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We consider the spacetime structure of Kerr-Gödel black holes, analyzing their parameter space in
detail. We apply the tunnelling method to compute their temperature and compare the results to previous
calculations obtained via other methods. We claim that it is not possible to have the closed timelike curve
(CTC) horizon in between the two black hole horizons and include a discussion of issues that occur when
the radius of the CTC horizon is smaller than the radius of both black hole horizons.
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I. INTRODUCTION

There has been a fair amount of activity in recent years
studying Gödel-type solutions to 5d supergravity [1–14].
Various black holes embedded in Gödel universe back-
grounds have been obtained as exact solutions [2,4,10]
and their string-theoretic implications make them a lively
subject of interest. For example Gödel-type solutions have
been shown to be T-dual to pp-waves [3–5]. Since closed
timelike curves (CTCs) exist in Gödel spacetimes, these
solutions can be used to investigate the implications of
CTCs for string theory [6,7,9,11].

The black hole solutions are of the Schwarzschild-Kerr
type embedded in a Gödel universe [4]. A study of their
thermodynamic behavior [12,14] has indicated that the
expected relations of black hole thermodynamics are sat-
isfied. Making use of standard Wick-rotation methods,
their temperature has been shown to equal �=2� (where
� is the surface gravity) their entropy to equal A=4 (where
A is the surface area of the black hole) and the first law of
thermodynamics to be satisfied.

We consider in this paper an analysis of the Kerr-Gödel
spacetime, employing the tunnelling method [15–29] to
analyze its thermodynamic properties. The tunnelling
method is a semiclassical approach to black hole radiation
that allows one to calculate the temperature in a manner
independent of the traditional Wick-rotation methods of
temperature calculation. As such it provides a useful cross-
check on the thermodynamic properties of these objects
and has been shown to be quite robust, having been applied
to a variety of different spacetimes such as the Kerr and
Kerr-Newmann cases [18,19,22], black rings [20], the 3d
BTZ black holes (a class of 3d black holes originally
discovered by Bañados, Teitelboim, and Zanelli) [16,21],
and the Vaidya [27] and Taub-NUT spacetimes [22]. The
presence of CTCs merits consideration of the applicability
of the tunnelling method to Kerr-Gödel spacetimes.
Because of the presence of a CTC horizon (in addition to
the usual black hole horizons) some qualitatively new
features appear. Our investigation of these spacetimes is

in large part motivated by the fact that these new features
provide additional tests as to the robustness of the tunnel-
ling approach.

We begin by reviewing the Kerr-Gödel spacetime and
some of its properties. We then describe, in Sec. III, prop-
erties of its parameter space and show that either the CTC
horizon is outside both black hole horizons, inside both
black hole horizons, or in coincidence with one of the
horizons. We claim that it is not possible for the CTC
horizon to be strictly in between the two black hole hori-
zons, a property previously overlooked in discussions of
this spacetime [14]. We then quickly review the tunnelling
method and apply it to calculate the temperature of Kerr-
Gödel spacetimes, showing consistency with previous re-
sults. We extend our investigation further insofar as we
include a brief discussion of the issues that occur when the
CTC horizon is inside the black hole horizons.

II. REVIEW OF 5D KERR-GÖDEL SPACETIMES

The 5d Kerr-Gödel spacetime has the metric [4]

 ds2 � �f�r�
�
dt�

a�r�
f�r�

�3

�
2
�
dr2

V�r�
�
r2

4
��2

1 � �
2
2�

�
r2V�r�
4f�r�

�2
3; (1)

 A �

���
3
p

2
jr2�3; (2)

where

 f�r� � 1�
2m

r2 ; a�r� � jr2 �
ml

r2 ;

V�r� � 1�
2m

r2 �
16j2m2

r2 �
8jml

r2 �
2ml2

r4 ;

and the �’s are the right-invariant one-forms on SU(2),
with Euler angles ��;�;  �:

 �1 � sin�d�� cos� sin�d ;

�2 � cos�d�� sin� sin�d ; �3 � d�� cos�d :

This metric may be obtained by embedding the Kerr black
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hole metric (with the two possible rotation parameters set
to the same value i.e. l1 � l2 � l) in a 5d Gödel universe.

