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Five tensor equations are obtained for a thin shell in Gauss-Bonnet gravity. There is the well-known
junction condition for the singular part of the stress tensor intrinsic to the shell, which we also prove to be
well defined. There are also equations relating the geometry of the shell ( jump and average of the extrinsic
curvature as well as the intrinsic curvature) to the nonsingular components of the bulk stress tensor on the
sides of the thin shell. The equations are applied to spherically symmetric thin shells in the vacuum. The
shells are part of the vacuum; they carry no energy tensor. We classify these solutions of ‘‘thin shells of
nothingness’’ in the pure Gauss-Bonnet theory. There are three types of solutions, with one, zero, or two
asymptotic regions, respectively. The third kind of solutions are wormholes. Although vacuum solutions,
they have the appearance of mass in the asymptotic regions. It is striking that in this theory, exotic matter
is not needed in order for wormholes to exist—they can exist even with no matter.
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I. INTRODUCTION

The dynamics of thin shells in Einstein’s theory of
gravity is described by a set of five tensor equations [1].
One is an algebraic relation between the jump in the
extrinsic curvature and the intrinsic stress-energy tensor
(the junction condition). Four more relate the geometry of
the shell (extrinsic curvature on each side as well as the
intrinsic curvature) to the value of the bulk stress-energy
tensor on the sides of the thin shell. A fact about Einstein’s
theory is that if the intrinsic stress-energy tensor of the
shell vanishes then there is no jump in the extrinsic curva-
ture. This comes from the junction condition.

In this paper, a similar analysis is performed for the
Gauss-Bonnet theory of gravity in five dimensions, which
is quadratic in the Riemann curvature. A qualitative dif-
ference is that the junction condition [2,3] does not imply
zero jump for the extrinsic curvature when the energy
tensor of the thin shell vanishes [4]. This is because the
junction condition is nonlinear in the (extrinsic and intrin-
sic) shell curvatures. If the bulk tensor also vanishes we
obtain a nonsmooth kink solution to the vacuum field
equations and can be thought of as some kind of soliton.
Then the other four equations describe the dynamics of that
object. One of them implies the existence of a covariantly
conserved, symmetric tensor ~Qa

b on the shell. It involves
the jump of the extrinsic curvature, whereas its counterpart
in Einstein theory does not.

These results are applied to a simple example. We con-
sider spherically symmetric shells in pure Gauss-Bonnet
gravity. A complete classification of non-null solutions
with solitonic shells, both static and time dependent, is
given. A particularly striking type of solution is when two
exterior regions are matched. Vacuum thin-shell wormhole
solutions are found in which the stress tensor on the shell is

zero. The concept of ‘‘mass without mass’’ [5] is shown to
be realized in this context. The exterior solution is that of
the exterior of a massive object, but the massive object is
excised and replaced with another exterior region con-
nected by a wormhole throat which is a ‘‘thin shell of
nothingness.’’

It is argued that these conclusions should also be true in
Einstein-Gauss-Bonnet and Lovelock gravity generally.

Notation: Capital roman letters A, B, etc. represent five-
dimensional tensor indices. Lower case roman letters a, b,
etc. represent four-dimensional tensor indices on the tan-
gent space of the world sheet of the shell.

A. Thin shells in Einstein’s theory

First, we review the formalism in general relativity (GR)
due to W. Israel [1]. Let � be a hypersurface of codimen-
sion 1 (the world sheet of the shell) on which the stress
tensor is a delta function:

 TAB �
Sab���� ;
; 0

� �
; (1)

where Sab is the intrinsic stress tensor on the shell. The
���� is a Dirac delta function with support on the shell. To
simplify the presentation, we shall assume that tensors are
written in a basis eA � �ea; n� which is adapted to the shell
so that ea are tangent vectors to � and n is normal to �.
The shell divides the space-time into two regions, which
are denoted by M� and M�.

In Einstein’s gravity, such a concentration of matter will
produce a discontinuity in the first derivative of the metric.
This is given covariantly by introducing the extrinsic cur-
vature of the shell. This is defined as Kab � ea � rebn.
Intuitively, it measures the tangential rate of change of
the normal vector along the surface �.

The integration of the tangential-tangential components
of the Einstein equation across the infinitesimal width of*Electronic address: steve@cecs.cl
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the shell gives:

 � ���Ka
b � �

a
b�K� � Sab; (2)

where �Ka
b � �K

��ab � �K
��ab is the jump in the extrinsic

curvature across the shell. The factor � � �1 for a space-
time-like shell (with a spacelike normal vector) and � �
�1 for a spacelike shell (timelike normal vector). The
projection of the normal-tangential components of the
bulk Einstein equation gives:

 � ���Ka
b � �

a
b�K�;a � 0; (3)

and

 � �� ~Ka
b � �

a
b

~K�;a � 0; (4)

where ~Ka
b � �K

��ab � �K
��ab is the sum of the extrinsic

curvature on each side of the shell. The semicolon denotes
the intrinsic covariant derivative on the shell. Also, the
projection of the normal-normal components of Einstein’s
equation gives:

 

�
4

�Ka
c

~Kb
d�

cd
ab � 0; (5)

 � R�
�
4
f ~Ka

c
~Kb
d ��Ka

c�Kb
dg�

ab
cd � 0; (6)

where R is the intrinsic Ricci scalar of the shell. The
antisymmetrized Kronecker delta is defined as: �abcd �
�ac�bd � �

b
c�ad.

The first Israel junction condition (2) says that the effect
of the singular matter on the geometry is thus encoded in
the discontinuity of the extrinsic curvature. This condition
can clearly be inverted to determine the jump in the ex-
trinsic curvature in terms of the intrinsic stress tensor.
(Indeed, if one uses this to replace Sab in Eqs. (3)–(6), the
expressions given in Ref. [1] are recovered). This one-to-
one correspondence between Sab and �Ka

b arises because
the Einstein equation is linear in the curvature.

B. Thin shells in Gauss-Bonnet gravity

A generalization of Einstein’s theory which is not linear
in the curvature was given by Lovelock [6]. In five or
higher space-time dimensions it gives second order field
equations. Indeed, it is the most general second order
metric theory of gravity and can be thought of as a natural
correction to Einstein gravity in more than four dimen-
sions. In five dimensions the Lagrangian is:

 L � c0
�������
�g
p

d5x� c1R
�������
�g
p

d5x� c2LGB: (7)

The first term is the cosmological constant, the second is
the Einstein-Hilbert term, the third is the so-called Gauss-
Bonnet term which is quadratic in curvature:

 L GB :� �R2 � 4RABR
AB �RABCDR

ABCD�
�������
�g
p

d5x:

Above, the calligraphic script R is used to denote the five-
dimensional curvatures.

