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Starting from a Hamiltonian description of the photon within the set of Bargmann-Wigner equations we
derive new semiclassical equations of motion for the photon propagating in a static gravitational field.
These equations which are obtained in the representation diagonalizing the Hamiltonian at the order @,
present the first order corrections to the geometrical optics. The photon Hamiltonian shows a new kind of
helicity-torsion coupling. However, even for a torsionless space-time, photons do not follow the usual null
geodesic as a consequence of an anomalous velocity term. This term is responsible for the gravitational
birefringence phenomenon: photons with distinct helicity follow different geodesics in a static gravita-
tional field.
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I. INTRODUCTION

In the last few years many studies focused on the trans-
port of quantum particles with spin. Indeed, manipulating
spin polarization of electrons is a challenging goal in
semiconductor spintronics. Achieving this goal requires
the understanding of the spin transport mechanism in
systems with spin-orbit (SO) interaction. It was found
that in such a system a Berry phase in momentum space
plays an important role by affecting both particle phase and
its transport properties [1]. It is well known since the
seminal work of Berry [2], that when a quantum mechani-
cal system has an adiabatic evolution, a wave function
acquires a geometric phase. It is only recently that the
possible influence of the Berry phase on transport proper-
ties (in particular on the semiclassical dynamics) of several
physical systems has been investigated. Semiconductors,
having SO couplings greatly enhanced with respect to the
vacuum case, require a theory of spin transport. However,
even in the vacuum, new fundamental results concerning
the semiclassical equations of motion of electrons were
recently derived. For instance in [3,4], considering the
Dirac equation in an external potential, it was shown that
the position operator acquires a spin-orbit contribution
which turns out to be a Berry connection rendering the
coordinate algebraic structure noncommutative. This dras-
tically modifies the semiclassical equations of motion and
implies a topological spin transport similar to the intrinsic
spin Hall effect in semiconductors [1]. A similar noncom-
mutative algebra has been also found in the context of
electrons in magnetic Bloch bands [5], leading to an
anomalous velocity term.

Despite its very different nature, the photon displays
many similar behaviors with electronic phenomena such
as energy bands in photonic crystals and localization.
These similarities stem from the wavelike nature of quan-
tum particles. Because a photon is also a spinning particle

it is important to understand if SO interaction may influ-
ence the transport of light in a similar way as electrons in
vacuum or in semiconductors. It has been known for long
that there is no position operator with commuting compo-
nents and as a consequence photons are not localizable.
Therefore, one of the main differences between photons
and electrons also disappears as the coordinates of both
particles have in fact noncommuting components. It is
precisely this property which is at the origin of the SO
interaction leaving no doubt about its contribution to the
propagation of photons. Therefore these recent studies of
the SO coupling in different systems taught us that one can
treat both kind of particles on an equal footing. It is thus
even more legitimate to wonder whether electronic phe-
nomena have photonic counterparts.

In addition, the localization of light rays is the essential
ingredient of the construction of Minkowski space-time.
Also in the context of general relativity, it has been argued
that the Riemannian metric is determined by the properties
of light propagation [6,7]. A deeper understanding of the
properties of light and, in particular, its SO interaction
which is at the origin of the nonlocalizability, is thus
necessary to build a quantum version of space-time.

It has already been observed that the SO coupling in-
duces a rotation of the polarization plane of light propagat-
ing in an optical fiber with torsion [8]. This effect had been
predicted long ago by Rytov and Vladimirskii [9,10] and
can be interpreted in terms of Berry phase [2] in momen-
tum space. Recently it was shown that the noncommuta-
tivity of the coordinates affects the ray of light itself in
an isotropic inhomogeneous medium [3,11]. Other ap-
proaches to the spin-orbit contributions for the propagation
of light in isotropic inhomogeneous media have been
the focus of several other works [12] and have led to a
generalization of geometric optics called geometric spi-
noptics [13].

