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We study multidimensional gravitational models with scalar curvature nonlinearity of the type 1=R and
with form-fields (fluxes) as a matter source. It is assumed that the higher dimensional space-time
undergoes Freund-Rubin-like spontaneous compactification to a warped product manifold. It is shown
that for certain parameter regions the model allows for a freezing stabilization of the internal space near
the positive minimum of the effective potential which plays the role of the positive cosmological constant.
This cosmological constant provides the observable late-time accelerating expansion of the Universe if the
parameters of the model are fine tuned. Additionally, the effective potential has the saddle point. It results
in domain walls in the Universe. We show that these domain walls do not undergo inflation.
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I. INTRODUCTION

There are two great challenges in modern theoretical
physics and cosmology. The first big puzzle consists of a
‘‘dark side’’ of our Universe. Recent observations of the
luminosity distances of type Ia supernovas (SNIa), cosmic
microwave background radiation (CMB) angular tempera-
ture fluctuations on degree scales, and measurements of the
power spectrum of galaxy clustering indicate (see e.g. [1])
that our Universe is spatially flat with �23% of its critical
energy in nonrelativistic cold dark matter and �73% in a
smooth component having a large negative pressure (dark
energy). The latter one results in accelerating expansion of
our Universe which began approximately at redshift z� 1
and continues until the present time. On the other hand,
there is also the possibility that the late-time accelerating
expansion of our Universe is caused by modification of
gravity on Galactic scales. For example, it was proposed
[2] to add a 1=R term in the Einstein-Hilbert action to
modify general relativity.1 It is clear that such modification
may affect dynamics of the Universe at late times of its
evolution and on large scales where the scalar curvature
becomes small. In fact, it was shown (see e.g. [4]) that this
term can provide accelerating expansion of the Universe
without the need to introduce dark energy.

The second great challenge is the possible multidimen-
sionality of our Universe which naturally follows from
theories unifying different fundamental interactions with
gravity, such as string/M-theory. So, there is a big tempta-
tion to explain the dark matter and the accelerating expan-
sion of our Universe with the help of extra dimensions.
However, it is well known that dynamical behavior of
internal spaces usually results in variations of the effective

four-dimensional fundamental ‘‘constants’’ (e.g. gravita-
tional constant, fine structure constant, etc.) (see e.g. [5–
9]) and references therein). There are strong experimental
bounds on such variations [10]. So, one of the main prob-
lems of higher-dimensional models lies in stable compac-
tification of the internal spaces. Scale factors of the internal
spaces play the role of scalar fields moving in our four-
dimensional space-time. Their dynamics is defined by an
effective potential in dimensionally reduced theory. Thus,
the internal spaces are stabilized in the case of a minimum
of this potential [11]. Small excitations around this mini-
mum look in our Universe as massive scalar fields (gravi-
tational excitons/radions [11]) with Planck scale sup-
pression of their interaction with usual matter [7]. There-
fore they may play the role of dark matter. Additionally, if
the minimum of the effective potential is positive, it gives
the contribution to a positive cosmological constant pro-
viding acceleration of the Universe.

In the present paper, we consider a nonlinear gravita-
tional multidimensional cosmological model with action of
the type R� 1=R with form-fields as a matter source. We
also include a bare cosmological term as an additional
parameter of the theory. It is assumed that the correspond-
ing higher-dimensional space-time manifold undergoes a
spontaneous compactification to a manifold with warped
product structure of the external and internal spaces. Each
of the spaces has its own scale factor. A model without
form-fields and bare cosmological constant was considered
in Ref. [12] where the internal space freezing stabilization
was achieved due to negative minimum of the effective
potential. Thus, such model is asymptotically AdS without
accelerating behavior of our Universe. It is well known that
inclusion of usual matter can uplift potential to the positive
values [13]. One of the main task of our present investiga-
tions is to observe such uplifting due to the form-fields.
Indeed, we demonstrate that for certain parameter regions
the late-time acceleration scenario in our model becomes
reachable. However, it is not simply uplifting of the nega-
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tive minimum of the theory [12] to the positive values. The
presence of the form-fields results in a much more rich
structure of the effective potential than in [12]. Here, we
obtain additional branches with extremum points, and one
such extremum corresponds to the positive minimum of the
effective potential. This minimum plays the role of the
positive cosmological constant. With the corresponding
fine-tuning of the parameters, it can provide the late-time
accelerating expansion of the Universe. Moreover, we
show that for this branch of the effective potential there
is also a saddle point. Thus, we obtain domain walls which
separate regions with different vacua. We demonstrate that
these domain walls do not undergo inflation because our
effective potential is not flat enough around the saddle
point.

It is also worth of noting that the effective potential in
our reduced model has a branchpoint. It gives a very
interesting possibility to investigate transitions from one
branch to another by analogy with catastrophe theory or
similar to phase transitions in statistical theory. This idea
needs more detailed investigation in a separate paper.

