PHYSICAL REVIEW D 75, 084030 (2007)

Extremal black holes in D = 4 Gauss-Bonnet gravity
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We show that four-dimensional Einstein-Maxwell-dilaton-Gauss-Bonnet gravity admits asymptotically
flat black hole solutions with a degenerate event horizon of the Reissner-Nordstrom type AdS, X S%. Such
black holes exist for the dilaton coupling constant within the interval 0 < a? < a2,.. Black holes must be
endowed with an electric charge and (possibly) with magnetic charge (dyons) but they cannot be purely
magnetic. Purely electric solutions are constructed numerically and the critical dilaton coupling is
determined a., = 0.488219703. For each value of the dilaton coupling a within this interval and for a
fixed value of the Gauss-Bonnet coupling « we have a family of black holes parametrized by their electric
charge. The relation between the mass, the electric charge, and the dilaton charge at both ends of the
allowed interval of a is reminiscent of the Bogomol’nyi-Prasad-Sommerfield condition for dilaton black
holes in the Einstein-Maxwell-dilaton theory. The entropy of the dilaton-Gauss-Bonnet extremal black

holes is twice the Bekenstein-Hawking entropy.
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L. INTRODUCTION

String theory suggests higher-curvature corrections to
the Einstein equations [1-3]. Black holes in higher-
curvature gravity were extensively studied during the two
past decades [4,5] culminating in recent spectacular
progress in the microscopic string calculations of the black
hole entropy (for a review, see [6,7]). In theories with
higher-curvature corrections, classical entropy deviates
from the Bekenstein-Hawking value and can be calculated
using Wald’s formalism [8—11]. Remarkably, it still exhib-
its exact agreement with string theory quantum predictions
at the corresponding level, both in the Bogomol’'nyi-
Prasad-Sommerfield (BPS) [12-24] and non-BPS [25-
38] cases. In some supersymmetric models with higher-
curvature terms exact classical solutions for static black
holes were obtained [20,21,24]. Moreover, as was argued
by Sen [39,40], knowledge of exact global black hole
solutions is not necessary to be able to compare classical
and quantum results: the entropy can be computed locally
using the “entropy function” approach based on the typi-
cal for supergravities attractor property [25—30]. In this
case it is tacitly assumed that global asymptotically flat
black hole solutions exist indeed. Generically, however, the
existence of local solutions does not imply the possibility
to extend them to infinity as asymptotically flat black
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holes. Here we investigate this issue within a simple model
of higher-curvature gravity.

One of the simplest four-dimensional models with
higher-curvature terms is the so-called dilaton-Gauss-
Bonnet (DGB) gravity which is obtained by adding to the
Einstein action the four-dimensional Euler density multi-
plied by the dilaton exponent. As other higher-curvature
theories based on topological invariants, this theory does
not contain higher derivatives and thus is free of ghosts.
Black hole solutions in this theory cannot be found in
analytical form, but they were extensively studied pertur-
batively [41,42] and numerically [43-46]. More recently
global properties of DGB black hole solutions were studied
using the dynamical system approach [47-50]. Stability
issues were discussed in [51-55]. In these papers the
existence of both neutral and charged asymptotically flat
solutions with a nondegenerate event horizon and without
naked singularities was established. These solutions have
the Schwarzschild type event horizon and do not possess an
extremal limit. In this respect they differ substantially from
the dilatonic black holes in the Einstein-Maxwell-dilaton
(EMD) theory without the Gauss-Bonnet (GB) term [S6—
59]: charged dilatonic black holes do have an extremal
limit in which case the event horizon shrinks to a pointlike
singularity. The Bekenstein-Hawking entropy of the ex-
tremal dilatonic black holes is zero, while quantum theory
suggests a nonzero result. The puzzle was solved in several
supersymmetric models by showing that the horizon of the
extremal dilatonic black hole is stretched to a finite radius.
In the case of the DGB black holes, however, no solution
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with the degenerate event horizon of finite radius was
found so far.

The aim of the present paper is to study this possibility in
more detail. We show that, apart from the known DGB
black holes with a nondegenerate event horizon, there exist
electrically charged solutions with the degenerate horizon
of the AdS, X S? type which are asymptotically flat. These
new solutions exist only in a limited range of the dilaton
coupling constant. For other values of this constant, local
solutions with the AdS, X S? horizon cannot be continued
to infinity as asymptotically flat black holes: singularity is
met in a finite distance outside the horizon. Since the DGB
theory does not possess S duality, magnetic solutions differ
substantially from the electric ones; in particular, no purely
magnetic black holes with a degenerate horizon are al-
lowed, though dyonic solutions with a nonzero electric
charge are possible.