PHYSICAL REVIEW D 75, 084035 (2007)

1550-7998=2007=75(8)=084035(6) 084035-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.75.084035


In this letter we investigate how the photon propagation
in a static gravitational field, which can be seen as an
anisotropic inhomogeneous medium, is affected by its
spin-orbit interaction. Our photon description is based on
a Dirac-like Hamiltonian in an arbitrary static gravitational
field with a possible (nonspecified) torsion of space. The
Bargmann-Wigner equations allow us to build the wave
function of a spin one particle and to deduce the dynamical
operators which satisfy unusual commutation relations in
the representation where the Hamiltonian has been diago-
nalized at the order @. It is in the diagonal representation
(similarly to the Foldy Wouthuysen (FW) representation)
that the physical content of the theory is best revealed. In
particular we find that the photon semiclassical Hamil-
tonian shows a kind of helicity-torsion coupling resulting
from the presence of Berry curvatures. From the semiclas-
sical Hamiltonian we can deduce new equations of motion
taking Berry curvatures into account. These equations
correspond to the first corrections to the geometrical optics.
It is found that the helicity is always conserved and that
even in a torsionless space-time, photons do not follow the
null geodesic due to an anomalous velocity term. The
presence of this term is a general feature of the modern
point of view of the topological spin transport of quantum
particles [1,3,4,14]. The anomalous velocity is directly
responsible for the gravitational birefringence phenome-
non, i.e., photons with distinct helicity follow different
geodesics in a static gravitational field. This confirms ear-
lier claims suggesting that the absence of birefringence in
Einstein’s gravity might be only a consequence of the
limitation of the geometrical optics limit [15]. Our compu-
tation also shows that the velocity of light is still equal to c
at this order of approximation (a polarization dependent
velocity would be a @

2 phenomenon). Finally, it is worth
noticing that there exists another spinorial representation
of the photon Hamiltonian equivalent to the Maxwell
equation [16] which contrary to the Bargmann-Wigner
equations does not suffer inconsistencies due to the redun-
dancy of the photon wave functions. However it can be
seen that both approaches lead to the same semiclassical
energy and dynamical operators. The advantage of the
Bargmann-Wigner approach presented here is that it is
more usual, more straightforward, and that it removes
also the null energy eigenstates.

II. FREE PHOTON

We start with the description of the photon dynamics in
the vacuum by considering the two Bargmann-Wigner
equations �r � 1; 2� of a massless spin one particle [17]:

 ���r�0 @0 � �
�r�
i @

i���a1a2�
�x� � 0 �i � 1; 2; 3�; (1)

where ��a1a2�
� ��a2a1�

is the symmetrized Bargmann-
Wigner amplitude with ai running from 1 to 4 the spinorial
indices of the wave function (as usual the indices 0 and i
refer, respectively, to the local time and space coordinates,

with the flat metric ��;�;�;��). The ��r� matrix is a �
matrix acting on ai. This symmetrized direct product of
two Dirac spinors assures that the positive energy subspace
forms a 3D space corresponding to the irreducible repre-
sentation of angular momenta 1 deduced from the compo-
sition of two states with angular momentum 1=2. It can be
proved that Eqs. (1) are equivalent to the Maxwell equa-
tions [18].

Next, we write a Hamiltonian associated to each
Bargmann-Wigner equations Ĥ�r� � ��r�:P which can be
diagonalized by the product of usual FW unitary trans-
formations [19], U�r��P� � �E� c���r�:P�=E

���
2
p

such that

 U�1��P�U�2��P�Ĥ�r�U�1��P��U�2��P�� � E��r�; (2)

with E � Pc the energy of the photon in the vacuum.
The wave function is also transformed and becomes
��a1a2�

�P� � E�1�U�1��P��U�2��P�����a1a2�
�P� in the

FW representation. Whereas the quasimomentum is
invariant through the action of U�r�, i.e., ~p �
U�1�U�2�PU�1��U�2�� � P, the position operator becomes
~r � i@@p �A�1� �A�2� with a pure gauge potential
A�r� � i@U�r��p�@pU�r��p�� induced by the FW transfor-
mation. After projection of ~r on the positive energy sub-
space we get the nontrivial SU�2� connection
A � �p ^��=p2, and a new position operator r for the
free photon r � R� �p ^��=p2 where R � i@@p is the
canonical coordinate operator and � � @���1� � ��2��=2
the spin one matrix. This definition of the position operator
gives rise, through the commutation relations, to a mono-
pole in momentum space �xi; xj� � i@�ij�p� �
�i@"ijk�pk=p3 where � � �@ is the helicity and �ij�p� �
rpiAj �rpjAi � �Ai;Aj� the so-called Berry curvature
(the origin of this name is explained in [3], see also [20]).

