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The Born-Infeld strategy to smooth theories having divergent solutions is applied to the teleparallel
equivalent of general relativity. Differing from other theories of modified gravity, modified teleparallelism
leads to second order equations, since the teleparallel Lagrangian only contains first derivatives of the
vierbein. We show that the Born-Infeld-modified teleparallelism solves the particle horizon problem in a
spatially flat Friedmann-Robertson-Walker (FRW) universe by providing an initial exponential expansion
without resorting to an inflaton field.
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I. MODIFIED GRAVITY: A BORN-INFELD
APPROACH

In 1934 Born and Infeld (BI) [1] proposed the following
scheme for modifying a field theory governed by a
Lagrangian density L �

�������
�g
p

L:

 L ! LBI �
�������
�g
p

�
� ���������������

1�
2L
�

s
� 1

�
: (1)

The basic idea was to introduce a new scale �with the aim
of smoothing singularities. The scheme (1) is essentially
the way for going from the classical free particle
Lagrangian to the relativistic one; in such case, the scale
is � � �mc2, which smooths the particle velocity by
preventing its unlimited growth. Besides, Born and Infeld
subtracted the ‘‘rest energy’’ to get that LBI vanishes when
L is zero. We can then expect that Born-Infeld dynamics
will differ from the original dynamics for those configura-
tions where L is large. In fact, Born and Infeld looked for a
reformulation of Maxwell’s electrodynamics in order to
smooth the divergence of the pointlike charge electric field,
and they have succeeded in obtaining a finite self-energy
for this configuration. On the other hand, the original
Lagrangian is recovered if L� �; hence the solutions of
both theories do not appreciably differ in these regions.
Nowadays Born-Infeld Lagrangians have reappeared in
developments of string theories at low energies [2–7];
they have also been used in quintessence theories for
modeling matter fluids able to drive both inflation and
the present accelerated expansion [8]. However, although
the subject has received some attention [9–11], no gravi-
tational BI analogue leading to second order equations was
yet proposed in four dimensions.

A wide variety of modified gravity theories have been
considered in the last decades. For instance, the Lovelock

Lagrangian is a polynomial in Riemann curvature which
leads to second order equations for the metric tensor [12].
Nevertheless, the Lovelock Lagrangian only differs from
the Einstein-Hilbert (EH) Lagrangian, LEH�g���x�� �
��16�G��1 �������

�g
p

R (R being the scalar curvature), for a
dimension larger than 4. On the other hand ‘‘f�R�’’ theo-
ries are being currently studied, mostly connected with the
attempts to explain the cosmic acceleration without resort-
ing to quintessence models [13,14]. For instance, a f�R�
theory could be obtained by using the Born-Infeld scheme:

 L � �
1

16�G
�������
�g
p

�
� �����������������

1�
2R

�

s
� 1

�
: (2)

However we find this strategy unsatisfactory because:
(1) fourth order dynamical equations will result, since R
contains second derivatives of the metric (a feature that is
common to f�R� theories); (2) this strategy is unable to
smooth black holes, since they have R � 0 (then the scale
� could not play any role).

Concerning the first objection, it is well known that the
second derivatives of the metric in the Einstein-Hilbert
Lagrangian do not lead to fourth order equations because
they only give rise to surface terms in the action. This
characteristic only remains valid in Lovelock Lagrangians
but is lost in f�R� theories.

II. TELEPARALLEL EQUIVALENT OF GENERAL
RELATIVITY

In order to build a modified gravity leading to second
order equations in four dimensions, we will start not from
the Einstein-Hilbert Lagragian but from the teleparallel
equivalent of general relativity (TEGR). While general
relativity uses the Levi-Civita connection (curvature but
no torsion), teleparallelism uses the Weitzenböck connec-
tion [15] (torsion but no curvature). In this sense telepar-
allelism [16] is a sector of Einstein-Cartan theories [17,18],
which describe gravity by means of a connection having
both torsion and curvature. In teleparallelism the dynami-
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cal object is the vierbein field fhi�x��g, i � 0, 1, 2, 3. Each
vector hi is described by its components h�i ,� � 0, 1, 2, 3,
in a coordinate basis. The matrix (h�i ) is inversible; i.e.
there exists a matrix (hi�) fulfilling

 h�i h
j
� � �ji ; h�i h

i
� � ��� : (3)

The Weitzenböck connection,

 �
W �
�� � �hi�@�h�i � h�i @�h

i
�; (4)

is such that the Weitzenböck covariant derivative of a
vector V � Vihi � Vih�i @� becomes

 r
W

�V
� � @�V

� � �
W�

��V
� � @��V

ih�i � � �
W�

��V
ih�i

� h�i @�V
i: (5)

Hence a vector V will be autoparallel if its components
Vi � hi�V� are constant.