The paper is structured as follows. In Sec. II we present a
brief description of multidimensional models with scalar
curvature nonlinearity f�R� and the form-fields as a matter
source. Then, we perform dimensional reduction and ob-
tain effective four-dimensional action with effective poten-
tial. General formulas from this section are applied to our
specific model f�R� � R��=R� 2�D in Sec. III. Here,
we obtain the effective potential minimum conditions.
These conditions are analyzed in Secs. IV and V for the
cases of zero and positive effective cosmological constants,
respectively. Furthermore, in Sec. VI we demonstrate that
the positive minimum of the effective potential plays the
role of the positive cosmological constant and can provide
the late-time accelerating expansion. Additionally, this
minimum is accompanied by a saddle point. It results in
noninflating domain walls in the Universe. The main re-
sults are summarized and discussed in the concluding
Sec. VII.

II. GENERAL SETUP

We consider a D � �D0 �D0�-dimensional nonlinear
gravitational theory with action functional

 S �
1

2�2
D

Z
M
dDx

������
j �gj

q
f� �R� �

1

2

Z
M
dDx

������
j �gj

q Xn
i�1

1

di!
�F�i��2;

(2.1)

where f� �R� is an arbitrary smooth function of a scalar
curvature �R: � R� �g� constructed from the D-dimensional
metric �gab�a; b � 1; . . . ; D�. D0 is the number of extra
dimensions. �2

D denotes the D-dimensional gravitational
constant. In action (2.1), a form-field (flux) F has block-
orthogonal structure consisting of n blocks. Each of these
blocks is described by its own antisymmetric tensor field

F�i��i � 1; . . . ; n� of rank di (di-form-field strength).
Additionally, we assume that for the sum of the ranks holdsPn
i�1 di � D0.
Following Refs. [12–15], we can show that the nonlinear

gravitational theory (2.1) is equivalent to a linear theory
R � R�g� with conformally transformed metric

 gab � �2 �gab � �f0� �R��2=�D�2� �gab (2.2)

and an additional minimal scalar field � � ln�f0� �R��=A
coupled with fluxes. The scalar field � is the result and
the carrier of the curvature nonlinearity of the original
theory. Thus, for brevity, we shall refer to the field � as
the nonlinearity scalar field. A self-interaction potential
U��� of the scalar field � reads

 U��� � 1
2e
�B�� �R���eA� � f� �R�����; (2.3)

where

 A �

�������������
D� 2

D� 1

s
; B �

D���������������������������������
�D� 2��D� 1�

p : (2.4)

Furthermore, we assume that the multidimensional
space-time manifold undergoes a spontaneous compactifi-
cation

 M ! M � M0 	M1 	 . . .	Mn (2.5)

in accordance with the block-orthogonal structure of the
field strength F, and that the form-fields F�i�, each nested in
its own di-dimensional factor space Mi�i � 1; . . . ; n�, re-
spect a generalized Freund-Rubin ansatz [16]. Here,
(D0 � 4)-dimensional space-time M0 is treated as our
external Universe with metric g�0��x�.

This allows us to perform a dimensional reduction of our
model along the lines of Refs. [11–14,17,18]. The factor
spaces Mi are then Einstein spaces with metrics g�i� 

e2�i�x���i� which depend only through the warp factors
ai�x� :� e�

i�x� on the coordinates x of the external space-
time M0. For the corresponding scalar curvatures holds
R���i�� � �idi 
 ri [in the case of the constant curvature
spaces �i � ki�di � 1�, ki � 0, �1]. The warped product
of Einstein spaces leads to a scalar curvature �R which
depends only on the coordinate x of the D0-dimensional
external space-time M0: �R� �g� � �R�x�. This implies that the
nonlinearity field� is also a function only of x:� � ��x�.
Additionally, it can be easily seen [12] that the generalized
Freund-Rubin ansatz results in the following expression for
the form-fields: �F�i��2 � f2

i =a
2di
i where fi � const.

In general, the model will allow for several stable scale
factor configurations (minima in the landscape over the
space of volume moduli). We choose one of them (which
we expect to correspond to the current evolution stage of
our observable Universe), denote the corresponding scale
factors as �i0, and work further on with the deviations
�̂i�x� � �i�x� � �i0.
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Without loss of generality,2 we shall consider a model
with only one d1-dimensional internal space. After dimen-
sional reduction and subsequent conformal transformation
to the Einstein frame the action functional (2.1) reads3

 S �
1

2�2
0

Z
M0

dD0x
�����������
j~g�0�j

q
fR�~g�0�� � ~g�0���@�’@�’

� ~g�0���@��@��� 2Ueff�’;��g; (2.6)

where ’ :� �
������������������������������������������
d1�D� 2�=�D0 � 2�

p
�̂1 and �2

0
:�

�2
D=Vd1

denotes the D0-dimensional (four-dimensional)
gravitational constant. Vd1

� exp�d1�
1
0� is the volume of

the internal space at the present time.
A stable compactification of the internal space M1 is

ensured when its scale factor’ is frozen at the minimum of
the effective potential

 Ueff � eb’��1
2R1e

a’ �U��� � hec�ead1’�; (2.7)

where R1 :� r1 exp��2�1
0� defines the curvature of the

internal space at the present time and contribution of the
form-field into the effective action is described by h :�
�2
Df

2
1 exp��2d1�

1
0�> 0. For brevity we introduce nota-

tions

 a :� 2

����������������������
D0 � 2

d1�D� 2�

s
; b :� 2

�����������������������������������
d1

�D� 2��D0 � 2�

s
;

c :�
2d1 �D���������������������������������

�D� 1��D� 2�
p :

(2.8)

III. THE MODEL

In this section we analyze the conditions of the compac-
tification for a model with

 f� �R� � �R�
�
�R
� 2�D: (3.1)

Then from the relation f0� �R� � exp�A�� we obtain

 

�R � q

�����������������������
j�j

s�eA� � 1�

s
; q � �1; s � sign���:

(3.2)

Thus, the ranges of variation of � are � 2 ��1; 0� for
�< 0�s � �1� and � 2 �0;�1� for �> 0�s � �1�.