Solutions with a hypersurface of codimension one with a
Gauss-Bonnet term have been studied extensively in the
context of brane worlds [4,7,8], inspired by string theory. A
covariant junction condition, the analogue of (2) was de-
rived in Refs. [2,3] using an action principle. Also, cova-
riant equations of motion have been derived from
decomposition of the bulk field equations [9]. This ap-
proach provides an alternative derivation of the junction
condition. Also other covariant equations for the brane
have been derived in the literature, with the emphasis being
upon finding an effective theory of gravity on the brane. A
modified Einstein equation for the intrinsic metric on the
hypersurface has been obtained [9], in which there are
nonlinear corrections involving the extrinsic curvature
and a nonlocal piece coming from the Weyl tensor in the
bulk. The generalization of (3), which says that the intrin-
sic stress tensor on the hypersurface is covariantly con-
served, is well known [2]. Other works on equations of
motion for branes in Einstein-Gauss-Bonnet theory are
Refs. [10].

However, it seems that the analysis in the style of Israel’s
five equations has not been done. Such a set of equations is
of course just an alternative formalism to that of Ref. [9],
but it shows some interesting information which may be
hidden in other formalisms. In the next section, we present
this analysis for a shell embedded in a bulk in which the
field equations for the pure Gauss-Bonnet theory (c0 �
c1 � 0) hold. The analysis is given for arbitrary matter on
the shell and no matter in the bulk (the more general case of
Einstein-Gauss-Bonnet theory with matter in the bulk is
given in Appendix B).

Spherically symmetric shell solutions in the vacuum in
the five-dimensional Einstein-Gauss-Bonnet theory were
considered in Ref. [8]. These kinds of solutions are of
interest in cosmology because there is a spatially homoge-
neous cosmological metric induced on the shell, with an
expansion factor governed by a modified Friedmann equa-
tion. The solutions were restricted to Z2 symmetry, where
the metric on one side of the shell is the mirror image of the
other side. When this assumption is dropped, solutions are
generally very complicated [11]. However, in
Refs. [12,13], general thin shells in spherically symmetric
space-times were examined for a certain class of Lovelock
theories. In those references a Hamiltonian treatment of
thin shells in GR [14] was generalized to Lovelock gravity.

There is a curious possibility, which is not possible in
Einstein’s theory. Because of the nonlinearity in curvature,
it is possible to have a hypersurface where there is a
discontinuity in the extrinsic curvature without any stress
tensor as source. In other words, there is a thin shell made
of nothing, where Sab � 0 but �Ka

b � 0. These kind of
solutions were considered in Refs. [4] (also an example
in 11-dimensional Chern-Simons gravity was studied in
Ref. [15]) and we shall call them ‘‘solitonic shells.’’ It
happens that, for these kinds of solutions, the junction
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conditions can be resolved, without assuming Z2 symme-
try, in a relatively simple way.

In Sec. III, explicit solitonic shell solutions are found.
We shall restrict ourselves to consider only the Gauss-
Bonnet term, i.e. the coefficients c0 and c1 shall be set to
zero. This theory, which we shall call pure Gauss-Bonnet
gravity, arises as the torsion-free sector of Chern-Simons
theory of the Poincaré group in five dimensions ISO�4; 1�
[16,17]. It can be thought of as generalization of the
interpretation of 2� 1-dimensional general relativity as a
Chern-Simons theory for the Poincaré group [18,19].

This theory has no Newtonian limit, so, like GR in three
dimensions, it should properly be regarded as a toy model
for studying qualitative features of gravity. The advantage
for us is that the spherically symmetric bulk solutions and
the junction condition take a very simple form. We are able
to classify all of the spherically symmetric solitonic thin-
shell solutions, without assuming Z2 symmetry.

Here, the focus shall not be on cosmology on the shell.
The main interest will be in wormhole solutions which
behave in a sense like material particles even though they
are not massive solutions. That is, instead of being the
universe, the shell should perhaps be thought of as a kind of
particle.

Although only the pure Gauss-Bonnet theory is consid-
ered explicitly, we comment on the generalization to gen-
eral Lovelock theory in Sec. IV.

II. THE FIVE EQUATIONS FOR A SHELL IN
GAUSS-BONNET GRAVITY

Let us for now concentrate on the Gauss-Bonnet term,
setting c0 and c1 to zero and c2 � 1 in the action (7). The
field equation of pure Gauss-Bonnet gravity is:

 � 1
8�

AC1���C4
BD1���D4

RD1D2
C1C2

RD3D4
C3C4
� TAB: (8)

Let us find the analogue of Israel’s five equations (2)–(6)
for Gauss-Bonnet gravity. Since the origin of these equa-
tions is clear, we shall just state here the results. The proof
is given in Appendix B.

Here the results are summarized for the case where the
bulk energy tensor is zero. First we define the following
symmetric tensor:

 Qa
b � Kc

f�2�R
de
gh �

4
3K

d
gKe

h��
afgh
bcde : (9)

Also we define �Qa
b � �Q

��ab � �Q
��ab, the jump across

the shell and ~Qa
b � �Q

��ab � �Q
��ab, the sum of Qa

b eval-
uated on each side.

The integration of the tangential-tangential components
of the field equation (8) across the infinitesimal width of
the shell gives the junction condition [2,3]:

 �Qa
b � �2Sab: (10)

The projection of the normal-tangent components of the
bulk field equations onto the shell tell us that the intrinsic

stress tensor is covariantly conserved [2]:

 �Qa
b;a � 0) Sab;a � 0; (11)

and also that the tensor ~Qa
b is covariantly conserved on the

shell:

 

~Qa
b;a � 0: (12)

The projection of the normal-normal component of the
field equation gives:

 �
3

8
f ~Ka

b�Qb
a � �Ka

b
~Qb

ag �
�
2

~Ka
e�Kb

fR
cd
gh�

efgh
abcd � 0;

(13)

 

1

2
RabefR

cd
gh�

efgh
abcd �

3

8
f ~Ka

b
~Qb

a ��Ka
b�Qb

ag

�
�
4
f ~Ka

e
~Kb
f ��Ka

e�Kb
fgR

cd
gh�

efgh
abcd � 0: (14)

Equations (10)–(14) are the five equations characteriz-
ing the shell. The first two are already known. The last two
are rather complicated and perhaps not very useful in
describing shells (although they may be useful in the
Hamiltonian formalism of Gauss-Bonnet gravity—see be-
low). On the other hand, Eq. (12) has some surprising
consequences which have gone unnoticed.