The Weitzenböck connection has zero Riemann curva-
ture and non-null torsion:

 T��� � �
W�

�� � �
W�

�� � h�i �@�h
i
� � @�hi��; (6)

i.e., hi�T
�
�� are the components of the 2-form dhi, where

fhig is the dual basis (whose elements have components
hi�). The TEGR Lagrangian is [19,20]

 L T�hi��x�� �
1

16�G
hS���T���; (7)

where h 	 det�hi�� and S��� is given by

 S�
�� � 1

2�K
��

� � �
�
�T��� � �

�
�T

��
��: (8)

In this last equation, the contorsion tensor is

 K��
� � �

1
2�T

��
� � T��� � T����: (9)

In (8) and (9), indexes have been raised and lowered with
the metric

 g���x� � �ijhi��x�h
j
��x�; g���x� � �ijh�i �x�h

�
j �x�

(10)

(�ij � diag�1;�1;�1;�1�), so it is h � �� detg���1=2.
Note that the vierbein is orthonormal in this metric:

 g���x�h
�
i �x�h

�
j �x� � �ij: (11)

Moreover, the Weitzenböck connection proves to be metric
compatible. It is easy to show that the contorsion equals the
difference between the Levi-Civita connection associated
with the metric (10) and the Weitzenböck connection:

 �
W �
�� � �

L
�
�� � K

�
��: (12)

Taking into account the Weitzenböck connection definition
(4), this means that

 r
L

�h
i
� � hi�K

�
��: (13)

Equation (12) also means that the Weitzenböck four-
acceleration of a freely falling particle is not zero but it is

 

d2x�
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d	
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d	
: (14)

Thus, the contorsion can be regarded as a gravitational
force which moves particles away from the Weitzenböck
autoparallel lines.

Teleparallel Euler-Lagrange equations are

 

1

h
@
�hSi


�� � 4�Gji
� � 4�Gh
i T

�

; (15)

where Si

� � h�i S�


�, T�
 � h�1hi���Lmatter=�hi
� is the
energy-momentum tensor of the sources and

 j�i � �
1

h
@LT

@hi�
�

h�i
4�G

�
S�

��T��� �
1

4
���S�

��T���

�
:

(16)

Because of the antisymmetry of Si

�, a conserved current

appears:

 @��hj
�
i � hh



i T

�

� � 0; (17)

so ji
� is associated with the vierbein energy-momentum.

The teleparallel Lagrangian (7) suffers from a defect: it
is unable to govern the dynamics of the entire vierbein. In
fact, the equivalence between the Lagrangian (7) and the
Einstein-Hilbert Lagrangian tells us that the Lagrangian (7)
does not govern the vierbein but just the metric (10). As a
reflection of this character, the Lagrangian (7) is invariant
under local Lorentz transformations of the vierbein,
hi��x� ! �i0

i �x�h
i
��x�, modulo boundary terms. In fact,

the metric (10) does not change under this kind of vierbein
transformation. But we are searching for a dynamical
theory for the vierbein, which is a geometric object involv-
ing 16 functions h�i instead of the ten metric components.
Such a theory would govern not only the metric but also the
torsion [21]. Then, a dynamical theory for the vierbein
requires a Lagrangian differing from (7). In other words,
each vierbein on a given manifold establishes an orthogo-
nal grid of autoparallel lines which defines an absolute
parallelism of vectors (‘‘a vector V is autoparallel if its
components Vi � hi�V� are constant’’). This absolute par-
allelism is invariant under global Lorentz transformations
of the vierbein. In fact Vi

0
� �i0

i V
i will be constant only if

�i0
i is constant as well. Then, a dynamical theory for the

vierbein should be provided with the same global invari-
ance. Therefore, the Lagrangian (7) is not admissible.

Other Lagrangians quadratic in the torsion have also
been proposed to build a dynamical theory for the vierbein.
In Ref. [22] a general quadratic theory has been tried by
combining three quadratic pieces, each of them associated
with each of the three irreducible parts of the torsion:
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vectorial, axial, and traceless-symmetric. The coefficients
of the vectorial and traceless-symmetric pieces are strongly
constrained by physics in the solar system. The axial part is
dynamically linked to the antisymmetric part of the
energy-momentum tensor (associated with the intrinsic
spin of matter). This ingredient renders the theory invariant
only under global Lorentz transformations of the vierbein.
However the use of the axial term has been questioned (see
Ref. [21]).

