the low-energy behavior of the absorption
probability for any higher partial mode will be governed by
the factor!2l�2, thus leading to an absorption cross section
proportional to !2l. Therefore, for all partial waves with
l � 0, the partial cross section goes to zero, as !! 0.

In the case of scalar particles propagating in a
Schwarzschild-like projected-on-the-brane line-element,
the low-energy asymptotic value of the absorption cross
section of the lowest, dominant partial wave was shown to
be equal to the horizon area of the 4-dimensional black
hole, 4�r2

h, regardless of the number of extra dimensions
[11,13]. We would like to demonstrate that a similar rela-
tion holds in the case of an axially symmetric brane back-
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ground. According to Eq. (50), �0 is indeed proportional to
the horizon area of the four-dimensional rotating black
hole 4��r2

h � a
2�; however, the relation involves a multi-

plicative factor which is both �a�; n� dependent. In Fig. 3,
we plot �0, for fixed n and various values of a�, by using
both our analytic expression and the exact numerical result.
The latter set of results reveals that the asymptotic low-
energy cross section is indeed equal to the horizon area of
the black hole, regardless of the number of extra dimen-
sions. For small values of a�, the multiplicative factor
appearing in Eq. (50) is very close to unity and our analytic
expression closely reproduces the exact numerical one. As
a� increases though, the range of validity of our approxi-
mation is exceeded and a deviation starts appearing, as
expected. If we keep a� fixed and vary n instead, a similar
behavior appears, with values of n � 1 leading, in general,
to a value smaller than the exact result, and values of n � 2
to a value larger than the exact result. The magnitude of the
deviation depends again on the value of a�. The above
results demonstrate the universal behavior for the lowest
partial mode of a scalar particle according to which its
partial cross section equals the area of the black hole
horizon in the low-energy regime. This result holds not
only for a spherically symmetric brane line-element but
also for an axially symmetric one and is independent of the
number of the transverse-to-the-brane spacelike dimen-
sions. The latter result was reproduced also for the particu-
lar case of a 5-dimensional bulk in [30].

IV. GREYBODY FACTOR IN THE HIGH-ENERGY
REGIME

In this section, we turn our attention to the high-energy
regime and present a way to compute the absorption
probability in this region by using again the matching
technique described in Sec. III. For this, we are going to
use the near-horizon solution we have computed already in

Sec. III A, and we shall construct an approximate, high-
energy, far-field solution that will allow us to do the
matching solely in the high-energy regime. Next, we are
going to compare the absorption coefficient produced this
way with the exact numerical results of the literature.
Finally, generalizing well-known results for
Schwarzschild black holes, the geometrical optics limit
value of the absorption cross section will be computed,
and its connection to the high-energy asymptotic value
found by numerical analysis will be investigated.

A. Analytic construction of the solution

In order to construct a solution over the whole radial
domain that will be valid in the high-energy regime, it is
necessary to do the matching of the stretched near-horizon
and far-field asymptotic solutions without resorting to the
low-energy approximation (!rh � 1) employed in
Sec. III A. To this end, we will try to find a new far-field
asymptotic solution that will satisfy the field equation only
in the high-energy limit. Moreover, the exact form of this
solution should be such that, when stretched towards small
values of the radial coordinate, it reduces to a power-law
expression with identical power coefficients to the ones
appearing in the stretched near-horizon solution, thus al-
lowing for a perfect matching in the intermediate regime.
We remind the reader that the stretched near-horizon solu-
tion [Eq. (33)] was found to be of the form

 PNH ’ A1r	�n�1�� � A2r�n�1����D�	2� � A1r�1 � A2r�2 :

(51)

The differential equation that our far-field solution needs
to satisfy is Eq. (10) in the limit r� rh, or equivalently

 

d2PFF

dz2
�

2z

z2 � a2
1

dPFF

dz
�

�
1	

Eml � a
2
1

z2 � a2
1

�
PFF�z� � 0;