We then build the Hamiltonian of the free photon of
positive energy as H � �E�1� � E�2��=2 � pc with E�r� �
pc the positive eigenvalue of the operator Ĥ�r�. Therefore,
for free particles, the dynamical equations of motion in the
FW representation are trivially given by dr=dt � i

@
	

�r; H� � pc=p and dp=dt � i
@
�p; H� � 0 which, in par-

ticular, implies for the light velocity v � c. Note that the
same results can be deduced from the Maxwell equations
[21].

III. PHOTON IN A STATIC GRAVITATIONAL
FIELD

We now extend our previous approach to the case of a
photon propagating in an arbitrary static gravitational field,
where g0i � 0 for i � 1, 2, 3, so that ds2 � g00�dx

0�2 �

gijdxidxj � 0. Consider again the Bargmann-Wigner
equations of motion with the following associated
Hamiltonian of the Dirac form
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 Ĥ �r� �
�������
g00
p

��r�:~P�
@

4
"%���%�0 �� � i

@

4
�0�

0 �� (3)

and ~P given by ~P� � hi��R��Pi � @

4 "%���%�i ��� with hi�
the static orthonormal dreibein �� � 1; 2; 3�, ���i the spin
connection components and "����� �

i
8 ��

��� � �����.
The coordinate operator is again given by R � i@@p. Note
that here we consider the general case where an arbitrary
static torsion of space is allowed. It is known [22] that for a
static gravitational field (which is the case considered
here), the Hamiltonian Ĥ�r� is Hermitian. We now want
to diagonalize Ĥ�r� through a unitary transformation
U�r��~P�. Because the components of ~P depend both on
operators P and R the diagonalization at order @ is per-
formed by adapting the method detailed in [23] to block-
diagonal Hamiltonians. To do so, we first write Ĥ�r� in a
symmetrical way in P and R at first order in @. This is
easily achieved using the Hermiticity of the Hamiltonian
which yields

 Ĥ �r� �
1

2
�
�������
g00
p

��r�:~P� ~P�:��r�
�������
g00
p

� �
@

4
"%���%�0 ��:

Now for an ease of exposition we temporarily include the
g00 is the definition of the vierbein hi� ! g00hi�. The
contributions of the g00 will be again explicitly written
later on in the final result for the energy.

Semiclassical Hamiltonian diagonalization

The semiclassical diagonalization is achieved in two
steps. In the first one we diagonalize at first order in @ by
considering the formal situation where R is considered as a
parameter commuting with P. In the second one we add the
contributions due to the noncommuting character of the
dynamical variables.

1. Diagonalization when P and R commute

The Hamiltonian Ĥ�r�0 (we add the index 0 when R is a
parameter) can then be diagonalized at first order in @ by
the following unitary FW matrix

 U�r�0 �
~P� �

D����������������
2�E�r�0 �

2
q �

E�r�0 � c
1

2
����r�:~P� ~P�:��r�� � N

�

(4)

with E�r�0 �
������������������������������
��
�r�:~P�~P�:��r�g

2 �2
q

. We introduced also the nota-

tions N � @

4
i��r�:�P	�0�

P and D � 1� @

4�
�P	�0�	P

2P3 with
�0� � "%���%�0 (here, and in the sequel, P means
�P2�1=2, with the metric gij and P3 is obviously defined
as �P2�3=2).