This metric and gauge field satisfy the following 4�
1-dimensional equations of motion:
 

R�� � 2
�
F��F�

� �
1

6
g��F

2

�
;

D�F�� �
1

2
���
3
p ~	�
���F�
F��;

where

 

~	 �
��� �
�������
�g
p

	�
���:

Some other useful ways to write the metric (1) are the
expanded form
 

ds2 � �f�r�dt2 � 2a�r�dt�3 � g�r��2
3 �

dr2

V�r�

�
r2

4
��2

1 � �
2
2�;

where

 g�r� �
r2V�r� � 4a2�r�

4f�r�
� �j2r4 �

1� 8mj2

4
r2 �

ml2

2r2 ;

(3)

and the lapse-shift form
 

ds2 � �N2dt2 � g�r�
�
�3 �

a�r�
g�r�

dt
�

2
�
dr2

V�r�

�
r2

4
��2

1 � �
2
2�; (4)

where

 N2 � f�r� �
a2�r�
g�r�

�
r2V�r�
4g�r�

:

When the parameters j and l are set to zero, the metric
simply reduces to the 5d Schwarzschild black hole, whose
mass is proportional to the parameter m. The parameter j is
the Gödel parameter and is responsible for the rotation of
the spacetime; when m � l � 0 the metric reduces to that
of the 5d Gödel universe [1]. The parameter l is related to
the rotation of the black hole. When j � 0 this reduces to
the 5d Kerr black hole with the two possible rotation
parameters �l1; l2� of the general 5d Kerr spacetime set
equal to l. When l � 0, the solution becomes the
Schwarzschild-Gödel black hole. The metric is well be-
haved at the horizons and the scalars only become singular
at the origin. It has been noted recently that the gauge field
is not well behaved at the horizons [14] although it is
possible to pass to a new gauge potential that is well
behaved. When g�r�< 0 then @� will be timelike, indicat-
ing the presence of closed timelike curves since � is
periodic. The point at which g�r� � 0 is where the lapse
(N2) becomes infinite, implying that nothing can cross over

to the CTC region from the region without CTC’s. This
property is implied by the geodesic solutions for
Schwarzschild-Gödel found in [4], but we will argue later
in the paper that this is a general property of Kerr-Gödel.
The lapse vanishes when V�r� � 0; these points corre-
spond to the black hole horizons.

The function f�r� is equal to zero when r �
�������
2m
p

,
corresponding to an ergosphere. The angular velocity of
locally nonrotating observers is given by � � d�

dt �
a�r�
g�r�

with �H �
a�rH�
g�rH�

denoting the angular velocity of the hori-
zon. There is a special choice of parameters that will cause
the angular velocity at the horizon to vanish (besides the
trivial l � j � 0). When l � �4jm then V�r� � 0 has
solutions at r2 � 2m and r2 � 16j2m2. The function a�r�
will be equal to zero for r2 � 2m. Consequently, �H will
vanish for the choice l � �4jm at the horizon r �

�������
2m
p

.
For the case l � 0, there is only one black hole horizon

located at rH �
������������������������������
2m�1� 8j2m�

p
. Clearly 1> 8j2m for the

horizon to be well defined. A standard Wick-rotation ap-
proach yields a temperature TH �

1

2�
���������������������
2m�1�8j2m�3
p for the

Schwarzschild-Gödel black hole [12], where the horizon
has angular velocity �H �

4j
�1�8j2m�2 . There will be no

CTC’s for r < rCTC �

���������������
�1�8mj2�
p

2j [the region where g�r�>
0], and the condition rCTC > rH corresponds to 1> 8j2m.
Hence for l � 0 the CTC horizon is always outside of the
black hole horizon. This property is not true for l � 0 and
in the next section we will investigate the conditions under
which the CTC horizon is no longer outside of the black
hole horizons.