(52)

where we have made the change of variable z � !r and
defined for convenience a1 � a!. Let us consider the
following trial, special solution to the above equation:

 PFF � e	i!rr�1M�1� �1; 2� 2�1; 2i!r�; (53)

where M�â; b̂;w� is the first Kummer function [36].
Solving Eq. (53) for M�â; b̂;w� and substituting in the
confluent hypergeometric equation, that the Kummer func-
tions satisfy,

 

d2M

dw2
� �b̂	 w�

dM
dw
	 âM�w� � 0; (54)

with â � 1� �1, b̂ � 2� 2�1, and w � 2i!r, we finally
obtain the equation

 

d2PFF

dz2
�

2

z
dPFF

dz
�

�
1	

�1��1 � 1�

z2

�
PFF � 0: (55)

Subtracting Eq. (55) from Eq. (52), we find
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FIG. 3 (color online). Absorption cross section �0 (in units of
r2
h) for the lowest scalar mode l � 0, for n � 2 and a� ranging

between 0 and 0.6. As before, the solid lines correspond to our
analytic results and the dashed lines to the exact numerical ones.
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dPFF

dz

�
z

z2 � a2
1

	
1

z

�
� PFF

�
�1��1 � 1�

z2 	
Em‘ � a

2
1

z2 � a2
1

�

� 0�O�1=z2�:

From the above, we may conclude that, for large z � !r,
the constructed solution (53) satisfies the far-field (r� rh)
Eq. (52) up to second order in (1=z). Therefore, in the limit
!! 1, our trial solution (53) is indeed a good approxi-
mation to the exact solution of the field equation in the far-
field regime.

By following the same method, a second special solution
to Eq. (52) may be constructed that has the form

 PFF � e	i!rr	�2	1U�	�2;	2�2; 2i!r�; (56)

where U�â; b̂;w� is the second Kummer function. The
second special solution follows from the first one under
the replacement �1 ! 	1	 �2, which preserves the
structure of Eq. (55). Therefore, this solution, too, is a
good approximation to the exact solution of Eq. (52) in
the limit !! 1. Therefore, the total solution in the far-
field domain, valid only in the high-energy regime, takes
the form

 PFF � B�e
	i!rr�1M��1 � 1; 2�1 � 2; 2i!r�

� B	e	i!rr	�2	1U�	�2;	2�2; 2i!r�: (57)

The Kummer functions have been used before in the
construction of the far-field solution of a general spin-s
field [5,11]; however, the projected-on-the-brane back-
ground in that case was that of a spherically symmetric
Schwarzschild-like one. We may easily check that, in the

limit a! 0, the above solution reduces to the one for a
scalar field propagating in the far-field domain of a spheri-
cally symmetric brane black hole background.

As an additional independent check of the above analy-
sis, one may observe that, under the demand that Eq. (55)
matches exactly Eq. (52), we are led to

 �1 � 	
1
2�

��������������������������������������
Eml � a

2!2 � 1=4
q

� 	1
2� �: (58)

But then, since â � �� 1=2 and b̂ � 2�� 1, the first
Kummer function reduces to M��� 1=2; 2�� 1; 2i!r� �
ei!rr	�J��r� [36]. By using this result—as well as a
similar one for the second Kummer function U—in con-
junction with the relations (53) and (56), we may see that
the far-field solution (30), found in Sec. III A, is duly
restored as expected.