Because of the nonlinearity of the Gauss-Bonnet theory,
one cannot solve algebraically for the jump in extrinsic
curvature in terms of the intrinsic stress tensor. There are
two independent quantities �Qa

b and ~Qa
b, which can be

expressed as:

 �Qa
b � �Kc

f�2�R
de
gh �

1
3�K

d
g�Ke

h �
~Kd
g

~Ke
h��

afgh
bcde ;

~Qa
b � ~Kc

f�2�R
de
gh �

1
3

~Kd
g

~Ke
h � �Kd

g�Ke
h��

afgh
bcde :

These quantities both depend nonlinearly on �Ka
b. Only

one of these is determined by the stress tensor, but both are
covariantly conserved.

Note that when the surface � is spacelike, Qa
b arises

naturally in the Hamiltonian formalism. It is proportional
to the momentum canonically conjugate to the spatial
metric. Equations (11) and (12) say that the extrinsic
curvature can jump in a way that conserves the constraint
H a � 0. Equations (13) and (14) say that any disconti-
nuity must preserve the constraint H? � 0. Expressions
for H a and H? in Lovelock gravity were first given in
Ref. [20]. The dynamical part of the field equations in the
vacuum says that a discontinuity must obey �Qa

b � 0.
The above five equations are for the pure Gauss-Bonnet

theory. For the more general action (7), the generalization
is straightforward. It is simply a linear combination of the
terms appearing in the Israel equations with those of the
Gauss-Bonnet theory. This will be given explicitly in the
appendix in Eqs. (B13)–(B17).
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III. SOLITONIC SPHERICAL SHELLS IN PURE
GAUSS-BONNET GRAVITY

Let us consider the pure Gauss-Bonnet theory, with just
the quadratic Lovelock term in the action. This choice
remains largely unstudied, no doubt because it does not
include the Einstein-Hilbert term. The theory is not in any
sense a small correction to general relativity. However, it
offers a useful toy model in which to study thin shells,
finding exact solutions. In this section, solitonic shells are
found in the spherically symmetric background.

It is useful to use differential form notation. A brief
explanation of this is given in Appendix A. In this notation,
the field equation is:

 c2�AB ^�CD�ABCDF � �2TF; (15)

where �AB is the curvature two-form and TA is the stress-
energy four-form.

The spherically symmetric vacuum solution is:

 ds2 � �dt2 �
dr2

�2 � r
2d�2: (16)

Here d�2 is the line element of the unit three-sphere. This
is a special case of the solution of Boulware and Deser [21]
for Einstein-Gauss-Bonnet, � being the constant of inte-
gration. This space-time was discussed recently in
Ref. [22] but we are not aware of any previous detailed
study of this metric in the literature.

A basis is chosen such that the vielbein and spin con-
nection take the form:

 E0 � dt; E1 � dr=�; Ei � r ~Ei; (17)

 !1
i � �� ~Ei; !i

j � ~!i
j: (18)

Notation: ~Ei and ~!i
j are the intrinsic vielbeins and spin

connection on the three-sphere. The lower case Latin in-
dices from the middle of the alphabet run from 2 to 4.

Note that, although the constant factor � looks innoc-
uous, this space-time is not locally flat. The nonvanishing
part of the curvature two-form is:

 �ij � �1� �2� ~Ei ^ ~Ej: (19)

The five-dimensional Ricci scalar is R � 6�1� �2�=r2.
For � � 1 there is clearly a curvature singularity at r � 0.

Even though the curvature diverges, the singularity is
well behaved in the sense that the field equations are well
defined under integration. From (15) the energy tensor is
zero everywhere outside the origin r � 0. The mass can be
calculated unambiguously by integrating the field equa-
tions in a ball centered around r � 0, using the Gauss-
Bonnet theorem. The result is:

 m � 16�2c2

�
1�
j�j
2
�3� �2�

�
: (20)

It is natural to take c2 to be positive, so that all solutions

have positive mass (see Fig. 1). For convenience, a choice
of units is made so that 16�2c2 � 1.

A. Nonsmooth static vacuum solutions

Let us try to match two different point particle metrics
on a timelike hypersurface � at a constant radius. The
surface divides space-time into two regions, M� and M�.
The metric in each region is given by:

 ds2
� � �dt

2 �
dr2
�

�2
�

� r2
�d�2; (21)

 ds2
� � �dt2 �

dr2
�

�2
�

� r2
�d�2; (22)

and the hypersurface is located at r� � r� � r0, a con-
stant so that the induced metric is continuous.

For a static shell, the choice of vielbeins (17) provides a
frame adapted to �, i.e. Ea � �E0; Ei� are dual to the
intrinsic frame on � and E1 is dual to the normal vector,
n � ��@r� . The normal vector is, by convention, chosen
to point from M� to M�. Note that, in our conventions, the
orientation of the embedding of � into M� is determined
by the sign of ��. There are three choices (see Fig. 2):

Type I—If �� and �� are both positive, the global
structure is the same as for the smooth solution. The radial
coordinate in M� is decreasing as one moves away from �
and the radial coordinate in M� increases as one moves
away from �. The region M� is the interior and contains
the point singularity. The region M� is the exterior. If ��
and �� are both negative, the global structure of the space-
time is the same but with the roles ofM� andM� swapped.

Type IIa—If �� is positive and �� is negative, two
interior regions are joined together to form a spatially
closed universe. Each region contains a point source.

Type IIb—If �� is negative and �� is positive, two
exterior regions are joined together. There are two asymp-
totic regions r� ! 1 and r� ! 1 and no point sources.
These are wormhole space-times.

If �� � �� the spin connection is discontinuous, cor-
responding to a singular curvature. In Einstein’s theory,

 

0.5 1 1.5 2
beta

0.5

1

1.5

2

m

FIG. 1 (color online). The mass as a function of j�j in units
such that 16�2c2 � 1. Note that m�

���
3
p
� � m�0� and m�2� � 2.

The mass is non-negative for all values of j�j. For 0<m 	 1
there are two values of j�j producing the same mass.
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such a discontinuity on a timelike surface could never be a
vacuum solution. However, in the Gauss-Bonnet theory,
the matching conditions (10) tell us that the stress-energy
tensor located on the hypersurface vanishes if

 Q�a �Q�a � 0;

where Qa is defined in Eq. (B6).
The only nonzero components of the second fundamen-

tal form are �1i � �� ~Ei. The intrinsic geometry of the
hypersurface is R1 
 S3 so the nonvanishing components
of intrinsic curvature is �ij

k
� ~Ei ^ ~Ej. The only compo-

nent of Qa is:

 Q0 � �4��1� 1
3�

2� ~Ei ^ ~Ej ^ ~Ek�01ijk:

[In tensor language, the only components of the extrinsic
curvature are Ki

j � ���
i
j and the only component ofQa

b is
Q0

0 � �43!��1� 1
3�

2�.]
The junction condition reduces to:

 3�� � �
3
� � 3�� � �3

�: (23)

There are two useful alternative ways to use Eq. (23). We
can use it either to derive a junction condition in terms of
the metric parameters �� or a condition in terms of the
masses. Let us first find the condition in terms of ��. We
note that (23) factorizes to give either �� � �� � 0
(which is trivial—the metric is matched smoothly) or

 �2
� � �

2
� � ���� � 3 � 0: (24)

The above tells us which metrics can be matched together
at a static surface of constant r. It clearly has nontrivial
solutions which are described by an ellipse in the parame-
ter space ���; ��� (see Fig. 3).