It is worth of noting that the limit �! �0�f0 ! 1�
corresponds to the transition to a linear theory: f� �R� !

�R� 2�D and R! �R. This is a general feature of all non-
linear models f� �R�. For example, in our case (3.1) we
obtain f� �R� � �R�2� exp�A��� � 2�D ���! �R� 2�D for
�! 0. On the other hand, for particular model (3.1),
Eq. (3.2) shows that the point � � 0 maps into infinity
�R;R � �1. Thus, in this sense, we shall refer to the point
� � 0 as singularity.

For our model (3.1), potential (2.3) U��� reads

 U��� � 1
2e
�B��2qs

�������
j�j

q �������������������
seA� � s

p
� 2�D�: (3.3)

It is well known (see e.g. [13,14,17]) that in order to
ensure a stabilization and asymptotical freezing of the
internal space M1, the effective potential (2.7) should
have a minimum with respect to both scalar fields ’ and
�. We remind the reader that we choose the minimum
position with respect to ’ at ’ � 0. Additionally, the
eigenvalues of the mass matrix of the coupled
�’;��-field system, i.e. the Hessian of the effective poten-
tial at the minimum position,

 J :�
@2
’’Ueff @2

’�Ueff

@2
�’Ueff @2

��Ueff

 !��������extr
(3.4)

should be positive definite (this condition ensures the
positiveness of the mass squared of scalar field excita-
tions). According to the Silvester criterion this is equiva-
lent to the condition:

 J11 > 0; J22 > 0; det�J�> 0: (3.5)

It is convenient in further consideration to introduce the
following notations:

 �0 :� �jextr; X :�
���������������������
seA�0 � s

p
> 0! X�s��1� < 1:

(3.6)

Then we can rewrite potentials U���, Ueff�’;�� and de-
rivatives of the Ueff at an extremum (possible minimum)
position (’ � 0; �0) as follows:

 U0 
 Ujextr � �1� sX
2��B=A�qs

�������
j�j

q
X��D�; (3.7)

 Ueff jextr � �
1
2R1 �U0�X� � h�1� sX

2�c=A; (3.8)

 

@’Ueffjextr � �
a� b

2
R1 � bU0�X�

� �ad1 � b�h�1� sX
2�c=A � 0; (3.9)

 

@�Ueff jextr � ch�1� sX2�c=A � BU0�X�

�
qA

�������
j�j

p
2X

�1� sX2�1�B=A � 0; (3.10)

2The difference between a general model with n > 1 internal
spaces and the particular one with n � 1 consists in an additional
diagonalization of the geometrical moduli excitations.

3The equivalency between original higher dimensional and
effective dimensionally reduced models was investigated in a
number of papers (see e.g. [19]). The origin of this equivalence
results from high symmetry of considered models (i.e. because
of specific metric ansatz which is defined on the manifold
consisting of direct product of the Einstein spaces).
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@2
’’Ueff jextr � �

�a� b�2

2
R1 � b

2U0�X�

� �ad1 � b�2h�1� sX2�c=A; (3.11)

 @2
’�Ueffjextr � chad1�1� sX2�c=A; (3.12)

 

@2
��Ueff jextr � ch�c� A� 2B��1� sX2�c=A

� B�A� B�U0�X�

�
qs

�������
j�j

p
A2

4X3 �1� sX2�2�B=A: (3.13)

The most natural strategy for extracting detailed informa-
tion about the location of the stability region of parameters
in which compactification is possible would consist in
solving (3.10) for X with subsequent back-substitution of
the found roots into the inequalities (3.5) and the Eq. (3.9).
To get the main features of the model under consideration,
it is sufficient to investigate two particular nontrivial situ-
ations. Both of these cases are easy to handle analytically.

IV. ZERO EFFECTIVE COSMOLOGICAL
CONSTANT: �eff � 0

It can be easily seen from Eqs. (3.8) and (3.9) that
condition �eff � Ueffjextr � 0 results in relations

 R1 � 2d1h�1� sX2�c=A �
2d1

d1 � 1
U0�X�; d1 � 2;

(4.1)

which enable us to get from Eq. (3.10) quadratic equation
for X

 �d1 � 1�X2 � qsd1zX� s�d1 � 1� � 0;

z 
 2�D=
�������
j�j

q (4.2)

with the following solutions:
 

Xp � qs
d1

2�d1 � 1�

�
�z� p

�������������������������������
z2 � 4s

d2
1 � 1

d2
1

s �
;

p � �1: (4.3)

In the case s � �1 parameter z should satisfy con-

dition jzj � z0 
 2
��������������
d2

1 � 1
q

=d1 < 2 and for z � z0 two

solutions Xp degenerate into one: Xp 
 X0 �

�qs
�������������������������������������
�d1 � 1�=�d1 � 1�

p
.