Nevertheless, in this section, the approximate solution
(57) will be used instead, since, as was mentioned earlier,
its use will allow us to achieve a perfect matching between
the stretched near-horizon and far-field solutions—a fea-
ture that, as we saw, was not possible when the asymptotic
solution (30) was used instead. To this end, we stretch
Eq. (57) to small values of !r [36] to obtain

 PFF � B�r
�1 � B	r

�2
��	2�2 	 1�

��	�2�
�2i!�2�2�1: (59)

As we hoped, the stretched far-field solution contains
powers of r that exactly match the ones appearing in the
stretched near-horizon solution (51). Then, by matching
also the corresponding multiplicative coefficients, we find

 

~B �
B	
B�
�

�1� a2

��rn�1
h �2	2�	D�

�2i!�2�2�1

��2��D� 	 2���2� �	 �	D����1� �	 ����	�2�

���� ��D� 	 1����� ����2	 2�	D����	2�2 	 1�
: (60)

We remind the reader that the coefficients D�, �, and � are given in Eqs. (18), (24), and (28), respectively, while the
coefficients �1;2 are defined in Eq. (51).

In order to finally compute the absorption probability, we need first to expand the far-field solution (57) in the limit
r! 1. Then, we find [36]

 PFF ’
e	i!r

r

�
B�

��2� 2�1�

��1� �1�

ei���1�1�

�2i!��1�1 � B	�2i!�
�2

�
�
ei!r

r
B���2� 2�1�

��1� �1��2i!�
�1�1 � . . . � A�1�in

e	i!r

r
� A�1�out

ei!r

r
:

(61)
As we see, the far-field solution (57) also reduces to a spherical free-wave solution in the asymptotic infinity. We may thus
use once again the standard definition for the absorption probability to determine its value

 jAl;mj
2 � 1	

��������A
�1�
out

A�1�in

��������
2
� 1	

�������� ��2� 2�1�

��2� 2�1�ei���1�1� � ~B���1 � 1��2i!��1��2�1

��������
2
: (62)

The above expression, combined with Eq. (60), gives the
absorption probability for scalar fields, valid only in the
high-energy regime, but with no restrictions on the value of
the angular momentum parameter a apart from the upper
bound of Eq. (7). The corresponding absorption cross

section, valid in the high-energy regime, then follows by
using the formula �l;m � �jAl;mj

2=!2 and Eq. (62).
In Figs. 4(a) and 4(b), we depict the absorption proba-

bility jAl;mj
2 and cross section �l;m, respectively, for

brane scalar particles, in the high-energy regime. Once
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again, the solid lines correspond to our analytic results,
following from Eq. (62), and the dashed lines to the exact
numerical ones. Figure 4(a) depicts the absorption proba-
bility for the indicative case of the three lowest partial
modes. We notice that our analytic results match the exact
numerical ones for large enough value of the energy!. The
lower the value l of the partial mode, the sooner the two
results coincide. As the energy parameter increases, the
absorption probability quickly tends to unity—as ex-
pected, highly energetic particles always overcome the
gravitational barrier outside the horizon of the black
hole. This asymptotic behavior, although successfully re-
produced by our analytic results, does not allow us to
appreciate the agreement between the two sets of results.
For this reason, in Fig. 4(b), we plot the absorption cross
section for the three lowest partial waves summed over m:
in the high-energy regime, �l;m � 1=!2 for all modes, and
the asymptotic regime is significantly more extended. The
agreement between our analytic and numerical results is
now much clearer: for the mode l � 0, the two results
completely coincide, while, for l � 1, 2, the exact match-
ing is achieved at gradually larger values of energy. Once
matched, the two results remain identical as ! increases
further until the zero asymptotic value—for the individual
partial modes—is reached. Given the increased difficulty
in integrating numerically both the radial and angular part
of the scalar equation of motion over an extended energy
regime (for example, see [13,25]), the above solution could
be used to analytically extrapolate a numerical solution to
arbitrarily large values of the energy parameter !.

B. High-energy asymptotic and geometrical optics
limits

As the energy of the particle emitted from a black hole
increases, the total absorption cross section �abs �P
l;m�l;m reaches a high-energy asymptotic value, in an

oscillatory way. Although each partial cross section �l;m

asymptotes zero at the high-energy regime, the superposi-
tion of an infinite number of partial waves, each one reach-
ing its maximum value at a gradually larger value of ! as l
increases, creates this constant asymptotic value. This
asymptotic limit has been studied in the past for a
Schwarzschild black hole, both in the four-dimensional
[40–43] and (4� n)-dimensional case [13,44]. For a ro-
tating black hole, the corresponding study was performed
in four dimensions in [45], and in five dimensions in [30].