In spite of the above mentioned defect, the structure of
the teleparallel Lagrangian (7) is very appealing because it
resembles the structure for a gauge field: it is quadratic in
the torsion h�i dhi. In particular, it has only first derivatives
of the vierbein field. This feature can be exploited to build a
modified teleparallel gravity leading to second order dy-
namical equations. Remarkably, modified teleparallel
gravity will be invariant only under global Lorentz trans-
formations. Concretely, we are going to use a teleparallel
Lagrangian à la Born-Infeld:

 L BI �
�

16�G
h
� ���������������������������������

1�
2S�

��T���
�

s
� 1

�
: (18)

Differing from LT, LBI is not invariant under local
Lorentz transformations of the vierbein. In fact, if such a
transformation is applied on LT then a harmless boundary
term will appear. But this boundary term emerging from
S�

��T��� now remains trapped inside the square root, so
rendering the Born-Infeld-like Euler-Lagrange equations
sensitive to local Lorentz transformations. The Born-Infeld
parameter � in Eq. (18) tells that the metric for solutions of
modified teleparallel gravity will approach the solutions of
Einstein equations in regions where S���T��� � �.

III. THE COSMOLOGICAL SOLUTION

Our aim is to test Born-Infeld modified teleparallelism
in a cosmological framework. For this, we will substitute a
solution of the form

 hi� � diag�N�t�; a�t�; a�t�; a�t�� (19)

in the Euler-Lagrange equations emerging from the
Lagrangian (18). The proposed solution implies a metric
(10)

 g�� � diag�N2�t�;�a�t�2;�a�t�2;�a�t�2�; (20)

i.e., a spatially flat FRW cosmological model. Then we will
use as the source a homogeneous and isotropic fluid; so
T�
 � diag��;�p;�p;�p� in the comoving frame. Of
course, the dynamical equations get more involved than the
GR-equivalent ones (15). The high symmetry of the pro-
posed solution renders some of the 16 equations trivial.
Finally only two independent equations are left: a first
order equation

 

�
1�

12H2

N2�

�
�1=2
� 1 �

16�G
�

N2�; (21)

which results from varying with respect to h0
0 (H�t� �

_a�t�=a�t� is the Hubble parameter), and a second order one,

 

�
16H2

N2�
�

4H2

N2�
q� 1

��
1�

12H2

N2�

�
�3=2
� 1 �

16�G
�

p;

(22)

which results from varying with respect to hi
 with i �

 � 1, 2, or 3 (q � � �aa= _a2 is the deceleration parame-
ter). Actually Eqs. (21) and (22) could also be obtained by
replacing the proposed solution (19) in the Lagrangian (18)
and then varying with respect to N�t� and a�t�; this is a
typical feature of high symmetry solutions. Note that
S�

��T��� � �6H�t�2=N�t�2, so � in (18) will prevent
the Hubble parameter from becoming infinite. As it was
expected, Eq. (21) is not a dynamical equation for N�t� but
a constraint for a�t� (‘‘initial value equation’’), as a con-
sequence of the fact that N�t� is not a genuine degree of
freedom: N�t� can be absorbed by redefining the t coor-
dinate, so we will choose N�t� � 1.

By differentiating Eq. (21) with respect to t and combin-
ing it with Eq. (22), the fluid energy-momentum conser-
vation is obtained:

 

d
dt
��a3� � �p

d
dt
a3: (23)

If the fluid is described by the state equation p � !� then
one obtains

 a3�1�!�� � constant � a3�1�!�
o �o; (24)

where ao and �o indicate the presentday values.
Combining Eqs. (21) and (22) it results

 1� q �
3

2

�1�!�

�1� 16�G
� ���1� 8�G

� ��
: (25)

In general relativity (�! 1) an accelerated expansion
(q < 0) is only possible if !<�1=3 (negative pressure).
Instead, in Born-Infeld modified teleparallelism an accel-
erated expansion can be handled without resorting to nega-
tive pressure; a large density � is sufficient:

 

32�G
�

� >�3�
���������������������
13� 12!
p

: (26)

Actually, for �! 1 in (25), it is q! �1 and the expan-
sion becomes exponential.