III. ANALYSIS OF 5D KERR-GÖDEL

A. Parameter space of the 5d Kerr-Gödel

We will start by examining the parameter space of the 5d
Kerr-Gödel spacetimes. The functions of interest are
g�r� � 0, which determine the location of the CTC hori-
zon, and V�r� � 0, which determines the black hole hori-
zons. We wish to find out how the horizons behave in terms
of the parameters l and j. To simplify the analysis we will
reparameterize as follows:

 J � j
�������
8m
p

; L �
l�������
2m
p ; x �

r2

2m
; (5)

so x � 1 at the ergosphere (r2 � 2m), J2 � 1 when
8mj2 � 1, and the special case l � �4jm corresponds to
the choice L � �J.

The equations V�r� � 0 and g�r� � 0 now correspond,
respectively, to the equations

 

1

x2
�x2 � �1� J2 � 2LJ�x� L2� � 0; (6)
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 �
m
2x
�J2x3 � �1� J2�x2 � L2� � 0: (7)

There are two solutions to the quadratic Eq. (6), and there
is only one real solution to (7) when L is nonzero [it can be
shown that when L � 0 only the single nonzero solution of
(7) is relevant]. The solutions of (6) and (7) are, respec-
tively,

 x� �
1

2

�
�1� J2 � 2LJ� �

�������������������������������������������������
�1� J2 � 2LJ�2 � 4L2

q �
;

(8)

 xCTC �
C�J; L�

6J2 �
2�1� J2�2

3J2C�J; L�
�

1� J2

3J2 ; (9)

where

 C�J; L� �
�

108L2J4 � 8�1� J2�3

� 12J2
�����������������������������������������������������
3L2�27L2J4 � 4�1� J2�3

q �
1=3
:

The black hole is extremal when x� � x� and will occur
when J � �1, J � �2L� 1, J � �2L� 1. All three
horizons will coincide when J � �L � �1. Note that
black hole horizons only exist when x� > 0 since the
horizon radii r� �

�������������
2mx�
p

.
In Fig. 1 we show a 3d plot of

����������
xCTC
p

�
������
x�
p

in terms of
L and J. Note that when J2 > 1 the value of

����������
xCTC
p

�
������
x�
p

is negative so the CTC horizon is inside the black hole

horizon. In order to get a feel for how the horizons behave
it is useful to plot all three horizons (inner, outer, and CTC)
together for special values of J. The choices of J that are
interesting are J � �L (which is when �H � 0 at the
horizon located at x � 1), and the extremal cases J � 1
and J � �2L� 1. These plots are shown in Figs. 2, 3(a),
and 3(b), respectively. Notice that for Fig. 2 the CTC
horizon is either outside both of r� and r� (i.e. the black
hole horizons) or inside both r� and r� (this is also
trivially true for the other two plots since they are extremal
black holes). In all three plots the change from CTCs
outside the black hole horizons to inside the horizons
occurs when you go beyond the points J � �L � �1.

We claim that is not possible to have the CTC horizon
located in between the two black hole horizons. Assuming
the contrary, consider the problem of finding values of J
and L when the CTC horizon is in between the two black
hole horizons. We first look for solutions when the CTC
horizon is in coincidence with one of the black hole
horizons. We find that xCTC � x� when the equation

 �3J2 � 2JL� 2�2 � 4J2 � 5J4 � 0 (10)

holds. Notice that J � �L � �1 are solutions to (10).
An analysis of the curve resulting from the left-hand side

of (10) indicates that when both J2 < 1 and L2 < 1 then the
CTC horizon is coincident with the outer horizon; on either
side of this curve the CTC horizon is outside both black
hole horizons. When both J2 > 1 and L2 > 1 then the CTC
horizon is coincident with the inner horizon, and on either
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FIG. 1. 3d plot of
�������
xctc
p

�
������
x�
p

in terms of L and J (i.e.
compares location of the CTC horzion to largest black hole
horizon) Note: Regions when J2 > 1 are negative which means
the CTC horizon is inside the black hole horizon. The peak at
J � 0 corresponds to the infinite CTC horizon and indicates
regular 5d Kerr.
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FIG. 2. Plots of
�������
xctc
p

,
������
x�
p

,
������
x�
p

it terms of L and when J �
�L, Note: Dashed line corresponds to

�������
xctc
p

and solid lines are������
x�
p

,
������
x�
p

. Notice the CTC’s horizon is either outside both
horizons or inside both horizons but never in between.
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side of this curve the CTC horizon is inside both r� and r�.
In all other regions of parameter space the metric (4) has
naked singularities. Figure 4 illustrates this behavior in
terms of J and L. In the gray region the CTC horizon is
outside both black hole horizons. In the black region the
CTC horizon is inside both r� and r�. The white line
corresponds to the curves resulting from (10). In the white

region the metric has no black hole horizons and naked
singularities are present.