Alternatively, we can use formula (20) to express (23) in
terms of the masses. There are two cases:
Type I The masses must be the same:

 m� � m� if sign���� � sign����: (25)

Type II There is a condition on the sum of the masses:

 m� �m� � 2 if sign���� � �sign����: (26)

As shown in Fig. 1, the cubic form of the mass formula
(20) leads to an ambiguity in the metric. If the mass is in
the range 0<m< 1, there are two possible solutions—
one with � between 0 and 1 and another solution with �
between 1 and

���
3
p

. Thus, there exist nonsmooth matchings
of type I for masses less than 1.

The matchings of type II can occur if one of the �’s is
between 0 and

���
3
p

and the other is between
���
3
p

and 2, i.e.
for masses less than 2.

B. Nonsmooth time-dependent solutions

In the previous example, we matched vacuum solutions
at a static surface. It is also possible to match at a surface
which is not static. We shall restrict ourselves to solutions
which respect the spherical symmetry of the smooth solu-
tions: the hypersurface is defined by r some function of t.
There are three possibilities: timelike, spacelike, or null
surfaces. Here only the timelike and spacelike cases will be
considered.

1. Timelike

There are two regions with metrics given by (22) and
(23). They are joined at a hypersurface which is an ex-
panding or shrinking 3-sphere. The hypersurface � is
defined parametrically by r� � a���, r� � a��� and t� �
T����, t� � T����. Here a is some function of �, a time
coordinate on �. The induced metric is:

 ds2
��
� �d�2

�
_T2
� �

_a2

�2
�

�
� a2���d�2:

We require that ds2
��
� ds2

��
for a continuous metric. Note

that amust be the same function on both sides because it is
the radius of curvature of the 3-sphere. It is natural to
choose � to be the proper time coordinate on � so that

 

M

+M

n

Type I . sign(β+ ) = sign ( β− ).

M

M+

n

Type IIa) . β − positive and β + negative.

n

M+

M

Type IIb) . β − negative and β + positive.

FIG. 2 (color online). The three types of matching. The time
direction is suppressed. Also two spatial dimensions are sup-
pressed so that 3-spheres are represented by circles.
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_T2
� �

_a2

�2
�

� 1 and

 ds2
� � �d�

2 � a2���d�2:

In order to evaluate the junction conditions, we intro-
duce a frame adapted to �. The intrinsic vielbeins are
�E0̂; Ei�, where E0̂ � d� and the normal is E1̂. They are
related to the vielbeins (18) by the Lorentz transformation:

 

E0̂

E1̂

 !
�

������������������������
1� _a2=�2

�

q
� _a=��

� _a=��
������������������������
1� _a2=�2

�

q
0B@

1CA E0
�

E1
�

� �
:

The vielbeins tangent to the 3-sphere, ~Ei, are not trans-
formed. In this basis, the second fundamental form is:

 �1̂i
� � �

�������������������
�2
� � _a2

q
~Ei; �1̂ 0̂

� � �
�a�������������������

�2
� � _a2

q d�:

There are now two nonzero equations coming from the
junction conditions, but they are not independent. The first
is �Q0̂ � 0 which gives:

 

�
sign���

�����������������
�2 � _a2

q �
1�

2

3
_a2 �

1

3
�2

��
�

�
� 0; (27)

where the square bracket �� � ���� denotes the difference in
the argument evaluated on each side of �. The other
equation, �Qi � 0 gives simply the derivative with respect
to � of the first.

Squaring (27) and solving gives:

 _a 2 �
��2
� � �

2
� � ���� � 3���2

� � �
2
� � ���� � 3�

3��2
� � �

2
� � 2�

:

(28)

[It can be checked separately using (27) that�2
� � �

2
� � 2

is not a solution except in the trivial case where �� �
�� � 1. To obtain (28) we have divided through by a
common factor of (�2

� � �
2
�). In principle, the case �2

� �
�2
� � 0 should also be verified separately. However, it

turns out that this case is correctly described by Eq. (28)
and the set of inequalities given below.] Time-dependent
solutions only exist when _a2 > 0. This occurs when an odd
number of the three inequalities:

 �2
� � �

2
� � ���� � 3> 0;

�2
� � �

2
� � ���� � 3> 0;

�2
� � �

2
� � 2> 0;

(29)

are satisfied. Since we have squared the junction condition,
we must plug the solution back into (27) in order to
determine the relative orientation consistent with the solu-
tion. A consistent solution will obey an even number of the
three inequalities:

 ���� > 0; 2�2
� � �

2
� � 3> 0;

�2
� � 2�2

� � 3> 0:
(30)

2. Spacelike

Following a similar analysis for the case of a spacelike
surface gives the junction condition:

 �sign���
�����������������
_a2 � �2

q
�23 _a2 � 1� 1

3�
2���� � 0: (31)

This can be squared and solved for _a to give:

 _a 2��
��2
���

2
�������3���2

���
2
�������3�

3��2
���

2
��2�

:

(32)

Inserting this value of _a2 back into (31), the consistency of
the solution tells us that an even number of the inequalities
(30) must be satisfied. Also, the condition that the square
root be real gives:

 �2
� � �

2
� � 2< 0: (33)

The set of inequalities for spacelike and timelike shells is
depicted graphically in Fig. 4.

The solutions with � spacelike represent a breakdown of
determinism. The extrinsic curvature can jump instantane-
ously from one value to another in a way which is not
predicted by the initial conditions. Note that, restricting
ourselves to spherically symmetric metrics, such jumps are
ruled out for masses greater than 1 (i.e. �>

���
2
p

).

 

-2 -1 1 2

-2

-1

1

2

FIG. 3. The static vacuum solutions of the junction condition
describe an ellipse in the space of �� and ��. The top right and
bottom left quadrants correspond to a matching of type I with
standard orientation. The top left quadrant corresponds to solu-
tions of type IIa, the ‘‘closed universe.’’ The bottom right
quadrant corresponds to solutions of type IIb, wormholes.
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C. ‘‘Mass without mass’’ and conserved quantities

Let us consider the solutions of type IIb, the wormholes.
These solutions contain no point sources, i.e. the stress
tensor is everywhere zero. An observer in the region M�
feels a space-time as if there were a spherically symmetric
source of mass m� on the other side of the shell. If he
moves across the shell, instead of accessing a source he
feels a mass m� behind him. These wormholes illustrate
the concept of ‘‘mass without mass.’’ The nontrivial topol-
ogy of the vacuum solution creates the illusion of having a
massive particle.