I1. 4D DILATONIC GAUSS-BONNET THEORY

The action for the four-dimensional Einstein-Maxwell-
dilaton theory with an arbitrary dilaton coupling constant a
modified by the DGB term reads

1
S= 167 [ 20,6076 = — aLey)

X J—gd*x, (D)
where Lgg is the Euler density

Lg = R* — 4R, R*" + R,p,,R*P+". ()

aBuv

This action contains two parameters (we use units G =
¢ = 1): the dilaton coupling a and the GB coupling «. We
will assume a = 0, @ = 0. Solutions for negative a can be
obtained changing the sign of the dilaton. Note that the
Maxwell term is not multiplied by « to facilitate decou-
pling of the GB term from the EMD action.

Consider the static spherically symmetric metrics pa-
rametrized for further convenience by three functions w(r),
p(r), o(r):

dr?

ds* = —w(r)a*(r)dt* + — + p2(r)dQ3. 3)
w(r)

The scalar curvature and the Euler density then read

1
= —5{—(@owpp’ + ow'p? + 20’ wp?)
op

+20[p'(wp) + 1]+ 4a'wpp'}, “)
4 r(wo?)(wp? -1V
| | ©
op o
The corresponding ansatz for the Maxwell one-form is
A= —f(r)dt — q,,cosfdeo, (6)

where f(r) is the electrostatic potential and g¢,, is the
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magnetic charge. Note that the DGB term breaks the dis-
crete S duality which in the absence of this term is de-
scribed by the transformation

F— e_2a¢*F, d) N _¢’ (7)

where F' = dA. It is expected therefore that properties of
electric or magnetic black holes in this theory will be
essentially different.

Euv 7 v

A. Reduced action and field equations

The corresponding one-dimensional Lagrangian is ob-
tained by dropping the total derivative in the dimensionally
reduced action:

L= %[p/(wp)’ +1]+0'wpp' —2aac ! (?w) (wp” — 1)

2
X le2d — %sz(ﬁ/z + %p_f/262a¢
o

1
_ 1 262a¢' (8)

2p270"
The corresponding equations of motion read
8aalw(wp” — 1)¢'e* ] — p'(wp)' + 1 = 2wpp"
— 4aClWl(Wpl2 — l)d)/eZad) — Wp2¢12

2 2
_ p_szZeZud) _ q_"2162aq5 — 0, (9)
o p

2 _ ) le2ad 2.0\
4aa[(w'0 0_)¢ ¢ } o— 4aa(0;]_—;V)Pl2¢/ez"¢
/

ag
—pp"tpp'——p?P” =0, (10)

4aa[wp'<azw>/¢'eza¢] 1 [wzw)f

!
} p — (awp!)
o 2 o

2
—owpd”? + gf’ze%”/’ + a'i—';’ez‘“’5 =0, (1D

() (wp” — U]eus

(owp?¢') + 2aa[ -

o2 7
+a—f?e* —aoc=5e¥ =0, (12)
o p

2 /
<% f’e2a¢> =0. (13)

The Maxwell equation for the form field (13) can be
directly solved

f'(r) = q,op~2e 29, (14)

where ¢, is the electric charge.
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B. Global symmetries and conserved quantities

The action (1) is invariant under the following three-
parametric group of global transformations:

w— we 20T p — pe’, r—re t 4+,
S (15
o — e, b — ¢+ —, f— fe 2.
a
They generate three conserved Noether currents
aL L
— A _ _ A
Jg T <8(I)/A P! L>8gr|g=() W ag |g:0’ (16)
d,J, =0,

where @4 stands for o, w, p, ¢, f, and g = 8, v, A. The
conserved quantity corresponding to the parameter v is the
Hamiltonian

1
H = Ea‘[p’(wp)’ — 1]+ o'wpp' —2aac™ ' (a*w)

1
X (3Wp/2 _ 1)¢/62a¢> _ 50.Wp2¢/2

1 p? 1
+ 2 B pre2as 4 5 %qﬁleza‘/’. (17)

2 o

This is known to vanish on shell for diffeomorphism
invariant theories, H = 0. The Noether current corre-
sponding to the parameter & leads to the conservation
equation Js = 0, where

_owpld! (0Pw)p?
B a 20
X [(a*w) — 2a0*we'] + 2aw(a?w) pp' p'}e???),
(18)

s +2q,.f + 2a(c” {(wp” — 1)

which is an Abelian counterpart of the equation given in
[60]." The value of this integral depends on solutions. The
third integral corresponding to A is trivial: Jy, = —rH, its
existence implies H = 0.

The above integrals of motion allow one to reduce the
order of the system by two. Fixing the gauge (e.g. o = 1)
one has 3 s order equations for w, p, ¢ with ¢,, q,, entering
as parameters of this six-order system. Using the integrals,
the system order can be reduced to four, with one parame-
ter more (the fixed value of Jg). For ¢, = 0 one can further
reduce the order to three. Introducing, for instance, new
variables

w
w — exp(w), p— exp(p — 5)'
(19)

1
¢_)¢_ZW’

we exclude from the system the variable w (while w’ and

"We use this occasion to correct a misprint in Ref. [60]: the
factor e 2% is missing at the right-hand side of Eq. (23).
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w'" still persist). For numerical computations we use the
initial six-dimensional system, checking the constancy of
the integrals of motion to control accuracy of the
calculation.