Because of conditions h � 0 and eA�0 � 1� sX2 > 0,
the relations (4.1) show that parameters R1 and U0�X�
should be non-negative: R1 � 0, U0�X� � 0. Obviously,
only one of the solutions (4.3) corresponds to a minimum
of the effective potential. With respect to this solution we
define parameters in the relation (4.1). Therefore, we must
distinguish now which of Xp corresponds to the minimum
of Ueff . Let us investigate solutions (4.3) for the purpose of

their satisfactions to conditions eA�0 > 0, U0�X� � 0 and
Xp � 0.

The condition eA�0 � 1� sX2
p > 0:

Simple analysis shows that solutions Xp satisfy this
inequality for the following combinations of parameters:

 

The condition U0�X� � 0:
As appears from Eq. (3.7), this condition takes place if

Xp satisfies inequality 2qsXp � z � 0 which leads to the
conditions:

 

The condition Xp > 0:
This condition is satisfied for the combinations:

 

The comparison of Eqs. (4.4), (4.5), and (4.6) shows that
they are simultaneously satisfied only for the following
combinations:
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Additionally, the extremum solutions Xp should corre-
spond to the minimum of Ueff . The inequalities (3.5) are
the sufficient and necessary conditions for that. We analyze
them in the case of four-dimensional external space D0 �
4. Taking into account definitions (2.4), (2.8), (3.11),
(3.12), and (3.13) and relations (4.1), for J11, J22 and J21

we get respectively:

 J11 �
8

d1 � 2
U0�Xp�; (4.8)

 

J22 � �
�������
j�j

q �
6d1�2qsXp � z��1� sX2

p�
��d1�4�=�d1�2�

�d1 � 1��d1 � 2��d1 � 3�

�
qs�d1 � 2�

4X3
p�d1 � 3�

�1� sX2
p�
d1=�d1�2�

�
; (4.9)

 

J21 � �
�������
j�j

q �
�d1 � 4��2qsXp � z�

�d1 � 1��d1 � 2�

	

����������������������
2

d1�d1 � 3�

s
�1� sX2

p�
��d1�4�=�d1�2�

�
: (4.10)

We supposed in these equations that each of Xp can define
zero minimum ofUeff . In what follows, we shall check this
assumption for every Xp with corresponding combinations
of signs of the parameters s and q in accordance with the
table in Eq. (4.7).

According to the Silvester criterion (3.5), J11 should be
positive. Thus Eqs. (4.1) and (4.8) result in the following
conclusions: the potential U0 should be positive U0 > 0,
the internal space should have positive curvature R1 > 0
(hence, d1 > 1) and its stabilization (with zero minimum
�eff � 0) takes place only in the present of form-field (h >
0). Transition from the non-negativity condition U0 � 0 to
the positivity one U0 > 0 corresponds to the only substi-
tution in �z0; 2� ! �z0; 2� for the case s � �1, p � �1.
Exactly this interval �z0; 2� appears in the concluding table
in Eq. (4.7). Therefore, J11 is positive for all Xp from the
table in Eq. (4.7).

Concerning expressions J22 and det�J� � J11J22 � J
2
12,

graphical plotting (see Figs. 1 and 2) demonstrates that
they are negative for s � �1, p � �1, q � �1 and s �
�1, p � �1, q � �1 but positive in the case s � �1,
p � �1, q � �1. For this latter combination z 2 �z0;1�.

The case s � �1, q � �1 and z � z0 should be investi-
gated separately. Here, Xp 
 X0 �

�������������������������������������
�d1 � 1�=�d1 � 1�

p
and for J22 and J21 we obtain:

 J22 � �
�������
j�j

q
X�3

0 �1� sX
2
0�
��d1�4�=�d1�2�

	

�
12�d1 � 1� � �d1 � 2�2

�d1 � 1�2�d1 � 2��d1 � 3�

�
; (4.11)

 J21 � �
�������
j�j

q
X�3

0 �1� sX
2
0�
��d1�4�=�d1�2�

	

�
2
���
2
p
�d1 � 4��d1 � 1�

�d1 � 1�2�d1 � 2�
����������������������
d1�d1 � 3�

p �
: (4.12)

It can be easily seen from Eqs. (4.11) and (4.12) that
J22 > 0 for d1 � 4 and J22 � J21 � 0 for d1 � 4.
Additionally, det�J�> 0 for d1 � 4.

Thus, we can finally conclude that zero minimum of the
effective potential Ueff takes place either for s � �1, q �
�1, z 2 �z0;1�, 8d1 > 1 [position of this minimum is
defined by solution (4.3) with p � �1] or for s � �1,

 

FIG. 1. Typical form of J22=
�������
j�j

p
[Eq. (4.9)] for parameters

s � �1, q � �1, p � �1 (upper) and s � �1, q � �1, p �
�1 (lower). For both of these combinations of the parameters,
J22 < 0.
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q � �1, z � z0, 8d1 � 4. Concerning the signs of pa-
rameters, we obtain that �< 0 and �D > 0.