In Sec. II it was shown that there are two covariantly
conserved symmetric tensors on the shell, �Qa

b and ~Qa
b.

Equivalently, this can be stated that �Q��ab and �Q��ab are
covariantly conserved independently of each other. In cer-
tain cases then, such as if there exists a Killing vector on
the hypersurface, we can define a conserved quantity asso-
ciated with ~Qa

b.
Recall the static and nonstatic solutions of Sec. III B. In

the nonstatic solutions the vector e0̂ � @� is not a Killing
vector on the hypersurface. However, it is still true that
i
dQ�

0̂
� 0, so the quantities

R
S3 Q�

0̂
are conserved with �,

where S3 is any 3-sphere given by � � constant. The
vacuum matching amounts to Q�a �Q

�
a � 0. Note that

~Qa � Q�a �Q�a � 2Q�a � 2Q�a . We define the conserved
quantity:

 ~q �
c2

2

Z
S3

~Q0̂: (34)

In the static case one finds for the wormhole solutions

 ~q � m� �m� � 2m� � 2: (35)

This is what the total energy of the shell would have been,
as measured from M�, had the two regions been matched
with the other orientation, i.e. with M� replaced by an
interior region of mass m�. The sign of this charge is
somewhat arbitrary. An observer in M� would naturally
define it with a plus sign but an observer in M� with a
minus sign.

Consider now the nonstatic wormhole solutions with a
timelike shell � described in subsection III B. We have

 �Q��0̂
0̂
� �4 � 3!

�������������������
�2
� � _a2

q
�1� _a2 � 1

3��
2
� � _a2��:

The other components vanish (by _a � constant). A similar
formula holds for Q�

0̂
. For the general case the result is

rather nontransparent. Consider the case where the metric
in M� is flat, i.e. �� � �1. The result simplifies consid-
erably and one finds, using (28),

 

~q � 2
�
�2
� � 1

3

�
3=2
:

Expressed in terms of the speed v � dr=dt� measured by
the Minkowski observer, this reads:

 ~q � 2�1� v2��3=2:

Note that in the static case v � 0 we havem� � 2 from the
formula (26). The nonstatic result is modified by the in-
verse relativistic factor of the volume of the isotropically
expanding 3-sphere.

As noted above ~q tells us about the asymmetry of the
vacuum wormhole. It is interesting that in the static case it
vanishes for unit masses m� � m� � 1. One can check
that ~q vanishes in the nonstatic wormhole too when m� �
m�. More generally, in the nonstatic case, ~q vanishes on
the small ellipses shown in Fig. 4. Also ~q goes to infinity at
the circle �2

� � �
2
� � 2 (and also at �� ! 1 and �� !

1). It is tempting to conjecture that ~q is a kind of gravi-
tational energy of the solitonic shell. This is somewhat
speculative but the structure of diagram 4 gives some
support to the conjecture. Since the circle represents the
limit of the timelike shell solutions in which the speed of
the shell approaches the speed of light, it is natural that this
energy should go to infinity there.

Alternatively we may say the following. In the usual
sense, there is no matter in the vacuum wormhole—the
stress-energy tensor is zero everywhere. There is though
‘‘mass without mass.’’ There are two disconnected asymp-
totic regions in the space-time and no universal notion of
mass. ~Qa

b measures this disagreement between asymptotic
observers. For the thin-shell wormhole solutions we have
found, the conserved quantity ~q is nicely expressed in
terms of the speed of the shell and m�, m�.

More generally, consider an arbitrary space-time con-
taining a thin shell. A geometrical construction of such a
space-time is as follows. Take two space-times which
contain submanifolds of codimension 1 which are diffeo-

 -2 -1 1 2

-2

-1

1

2

-2 -1 1 2

-2

-1

1

2

FIG. 4 (color online). The shaded regions are the allowed
solutions. The circle of radius

���
2
p

divides the solutions where
� is spacelike (inside) from those where � is timelike (outside).
The solutions where � is static lie on the large ellipse. The top
left and bottom right quadrants are shaded everywhere outside
this ellipse.
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morphic to �. We can cut and paste in various ways. Let us
say that we cut out the region to the right of � in the first
manifold and cut out the region left of � in the second and
make the pasting in that way. Now alternatively we could
cut out the region left of � on both manifolds, flip the
orientation of one of them, and paste in that way. What
effect does this have on the equations of motion of the
shell? It is easy to see that the only effect on the equations
of motion for the shell is to swap the orientation of one of
the normal vectors which implies �Ka

b $
~Ka
b. Under this

transformation, the five equations (10)–(14) are un-
changed, except that �Qa

b and ~Qa
b swap roles. So ~Qa

b is
what the stress tensor on the shell would have been were
the orientation of the opposite type, i.e. it measures the
energy difference between configurations related by
�Ka

b $
~Ka
b. A more detailed study is needed to make

this notion more precise.

IV. COMMENTS

Spherically symmetric solitonic thin-shell solutions
have been classified in the pure Gauss-Bonnet theory in
five dimensions. The results are summarized in Fig. 4.

We wish to emphasize two points. First, the pure Gauss-
Bonnet theory, with only the quadratic Lovelock term, is
not a physical theory. Second, the essential principle that
vacuum wormholes can mimic the effect of a mass, cap-

tured here in a simple way, should indeed generalize to
more realistic models.

Let us first expand upon the first point. The pure Gauss-
Bonnet theory has no Newtonian limit: indeed one can see
from the form of the spherically symmetric metric (16) that
gtt � �1. A test particle without angular momentum will
feel no central potential.

The theory is also extremely degenerate. One well-
known degeneracy of this theory is the absence of a per-
turbation theory about Minkowski space background. Any
perturbation about �AB � 0 is a solution of �AB ^
�CD�ABCDE � 0 to first order. Thus, the second variation
of the action about a Minkowski background is trivial, i.e.
the propagator vanishes.

The point particle metric (16) has another kind of
strange degeneracy: it is a solution of the field equations
if d�2 is the metric of a quite arbitrary three-manifold.
The three-sphere can be replaced with a spheroid, a hyper-
cube, or anything with the topology of a sphere and still be
a solution of a point source with a given mass. This is
highly counterintuitive—one would expect that a single
point source would determine a spherically symmetric
space-time. This very interesting arbitrariness is something
which merits further investigation.

The solitonic shell solutions are a third example of
degeneracy: the radius at which the static solitons are
located is arbitrary. It is thus possible to have a space-
time composed of different regions with different �’s in
concentric layers. A single mass can produce any one of an
infinite variety of space-times, with the layers being
matched at arbitrary constant radius (see Fig. 5). The
degeneracy is particularly striking for Minkowski space.
There exists a static solution of type II which matches
Minkowski space with a space-time with mass � 2. Now
Minkowski space is spherically symmetric about every
point so one can put such solitonic shells centered about
any point. By combining matchings of type IIa and IIb a
very exotic vacuum solution can be constructed as in Fig. 6.