An alternate verification for the fact that the CTC hori-
zon is never in between the black hole horizons may be
obtained by substituting x� into g�x�, which shows that
when J2 < 1 then g�x��> 0, g�x�� � 0 and for J2 > 1
then g�x�� � 0, g�x��< 0 (plots not shown). Con-
ceptually it is easy to see why this property must be true
by looking at the definition (3) of the function g�r�, which
defines where the CTC horizon must be located. If r �
rCTC then g�rCTC� � 0 which implies r2

CTCV�rCTC� �
4a2�rCTC�. For this equality to be true then V�rCTC� must
be positive since every other term in the equation is posi-
tive. Since V�rCTC� cannot be negative then rCTC cannot be
in between r� and r�.

Another property worth mentioning is the location of the
black hole horizons in relation to x � 1 (i.e. the ergosphere
r �

�������
2m
p

). When J2 < 1 then x� � 1 so the horizons are
inside the ergosphere. When J2 > 1 then x� � 1 so the
‘‘horizons’’ are outside the ergosphere. Indeed when J2 >
1 the surfaces x� � 1 are not actually horizons, though we
have been using this term as a counterpart to the J2 < 1
case. Henceforth we shall refer to this as the ‘‘other re-
gion’’ of parameter space.

Our finding that the CTC horizon can never be in be-
tween the two black hole horizons is contrary to assump-
tions made in previous work [14]. However, the resultant
thermodynamics is not significantly altered, as all main
results consider only the situation when the CTC horizon is
outside the black hole. In the next two sections we will
discuss the properties of the black hole region and the other
region of parameter space.

B. Black hole region of parameter space (J2 < 1)

This is the region that is well understood and can be
simply regarded as a Kerr black hole embedded in a Gödel
spacetime, with the CTC horizon outside of the black hole
horizons. To better understand this case we will take a look
at the geodesics in the �t; r; �� plane (with � and  fixed).
The metric becomes

 ds2 � �
r2V�r�
4g�r�

dt2 � g�r�
�
d��

a�r�
g�r�

dt
�

2
�
dr2

V�r�
:

(11)

Note that g�rH� � 0 for the choice of parameters (� 1 �
J � 1, � 1

2�
J
2 � L � 1

2�
J
2 ) that we are considering. For

convenience we impose the further restriction that L �

�3J2�2�
��������������
5J4�4J2
p

2J and L � �3J2�2�
��������������
5J4�4J2
p

2J so that g�rH�>
0 and the CTC horizon is strictly outside the outer black
hole horizon.

The tangent vector to a geodesic is given by

 u� � 	 _t; _r; _�
;

where the dot denotes the derivative with respect to the

 

FIG. 4. Plot of the horizon behavior in terms of J and L. The
white region corresponds to naked singularities (no black hole
horizons). In the gray region the CTC horizon is outside both
black hole horizons. In the black region the CTC horizon is
inside both black hole horizons. The white line corresponds to
the special case when the CTC horizon is in coincidence with a
black hole horizon (outer horizon in gray region, inner horizon in
black region, and both at the special points J � �L � �1).

 

FIG. 3. Plots of
�������
xctc
p

,
������
x�
p

,
������
x�
p

in terms of (a) L when J � 1,
(b) L when J � �2L� 1 Note: The dashed line corresponds to����������
xCTC
p

and solid lines are
������
x�
p

,
������
x�
p

(these are extremal cases so������
x�
p

�
������
x�
p

). Notice, black hole horizons do not exist for (a)
when L > 0 and (b) when L > 0. Also in (b)

����������
xCTC
p

is infinite at
L � � 1

2 because J � 0 which is 5d Kerr.
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affine parameter �. For this metric @t and @� are Killing
vectors so in general the energy and angular momentum for
these geodesics are, respectively,
 

E �
r2V�r� � 4a2�r�

4g�r�
_t� a�r� _�;

‘ � �a�r� _t� g�r� _�:

We are interested in geodesics with ‘ � 0. Note that for
constant r the quantity d � d�� a�r�

g�r� dt is constant (i.e.
d
d� � 0); for r � rH these correspond to geodesics for
which  � ���Ht is constant on the horizon [recall
�H �

a�rH�
g�rH�

].