The space of solutions is invariant under a four-
parameteric group of global transformations which con-
sists in rescaling of the electric charge

g, = q.%, Gm = I (20)

(leaving the magnetic charge invariant), rescaling and shift
of an independent variable

r— reW/248 4y 1)

and the following transformation of the field functions:

w— wek, p — pel, o — oe,

S (22)
b= bt fo el

a
Note that the Lagrangian is rescaled under this 4-parameter
transformation as L — e*L, so action (1) remains invariant
provided

w=—2(8+\), (23)

in which case we go back to (15). The shift » is trivial and
the symmetry related to A can be frozen by the gauge
choice o = 1. Therefore, physically interesting transfor-
mations are generated by u and 6 forming the subgroup
which we denote as G(u, 6).

C. Turning points of p(r) and the gauge choice

Reparametrization of the radial variable r allows us to
eliminate one of the three metric functions. There are two
convenient gauge choices: the Schwarzschild gauge p = 7,
in which the radial variable is the radius of two spheres:

dr?
w(F)
and the Garfinkle-Horowitz-Strominger (GHS) gauge [59]
o=1:

ds* = —a*(F)w(r)dr* + + 72403, (24

2
ds* = —w(r)de* + ar” + p2(r)dQs.

Wi (25)

The coordinate transformation relating these gauges reads

1 dp(r)

a(7) dr -~

(26)
It becomes singular at the turning points of the function
p(r) where the derivative p’(r) = 0, so solutions contain-
ing such turning points cannot be described globally in the
Schwarzschild gauge. We will see later on that the presence
of turning points is typical for the DGB system, so the GHS
gauge is preferable.

a(Fw(F) = w(r),

F=p(r),
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D. Dilaton black holes and the GB term

In the theory without the GB term, & = 0, an electrically
charged asymptotically flat black hole solution for an
arbitrary dilaton coupling a reads (in the gauge o = 1)

[59]:
_\(=d?)/(1+d?)
w(r) = <1 — —r+><1 - ) ,
r r

\a*/(1+a?)
o) =r{1 =" @7)
r
e2ad — ezaqbw(l — r_—>((2a2)/(]+a2))_
r
The mass and the electric charge are given by
ry l—adr_ ) 2 ryr_
M=—"+ —, = g% .28
2 1+4a*>2 1 1 +ad° %)
For a = 0 this reduces to the Reissner-Nordstrom solu-
tion, which in the extremal limit r, = r_ = rg,

ri\2 dr?
ds* = —(1 -2V ar + —5+r2d03, (29
Sl U L = Al
has a degenerate event horizon AdS, X S?. Note that for
a =0 the GB term decouples from the system, so this
solution remains true in the full theory with a # 0.

For a # 0, the extremal limit r, = r_ = ry is
ds2 _ _(1 _ r_H>2/(]+a2)dt2 n <1 _ r_H>[2/(]+aZ)]dr2
r r
2a%/(1+a?)
4 r2<1 - r-”) a0, (30)
r

At r = rg the radius of the two-spheres shrinks, so we have
a pointlike singularity. The Ricci scalar in the vicinity of
this point diverges near the horizon r = ry:

o 2d%r g\ [2a?/(1+a?)]
(1+ a2)2r4< >

as well as the dilaton exponential for an electric solution:

: D

r

o200 — ezarpw(l _H

—[2a%/(1+4?)]
r > '

(32)

Substituting the general dilatonic black hole solution
(27) to the GB term we obtain the following value at the

horizon r = r,:
020 Logl,—, ~ (ry — r_) RACHIV@ DL (33

This expression diverges in the extremal limit r, — r_.
Thus, it is not possible to treat the GB term perturbatively
J
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expanding in « in the vicinity of the extreme dilaton black
hole. In other words, one can expect that the GB term will
substantially modify the dilaton black hole solution in the
extremal limit.

Summarizing the above information, we see that the
DGB gravity admits the black hole solution with the de-
generate event horizon of the AdS, X §? type for a = 0
(the Reissner-Nordstrom solution (29), and does not admit
the extremal dilaton black hole (30) for a # 0 even as an
approximation for small a. So, the intriguing question
arises, whether the branch of degenerate black holes exists
in the DGB gravity which starts at @ = 0 in the parameter
space and continues to nonzero a. In the next section we
analyze this possibility in detail both analytically and
numerically.

III. DGB BLACK HOLES WITH AdS, X S?
HORIZON

We are looking for asymptotically flat solutions in the
DGB theory for which the metric function w(r) has double
zero at some point » = ry and does not have singularities
for r > ry. To attack this problem numerically, one has to
prove first that such solutions exist locally in the vicinity of
the horizon r = ry. We will show that this is true, provided
some restriction on the parameters is satisfied.