V. DECOUPLING OF EXCITATIONS: d1 � D0

It can be easily seen from Eq. (2.8) that in the case d1 �
D0 parameter c � 0 that leads to condition @2

’�Ueffjextr �

0 (see Eq. (3.12). Thus the Hessian (3.4) is diagonalized. It
means that the excitations of the fields ’ and � near the
extremum position are decoupled from each other.4

Dropping the h term in Eq. (3.10) (because of c � 0) and
taking into account Eq. (3.7), we obtain quadratic equation
for X

 �D� 2�X2 �DqszX� �D� 2�s � 0; (5.1)

which for D0 � d1 exactly coincides with Eq. (4.2). Thus,
in spite of the fact that we do not use the condition �eff �
0, we obtain in the case d1 � D0 precisely the same
solutions (4.3). However, parameters R1, U0, and h now

satisfy relations different from (4.1). For example, for the
most physically interesting case D0 � d1 � 4, Eqs. (3.8)
and (3.9) result in the following relations:

 R1 � 4�13U0�X� � h�; �eff�X� �
1
3U0�X� � h: (5.2)

Nonzero components of the Hessian read

 J11 �
2
3�9h�U0�X��;

J22 � �
�������
j�j

q �
4�z� 2qsXp�

21�1� sX2
p�

4=3
�

3qs�1� sX2
p�

2=3

14X3
p

�
:

(5.3)

In this section we are looking for a positive minimum of
the effective potential. It means that �eff > 0, J11 > 0 and
J22 > 0. From the positivity of J11 and �eff we obtain
respectively5:

 J11 > 0: 16h > R1 > 16U0�X�=9> 8�eff (5.4)

and

 �eff > 0: h > R1=16>U0�X�=9> h=3> 0: (5.5)

These inequalities show that for the considered model
positive minimum of the effective potential is possible
only in the case of positive curvature of the internal space
R1 > 0 and in the presence of the form-field �h > 0�.

To realize which combination of parameters s; p and q
ensures the minimum of the effective potential, we should
perform analysis as in the previous case with �eff � 0.
However, there is no need to perform such analysis here
because solutions of Eq. (5.1) coincides with (4.3) and all
conditions for Xp and U0 are the same as in the previous
section. Thus, we obtain a concluding table of the form
(4.7). Additionally, it can be easily seen that expressions of
J22 in (4.9) and (5.3) exactly coincide with each other if we
put d1 � 4 in the latter equation.6 Hence, we can use
Figs. 1 and 2 (for the lines with d1 � 4) to analyze the
sign of J22. With the help of these pictures as well as
keeping in the mind that J22�d1 � 4; z � z0� � 0, we ob-
tain that the only combination which ensures the positive
minimum of Ueff is: s � �1, p � �1, q � �1 and z 2
�z0 � 1:936;�1�. It is clear that potential U0�X� in
Eqs. (5.2), (5.3), (5.4), and (5.5) is defined by solution of
Eq. (5.1) [i.e. (4.3) for d1 � 4] with this combination of the

 

FIG. 2. Typical form of J22=
�������
j�j

p
(upper) and det�J�=j�j

(lower) [see Eqs. (4.8), (4.9), (4.10), and (4.11)] for parameters
s � �1; q � �1; p � �1. For this combination of the parame-
ters, J22 > 0 and detJ > 0.

4In the vicinity of a minimum of the effective potential,
squared masses of these excitations are m2

’ � J11 and m2
� � J22.

5It is interesting to note that (in the case D0 � d1 � 4)
relations (5.1), J11 in (5.3) and inequalities (5.4) and (5.5)
coincide with the analogous expressions in Ref. [13] with
quadratic nonlinear model. This is not surprising because they
do not depend on the form of nonlinearity f� �R� (and, conse-
quently, on the form of U���). However, the expressions for J22
are different because here we use the exact form of U���.

6It follows from the fact that in (4.9) we already put D0 � 4.
Although we use in this equation the relation (4.1) between h and
U0, it enters here in the combination which is proportional to c.
Thus, this combination does not contribute if we put additionally
d1 � 4.
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parameters. Because s � �1 and z > 0, the parameters
� and �D should have the following signs: �< 0 and
�D > 0.

Additionally, it is easy to verify that the second solution
of Eq. (5.1) X� (with p � �1 and s � �1; q � �1) does
not correspond to the maximum of the effective po-
tential Ueff . Indeed, we have here @�Ueff�X�� � 0 but
@’Ueff�X�� � 0.