Setting ‘ � 0 yields a�r�
g�r�

_t � _� and E � r2V�r�
4g�r�

_t. For null

geodesics we find _r � � rV�r�

2
������
g�r�
p _t, so that

 u�� � K�

�
g�r�

V�r�r2 ;�

���������
g�r�

p
2r

;
a�r�

V�r�r2

�
; (12)

where the plus/minus signs refer to outgoing/ingoing geo-
desics. When l � 0 this can be solved explicitly, and we
recover the results for geodesic motion examined in
Ref. [4]. The K�’s are constants related to the energy E �
K�
4 . Choosing the normalization

 g�
u��u


� � �1

at some point r � r0, we obtain

 K�K� �
2r2

0V�r0�

g�r0�
;

and for convenience we pick K� � 1, K� �
2r2

0V�r0�

g�r0�
. The

expansion scalar for null geodesics is

 ��u�� � �
K�g0�r�

4r
���������
g�r�

p ;

and we see that for outgoing null rays there is a sign
difference between geodesics starting inside the horizon
(r0 < rH) and geodesics starting outside (r0 > rH), with no
such change for ingoing geodesics, as expected for a
trapped surface at r � rH.

We can also say useful things about the CTC boundary.
It occurs when g�rCTC� � 0, so the expansions are infinite
there. Furthermore dr

dt is infinite and dr
d� � 0 there, implying

that null geodesics cannot cross the CTC boundary. These
results are consistent with the observations for the
Schwarzschild-Gödel (l � 0) case [4]: null geodesics will
take infinite coordinate time t to go between the black hole
horizon and CTC boundary. The CTC boundary is reached
in finite affine parameter � although once the null ray
reaches the CTC horizon it spirals back toward the black
hole.

C. The other region of parameter space (J2 > 1)

When xCTC < x�, i.e. the CTC boundary is the inner-
most surface, it is unclear what sort of object we now have.
For convenience we shall continue to use the term horizon
to signify x�, and the term ergosphere to denote the surface
x � 1 (r �

�������
2m
p

), mindful of potential abuses of language.
Both horizons are now outside of the ergosphere, but the
CTC boundary can either be inside or outside of this
surface, depending on the choice of parameters. For ex-
ample for J � 1:5, L � �2, xCTC > 1 (and xCTC < x� <
x�) but xCTC < 1 for J � 2, L � �2.

To understand the causal properties of this spacetime we
shall consider the metric for fixed � and  for convenience.
Consider the behavior of

 ds2 � �
r2V�r�
4g�r�

dt2 � g�r�
�
d��

a�r�
g�r�

dt
�

2
�
dr2

V�r�

�
r2V�r�
4jg�r�j

dt2 � jg�r�j
�
d��

a�r�
jg�r�j

dt
�

2
�
dr2

V�r�
;

(13)

where in the outer region r > r� we see that g�r�< 0 and
V�r�> 0, and so we have rewritten the metric for fixed
��;  � in the 2nd line above. For r� < r < r� then g�r�< 0
and V�r�< 0.

We can define a new coordinate  � �� a�r0�
g�r0�

t for some
r0 > r� and the metric is now
 

ds2 � ��f�r� � g�r��2 � 2a�r���dt2

� 2�g�r��� a�r��dtd� g�r�d2 �
dr2

V�r�
; (14)

where � � a�r0�
g�r0�

. For a fixed value of r � r0 > r� this
metric simplifies to

 ds2 � �
r2

0V�r0�

4jg�r0�j
dt2 � jg�r0�jd2: (15)

Since gtt > 0, g < 0 we see that  functions as the time
coordinate, but only near r � r0. For any given r0 > r�
it is possible to choose such a time coordinate  in a
neighborhood of r0 and the metric always has signature
�� �����.