A. Near-horizon expansion

Assuming the GHS gauge o = 1, consider the series
expansions around some point r = ry (supposed to be a
horizon) in powers of x = r — ry:

w(r) = Z wixk, p(r) = Z pixs,
=1 k=0 (34)

P(r) := g2a¢() = Z Pxk.
=0

The function w starts with the linear term (vanishing of w
means that » = ry is a horizon), two other functions have
general Taylor’s expansions.

Substituting these expansions into the equations of mo-
tion (9)—(12) we find local solutions of two types. The first
type solution has w; # 0, i.e. the function w has simple
zero at r = rg. This corresponds to a nondegenerate hori-
zon of the Schwarzschild type. Such local solutions and
their numerical continuation to infinity were considered in
some particular cases in Refs. [43—-46]. Here we give more
general expansion valid for both electric and magnetic
charges present (in the gauge o = 1):

r 4 2a’[a(g? +

w(r) =
P(2)P1

P3qk) + (ATPya® + pd)gs + Pi(ATPya® — p§ + 4aq2)qh] + T'p§ 2+ 00
12p8a2P6a ’
(p§Po — g2 — P§qm — 2aP )P,

(35)

p(r) = po +
poPol’

x + 0(x?), P(r) = Py + Pix + O(x?),
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where pg, Py, and P, are free parameters and I satisfies the
equation

48a3a2P(2)1"2 + {pg — 16P0a2a2[3p(2)P0 —2(qg> + P(Z)qfn)]}l"
+2a’[2alqt + Pigh) + p3(pd — 12Pya) >
— pgP3(p} + 12Pya) g3, + 4aPiqiqs, + 6Papi]=0.
(36)

This quadratic equation has two roots I' = I'.. depending
on parameters ¢,, ¢,,» Po, Po, P;. The above local solutions
exists for such values of parameters for which I # 0.

The second class of local solutions has w; = 0.
Vanishing of w; means that the horizon is degenerate.
Such an expansion contains only one free parameter with
fixed charges. This family is disconnected from the family
(35) and it was not noticed so far:

.X2 Pl

w(r) = p—% - 6ad’p [3(a®> — 1)g* + 6a(3a*> — 2)¢2,
+ 4a%(5a* — 3)]x* + O(x*),

p) = o+ gl — gk + 2000 ~ 26 3
+ 4a%(a®> — 1)]x + O(x?),

P =—P0 4 Pt 00,
2Qa +¢%) !

Here ¢, is the magnetic charge, P, is a free parameter, and
po 1s the physical radius of the horizon depending on
charges as follows:

o2 — 2q9.2a + q3)

0 Vé4a + qfn

(38)

|
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Note that the dilaton coupling constant enters this expan-
sion only through a2, so the space of solutions is symmetric
under ¢ — —a, ¢ — —¢. In what follows we will assume
a=0.

The values of the integrals of motion corresponding to
(37) are

1 pi
H= 2 P. + 2P—l 2 , P, = 0 ,
2,02 [Qm 0T qely P ] 0 2Qa + qzn)
(39)
J5 = 2QEf0r (40)

where f is the value of the electrostatic potential on the
horizon.

From our previous analysis of the EMD black holes and
the above form of the local solution one can draw the
following conclusions:

(1) Black holes with AdS, X S? event horizon do not
exist in the a # 0 EMD theory without curvature
corrections (a = 0).

(2) Such solutions do not exist in the absence of the
electric charge, while the presence of the magnetic
charge is optional. S duality is thus broken as
expected.

(3) This local solution is not generic (the number of free
parameters is less that the degree of the system of
differential equations).

For simplicity, in this paper we will focus on purely

electric black holes. In this case the expansions simplify
and we can give some further terms:

w(r) = i[xz _26a =3) (aPl >x3 +

173a® — 269a* + 99a* — 27 <aP1 >2x4} + o)

03 3 a’p} 3(5a% - 3) a’p}
p(r) = po[l +(a® - 1)<;I;%>x - 22’52;‘2’4__3)6) <;Z%>2x2} +0(d), 41)
o) = il + e+ e () ] 0w
The electric charge is related to the horizon radius as | P;—0 asa—0. (43)

_ P

9=3 7

We can arrange higher order terms in such a way that a”

enters in the denominator only in powers of the combina-

tion P;/a’. This facilitates taking the limit a — 0. We

know that in this limit there exists an exact solution which

has the near-horizon expansion of the type (41), namely,

the extremal Reissner-Nordstrom solution. Thus we expect
that for the asymptotically flat solutions

(42)

Numerical calculations show that this is indeed the case
(see Sec. III C).