The proof of this diagonalization relies on the following
properties: For each parameter R the matrices hi� and ���i
are independent of both the momentum and position op-
erators. The matrices � and �:~P anticommute and in the

Taylor expansion of E�r�0 all terms commute with � and
��r�:~P� ~P�:��r�. In this context the diagonalized
Hamiltonian is equal to U�r�0 Ĥ

�r�
0 U

�r��
0 which reads

 U�r�0 Ĥ
�r�
0 U

�r��
0 � c��r�

������������������������������������������
��r�:~P� ~P�:��r�

2

�
2

s

�
@�P:�0�P:��r�

4P2 (5)

which can also be written

 U�r�0 Ĥ
�r�
0 U

�r��
0 � c��r�

����������������������������������������������������
P2 �

@

2
P:��r�"%���%�i hi�

s

�
@�P:�0�P:��r�

4P2 : (6)

In this last expression we have neglected contributions of
curvature type of order @2.

2. Corrections when P and R do not commute

Now, to diagonalize H�r� at the semiclassical approxi-
mation, it is shown in [23] that it is enough to apply the
following FW transformation (R being now an operator)

 U�r��~P� � U�r�0 �
~P� � X�r� (7)

with

 X�r� �
i

4@
�A�r�

Pl
;A�r�

Rl
�U�r��~P�; (8)

where we defined the position and momentum pure gauge
Berry potential A�r�

R � i@U�r�rPU
�r�� and A�r�

P �

�i@U�r�rRU
�r��, and then to project the transformed

Hamiltonian U�r�Ĥ�r�U�r�� on the positive energy states.
All expressions in U�r��~P� are implicitly assumed to be
symmetrized in P and R and the corrective term X�r� must
be added to restore the unitarity of U�r��~P� which is de-
stroyed by the symmetrization. After projection on the
positive energy subspace needed to perform the diagonal-
ization [23] the resulting position and momentum
operators can thus be written r�r� � R�A�r�R and p�r� �
P�A�r�P where the explicit computation gives for the
components

 A�r�P;k � �@c
2
"��� ~P��

�r�
� �rRk

~P��

2E�r�2
�O�@2�; (9)

 A�r�Rk � @c2
"���hk� ~P��

�r�
�

2E�r�2
�O�@2�; (10)

with E�r� the same as E�r�0 above but now R is an operator.
Performing our diagonalization process leads us to the
following expression for the positive energy operator
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~"�r� ’ c

����������������������������������������������������
p2 �

@

2
p:��r�"%���%�i hi�

s
�

@

4

�p:�0�p:��r�

p2

�
i@

4"�r�
�rRl��

�r�:~P�;rPl��
�r�:~P�� � �rRl"

�r��A�r�Rl

� �rPl"
�r��A�r�

Pl
�O�@2�: (11)

Some computations allow us to rewrite the right-hand side
(r.h.s.) of Eq. (11) in a more familiar form. Define first the
�-component of the vector �i as �i;� � "%���%�i �r� and

the helicity ��r� � @p:��r�

p . Introducing also

 "�r� � c

��������������������������������������������������������������������������������������
pi �

��r�

4

�i�r�:p
p

�
gij
�
pj �

��r�

4

�j�r�:p
p

�s
;

an explicit computation shows that the semiclassical en-
ergy reads

 ~" �r� � "�r� �
��r�

4

p:�0

p
�

@B:��r�

2"�r�
�
�A�r�R 	 p�:B

"�r�
;

where we have introduced a field B� � �
1
2P�T

���"���
with T��� � h�k �h

l�@lh
k� � hl�@lh

k�� � hl����l �
hl����l the usual torsion for a static metric (where only
space indices in the summations give nonzero
contributions).

Interestingly, this semiclassical Hamiltonian presents
formally the same form as the one of a Dirac particle in
a true external magnetic field [4,23]. The term B:� is
responsible for the Stern-Gerlach effect, and the operator
L � �AR 	 p� is the intrinsic angular momentum of semi-
classical particles. The same contribution appears also in
the context of the semiclassical behavior of Bloch elec-
trons (spinless) in an external magnetic field [5,24] where it
corresponds to a magnetization term. Because of this anal-
ogy and since T��� is directly related to the torsion of
space through T��� � h�kh

i�hj�Tkij we call B a magneto-
torsion field.