When r� < r< r� the signature of the metric becomes
�� ����� and so this region is not a physical space-
time. There is no choice of coordinate transformation that
will allow the metric to have correct signature. This is
easily seen by expanding the metric near r�

 ds2 � �
r2
�V
0�r��

4jg�r��j
�r� r��dt

2 � 2�g0�r���� � a
0�r���

� �r� r��dtd� jg�r��jd2 �
dr2

V0�r���r� r��

indicating that the metric changes signature as r passes
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through r� from above. There is a conical singularity at
r � r� that is removed by imposing a periodicity on t of
r�V

0�r��

8�
�����������
jg�r��j
p . Hence the region r > r� is a regular spacetime

everywhere permeated by closed timelike curves due to the
periodicity of � and t.

Setting now r < r� we need to consider two distinct
cases depending on where the ‘‘ergosphere’’ (rergo ��������

2m
p

) is located with respect to the CTC horizon. These
are rergo < rCTC < r� (represented by the black region in
Fig. 5 in terms of L and J parameters) and rCTC < rergo <
r� (represented by the gray region in Fig. 5 in terms of L
and J parameters).

We will start with the rergo < rCTC < r� case and we
will restrict ourselves to CTC region rCTC < r< r� so that
g�r�< 0 and V�r�> 0. So for this case the metric is once
again in the same form as (13). It is possible for an arbitrary
r0 (rCTC < r0 < r�) to choose a coordinate  � �� a�r0�

g�r0�
t

and the metrics (14) and (15) will be valid in this region.
Expanding the metric near r� gives
 

ds2 � �
r2
�jV0�r��j
4jg�r��j

�r� � r�dt
2 � 2�g0�r����

� a0�r����r� � r�dtd� jg�r��jd2

�
dr2

jV 0�r��j�r� � r�
;

again showing that when r� < r < r� the signature of the
metric becomes �� �����. Removal of the conical

singularity at r � r� is achieved by imposing a periodicity
on t of r�jV0�r��j

8�
�����������
jg�r��j
p . Notice that this differs from that imposed

in the r > r� region, as expected for two regions that are
disconnected spacetimes. Referring back to (14), for an
arbitrary choice of  we see that g ! 0 as the CTC
horizon is approached. At the CTC horizon gtt can be
either positive or negative depending on the � that defined
. Examining (14) at r � rCTC, it is clear that gtt will be
positive if (a) � has an opposite sign to a�rCTC� [in general
this will be true since � � a�r0�

g�r0�
and g�r0� is negative] and

(b) j�j> f�rCTC�
2ja�rCTC�j

(i.e. r0 must be chosen to be close
enough to rCTC so that this inequality will be satisfied);
otherwise gtt will be negative at the CTC horizon. So for an
arbitrary choice of parameters L and J it will not be
possible to choose a single coordinate  for which one
can write the metric in a form in which rt is spacelike
everywhere between rCTC and r�. However, for an arbi-
trary r0 we can choose a coordinate  so that in a neigh-
borhood of r0 the metric can be written with rt spacelike.

The rctc < rergo < r� case is a little more interesting due
to the presence of the ergosphere. Outside of the ergo-
sphere the analysis remains the same as the previous r <
r� case. Inside the ergosphere at any given r0 one can still
choose  ��� a�r0�

g�r0�
t. However, when rctc < r < rergo it is

sufficient to choose � � 0 because f�r� is negative and the
metric

 ds2 � �f�r�dt2 � a�r�dtd�� g�r�d�2 �
dr2

V�r�

� jf�r�jdt2 � a�r�dtd�� g�r�d�2 �
dr2

V�r�

is such that � is the time coordinate inside the ergosphere.

IV. TEMPERATURE FROM TUNNELING

We now examine the application of the tunnelling
method to the Kerr-Gödel spacetime. For the case when
the CTC horizon is outside the black hole horizons the
temperature has been computed previously by other means
[12,13], allowing us to compare these with the tunnelling
results. We can also see if any tunnelling occurs from the
CTC horizon.