Here, we will attempt to give a comprehensive study of
the high-energy asymptotic limit of the total absorption
cross section for scalar fields living on the brane-induced
line-element of a (4� n)-dimensional rotating black hole.
As we will see, similarly to the case of a Schwarzschild-
like induced-on-the-brane line-element, the number of
transverse dimensions, although inaccessible to the
brane-localized scalar fields, affects the value of the
high-energy asymptotic limit of the absorption cross sec-
tion. The value of the angular momentum parameter a� of
the higher-dimensional black hole will also be found to
have an effect on the value of �abs. Although our analytic
results describe successfully, as we saw in previous sec-
tions, both the low- and high-energy regimes of the ab-
sorption probability and cross section, no analytic solution
currently exists that smoothly connects the two solutions
over the intermediate-energy regime. The emergence of the
high-energy asymptotic limit of the total absorption cross
section strongly relies on the contribution of the low-
energy regime (where the l � 0 mode dominates), the
intermediate-energy regime (where all modes have a sig-
nificant contribution), and the high-energy regime (where
higher modes dominate). As a result, in order to accurately
derive the high-energy asymptotic value of �abs, and in the
absence of a global analytic solution, the use of exact
numerical analysis is imperative.

In Fig. 5, we therefore present exact numerical results
for the absorption cross section �l �

P
m�l;m for the par-

tial modes l � 0, 1, 2, 3, 4, as well as for the total
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FIG. 4 (color online). (a) Absorption probability jAlj
2 for brane scalar particles, for the modes l � 0, 1, 2 and m � 0, for n � 2 and

a� � 0:3, and (b) absorption cross section �l (in units of r2
h), for the modes l � 0, 1, 2 (summed over m), and for the same values of n

and a� as before. The solid lines correspond to our analytic results and the dashed lines to the exact numerical ones.
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absorption cross section �abs for a brane-localized scalar
field, for the indicative case of n � 2 and a� � 0:3. The
emergence of a constant high-energy asymptotic value for
the total cross section is obvious. In the context of our
analysis, we have studied the behavior of �abs for a range
of values of n and a�, with our results being displayed in
Table I. Note that, while for low values of n and a�, a
relatively small number of partial modes needs to be
summed over (for the case depicted in Fig. 5, only modes
up to l � 5 were included in the calculation), as either a� or
n takes large values, an increasing number of partial waves
needs to be taken into account. In addition, as either a� or n
increases further, the asymptotic value of �abs emerges at
continuously larger values of !, which significantly in-
creases the computing time.

From the entries of Table I, one may observe the strong
dependence of the high-energy asymptotic limit of the
absorption cross section on both the number of
transverse-to-the-brane dimensions and the angular mo-
mentum of the black hole. As in the nonrotating case
[13], �abs is strongly suppressed as n increases. On the
other hand, an increase in the value of a� causes an
enhancement in the value of �abs. For a� � 0, the values
of �abs match, as expected, the ones obtained for a scalar

particle in a Schwarzschild-like projected brane back-
ground [13]. We would also like to note that a feature
that seemed to hold in the 5-dimensional case [30], namely,
that the high-energy asymptotic value of�abs is close to the
low-energy one, disappears for general n. This can be
clearly seen in Fig. 5, or by comparing the entries of
Table I with the value of �0, from Eq. (50), that dominates
the low-energy value of �abs: for general n, the two sets of
values are distinctly different.