Another subtlety is related to the limit of GB decou-
pling. Obviously, our expansion fails in this limit: for a
finite charge g, one has p3 = 2¢,/a — 0 and, conse-
quently, the expansion coefficients will diverge. The reason
is that our expansion for w is incompatible with that for the
dilaton black hole of the Einstein-Maxwell-dilaton theory.
This reflects again the absence of the black hole solutions
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with the AdS, X S? horizon in the theory without curvature
corrections. Substituting ¢, defined by (42) into the equa-
tions of motion (9)—(12), one can see that the GB coupling
parameter « enters always in the combination ae®("),
Thus, shifting the dilaton is equivalent to rescaling the GB
term [this was in fact clear already from action (1)]. Note
that in the case a> = 1 the linear term in the expansion of p
vanishes, p; = 0, implying that there is no regular trans-
formation to the gauge p = 7.

Therefore, a purely electric local solution with a fixed
value of charge ¢, contains one free parameter: the dilaton
derivative P;. An important issue is to determine the
correct sign of P;. To be able to interpret the region r >
ry as an exterior of the black hole, one has to ensure
positiveness of the derivative p’ at the horizon. From the
above expansion one finds

(a> — aP, -

5 0. (44)
a=po

pI|x=0 =

Thus, we should take positive P; for a*> > 1 and negative
P, for a> < 1. It is convenient to introduce the sign pa-
rameter which ensures this:

Pl a2 -1

L f 45)
P T 1] (

S

Now define the following combination of py and P:
_ alP|

22"
a py

b (46)

It is easy to see that free parameters enter the series
expansions near the horizon only through this quantity.
Consider now the transformations of the expansion pa-
rameters under symmetries of the solution space (21) and
(22). Since P is the first derivative of the dilaton exponent,
one finds that under § transformation

P, — Pe, b — be~?, (47)

so the quantity bx remains invariant. Thus the full set of
local solutions can be generated from one particular solu-
tion with po = 1, P; = 1, which we will call the normal-
ized local solution, by the symmetry transformations with
8 = —Inpgyand u = 21n(bp,) from (22), i.e. by the group
element G[2In(bp,), — Inp,]. The normalized local solu-
tion does not contain free parameters at all:

2
o) = 2 2(5a3 3)x3
(173a® — 269a* + 9942 — 27)
+ O(x%),
3(542 — 3) X+ 00
(48)
B 2a%(a* — 6) )

p(r)=1+¢(a®>— 1)x x>+ 0(x%), (49)

(5a% — 3)
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(a* —5a* - 3) ,

aP(r) = % +s(r—ry) + Ga=3 * + 0(x3).

(50)

Note the presence of the sign function s in the odd power
terms. The electric charge corresponding to the normalized
local solution is g, = 1/(2\/a).

B. Asymptotic flatness

We are looking for asymptotically flat global solutions
which satisfy the conditions w — 1, p/r — 1, ¢ — const
as r — o0, The subleading terms should be expandable in
the power series of 1/r. The local solution with these
properties turns out to be three-parametric, depending on
the ADM mass M, the dilaton charge D, and the asymp-
totic value of the dilaton ¢,:

2M  aQ?

wir)=1- — + > + 0(r3),
2 _ 2
p(r)=r— b _ D@MD 3 aaQ;) +0(r %), 1)
2r 3r

D 2DM — aaQ?

(1) = oo +— + T OG),

where
Q. = q.e "=, (52)

The dilaton charge can be also read from the asymptotic
expansion of the dilaton exponential:

2aD N 2aD(aD + M) — aa’Q?

r r
+ 0(r™3). (53)
The asymptotic values of two integrals of motion are
H=1(wap2— 1), (54)
D
Jo =2qcfe0 —M——. (55)
a

Behavior of the global solution which starts with the
normalized local solution (48)—(50) at the horizon depends
only on the dilaton coupling constant a. Its existence for all
a is not guaranteed a priori. But, for some sufficiently
small values of a, we find numerically that all three func-
tions vary smoothly with increasing x, so that w and the
derivative p’ stabilize at infinity on some constant values
We # 1, pk # 1. Then, using the symmetries (21) and
(22) of the solution space, one can rescale the whole
solution to achieve the desired unit values for these pa-
rameters. More precisely, the relevant subgroup of rescal-
ings is two-parametric: G(u, §). As we have argued, two
parameters u, 6 effectively replace the parameters p, P,
of the (non-normalized) local solution (41). So one could
expect that rescaling of the solution so that w,, = 1, pl, =
1 would fix both quantities py, P; on the horizon. But from
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the Hamiltonian equation H = 0 with H given by the
Eq. (54) it is easy to see that one must have we,p2 = 1
for any solution such that w — wy,, p’ — pl, asymptoti-
cally. Therefore it is enough to perform one but not two
independent rescalings in order to get wo, = 1, ph = 1.
Indeed, under G(u, 8)

w—wek,  po— poe’,
(56)
Pl - Pleﬁ—,u,/Z’ Wp/2 - wp/2.