A. Review of the tunneling method

The tunnelling method is a semiclassical approach that
considers a particle idealized as a spherical wave of matter
emitted from inside the horizon to outside. From the WKB
approximation the tunneling probability for the classically
forbidden trajectory of the s-wave from inside to outside
the horizon is

 � / exp��2 ImI� (16)

(here @ is set equal to unity). Expanding the action in terms

 

FIG. 5. Plot of horizon behavior in terms of J and L. The curve
corresponds to rCTC �

�������
2m
p

. In the black region rCTC >
�������
2m
p

and in the gray region rCTC <
�������
2m
p

.
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of the particle energy, the Hawking temperature is recov-
ered at linear order. In other words for 2I � 
E�O�E2�
this gives

 �� exp��2 ImI� ’ exp��
E�: (17)

From this point there are two approaches that can be
used to calculate the imaginary part of the action, referred
to as the null geodesic method and the Hamilton-Jacobi
Ansatz (refer to [22] for more details on the two ap-
proaches). We will only use the null geodesic method in
this paper.

The imaginary part of the action for an outgoing s-wave
(which follows a radial null geodesic) from rin to rout is
expressed as

 I �
Z rout

rin

prdr �
Z rout

rin

Z pr

0
dp0rdr; (18)

where rin and rout are the respective initial and final radii of
the black hole. The trajectory between these two radii is the
barrier the particle must tunnel through. Note the local
nature of this calculation: the tunnelling probability only
depends on an integration from rin to rout. In fact only the
near horizon form of the black hole metric is required in
order to calculate the tunneling probability (and hence the
black hole temperature) [16,22]. So a stationary observer
anywhere outside the black hole would be able to observe
the emission and measure the temperature. This is in con-
trast with the Wick-rotation method which requires a (sca-
lar) field at infinity to be in equilibrium with the black hole
in order to get the temperature. The presence of the CTC
horizon at large distances renders the foundations of this
latter approach somewhat questionable.

We assume that the emitted s-wave has energy ! M
and that the total energy of the spacetime was originallyM.
Invoking conservation of energy, to this approximation the
s-wave moves in a background spacetime of energy M !
M�!0. In order to evaluate the integral, we employ
Hamilton’s equation _r � dH

dpr
jr to switch the integration

variable from momentum to energy (dpr �
dH

_r ), giving

 I �
Z rout

rin

Z M�!

M

dr
_r
dH �

Z !

0

Z rout

rin

dr
_r
��d!0�; (19)

where dH � �d!0 because total energy H � M�!0

with M constant. Note that _r is implicitly a function of
M�!0. Since ! M it is possible to rewrite the expres-
sion in terms of an expansion of !. To first order this gives

 I �
Z !

0

Z rout

rin

dr
_r�r;M�!0�

��d!0�

� �!
Z rout

rin

dr
_r�r;M�

�O�!2� ’ !
Z rin

rout

dr
_r�r;M�

: (20)

To proceed further we will need to estimate the last inte-
gral. First we note that rin > rout because black holes
decrease in mass as energy is emitted; consequently the

radius of the event horizon decreases. We therefore write
rin � rH�M� � 	 and rout � rH�M�!� � 	 where rH�M�
denotes the location of the event horizon of the original
background spacetime before the emission of particles.
Henceforth the notation rH will be used to denote rH�M�.
Note that with this generalization no explicit knowledge of
the total energy or mass is required since rH is simply the
radius of the event horizon before any particles are emitted.

We pause to discuss a few technical points connected
with rotating spacetimes [16,22]. In general the emitted
s-wave could carry angular momentum ‘; if it has energy E
then the tunnelling probability to the lowest order would be

 � ’ exp��
�E��H‘��;

where �H is the angular velocity of the black hole horizon.
For this tunnelling probability to make sense we must
require E��H‘ > 0. This inequality corresponds to the
s-wave being able to escape from the ergosphere. For
calculating the temperature 
�1 it is sufficient to restrict
to ‘ � 0 s-waves.