In the case of a nonrotating black hole, the geometrical
optics limit has been successfully used to explain the high-
energy asymptotic value of the absorption cross section
�abs both in the pure 4-dimensional case [40–43] and
(4� n)-dimensional one [13,44]. In the higher-
dimensional case, for particles living on the brane, the
geometrical optics analysis showed that the
Schwarzschild black hole behaves as a perfect absorber
of a radius given by

 rc � rh

�
n� 3

2

�
1=�n�1�

������������
n� 3

n� 1

s
: (63)

The absorption cross section is then given by the target
area, �abs � �r2

c. The values following from this expres-
sion, for different n, are in perfect agreement with the
numerical ones found in [13], and displayed here in the
first row of Table I.

Here, we will attempt to perform a similar study, in an
axially symmetric black hole brane background, and in-
vestigate the potential connection between the analytic
values that follow from this analysis and the exact numeri-
cal ones depicted in Table I, for a� � 0. For this, we will
closely follow the method described in [45]. Although that
formalism was developed for the case of a pure 4-
dimensional Kerr black hole, it holds identically for the
case of a projected-on-the-brane rotating black hole, with
the only difference appearing in the exact expression of the
metric function ��r�. We therefore present here only the
basic assumptions and the final equation that describe the
particle’s trajectory.

The line-element (8), in which the brane-localized par-
ticles propagate, is invariant under translations of the form
t! t� �t and �! �� ��. The corresponding Killing
vectors 	�

�t� � 
�t and 	�
�’� � 
�’ then lead to the conserved

conjugate momenta pt � 	E and p� � 	Lz. The brane
metric also possesses a Killing tensor 	��, that leads to an
additional conserved quantity Q � 	��p

�p� 	 �Ea�
Lz�2. Combining the above, the equation of motion of a
particle with rest mass m, i.e. p�p� � m2, takes the form
[45]
 

�
dr
d�
� �R1=2;

R � 
E�r2 � a2� � Lza�
2

	�
m2r2 � �Lz � aE�2 �Q�;

(64)

TABLE I. High-energy asymptotic values of the total absorp-
tion cross section �abs, in units of r2

h, as a function of n and a�.

a�nn 1 2 3 4 5 6

0.0 12.6 9.6 8.2 7.3 6.7 6.2
0.3 13.6 10.4 8.6 7.6 7.0 6.5
0.5 15.7 11.5 9.5 8.4 7.6 7.1
0.7 18.7 13.2 10.7 9.4 8.5 7.9
1.0 25.1 16.6 13.2 11.4 10.3 9.5
1.5 40.7 24.1 18.6 15.8 14.0 12.9
2.0 62.8 33.6 25.2 21.1 18.7 17.2
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FIG. 5 (color online). Partial absorption cross sections �l, for
the modes l � 0, 1, 2, 3, 4 (lower set of curves), and the total
absorption cross section �abs (upper curve) for n � 2 and a� �
0:3, both in units of r2

h. The dashed line denotes the value
obtained by using the geometrical optics limit (69).
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where � is the affine parameter of the trajectory. The
conserved quantity Q takes the explicit form Q � L2 	
L2
z 	 a

2�E2 	m2�cos2�1, where �1 is the value of the
azimuthal angle as the particle approaches the black hole
from infinity, and L the total angular momentum of the
particle.

A particle approaching a rotating black hole from infin-
ity, may do so by following a number of possible trajecto-
ries. Here, we will be interested in the case of a massless
particle with its trajectory being either transverse (�1 �
�=2) or parallel ��1 � 0; �� to the rotation axis. Starting
with the first case, we notice that, for motion strictly on the
equatorial plane, cos�1 � 0 and L � Lz. Then, Q � 0,
and Eq. (64) takes the form

 

�
�
dr
d�

�
2
�E2

�
b2�a2	���2b

a�

rn	1��r
2�a2�2	a2�

�
:

(65)