Figure 3 demonstrates the typical profile ’ � 0 of the
effective potential Ueff�’;�� in the case of positive mini-
mum ofUeff considered in the present section. This picture
is in good concordance with the table in Eq. (4.7).
According to this table, positive extrema of Ueff are pos-
sible only for the branch q � �1 of the solution (3.2)
(solid lines in Fig. 3). We see that for z0 < z < 2 we can
have 3 such extrema: one for positive �> 0! s � �1
and two for negative �< 0! s � �1. Our investigations
show that in the left half plane (i.e. for �< 0) the right
extremum [p � �1 in Eq. (4.3)] is the local minimum7 and

the left maximum (p � �1) is not the extremum of Ueff

because here @’Ueff � 0. Analogously, the maximum in
the right half plane �> 0 [which corresponds to
(p � �1)-solution (4.3)] is not the extremum of Ueff . For
completeness of picture, we also included lines corre-
sponding to the branch q � �1 (dashed lines in Fig. 3).
The minimum of the right dashed line (for Xp with s �
�1, p � �1, q � �1) does not describe the extremum of
Ueff because again @’Ueff � 0.

VI. COSMIC ACCELERATION AND DOMAIN
WALLS

Let us consider again the model with d1 � D0 � 4 in
order to define stages of the accelerating expansion of our
Universe. It was proven that for certain conditions [see
(5.2), (5.3), (5.4), and (5.5)] the effective potential Ueff has
local (for z0 < z< 2) or global (for z � 2) positive mini-
mum. The position of this minimum is �’ � 0; � �
�1=A� ln�1� sX2

p�� where s � �1, p � �1, q � �1,
and z 2 �z0;�1�. Obviously, the positive minimum of
the effective potential plays the role of the positive cosmo-
logical constant. Therefore, the Universe undergoes the
accelerating expansion in this position. Thus, we can
‘‘kill two birds with one stone’’: to achieve the stable
compactification of the internal space and to get the accel-
erating expansion of our external space.

We associate this acceleration with the late-time accel-
erating expansion of our Universe. As it follows from
Eqs. (5.2) and (5.5), the positive minimum takes place if
the parameters are positive and the same order of magni-
tude: �eff � R1 �U0�X� � h > 0. On the other hand, in
Kaluza-Kline models the size of extra dimensions at
present time should be b�0�1 & 10�17 cm� 1 TeV�1. In
this case R1 * b�2

�0�1 � 1034 cm�2. Thus, for the TeV scale
of b�0�1 � 1 TeV we get that �eff � R1 �U0�X� � h�

1 TeV2. Moreover, in the case of natural condition �D ��������
j�j

p
we obtain that the masses of excitations m’ �m� �

1 TeV. The above estimates clearly demonstrate the typi-
cal problem of the stable compactification in multidimen-
sional cosmological models because for the effective
cosmological constant we obtain a value which is in
many orders of magnitude greater than observable at the
present time dark energy �10�57 cm�2. The necessary
small value of the effective cosmological constant can be
achieved only if the parameters R1, U0�X�, h are extremely
fine tuned with each other to provide the observed small
value from equation �eff�X� � U0�X�=3� h. We see two
possibilities to avoid this problem. First, the inclusion of
different form-fields/fluxes may result in a big number of
minima (landscape) [20–23] with sufficient large proba-
bility to find oneself in a dark energy minimum. Second,
we can avoid the restriction R1 � b

�2
�0�1 � 1034 cm�2 if the

internal space is Ricci-flat: R1 � 0. For example, the in-

 

-4 -2 2 4
φ

-1

-0.5

0.5

1

1.5
Ueff0 0

FIG. 3. Profile ’ � 0 of the effective potential Ueff�’;�� for
parameters z � 1:99��D � 1:99=2; j�j � 1�, D0 � d1 � 4, and
h � U0=6. The rest of parameters can be found from relations
(5.2). Solid and dashed lines describe branches q � �1 and q �
�1 respectively. For the solid line, there is only one local
minimum of Ueff which is defined by solution Xp with the
following parameters: s � �1, p � �1, q � �1. Left (s �
�1, p � �1, q � �1) and right (s � �1, p � �1, q � �1)
maxima are not extrema of Ueff because in these points
@�Ueff � 0 but @’Ueff � 0. Analogously, for the right dashed
line the solution Xp (with s � �1, p � �1, q � �1) does not
correspond to the extremum of Ueff .

7It can be easily seen for the branch q � �1; s � �1 that
U��! �1� ! �1 for z � 2 and U��! �1� ! �1 for
z < 2. Thus, for z � 2 this minimum becomes global one.
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ternal factor-space M1 can be an orbifold with branes in
fixed points (see corresponding discussion in [24]).

The WMAP 3 yr data as well as CMB data are consistent
with a wide range of possible inflationary models (see e.g.
[1]). Therefore, it is of interest to get the stage of early
inflation in our model. It is well known that it is rather
difficult to construct inflationary models from multidimen-
sional cosmological models and string theories. The main
reason of it consists in the form of the effective potential
which is a combination of exponential functions [see e.g.
Eq. (2.7)]. Usually degrees of these exponents are too large
to result in sufficiently small slow-roll parameters (see e.g.
[12]). Nevertheless, there is a possibility that in the vicinity
of the maximum or saddle points the effective potential is
flat enough to produce the topological inflation [25–27].
Let us investigate this possibility for our model.