Let us now turn to the second point. The existence of the
solitonic shell wormholes does not depend upon the choice
of pure Gauss-Bonnet theory. The essential feature is the

 

β

β∗

β

β∗

β

m

FIG. 5. The hypersurfaces separating regions with � and �


carry zero energy tensor. For static shells these betas satisfy
�2 � ��
 � ��
�2 � 3. A spherically symmetric space-time
around a mass m is infinitely degenerate. This is true for all
masses below the critical value mcrit � 2. For more massive
particles gravity is simpler.

 

FIG. 6. An exotic vacuum(!) solution of static solitonic shells
in Minkowski space, showing the extreme degeneracy of
Minkowski space in the pure Gauss-Bonnet theory.
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nonlinearity of the junction conditions in the jump in the
curvature. Thus, such solutions should exist in the
Einstein-Gauss-Bonnet theory and the feature of mass
without mass should also be exhibited in that theory.
There is a covariantly conserved quantity which plays the
role of ~Qa

b, as can be seen from Eq. (B15). A thin-shell
vacuum wormhole whose throat is a small sphere can be
interpreted as a particle. For such an interpretation to be
meaningful, the location of the throat should be stable. In
the pure Gauss-Bonnet theory the stability analysis leads to
a strange situation: the junction condition gives _r �
constant. The static solutions are absolutely fixed in place
but at an arbitrary radius. This is special to pure Gauss-
Bonnet in which the shell does not accelerate. In Einstein-
Gauss-Bonnet the radius of the shell will be like a particle
in some nontrivial potential. Indeed, such solutions in the
full Einstein-Gauss-Bonnet theory have been found and
will be reported in a separate paper of S. W. with C.
Garraffo and G. Giribet [23].

The solutions for the toy model (pure Gauss-Bonnet)
have a simple structure captured in Fig. 4. This is espe-
cially simple because of the close relation between the field
equation and the Gauss-Bonnet theorem. Indeed, for the
static case the mass in a given region is exactly equal to the
integral of the Euler density in that region. Let us see how
this comes about: For the static solutions the space-time is
a trivial product of a spatial four-manifold with the time
direction M � M4 
 R1. The Gauss-Bonnet theorem for
the spatial section M4 takes the form:

 

Z
M4

�AB ^�CD�ABCD0 �
Z
@M4

Q0 � �32�2��M4�:

The first term on the left is proportional to the integral of
T0

0 . The boundary term is the sameQ0 which appears in the
junction conditions. This explains the mass formula (20)
and its simple relation to the junction conditions for the
static shell. Also we see why the solutions of type IIa, the
closed universe, have a sum of masses equal to 2, the Euler
number of the spatial manifold, just as for G. R. in 2� 1
dimensions.

In the full Einstein-Gauss-Bonnet theory, solitonic shell
solutions should have a much more complicated and rich
structure. A useful intermediate step between our toy
model and the full theory is the case of pure Gauss-
Bonnet with cosmological constant. There one can explore
nontrivial features (horizons, etc.) in a simple setting. This
is an open problem.

Finally, some comments on the meaning of the solutions
are in order.

Space-like solitonic shells mean lack of determinism,
which is rather a generic feature of Lovelock gravity. For
our spherically symmetric ansatz, these solutions are elim-
inated for �>

���
2
p

, i.e. m> 1. The circle in Fig. 4 provides
a nice separation between the timelike solitonic shells,

whose behavior is determined by initial conditions, and
the spacelike (instanton) shells.

The solutions show that when the Gauss-Bonnet term is
included, wormhole solutions can exist without an exotic
stress tensor as the source. Indeed here the stress tensor
vanishes. This is in marked contrast to the situation in
Einstein’s theory. Thin-shell wormholes were first studied
in Einstein gravity in [24]. Also some effects of the Gauss-
Bonnet term as a correction were studied in [25]. The fact
that wormholes require ‘‘exotic matter’’ in Einstein gravity
was already discussed in [26]. Wormhole solutions with
matter source in Einstein-Gauss-Bonnet have been consid-
ered in the past [27,28]. There is even another example of a
vacuum wormhole which is already known [29]. This is a
smooth wormhole and exists in the Lovelock theory with a
special choice of coefficients such that the uniqueness
theorem for the Boulware-Deser solution does not hold
[8,30]. The wormholes found in this present work are
nonsmooth, the curvature which defines the throat is local-
ized in a delta function at the shell.

The wormhole solutions found here exemplify the con-
cept of ‘‘mass without mass.’’ It would be interesting to see
if, when one considers the Gauss-Bonnet-Maxwell theory,
wormholes can be found with ‘‘charge without charge.’’
The field equations of the Gauss-Bonnet theory allow for
nonvanishing torsion. Perhaps, by considering wormholes
with torsion, one can create the illusion of a source for the
torsion, ‘‘spin without spin.’’

Whilst this work was in the final stages, a paper ap-
peared treating ‘‘matter without matter’’ in Gauss-Bonnet
theory [31], although in a somewhat different context of
compactified models in six and higher dimensions.
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APPENDIX A: SOME DEFINITIONS

In studying Lovelock gravity, it is useful to introduce the
differential form notation [32]. We introduce the vielbein
EA and the spin connection!AB. The curvature two-form is

 �AB � d!AB �!A
C ^!

CB � 1
2R

AB
CDE

C ^ ED:

In this notation, the Gauss-Bonnet term is:

 L GB � �AB ^�CD ^ EF�ABCDF:
In this article, it is assumed that there is no torsion. The

spin connection is the Levi-Civita connection, i.e. an im-
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plicit function of the vielbein. The explicit variation with
respect to the spin connection is a total derivative which
contributes nothing to the field equations. Euler-Lagrange
variation of the action w.r.t. the vielbein gives the field
equation:

 �AB ^�CD�ABCDF � �2TF: (A1)

On the right-hand side, TF is the stress-energy four-form
coming from the matter part of the action. This is the dual
of the stress-energy tensor, which we take to be of the
form:

 TAB �
Sab���� TNb
TaN TNN

� �
: (A2)

We consider a single hypersurface � which divides the
bulk space-time into two regionsM1 andM2. It is helpful to
use the basis eA � �ea; n� adapted to the hypersurface such
that ea are tangential vectors and n is a normal vector. The
vielbeins EA � �Ea; EN� are the dual basis of one-forms.
We shall assume that the normal vector n can be spacelike
(� � n � n � �1) or timelike (� � 1) but not null.

At the hypersurface there is a Levi-Civita connection
associated with each region: !AB

� and !AB
� , respectively.