However, this form for the energy presents the default to
involve the spin rather than the helicity, this last quantity
being more fundamental for a photon. Actually one can use
the property �p=2p � @�=2� �AR 	 p� to rewrite the
energy as

 ~" �r� � "�r� �
��r�

4

p:�0

p
�
��r�

2"�r�
B:p
p
: (12)

We can now build the Hamiltonian as the sum of the two
Hamiltonians for one-half massless spinning particle ~" �
�~"�1� � ~"�2��=2. By Taylor expanding the expression of "�r�

we see that at the leading order in @ the sum does recom-
bine to give after reintroducing the g00 dependence

 ~" ’ "�
�
4

p:�0

p
�
�g00

2"
B:p
p
; (13)

where " � c
����������������������������������������������������������������������
�pi �

�
4

�i�r�:p
p �g

ijg00�pj �
�
4

�j�r�:p
p �

q
with � �

���1� � ��2��=2 the photon helicity. In the same manner, the
Berry connections for the photon become AR �

A�1�R �A�2�R and AP � A�1�P �A�2�P . This allows us to write
the dynamical operators at leading order in @ as

 r � i@@p � @c2 P	�

2"2 ; (14)

 p � P� @c2

�
P	�

2"2

�
rR

~P; (15)

where in Eqs. (14) and (15) "2 can be approximated by
c2pigijg00pj at the order considered.

The semiclassical Hamiltonian equation (13) is one of
the main results of this paper. It contains, in addition to the
energy term ", new contributions due to the Berry con-
nections. Indeed, Eq. (13) shows that the helicity couples to
the gravitational field through the magnetotorsion field B
which is nonzero for a space with torsion. As a conse-
quence, a hypothetical torsion of space may be revealed
through the presence of this coupling. Note that, in agree-
ment with [25], this Hamiltonian does not contain the spin-
gravity coupling term �:rg00 predicted in [26].

From Eqs. (14) and (15) we deduce the new (noncanon-
ical) commutations rules

 �ri; rj� � i@�ij
rr; (16)

 �pi; pj� � i@�ij
pp; (17)

 �pi; rj� � �i@gij � i@�ij
pr; (18)

where �ij
	
 � @	iA
j � @
iA	j � �A	i;A
j� where 	 , 


mean either r or p. An explicit computation shows that
at leading order
 

�ij
rr � �@c4

��:p�p�
2"4 "���hi�h

j
�;

�ij
pp � �@c4

��:p�p�
2"4 rrip�rrjp�"

���;

�ij
pr � @c4

��:p�p�
2"4 rrip�h

j
�"

���:

(19)

From the additional commutation relations between the
helicity and the dynamical operators �ri; �� � �pi; �� � 0
we deduce the semiclassical equations of motion
 

_r � �1��pr�rp ~"� _p	�rr;

_p � ��1��pr�rr ~"� _r	�pp:
(20)

To complete the dynamical description of the photon no-
tice that at the leading order the helicity � is not changed
by the unitary transformation which diagonalizes the
Hamiltonian so that it can be written � � @p:�=p. After
a short computation one can check that the helicity is
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always conserved

 

d
dt

�
@p:�
p

�
� 0 (21)

for an arbitrary static gravitational field independently of
the existence of a torsion of space.

Equations (20) are the new semiclassical equations of
motion for a photon in a static gravitational field. They
describe the ray trajectory of light in the first approxima-
tion of geometrical optics (GO). (In GO it is common to
work with dimensionless momentum operator p � k�1

0 k
with k0 � !=c instead of the momentum [11].) For zero
Berry curvatures we obtain the well-known zero order
approximation of GO and photons follow the null geodesic.
The velocity equation contains the by now well-known
anomalous contribution _p	�rr which is at the origin of
the intrinsic spin Hall effect (or Magnus effect) of the
photon in an isotropic inhomogeneous medium of refrac-
tive index n�r� [3,11–13]. Indeed, this term causes an
additional displacement of photons of distinct helicity in
opposite directions orthogonally to the ray. Consequently,
we predict gravitational birefringence since photons with
distinct helicities follow different geodesics. In compari-
son to the usual velocity _r � rp ~"
 c, the anomalous
velocity term v? is obviously small, its order vi? 