As stated above, the value ’ � 0 corresponds to the
internal space value at the present time. Following this
statement, we found the minimum of the effective potential
at this value of ’. Obviously, the effective potential can
also have extrema at ’ � 0. Let us investigate this possi-
bility for the model with d1 � D0 � 4, i.e. for c � 0. In
this case, the extremum condition of the effective potential
reads
 

@’Ueffj’0;�0
� �1

2R1�a� b�e�a�b�’0 � bU0eb’0

� �ad1 � b�he�ad1�b�’0 � 0 (6.1)

and

 @�Ueffj’0;�0
� eb’0

@U
@�

���������0

� 0;)
@U
@�

���������0

� 0: (6.2)

Here, ’0 and �0 define the extremum position. It clearly
follows from Eq. (6.2) that �0 is defined by equation
@U=@� � 0 which does not depend on ’. Therefore,
extrema of the effective potential may take place only for
�0 which correspond to the solutions Xp of Eq. (5.1) and
different possible extrema should lie on the sections Xp �
const. So, we take X� (with s � �1 and q � �1) which
defines the minimum of Ueff in the previous section.
Hence, U0 in Eq. (6.1) is the same as for Eq. (5.2).

Let us define now ’0 from Eq. (6.1). With the help of
inequalities (5.4) and (5.5) we can write h � nU0 where
n 2 �1=9; 1=3�. Taking also into account relations (5.2),
Eq. (6.1) can be written as

 y4 �

�
1�

1

3n

�
y�

1

3n
� 0; (6.3)

where we introduced the definition y 
 exp�a’0� �

exp�’0=
���
3
p
� and put d1 � D0 � 4. Because y � 1 is the

solution of Eq. (6.3), the remaining three solutions satisfy
the following cubic equation:

 y3 � y2 � y�
1

3n
� 0: (6.4)

It can be easily verified that the only real solution of this
equation is

 y0 �
1

3

�
�1� 2��

1

�

�
; (6.5)

where

 � �
21=3n

�9n2 � 7n3 � 3
��������������������������������������
9n4 � 14n6 � 9n6
p

�1=3
;

n 2
�
1

9
;
1

3

�
:

(6.6)

Thus ’0�y0� and �0�X�� define new extremum of Ueff . To
clarify the type of this extremum we should check signs of
the second derivatives of the effective potential in this
point. First of all we should remember that in the case c �
0 mixed second derivative disappears. Concerning the
second derivative with respect to �, we obtain

 J22 

@2Ueff

@�2

��������’0;�0

� eb’0
@2U

@�2

���������0

>0 (6.7)

because we got in a previous section @2U=@�2j�0�X�� > 0.
The second derivative with respect to ’ reads
 

J11 

@2Ueff

@’2

��������’0;�0

� y2
0U0

�
�6

�
1

3
� n

�
y0 �

4

3
� 12ny4

0

�

� 2y2
0U0

�
�3n� 1�y0 �

4

3

�
; (6.8)

where we took into account Eq. (6.3). Simple analysis
shows that �3n� 1�y0 < 4=3 for n 2 �1=9; 1=3�. Keeping
in mind that U0 > 0, we obtain J11 < 0. Therefore, our
extremum is the saddle surface.8 Figure 4 demonstrates
contour plot of the effective potential in the vicinity of the
local minimum and the saddle point.

Therefore, we arrived at a very interesting possibility for
the production of an inflating domain wall in the vicinity of
the saddle point. The mechanism for the production of the
domain walls is the following [25]. If the scalar field ’ is
randomly distributed, some part of the Universe will roll
down to ’ � 0, while in others parts it will run away to
infinity. Between any two such regions there will appear
domain walls. In Ref. [26], it was shown for the case of a
double-well potential Vdw�’� � ��=4��’2 � �2�2 that a
domain wall will undergo inflation if the distance � be-
tween the minimum and the maximum of Vdw exceeds a
critical value �cr � 0:33MPl ! �0�cr � 1:65. In our case
it means that the distance j’0j between the local minimum
and the saddle point should be greater than �cr: j’0j �
1:65. Unfortunately, for our model ’0�n�< 1:65 if n 2
�1=9; 1:3�. For example, in the most interesting case

8A similar analysis performed for the branch with s �
�1; q � �1 (right dashed line in the Fig. 3) shows the existence
of the global negative minimum with ’ � 0 along the section
X� � const.

TAMERLAN SAIDOV AND ALEXANDER ZHUK PHYSICAL REVIEW D 75, 084037 (2007)

084037-8



n! 1=3 (where �eff ! 0 [see Eq. (5.2)]) we obtain
j’0j ! 1:055 which is less than �cr. Moreover, our domain
wall is not thick enough in comparison with the Hubble
radius. The ration of the characteristic thickness of the
wall to the horizon scale is given by rwH 


jUeff=3@’’Ueffj
1=2
’0;��X��

! 0:454 for n! 1=3 which is
less than the critical value 0.48 for a double-well potential.

Thus, here there is no a sufficiently large (for inflation)
quasihomogeneous region of the energy density. Our po-
tential is too steep. Obviously, the slaw roll parameter 	 

�1=2��@’Ueff=Ueff�

2
’0;�0

is equal to zero in the saddle
point. However, another slow-roll parameter 
 

j@2
’’Ueff=Ueffj’0;�0

! 1:617 for n! 1=3. Therefore, our
domain walls do not inflate in contrast to the case R4 in
Ref. [27].