B. Temperature calculation

Turning now to calculation of the black hole temperature
[15–29], recall that the full metric in lapse-shift form is
(4). To employ the null geodesic method it is convenient to
write the metric in a Painlevé form so that the null geodesic
equations convey the semipermeable nature of the black
hole horizon (i.e. that it is easy to cross into the black hole
but classically they cannot escape). In order to simplify the
equations we rewrite the metric by defining  � ���Ht.
We are interested in geodesics that have no angular mo-
mentum (‘ � 0) so we set d � 0 (and for convenience
also d� � d � 0), yielding

 ds2 � �
r2V�r�
4g�r�

dt2 �
dr2

V�r�
:

We easily can rewrite this in Painlevé form via the
following transformation:

 t! t�
2
���������
g�r�

p
rV�r�

�������������������
1� V�r�

p
dr;

giving (for constant , �, and  ) the following Painleve
metric:

 ds2 � �
r2V�r�
4g�r�

dt2 �
r���������
g�r�

p �������������������
1� V�r�

p
drdt� dr2:

We need to know how the ‘ � 0 null geodesics behave
for this metric in order to solve for the imaginary part of the
action using Eq. (20). The radial null geodesic equation is
given by

 

dr
dt
�

r

2
���������
g�r�

p ��1�
�������������������
1� V�r�

p
�; (21)

where � denotes outgoing and � denotes ingoing geo-
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desics (notice that drdt � 0 at the horizon for outgoing geo-
desics and dr

dt is nonzero for ingoing geodesics). Inserting
(21) into (20) we find that 1= drdt has a first order pole at the

horizon with residue
4
���������
g�rH�
p

rHV0�rH�
. So solving the integral we

find

 

ImI �
4�!

������������
g�rH�

p
rHV

0�rH�
�O�!2�;

�� exp��2 ImI� ’ exp
�
�

8�
������������
g�rH�

p
rHV

0�rH�
!
�
:

This corresponds to a temperature

 T �
rHV

0�rH�

8�
������������
g�rH�

p ; (22)

 T �
m�r2

H�1� 8j2m� 4ml� � 2l2�

�r3
H

��������������������������������������������������������������������
�4j2r6

H � �1� 8j2m�r4
H � 2ml2

q : (23)

This temperature is the same as that obtained using Wick-
rotation methods [13,14]; when l � 0 it reduces down to
the Schwarzschild-Gödel temperature found in [12]. Note
that the expression for the temperature diverges when
g�rH� � 0, which occurs when the CTC horizon is coinci-
dent with the outer horizon. The temperature is not defined
when g�rH�< 0, an unsurprising result considering the
analysis of the other region of parameter space and the
fact the when the CTC horizon is inside the r� and r�
horizons the derivation used is not valid. Not only is t not
the correct time coordinate, but it is unclear how to even
define tunnelling from inside r� because the region r� <
r < r� is not a spacetime.

Consider next what happens if we try to apply the
tunnelling method to the CTC horizon. From (21) we

know that dr
dt ! 1 as r! rctc. This means that 1= drdt is

simply zero at the CTC horizon. Since 1= drdt has no poles
at the CTC horizon it means there is no tunnelling at the
CTC horizon.

V. CONCLUSIONS

In this paper we have reviewed some of the general
properties of the Kerr-Godël spacetime, performing de-
tailed analysis of its parameter space. There are two dis-
tinct classes. One is the class J2 < 1, corresponding to
black holes for which the CTC horizon rCTC is exterior
to the black hole horizons at r� and r�. When J2 > 1 we
obtain the other class (the ‘‘other’’ region of parameter
space), for which the CTC horizon is inside both of the
other surfaces r� and r�. We find that these are the only
two possibilities (apart from naked singularities); there is
no ‘‘in between’’ region where r� > rCTC > r�, contrary
to previous expectations [14].

Despite the presence of CTCs, we find that the tunnel-
ling method applied to the black hole region of parameter
space yields a temperature consistent with previous calcu-
lations made via Wick-rotation methods. We also find
(when rctc > r�) that there is no tunnelling through the
CTC horizon. We have discussed technical problems that
occur in trying to apply the tunnelling method to the other
region of parameter space due the fact that the region r� <
r< r� does not have the correct signature. Higher-order
corrections and applications of the method to nonradial
null rays remain as interesting problems to explore.
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