In the above, we have defined L=E � b, where b > 0 is the
impact parameter of the particle. For the above equation to
be consistent, its right-hand side, or equivalently the ex-
pression inside the square brackets, must be positive-
definite. Since the particle approaches the black hole
from large r, we focus our attention on the radial regime
outside the ergosphere, where the coefficient of b2 (a2 	
�) can be shown to be negative. Then, the constraint on the
values of b takes the form b2 < b< b1, where b1;2 are the
roots of the equation, followed by setting the right-hand
side of Eq. (65) equal to zero. However, it may easily be
seen that b2 < 0, therefore, the classically acceptable re-
gime is defined by the constraint 0< b< b1. Particles with
impact parameters in this regime can access all values of
the radial coordinate, and thus reach the black hole hori-
zon, too, where they get absorbed. According to the geo-
metrical optics argument, then, the closest distance the
particle can get to the black hole without being captured is

 rc � min�b1� � min
�a�� rn�1

�����������������������������
a2 � r2 	 �

rn	1

q
rn�1 	�

�
: (66)

As a consistency check, we observe that, for a � 0, the

above expression reduces to rc � min�r=
����������������
1	 �

rn�1

q
�, which

leads directly to the result (63) for a nonrotating brane
black hole background derived in [13,44]. By further set-
ting n � 0, the purely 4-dimensional Schwarzschild case
[40– 42] is also recovered, with rc � 3

���
3
p
rh=2.

For general n and a, an analytic expression for the
minimum distance rc is difficult to find. Nevertheless, a
simple numerical analysis may lead to the value of rc in
units of rh, after using Eq. (6) to eliminate the mass
parameter � from Eq. (66). Then, through the relation
�abs � �r2

c, the corresponding absorption cross section
may be found; its values, for a variety of n and a�, are
displayed in Table II. The two sub-tables correspond to the
two possible orientations of the particle’s angular momen-

tum L: as it approaches the black hole from infinity moving
in the equatorial plane, its angular momentum and the
black hole one can either be parallel (aL > 0) or antipar-
allel (aL < 0). Here, we have assumed that L> 0 always,
and considered two different choices for the sign of the
angular momentum parameter of the black hole, a > 0 and
a < 0, that correspond to the first and second sub-table of
Table II, respectively. For a < 0, the sign of the a� term in
the numerator of Eq. (66) is reversed, a modification that
leads to a lower value of rc and eventually of the cross
section.

We now proceed to the case of a zero-mass particle
coming from infinity in an orbit parallel to the black hole’s
rotation axis. This translates into cos2�1 � 1 and Lz � 0.
In that case, we find

 

�
�
dr
d�

�
2
� E2�r2 � a2�2 	 �L2: (67)

Defining, as before, b � L=E, one may easily conclude
that the above equation is again consistent only if

 b <
�
r2 � a2����

�
p

�
: (68)

The above leads to the minimum distance of the particle’s
approach to the black hole without being captured given by

 rc � min
�

r2 � a2�����������������������������
a2 � r2 	 �

rn	1

q �
: (69)

For a � 0, the above result also reduces to the
Schwarzschild-like one (63), as expected, since, in the

TABLE II. Absorption cross section �abs (in units of r2
h) for

particles moving in the equatorial plane of the axially symmetric
brane black hole (9), for a > 0 (upper sub-table) and a < 0
(lower sub-table).

a�nn 1 2 3 4 5 6

0.0 12.6 9.6 8.2 7.3 6.6 6.2
0.3 17.9 12.8 10.4 9.0 8.1 7.4
0.5 23.5 15.9 12.6 10.7 9.5 8.7
0.7 31.0 20.0 15.4 12.9 11.4 10.3
1.0 46.0 27.6 20.6 17.0 14.8 13.4
1.5 81.9 44.3 31.7 25.6 22.2 19.9
2.0 131.6 65.4 45.3 36.3 31.3 28.2

a�nn 1 2 3 4 5 6

0.0 12.6 9.6 8.2 7.3 6.6 6.2
0.3 10.0 8.2 7.3 6.6 6.2 5.9
0.5 9.5 8.1 7.3 6.8 6.4 6.1
0.7 9.5 8.4 7.7 7.3 6.9 6.7
1.0 10.5 9.6 9.0 8.6 8.4 8.1
1.5 13.4 13.2 12.7 12.3 12.1 11.9
2.0 19.2 18.5 18.1 17.8 17.5 17.4
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absence of rotation, all directions of the particle’s orbit
should give the same result. By using Eq. (69), the values
of the corresponding absorption cross section �abs, in units
of r2