Since the choice of u, & is equivalent to the choice of
po, Py, an invariance of the product wp’> under G(u, )
means that the solution starting on the horizon with any p,
P, will reach at infinity the values wq,, p) satisfying
Wep2 = 1. Therefore, taking u = —Ilnw,, we will
achieve simultaneously w,, = 1 and pj, = 1. This means
that asymptotically flat solutions still form a one-parameter
family, a parameter being the electric charge g,.

C. Numerical analysis

Since we know that the desired global solution exists for
a = 0, we start with the local solution at the horizon with
small a and look for numerical solutions which fit the
asymptotic expansions (51). For sufficiently small a global
solutions exist indeed, and, as we have explained, two
basic conditions at infinity w = 1, p’ = 1 fix only one of
the two parameters p, and P; at the horizon. It will be
convenient to leave p, (defining the electric charge) arbi-
trary, and to fix P;. We will also choose the value of the GB
coupling & = 1. Then the black hole mass can be found
numerically from the asymptotic expansions (51) together
with the dilaton charge and the asymptotic value of the
dilaton.

Typical coordinate dependence of the metric functions
and the dilaton exponent are shown in Fig. 1 for some
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values of the dilaton coupling a. Solutions exist for
0=a<ag, a. = 0.488219703. (57)

Let us discuss in more detail behavior of solutions at the
ends of this interval. As expected, the parameter b of the
local solution at the horizon tends to unity when a — 0, as
shown in Fig. 2(a). This means that the first Taylor coef-
ficient in the expansion of p(x) becomes equal to unity
(note that the sign function s = —1 as a — 0), while all
higher coefficients are zero. Therefore, assuming p, = ry,
we find that p = r globally. Similarly, all terms in the
expansion of P(x) vanish in the limit @ — 0 except the
constant Py, so the dilaton exponential tends to the con-
stant value P = p3/4. Correspondingly, we find

lime2% /g, — 4 (58)

For w all Taylor’s coefficients in (41) are nonzero and the
whole series exactly reproduces an expansion

2
w(r) = (1 - @> =722 -2+ 324+ 0(2),
r

(59)
z=(r— Po)/Po‘

Thus, our family of solutions begins with the extremal
Reissner-Nordstrom metric for zero dilaton coupling a.
With fixed horizon radius p, the mass and the dilaton
charge of the black holes increase with the growing dilaton
coupling constant tending to infinity when a approaches
a.,. The dilaton exponent, on the contrary, tends to zero in
this limit. Using the symmetry of the solution space under
6 transformation, one can generate the sequence of solu-
tions with different electric charges ¢, and correspond-
ingly with different masses, dilaton charges, and ¢.,. Since
variation of the electric charge is essentially equivalent to
variation of the unique parameter p in the horizon expan-

)]

0.6 w(x)

0.4 a=0.45

0.24

a=0.1

p'(x)

0.16 1
0.14 1

0.12

X

0.14

0O 20 40 60 80 100 120 140 O 0.5

FIG. 1. The functions w(x), p’(x), P(x), x = r — ry, for py =
—0.01); a = 0.4 (P, = —0.446); a = 0.45 (P, = —1.18).

1 and some values of the dilaton coupling constant: a = 0.1 (P} =
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24
24 2 i
2ade D= 1.01
1.54 % e
0
14 a acr i a 1
0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4

FIG. 2.

(a) Dependence of the parameter b on the dilaton coupling constant a: b tends to unity for a — 0 ensuring continuous

transition to the extremal Reissner-Nordstrom solution. (b) Numerical curves ky(a) = M?/q,, kp(a) = D*/q,, k4(a) = ¢**%=/q, for
po = 1. The mass curve starts with the Reissner-Nordstrom value for ¢ = 0 and diverges as a — a,. The dilaton charge increases
from zero to infinity, while the dilaton exponential monotonically varies from the value % at a = 0 to zero for a — a. (c) The

quantities I%I and (V1 + a®>M)/Q, as functions of a: both tend to unity at the ends of the allowed interval of a.

sion, it is clear that, using § transformation, we will gen-
erate all extremal solutions. Under this transformation the
mass and the dilaton charge scale as e®, while the electric
charge and the dilaton exponent e**¢~ scale as e®°.
Therefore the ratios
2 2 2ad.,
=2 =2 g, =S (60)
9e 9. 9e

depend only on a. Their numerical graphs are presented in
Fig. 2(b).

As we already discussed, the metric for ¢ = 0 is known
analytically. For a in the vicinity of a, the analytic solu-
tion is not known, but one finds that the behavior of the
mass, the dilaton charge, and the rescaled electric charge
0, exhibit some similarities at both ends of the allowed
interval of a. Namely, the following two ratios stabilize at
unity for both @ — 0 and a — a,, [Fig. 2(c)]:

similar to that in another stringy generalization of EMD
theory in which the Maxwell action is replaced by the
Born-Infeld action, but no GB term is introduced [61].