c~�rrjg

ij being proportional to the wave length ~�.
The momentum equation presents the dual expression

_r	�pp of the anomalous velocity which is a kind of
Lorentz force which being of order @ does not influence
the velocity equation at order @. Note that similar equations
of motion with dual contributions _p	�rr and _r	�pp

were predicted for the wave packets dynamics of spinless
electrons in crystals subject to small perturbations [24].
The complicated Eq. (20) simplifies greatly for a symmet-
ric gravitational field as shown below.

IV. SYMMETRIC GRAVITATIONAL FIELD

As a simple application, consider the symmetric case
g00g

ij � �ijF2�R�. A typical example of such a metric is
the Schwarzschild space-time in isotropic coordinates. For
a symmetric metric one has B:p � �0 � 0 and the semi-
classical energy Eq. (13) reduces to

 ~" � c�pF�r� � F�r�p�=2 (22)

with the dynamical variables r � R� @
P	�
P2 , p � P, and

the following commutation relations �ri; rj� � i@�ij
rr �

�i@�"ijkpk=p
3, �pi; pj� � 0, �ri; pj� � i@gij. As a conse-

quence, we derive the following equations of motion

 

_r � rp ~"� _p	�rr; _p � �rr ~": (23)

In the symmetric case the equations of motion become
simpler than in the general case, but the gravitational
birefringence is still present. These equations were already
postulated (but not derived) in [3] to explain the Magnus

effect (the different deviation of light of distinct polariza-
tion in an inhomogeneous medium of refractive index n�r�)
observed despite its smallness in inhomogeneous isotropic
optical fibers [27] and also discussed theoretically in less
general contexts and with different approaches in several
other papers [11–13]. This case fits within our formalism
since a gravitational field can be seen as an isotropic
medium related to the metric through the relation gij �
�ijn�1�r�. Therefore the gravitational birefringence pre-
dicted here is simply due to the Magnus effect as a con-
sequence of the photon spin-orbit interaction. In particular
this effect does not need a coupling between the electro-
magnetic field and a torsion term as proposed in [28].

We now apply the equations of motion to compute the
deflection of polarized light by a star’s gravitational field.
A polarization independent result is expected by the
Einstein’s theory of gravitation which does not consider
the anomalous velocity. With the Schwarzschild metric one
has F�R� � 1� 2GM

R [26] and for the equations of motion
we get

 

_p � �2GM
r
r3 p; _r �

p
p
F� �

2GM

r3

r	 p
p2 : (24)

We can therefore easily compute the angle of deflection
�� between ingoing and outgoing polarized rays

 �� �
4GM

c2r0

�
1�

�
@

~�
2�r0

�
;

where r0 is the smallest distance of the light ray to the
central source of gravitation, M the mass of the star, ~� the
wave length of the photon, and � the helicity.

We observe that the deviation is helicity dependent as a
consequence of the anomalous velocity, but that the effect
is very small being of order ~�=r0 and certainly unobserv-
able for a star like the Sun.

V. CONCLUSION

In this paper, we have diagonalized at the first order in @

the photon Hamiltonian in a static gravitational field. This
diagonal Hamiltonian displays a new interaction between
the helicity and a torsion field. As a consequence the
torsion of space, if any, could in principle be determined
through this coupling. However, even in the absence of
torsion, we found two new semiclassical equations of
motion including Berry phase contributions for both dy-
namical variables, predicting that the photon does not
follow the null geodesic due to its spinning nature. The
reason is an anomalous velocity, responsible for the gravi-
tational birefringence. This last result is in agreement with
the modern point of view about the spinning particles
evolution. Our results are not restricted to the gravitational
field but also apply to systems with anisotropic refractive
indices.
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