In a context where the cosmological model had spatial
curvature, Eq. (21) would define the critical density �c
making the universe spatially flat. Therefore, it is useful to
measure the contributions to the density coming from
different constituents as fractions �i � �i=�c. In this
way, by combining Eqs. (21) and (24) we obtain
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�
1�

12 _a2

�a2

�
�1=2
� 1 �

16�G
�

X
i

�oi

�
a
ao

�
�3�1�!i�

; (27)

which can be rewritten in the form

 _x 2 �V �x� � 0; x �
a
ao
; (28)

V �x� being an effective potential given by

 V �x� �
�
12
x2

��
1� �o

X
i

�oix
�3�1�!i�

�
�2
� 1

�
; (29)

where �o 	 �1� 12H2
o=��

�1=2 � 1, is a constant. The
potential is always negative and vanishes with null deriva-
tive when a! 0, for any value of !. Moreover, if !>
�1=3 the potential will asymptotically approach zero
when x goes to infinity. Instead if !<�1=3 then V
will be a decreasing function. More relevant is the fact
that jV j is proportional to x2 when x goes to zero, so
giving an exponential expansion for the early universe, as
was anticipated. If !>�1 then the initial behavior is
a�t� / exp���=12�1=2t�. Therefore, the Hubble parameter
is equal to the maximum value Hmax � ��=12�1=2 at the
early stage. Equation (28) also says that

 H�z�2 � H2
max

�
1�

�
1� �o

X
i

�oi�1� z�3�1�!i�

�
�2
�
;

(30)

where z � ao=a�t� � 1 is the redshift. Equation (28) for
only one constituent (� � 1) can be easily integrated to
obtain the evolution in an implicit way:

 ln�2�1� v� � 2
�������������������
v�2� v�

p
� �

������������������������
v�1�2� v�

q
� T ; (31)

being v � �o�a=ao��3�1�!� and T � �3�1�!�Hmaxt.

IV. CONCLUDING COMMENTS

Figure 1 shows the dimensionless scale factor a�t�=a0 as
a function of H0t for several values of � � Hmax=Ho, as
implied by Eq. (31) with ! � 1=3. The standard (a=a0 �

�2H0t�
1=2) behavior is plotted as a reference (dashed

curve). Remarkably, modified teleparallelism smooths the
singularity because the scale factor goes to zero
asymptotically.

The main feature of the scale factor behavior is its
asymptotic exponential character for any value of !.
This means that H�z� becomes a constant when z goes to
infinity. This feature implies that the particle horizon radius

 � a0

Ra0
0 �a _a��1da diverges. Hence the whole space-

time ends up being causally connected, in agreement
with the isotropy of the cosmic microwave background
radiation. This fact appears as an essential property of
modified teleparallelism which does not require any spe-
cial assumption about the sources of the gravitational field.

The standard big bang model successfully explains the
relative abundances of light elements. Therefore, a modi-
fied gravity theory cannot noticeably change the standard
evolution of the universe from the epoch of nucleosynthe-
sis. This means that H�z� at znuc 
 109–1010 should not
appreciably differ from its standard value. Figure 2 shows
how the Hubble parameter moves away from the GR
behavior, represented by the dashed line, to approach the
value Hmax as the redshift increases. The redshift zt char-
acterizing the transition between both behaviors can be
defined as the value of z at which the asymptotic lines
intersect. Since the GR behavior for only one constituent is

 

FIG. 1. Scale factor as a function of the cosmological time for
! � 1=3 and different values of � � Hmax=Ho. The dashed line
represents the GR behavior.

 

FIG. 2. Hubble parameter as a function of the redshift for ! �
1=3 and different values of � � Hmax=Ho. The dashed line
represents the GR behavior.
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log�H=Ho� � �3=2��1�!� log�1� z�, one obtains

 �1� zt�
3�1�!�=2 �

Hmax

Ho
: (32)

The condition zt � znuc implies a lower bound forHmax.
For a radiation dominated universe (! � 1=3) one obtains
that Hmax=Ho � 1018.

Although inflation without inflaton was already obtained
in the framework of Einstein-Cartan theories (see for in-
stance Refs. [23,24]), those solutions rely on the existence
of spinning matter (the antisymmetric part of the energy-
momentum tensor does not vanish). On the contrary, an
inflationary phase exists in modified teleparallel gravity for
a symmetric energy-momentum tensor. In this case the

inflation is ruled by the parameter � entering the Born-
Infeld Lagragian. ��1=2 has dimensions of time, and be-
haves as a scale governing the transition from the infla-
tionary phase to the standard GR regime. Besides giving
the value of Hmax � ��=12�1=2, � controls the redshift at
the transition between both regimes.
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