In Fig. 5 we present a comparison between our potential
(solid line) and a double-well potential (dashed line) in the
case n � �1� 0:001�=3. We see that our potential is flatter
than a double-well potential around the saddle point.
However, our calculations show that it is not enough for
inflation.

VII. CONCLUSIONS AND DISCUSSIONS

We have shown that positive minimum of the effective
potential plays the double role in our model. First, it
provides the freezing stabilization of the internal spaces
which enables to avoid the problem of the fundamental
constant variation in multidimensional models ([5–8]).
Second, it ensures the stage of the cosmic acceleration.
However, to get the present-day accelerating expansion,
the parameters of the model should be fine tuned. Maybe,
this problem can be resolved with the help of the idea of
landscape of vacua ([20–23]). We intend to investigate this
possibility in our forthcoming paper.

We have additionally found that our effective potential
has the saddle point. It results in domain walls which
separates regions with different vacua in the Universe.
These domain walls do not undergo inflation because the
effective potential is not flat enough around the saddle
point.

It is worth noting that the minimum in Fig. 3 (left solid
line) is metastable. In other words, classically it is stable
but there is a possibility for quantum tunneling both in �
and in ’ directions (see Fig. 4). We can avoid this problem
in the � direction in the case of parameters z � 2 (see
footnote 7). However, tunnelling in ’ direction (through
the saddle) is still valid because Ueff�’;�0� 

eb’U��0� ! 0 for ’! �1 which is less than any posi-
tive �eff . It may result in the materialization of bubbles of
the new phase in the metastable one (see e.g. [28]). Thus,
late-time acceleration is possible only if the characteristic
lifetime of the metastable stage is greater than the age of
the Universe. It can be easily verified that the vacuum
decay for the potential in Fig. 5 occurs in accordance
with the thin-wall approximation. For considered parame-
ters, this decay is strongly suppressed and takes much more
time than the age of the Universe. As we mentioned in
footnote 8, there is also the global negative minimum for
the right dashed line in Fig. 3 [it corresponds to the point
�’ � 0:67; � � 1:66� for parameters taken in Fig. 3]. This
minimum is stable both in classical and quantum limits.

 

FIG. 4. Contour plot of the effective potential Ueff�’;�� for
parameters z � 1:99��D � 1:99=2; j�j � 1�, D0 � d1 � 4, and
h � U0=6. The rest of the parameters follow from relations (5.2).
We choose the branch corresponding to s � �1, q � �1. This
plot clearly shows the minimum and the saddle points of the
effective potential.

 

FIG. 5. Comparison of the potential Ueff�’;�0� with a double-
well potential for parameters z � 1:99��D � 1:99=2; j�j � 1�,
D0 � d1 � 4, and n � �1� 0:001�=3.
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However, the acceleration is absent because of its
negativity.

Another very interesting feature of the model under
consideration consists of a multivalued form of the effec-
tive potential. As it can be easily seen from Eqs. (2.7) and
(3.3), for each choice of parameter � potential U��� (and
consequently Ueff) has two branches (q � �1) which join
smoothly with each other at � � 0 (see Fig. 3). It gives a
very interesting possibility to investigate transitions from
one branch to another one by analogy with catastrophe
theory or similar to the phase transitions in statistical
theory. However, as we mentioned above, in our particular
model the point � � 0 corresponds to the singularity
�R;R! �1. Thus, the analog of the second order smooth

phase transition through the point � � 0 is impossible in
our model. Nevertheless, there is still a possibility for the
analog of the first order transition via quantum jumps from
one branch to another one. In what follows, we plan to
investigate such ‘‘phase transitions’’ for nonlinear multi-
dimensional models f�R�.

To complete the paper, we investigate some limiting
cases. First, we consider the limit h! 0 (for arbitrary D0

and d1) where the form-fields are absent. From Eqs. (3.7),
(3.8), (3.9), (3.10), (3.11), (3.12), and (3.13) we obtain the
following system of equations:

 R1 �
2b

a� b
U0�X�; Ueff jextr �

a
a� b

U0�X� (7.1)

and

 J11 � �abU0�X�; J21 � 0;

J22 �

�
B�A� B� �

sAB

2X2 �1� sX
2�

�
U0�X�:

(7.2)

As for a minimum the condition J11 > 0 should be satis-
fied, we arrive at the conclusion: R1, U0, Ueff < 0. Con-
sequently, the minimum of the effective potential as well as
the effective cosmological constant is negative and accel-
erating expansion is absent in this limit. Therefore, the
presence of the form-fields is the necessary condition for
the acceleration of the Universe in the position of the
freezing stabilization of the internal spaces. Additionally,
it can be easily seen that the extremum position equation
takes the same form as (5.1). Simple analysis show that the
minimum takes place for the branch: s � �1 (i.e. �> 0),
p � �1, q � �1 and z 2 ��1;�1�. If additionally we
demand z! 0 (i.e. �D ! 0 and � is fixed) then we
reproduce the results of Ref. [12].
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