h, are given in Table III.
Let us now compare the various analytic values, ob-

tained above by using the geometrical optics limit, with
the numerical ones for the high-energy asymptotic value of
the absorption cross section. One should, of course, be
careful when a direct comparison of these results is
made: the values displayed in Tables II and III correspond
to trajectories with a specific azimuthal angle, while the
numerical values of Table I are actually integrated over all
angles. Nevertheless, a comparison between the two sets of
results could reveal, upon finding an agreement, which
type of trajectories may be used to account for the value
of the total cross section more accurately. A direct com-
parison of the entries of Tables I and II shows that the total
cross section is smaller than the one corresponding to a
trajectory lying on the equatorial plane with aL > 0, but
larger than the one with aL < 0. On the other hand, by
comparing the entries of Tables I and III, we find that there
is an almost perfect agreement between these two sets of
results for low values of either a� or n. The same agree-
ment can be pictorially seen in Fig. 5, where the particular
case n � 2 and a� � 0:3 is shown. We may thus conclude
that particle trajectories running parallel to the rotation axis
of the black hole lead to an absorption cross section whose
value is virtually identical to the total one. As either n or a�
increases further, the two sets deviate; in this parameter
regime, the contribution of all possible particle trajectories
needs to be more carefully taken into account before the
value of the total absorption cross section can be justified.

V. CONCLUSIONS

The emission of Hawking radiation, i.e. the evaporation
of a black hole via the emission of elementary particles,
takes place during the spin-down and Schwarzschild phase
of its life. Although the emission during the Schwarzschild
phase of a higher-dimensional black hole was studied, both
analytically and numerically, quite early, the complexity of
the gravitational background around a similar, but rotating,

black hole delayed the study of the spin-down phase.
During the last few years, numerical studies have derived
results for the various spectra characterizing the emission
of elementary particles on the brane by a higher-
dimensional rotating black hole—the most phenomeno-
logically interesting emission channel for the brane-
localized observers. Nevertheless, no analytical studies
have been performed and no analytic expressions for the
fundamental quantities governing the emission of Hawking
radiation, such as the absorption probability, have ever
been derived for an arbitrary value of the number of extra
dimensions n. In this work, we have duly performed this
task, and studied in detail the properties of the absorption
probability and absorption cross section for scalar fields
emitted on the brane by the (4� n)-dimensional axially
symmetric black hole.

As the complexity of the equation of motion, describing
the propagation of a scalar field in the axially symmetric
brane background, forbids the derivation of a general
solution for a particle with arbitrary frequency, we were
forced to focus our analysis on two particular energy
regimes: the low-energy one and the high-energy one.
The low-energy regime was studied in Sec. III, where an
analytic solution for the radial part of the scalar-field wave
function was derived. This involved matching the near-
horizon and far-field asymptotic solutions in an intermedi-
ate regime and allowed calculation of the absorption proba-
bility. Our analytic results, formally valid only for low
values of the energy parameter !rh and angular momen-
tum parameter a�, were compared with the exact numerical
results, that were also reproduced during our analysis in an
attempt to check the range of validity of our approxima-
tions. The two sets of results were found to be in excellent
agreement in the low-energy regime, as expected. In addi-
tion, even for moderately large values of !rh and a�, the
agreement on both qualitative and quantitative levels still
persisted.