Let i
 denote the pullback of differential forms onto �.
Then the intrinsic connection on � is

 !ab
k
� i
!ab

� � i
!ab
� :

Let us define

 �AB� � !AB
� �!

AB
k
:

The second fundamental form on � induced by M� is
i
�AB� and has components i
�Na� � i
!Na

� and i
�ab� � 0.
It is related to the extrinsic curvature tensor by:

 i
�N
a � Ka

bE
b: (A3)

Similarly, the second fundamental form induced by M� is
denoted by i
�AB� .

APPENDIX B: PROOF OF THE FIVE EQUATIONS

In analyzing the field equations, it is useful to introduce
a test field, 	A, which is an arbitrary vector valued one-
form. The field equations are:

 ����	� � �2TA	A; (B1)

where, to simplify notation, it is convenient to omit indices
which are all contracted with the epsilon tensor, e.g.:

 ����	� :� �AB ^�CD ^ 	F�ABCDF:

The derivation of the five equations by decomposing the
field equations and using the Bianchi identities is purely a
technical one. Applying the five-dimensional Bianchi iden-
tities when the curvature has been decomposed into intrin-
sic and extrinsic curvature can be a mess. One elegant way
around the problem is to borrow from the textbook [33]

proof of the Chern-Weil theorem. This has the advantage
that the proof generalizes easily to Lovelock theory in
arbitrary dimensions. Let !t be a connection which inter-
polates between !� and !k,

 !t � �1� t�!k � t!�: (B2)

Similarly, one can also interpolate between !� and !k.
Then, using the Bianchi identity D�!t��t � 0, the follow-
ing identity can be derived:

 ������	� � ���k�k	� � 2
Z 1

0
dt ��D�!t�f���tg	�;

(B3)

where D�!t� is the covariant exterior derivative and
�t

AB � d!t
AB �!tC

A!t
CB the curvature with respect to

the interpolating connection. The above expression can
also be rewritten in terms of the covariant derivative with
respect to the intrinsic connection:
 

������	� � ���k�k	� � 2
Z 1

0
dt ��D�!k�f���tg	�

� 2
Z 1

0
dt t�AB� �t

CD


 �ABCDE�
E
�F	

F: (B4)

Note that in the above,D�!k� is a five-dimensional deriva-
tive operator. Its projection along the basis of tangential
one-forms is the intrinsic covariant derivative. Its projec-
tion along EN is just the partial derivative in the normal
direction n
@
.

We can break down (B4) into various components:
(i) 	 is a normal one-form with a tangential vector

index, i.e. the normal-tangent component of the field
equations. In this case the second term on the left and
the second term on the right do not contribute and we
obtain

 i
�������a � i
D�!k�Q�a : (B5)

We have defined the useful quantity Qe:

 Qe � i
4�N
b���cd

k
� 1

3�N
c�N

d��Nbcde: (B6)

Note that this quantity is closely related to the
boundary term for the Gauss-Bonnet action for a
manifold with boundary [34].

(ii) 	 is a normal one-form with a normal vector index,
i.e. the normal-normal component of the field equa-
tions. In this case we get
 

i
�������N � #H?;

#H? � i
����bc
k
� �N

b�N
c�


 ����de
k
� �N

d�N
e��Nbcde: (B7)

The above formula can be obtained immediately,
without reference to (B4), by using the Gauss
equation.
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(iii) 	 is a tangential one-form with a normal vector
index. This gives the same as case (i) (in the absence
of torsion, the stress tensor is symmetric).

(iv) 	 is a tangential one-form with tangential vector
index. Integrating this across a region of infinitesimal
thickness across � gives the known junction condi-
tions [2,3]:

 �Qa :� �2Sa: (B8)

We can now substitute the expressions (B5) and (B7)
into the field equations. It is most instructive to evaluate the
field equations on the left and the right and then to consider
the sum and the difference:

 i
D�!k�Sa � i
�Ta; (B9)

 i
D�!k� ~Qa � �2i
 ~Ta; (B10)

 �#H? � �2i
�TN; (B11)

 

g#H ? � �2i
 ~TN: (B12)

The five equations (B8)–(B12) are the equations of motion
of � in the absence of torsion, written in terms of differ-
ential forms.

Using Eq. (A3) one obtains:

 Qb � Kc
f�2�R

de
gh �

4
3K

d
gKe

h��NbcdeE
f ^ Eg ^ Eh:

Dualizing with respect to �Nafgh one obtains Qa
b given by

expression (9). Dualizing #H? one obtains the scalar:

 H ? �

�
�
2
Rabef � K

a
eKb

f

��
�
2
Rcdgh � K

c
gKd

h

�
�efghabcd

�

�
1

4
RabefR

cd
gh �

�
2
Ka

eK
b
fR

cd
gh

�
�efghabcd

�
3

4
Ka

bQ
b
a:

Thus, dualizing Eqs. (B8)–(B12) gives the five equations
in tensor form. We can combine with the Einstein term to
give the conditions for the general Einstein-Gauss-Bonnet
theory described by the action (7),

 � c1���Ka
b � �

a
b�K� �

c2

2
�Qa

b � Sab; (B13)

 � c1���Ka
b � �

a
b�K�;a �

c2

2
�Qa

b;a � �TNb; (B14)

 � c1�� ~K
a
b � �

a
b

~K�;a �
c2

2
~Qa

b;a � ~TNb; (B15)

 

c1�
4

�Ka
c

~Kb
d�

cd
ab �

c2

2
�H? � �TNN ; (B16)

 

�c0�c1

�
R�

�
4
f ~Ka

c
~Kb
d��Ka

c�Kb
dg�

ab
cd

�
�
c2

2
~H?� ~TNN:

(B17)

We show now that the junction condition (B8) is well
defined. The thin-shell limit is well defined in the following
sense: starting from a thick shell, in the limit that its
thickness becomes zero, the results are insensitive to the
way in which the limit is taken. This has been discussed at
some length in the literature (e.g. [35]) but it is worth
giving a precise statement of this here, since the subject
still causes some confusion. To see this more explicitly, let
us define a family of metrics g���AB , parametrized by a
positive number �, which describe a thick shell of charac-
teristic thickness / 1=�. We can foliate the neighborhood
of the shell into tangential slices and a normal vector N���.
Let us define ���� � !��� �!k, where !k is the intrinsic
connection induced on the slice. In the limit �! 1, the
one-form ���� tends towards something discontinuous: it is
equal to �� in one region and �� in the other region. So the
components of � become discontinuous.