For the values of a outside the allowed interval, solu-
tions starting with the AdS, X S? horizon are not asymp-
totically flat, but singular. For them the metric function
p(r) has a turning point at some finite radial coordinate r =
r,, such that p/(r,) = 0, p'(r;) <0 (Fig. 3). This point is
regular, but at a finite proper distance from it one encoun-
ters the singular turning point rg, such that p’(r,) >0,
p"'(r;) = oo, where all variables have a square-root singu-
larity, being expandable in terms of ,/r = 7,:

w=w;+twy+t w3/2y3/2 + 00,

T (63)
=p,+py+ 32+ 0(y?)

P = Ps T P1Y T P32 yo)

P =P+ Py + P3py’/> + 0(?).

aM V1 +a’M
D 1, —0 L. (61)  This local expansion contains four free parameters w,, p;,
¢ p1, P, while other coefficients read
This corresponds to fulfillment of the following condition: 4a2P (yp?P, + ¢2) — A2w p? b
2 w; = s =4,
aAM? + D? = 2a 5 ng (62) ! 4P3a2p%[p1(6Awsp1 - ps) - ZA] !
l+a P — (ps —4Ap wy)p3) (64)
3/2 = )
which is reminiscent of the BPS condition for electrically & 2y
charged black holes of the EMD theory. This feature is
|
wajn = {28pi28p w,(y +4) = p(Sy + ] = 16a°P,p1y(yp 1 Pspi + q2) + ppitwsps) 65)
32 = )

where ¥ = p?w, — 1 and A satisfies the equation

8p2a*Pry*[2A(3y +2) — p,pi]
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15
P 1.2
Ps
\ w(p)
141
14
1.3 0.8
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1.4
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FIG. 3. The metric functions p(x), w(p), (x = r — ry) for the value of the dilaton coupling constant a > a,. The function p has a
turning point » = r, after which the naked singularity is met at a finite affine distance (» = ry). Dotted lines correspond to another
solution branch which can be matched in the singularity. Numerical curves are presented for a = 0.5 and p, = 1, the corresponding

value of P, being P; = —7.746.

A3 8w, pi[w,pi(15y +9) — 1]} — A%24w,pip,(3y +2)
+ psp1lq232a* Py + pi(48a*P2y? — p?)]
+ A2p2[pi(y + 6) + 96pIw a’ P2y?]

— ¢232a’°P,3y + 4)y} = 0.  (66)

An expression for ps/, is too big and is not given here.
Since the second derivatives are divergent at y = 0, the
Riemann tensor diverges as well. The divergency is local-
ized on a sphere of finite radius, and it is rather mild: Ricci
and Kretchmann scalars behave as

_ 3papws + wipnpy) 1

R= :
4py Wy (67)
R, RV = 9(8p3/aws + Piwsp) 1
“H 16p3 y

The radial coordinate stops at r = ry, but using an appro-
priate desingularization of the system (see the appendix),
one can glue another patch of radial coordinate r' €
(s, rf) at this point, extending the manifold through the
singularity. This extension is shown by dotted lines in
Figs. 3. It terminates at the final singularity r,. This situ-
ation is very similar to that described in Ref. [46] for an
interior region of the nonextremal DGB black hole.

D. Thermodynamics

The temperature of the extremal DGB black hole is zero,
as for the extremal solution without the GB term:

1
= — @ —ryl=, =0

ar r=ry  2TPg

(68)

To calculate the entropy we apply Sen’s formula [39,40]
appealing to the near-horizon data. Using (41) we can write
the near-horizon solution as

2

_ 2
ds® = — %dﬂ + PO ar + p2d02,
Po (r—ry) (69)
N 2
¢=5-L Ay _ N par
a 4a P26

To apply Sen’s formula [39,40], we rewrite it as follows:

a7

2

ds® = v1<—?2d22 + _) + vpdQ2,
r

(70)
¢ =u,
where # = r — ry, I = t/p}.

Now introduce the surface integrated Lagrangian den-
sity

Fii=e

fu, vy, vy, €) = fd@dd)\/gL, (71)

and evaluate it using the near-horizon data (70)

1 (%)
f(u, Vi, Uy, 6) = 5(1}1 — Uy — 4(162“” + ezv—e2““>.
1

(72)

The entropy function F is the Legendre transform of this
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function with respect to e:

O _ V20
de v

F =27(ge — f(u, vy, vy, €)] (73)
— ,,T<v2 — vy + bk + o2 %eZau)
I
or, in terms of g:
F = 7T<U2 — v, + 4ae® + qZZ—;e*Z“"). (74)

The entropy of the extremal black hole is given by the
value of the entropy function F at extremality:
oF oF
oF _ 0 oF

oF . 75
al,t avl 6112 ( )

>

In our case, the extremality conditions (75) read

e —Zauq2 —v, = 0, _vg + e—2auq2v1 — O, (76)
_ e—2auq2v1 + 4a62uuv2 — O,
leading to the solution
q
=2aq, =2Jag, Sm=-1_ (4>0)
L1 \/—&q vy \/Eq € 2\/&‘ (q )
7

Comparing with the local solution in our previous notation,
we get g = ¢,. Finally, substituting (77) in F one obtains
the entropy

S = 4mJaq, = 2mp}, (78)

which is precisely twice the Bekenstein-Hawking value.
This is similar to the result of Refs. [20,21,24].