The properties of the absorption probability in the low-
energy regime, as these follow from our analytic results,
were then studied in detail. Its dependence on the angular
momentum numbers �l; m� was investigated first, with our
analysis revealing the dominance of the lowest partial
mode l � 0, and the one with m � 	jlj, for fixed l. The
absorption probability was also found to strongly depend
on the spacetime topological parameters, namely, the an-
gular momentum parameter a� of the black hole and the
number of extra dimensions n: the nonsuperradiant modes
withm � 0 were shown to be enhanced with both a� and n,
while the superradiant ones, with m> 0, were, on the
contrary, suppressed; however, outside the superradiant
regime, the latter modes were enhanced with n. Our ana-
lytic expression for the absorption probability, valid in the
low-energy regime, was then expanded in the limit !! 0,
and the constant asymptotic value of the absorption cross
section was derived. The analytic value was shown to

TABLE III. Absorption cross section �abs, in units of r2
h, for

particles moving parallel to the rotation axis of the axially
symmetric brane black hole (9).

a�nn 1 2 3 4 5 6

0.0 12.6 9.6 8.2 7.3 6.6 6.2
0.3 13.6 10.4 8.7 7.8 7.1 6.6
0.5 15.7 11.6 9.7 8.6 7.9 7.3
0.7 18.7 13.5 11.2 9.8 9.0 8.4
1.0 25.1 17.2 14.0 12.3 11.3 10.5
1.5 40.9 25.7 20.5 18.0 16.5 15.4
2.0 62.8 36.5 28.9 25.3 23.3 22.0
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accurately reproduce, for small a�, the exact numerical
one, that was equal to the area of the horizon of the
projected-on-the-brane axially symmetric black hole,
4��a2 � r2

h�.
We subsequently turned our attention to the study of the

scalar equation of motion in the high-energy regime. By
using an analogous approximate method, and for the first
time in the literature, an analytic solution was derived that
perfectly matched the exact numerical one for large
enough values of the energy parameter !rh. The value of
!rh, beyond which the two solutions completely coincide,
was shown to be strongly mode dependent: modes with
small l allowed the two solutions to match fairly quickly,
while modes with larger l had the matching taking place at
an increasing value of the energy parameter. By employing
the exact numerical solution for the absorption probability,
valid at all energy regimes, we were able to determine the
constant asymptotic value of the total absorption cross
section at the high-energy regime, and its dependence on
n and a�. Similarly to the spherically symmetric case, this
asymptotic value is suppressed as the number of extra
dimensions increases. On the other hand, an increase in
the angular momentum of the black hole causes an en-
hancement in the high-energy asymptotic value of �abs. A
detailed analysis, based on the geometrical optics limit,
revealed that the asymptotic value of the absorption cross
section in the high-energy limit is accurately reproduced
by considering particle trajectories approaching the black
hole from infinity and running parallel to the rotation axis
of the black hole.

The analytic results, supplemented by exact numerical
ones, derived in this work, on the behavior of the absorp-
tion probability and cross section for scalar particles prop-
agating in an axially symmetric brane black hole
background, smoothly complement the sole previous ana-
lytic study of the 5-dimensional case [32], as well as the
numerical studies of the Hawking radiation spectrum of
[23,25,27]. Given the excellent agreement between our
analytic solutions and the exact numerical ones, in the
low- and high-energy regime, their use to derive the cor-

responding emission rates would have led to results iden-
tical to the ones already presented in the works cited above.
For that reason, we have refrained from performing this
task here and refer the interested reader to those works.
Instead, in this manuscript, we have focused our attention
on the derivation of closed-form expressions and study of
the properties of the absorption probability and cross sec-
tion, that carry a significant amount of information on
particle properties as well as on properties of the space-
time. Apart from their obvious theoretical interest, the
above results may have a phenomenological one too:
both our analytic solutions could be used reliably, in place
of the exact numerical ones, to derive the energy emission
rates in the low- and high-energy regimes; these could then
be used for the interpretation of any observable effects
coming from an evaporating black hole produced in a
ground-based accelerator and centered in these two fre-
quency regimes. In the high-energy regime, in particular,
where constraints on the available running time may put
limits on the derivation of numerical data, our analytic
solution may prove useful in removing the need for nu-
merical integration.
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