Let us now look at what happens to the field equations,
����	� � �2TA	

A. From the identity (B3) we obtain
 

����	� � ���k�k	� � d
�
2
Z 1

0
dt ����t	�

�
� 2

Z 1

0
dt �AB�t

CD


 �ABCDED�!t�	
E: (B18)

We integrate the identity (B18) over the thick shell. The
potentially singular terms are those which contain the
normal derivative of ����. Everything else is smooth or
remains finite. The first term on the right-hand side
(r.h.s.) of (B18) gives the junction condition (B8). The
claim is that this term contains all the singular terms.
From the second term on the r.h.s. of (B18) the normal
derivative of ���� appears as

 �ABCDE�a
AB@N�b

CDEN ^ Ea ^ Eb ^D�!t�	
E; (B19)

using an adapted frame �EN; Ea� on the foliation. The index
� will be dropped from now on. Now �a

AB are the compo-
nents of the second fundamental form of a slice in the
foliation: one of the indices A, B is a normal index. Thus
two indices contracted to the antisymmetric symbol
�ABCDE are normal. The quantity (B19) vanishes identi-
cally. The integral of the second term in the r.h.s. of (B4)
goes to zero for �! 1. The discontinuity of � is con-
tained in a total derivative. The singular part of the field
equations is well defined as a Dirac � distribution.

Let us say a few more words. The equations of motion
����	� have a singular term of the form  �@N�, where
 � and � are three different components of �. In general,
these components will converge in the weak sense to a
Heaviside type of distribution H in different ways, so the
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product does not in general tend towards an unambiguous
distribution (i.e. it is not exactly of the form H2�x���x� �
��x�=3, where � is the Dirac � distribution, as would
happen with a single function discontinuous at x � 0).
However, as discussed above, the simple fact is that they
always appear in a combination which is a total derivative
@N� ���. This product of functions in the brackets is a
single function which converges to H. Its derivative is
unambiguously defined as a distribution in the limit as �.

A corollary of this and of the comments above is that the
integral of the field equations of a physically thin shell is
well described by these equations, i.e. if we allow for the
shell to have a little thickness then in a first order approxi-
mation the results do not change if we change the configu-
ration in the interior. The integrated stress tensor Sab is
unambiguously related to �� and ��, the values of � on
each side of the shell.

[1] W. Israel, Nuovo Cimento B 44S10, 1 (1966); 48, 463(E)
(1967); 44, 1 (1966).

[2] S. C. Davis, Phys. Rev. D 67, 024030 (2003).
[3] E. Gravanis and S. Willison, Phys. Lett. B 562, 118

(2003).
[4] K. A. Meissner and M. Olechowski, Phys. Rev. Lett. 86,

3708 (2001); A. Iglesias and Z. Kakushadze, Int. J. Mod.
Phys. A 16, 3603 (2001).

[5] C. W. Misner and J. A. Wheeler, Ann. Phys. (N.Y.) 2, 525
(1957).

[6] D. Lovelock, J. Math. Phys. (N.Y.) 12, 498 (1971).
[7] J. E. Kim, B. Kyae, and H. M. Lee, Nucl. Phys. B582, 296

(2000); B591, 587(E) (2000); I. Low and A. Zee, Nucl.
Phys. B585, 395 (2000); N. E. Mavromatos and J. Rizos,
Phys. Rev. D 62, 124004 (2000); I. P. Neupane, J. High
Energy Phys. 09 (2000) 040; J. E. Kim, B. Kyae, and H. M.
Lee, Phys. Rev. D 64, 065011 (2001).

[8] C. Charmousis and J. F. Dufaux, Classical Quantum
Gravity 19, 4671 (2002).

[9] K. i. Maeda and T. Torii, Phys. Rev. D 69, 024002 (2004).
[10] C. Barrabes and W. Israel, Phys. Rev. D 71, 064008

(2005); A. N. Aliev, H. Cebeci, and T. Dereli, Classical
Quantum Gravity 23, 591 (2006); T. Kobayashi, T.
Shiromizu, and N. Deruelle, Phys. Rev. D 74, 104031
(2006).

[11] K. Konya, gr-qc/0605119.
[12] G. A. S. Dias, S. Gao, and J. P. S. Lemos, Phys. Rev. D 75,

024030 (2007).
[13] J. Crisostomo, S. del Campo, and J. Saavedra, Phys. Rev.

D 70, 064034 (2004).
[14] J. Crisostomo and R. Olea, Phys. Rev. D 69, 104023

(2004).
[15] M. Hassaine, R. Troncoso, and J. Zanelli, Phys. Lett. B

596, 132 (2004).

[16] A. H. Chamseddine, Phys. Lett. B 233, 291 (1989).
[17] A. H. Chamseddine, Nucl. Phys. B346, 213 (1990).
[18] A. Achucarro and P. K. Townsend, Phys. Lett. B 180, 89

(1986).
[19] E. Witten, Nucl. Phys. B311, 46 (1988).
[20] C. Teitelboim and J. Zanelli, Classical Quantum Gravity 4,

L125 (1987).
[21] D. G. Boulware and S. Deser, Phys. Rev. Lett. 55, 2656

(1985).
[22] R. G. Cai and N. Ohta, Phys. Rev. D 74, 064001 (2006).
[23] C. Garraffo, G. Giribet, and S. Willison (unpublished).
[24] M. Visser, Nucl. Phys. B328, 203 (1989).
[25] M. Thibeault, C. Simeone, and E. F. Eiroa, Gen. Relativ.

Gravit. 38, 1593 (2006).
[26] M. S. Morris, K. S. Thorne, and U. Yurtsever, Phys. Rev.

Lett. 61, 1446 (1988); A more recent reference is: M.
Visser, S. Kar, and N. Dadhich, Phys. Rev. Lett. 90,
201102 (2003).

[27] K. Ghoroku and T. Soma, Phys. Rev. D 46, 1507 (1992).
[28] B. Bhawal and S. Kar, Phys. Rev. D 46, 2464 (1992).
[29] G. Dotti, J. Oliva, and R. Troncoso, Phys. Rev. D 75,

024002 (2007).
[30] R. Zegers, J. Math. Phys. (N.Y.) 46, 072502 (2005).
[31] H. Maeda and N. Dadhich, Phys. Rev. D 75, 044007

(2007).
[32] T. Eguchi, P. B. Gilkey, and A. J. Hanson, Phys. Rep. 66,

213 (1980); B. Zumino, Phys. Rep. 137, 109 (1986).
[33] Y. Choquet-Bruhat, C. DeWitt-Morette, and M. Dillard-

Bleick, Analysis, Manifolds and Physics (North-Holland,
Amsterdam, 1982).

[34] R. C. Myers, Phys. Rev. D 36, 392 (1987).
[35] N. Deruelle and C. Germani, Nuovo Cimento Soc. Ital.

Fis. 118B, 977 (2003).

ELIAS GRAVANIS AND STEVEN WILLISON PHYSICAL REVIEW D 75, 084025 (2007)

084025-12