IV. DISCUSSION

In this paper, we have shown that in addition to charged
black holes with nondegenerate horizons, the DBG four-
dimensional gravity admits black hole solutions with the
horizons of the AdS, X S? type. These solutions form a
one-parameter family and exist in a finite range of the
dilaton coupling constant a. A new family of solutions
branch is disconnected from the branch of nonextremal
black holes which was studied earlier. Rather, it pinches off
from the extremal Reissner-Nordstrom black hole which is
a solution of the full Einstein-Maxwell-dilaton-Gauss-
Bonnet (EMDGB) theory for a = 0. Starting with zero a,
we were able to find global black hole solutions interpolat-
ing between AdS, X S? at the horizon and Minkowski
vacuum at infinity for a below some critical value which
was found numerically up to several decimals as a =
0.488219703. Near the critical value a — a,, the mass
and the dilaton charge grow up, while their ratio saturates
the BPS bound of the EMD black holes. A similar feature

PHYSICAL REVIEW D 75, 084030 (2007)

was observed for the charged black holes in the Einstein-
Born-Infeld-dilaton (EBID) theory [61].

It is worth noting that the family of electrically charged
extremal black holes in the EMDGB theory is one-
parametric (q,.), while the family of the corresponding
extremal solutions in the EMD theory is two-parametric
(with the parameters ¢, and ¢,,). An asymptotic value of
the dilaton is no more a free parameter when the Gauss-
Bonnet term is included, moreover, the dilaton exponent
e2¢%~ at the threshold a = a,, tends to zero for any finite
value of the charge ¢,. Therefore, modification of the
extremal dilaton black hole by higher-curvature term con-
sists not only in stretching its horizon to a finite radius, but
also in fixing the value of the dilaton at infinity.

Our model can be viewed as a truncated heterotic string
effective theory in four dimensions. It does not include all
quadratic curvature terms, but it still shares some features
relevant to more complete models, in particular, it predicts
a correct entropy for extremal black holes which is twice
the Bekenstein-Hawking entropy. It does not exhibit the
attractor property (apart form the limit @ = 0), and the
dilaton is not frozen, but varies from some finite value at
the horizon to some different finite value at infinity. It is
worth noting that we add the Gauss-Bonnet term to the
EMD Lagrangian in the Einstein frame. An alternative
model would be adding the same Gauss-Bonnet terms to
the EMD Lagrangian in the string frame. This changes the
system of equations significantly, and additional work is
needed to see whether this second model leads to similar
results. We currently investigate this issue in more detail.

The existence of the threshold value of the dilaton
coupling constant is an interesting new phenomenon which
may be related to string-black hole transition as described
in [62].2 We think that the present model as well as the
EBID model [61] (both bringing typical string features to
gravity) can be regarded as simple toy models describing
string—black hole transition. A more realistic model of
heterotic string theory compactified to four dimensions
by S! X T3 [62] does not contain a dilaton coupling con-
stant as an order parameter, instead the role of such a
parameter can be played by «'. This model contains two
vector and two scalar fields, and the existing attempts to
investigate it numerically are insufficient, in our opinion, to
draw a conclusion as to whether it leads to a similar
behavior indeed. We expect to present new results on this
subject in the near future.
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APPENDIX: DESINGULARIZATION AT THE
TURNING POINT

Here we clarify the numerical procedure which allows us
to continue solutions through the singular points. Rewrite
the system (9)—(12) as a matrix equation of the first order

d

A er B,
where X is the six-dimensional vector consisting of the
primary dynamical variables w, p, e“® and their first
derivatives with respect to the radial coordinate. The sys-
tem (A1) has a regular solution provided detA # 0. When
the solution approaches some point r, where detA — 0, the
derivative X’ diverges as O(1/ detA). In order to continue
the solution through this point, we choose a new indepen-

(AL)
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dent variable o satisfying the condition

d
Ho) = 2L o deta. (A2)

do
Then in terms of o the matrix equation (Al) can be
rewritten in the regular form

AX — Bir= 0. (A3)

This desingularization is achieved by extending the set of
unknown functions to seven, considering the radial coor-
dinate as a function r(o). Denoting the seven-vector
[X(0), r(o)] as Y(o), one can see that the tangent vector
has the unit Euclidean metric norm

dy
— =1L A4
‘ do (A4)

provided the Eq. (A3) holds:
|7l = | detAl[detA? + (X' detd)?]" (/2. (AS)

Using this desingularization one can continue the solution
through the singular turning point. This procedure is simi-
lar to one used in [63]. Geometrically this means gluing
another coordinate patch to the solution at singularity.
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