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We study the stability of black holes that are solutions of the dilaton gravity derived from string-
theoretical models in two and five dimensions under scalar field perturbations, using the Quasinormal
Modes (QNMs) approach. In order to find the QNMs corresponding to a black hole geometry, we consider
perturbations described by a massive scalar field nonminimally coupled to gravity. We find that the QNMs
frequencies turn out to be pure imaginary leading to purely damped modes, in the range 0< � < 1=4 of
nonminimal coupling constant (�), and the QNMs acquires a real part if � > 1=4 that is in agreement with
the literature of dilatonic black holes. Our result exhibits the unstable behavior of the considered geometry
against scalar perturbations. We study the instability for different values of nonminimal coupling constant.
We extend our results to the 4� 1 dimensional dilatonic black hole, where the metric is the product of a
two-dimensional asymptotically flat geometry and a three-sphere with constant radius, which are
completely decoupled from each other. The exact solution for the QNMs was obtained in the five-
dimensional case.
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I. INTRODUCTION

Two-dimensional theories of gravity have recently at-
tracted much attention [1–3] as simple toy models that
possess many features of gravities in higher dimensions.
They also have black hole solutions which play an impor-
tant role in revealing various aspects of spacetime geome-
try and quantization of gravity, and are also related to string
theory [4,5].

On the other hand, there is also a growing interest in
five-dimensional dilatonic black holes in the last few years,
since it is believed that these black holes can shed some
light to the solution of the fundamental problem of the
microscopic origin of the Bekenstein-Hawking entropy.
The area-entropy relation SBH � A=4 was obtained for a
class of five-dimensional extremal black holes in Type II
string theory using D-brane techniques [6], while in
Ref. [4] the U-duality that exists between the five-
dimensional black hole and the two-dimensional charged
black hole was exploited [5] to microscopically compute
the entropy of the latter. For that reason, it is important to
understand the dynamics of matter fields and the metric
perturbations in such black hole backgrounds in order to
find stable solutions. One of the key issues worth studying
is so-called quasinormal modes (QNMs), known as the
‘‘ringing’’ of black holes, that play an essential role in
the analysis of classical aspects of black holes physics.

In this work we are interested in the stability of the 1�
1-dilatonic black hole using the QNMs’ approach.
Quasinormal modes associated with perturbations of dif-
ferent fields were considered in different works [7], and for
AdS and dS space [8–16]. A similar situation occurs in 2�
1 dimension [17–19], and the acoustic black holes [20–

22]. Quasinormal modes of dilatonic black holes in 3� 1
dimensions can be seen in Refs. [23–25].

Determination of QNMs for a specific geometry implies
solving the field equations for different types of perturba-
tions (scalar, fermionic, vectorial, etc.), with suitable
boundary conditions that reflect the fact that this geometry
describes a black hole. Quasinormal modes for a scalar
classical perturbation of black holes are defined as the
solutions of the Klein-Gordon equation characterized by
purely ingoing waves at the horizon, �� e�i!�t�r�, since
at least a classically outgoing flux is not allowed at the
horizon. In addition, one has to impose boundary condi-
tions on the solutions in the asymptotic region (infinity),
and for that it is crucial to use the asymptotic geometry of
the spacetime under study. In the case of an asymptotically
flat spacetime, the condition we need to impose over the
wave function is to have purely outgoing waves ��
e�i!�t�r� at the infinity [8]. In general, the QNMs are given
by !QNM � !R � i!I, where !R and !I are the real and
imaginary parts of the frequency !QNM, respectively.
Therefore, the study of QNMs can be implemented as
one simple test for studying the stability of the system. In
this sense, any imaginary frequency with the wrong sign
would mean an exponentially growing mode, rather than a
damping of it.

In this work we analytically compute the QNMs of 1�
1-dilatonic black hole, in order to test stability of the
system. The organization of this article is as follows: In
Sec. II we specify the 1� 1-dilatonic black hole. In Sec. III
we determine the QNMs and we establish a criterion for
the stability of the system. In Sec. IV we study the problem
of QNMs for the five-dimensional dilatonic black hole.
Finally, we finish with the conclusions in Sec. V.
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II. 1� 1-DILATONIC BLACK HOLE

In order to have a gravity theory with dynamical degrees
of freedom in two-dimensional spacetime, we consider the
gravity coupled to a dilatonic field described by the action

 Sg �
1

2�

Z
d2x

�������
�g
p

e�2��R� 4�r��2 � 4�2�: (1)

It is worthwhile noticing that the two-dimensional critical
string theory [26] has been an inspiration of many articles,
since it is a simple toy model possessing black hole solu-
tions which can be a starting point to solve the problems of
Hawking radiation and the information loss inside black
holes [27–30].

It was also proved some time ago, that the dilatonic
black hole is a solution of an exact conformal field theory,
namely, the WZW model with gauge group SL�2; R�=U�1�.
This solution can be derived by solving the two-
dimensional beta function equations of the string theory,
that is effectively a two-dimensional graviton-dilaton sys-
tem. The equations of motion for the graviton and dilaton
are given by

 �G�� � R�� � 2r�r�� � 0; (2)

 �� � ��� 2�r��2 � 2�2 � 0: (3)

A general static metric describing a black hole in this
theory can be written as

 ds2 � �f�r�d�2 �
dr2

f�r�
; (4)

where f�r� � 1� e�� and � � �r� r0�=r0. If we change
the coordinate as x � r�r0

r0
, then the function f�r�x�� �

f�x� becomes f�x� � 1� e�x and the horizon of the black
hole is located at x � 0. This solution represents a well-
known string-theoretic black hole [4,5,26,31].

III. QUASINORMAL MODES

In order to study the QNMs, we consider a scalar field
with nonminimal coupling to gravity, propagating in the
background of the dilatonic black hole. This system is
described by the action [31]

 S�’� � �
1

2

Z
d2x

�������
�g
p

��r’�2 � �m2 � �R�’2�; (5)

where � is a parameter from the nonminimal coupling. The
field equations reads

 ����2 � �R�’ � 0; (6)

where� � r0m. In terms of the coordinate x and assuming
a solution in the form’ � e�i!tR�x�, the radial Eq. (6) can
be written as

 f@2
xR�x� � e

�x@xR�x� � �
!2

f ��
2 � �e�x�R�x� � 0:

(7)

Next, we define a new variable, z � 1� e�x, so that the
radial equation adopts the form
 

z�1� z�@z�z�1� z�@zR�z��

� �!2 � z�2 � � 0z�1� z��R�z� � 0; (8)

where � 0 � �=r2
0 is a new parameter. With the change

R�z� � z	�1� z��F�z�, the last equation reduces to the
hypergeometric differential equation for the function
F�z�, that is,

 z�1� z�F00�z� � �c� �a� b� 1�z�F0�z� � abF�z� � 0:

(9)

Here, the coefficients a, b and c are given through the
relations

 c � 2	� 1; a� b � 2�	� �� � 1;

ab � �	� ���	� �� 1� � � 0;
(10)

from where we obtain the expressions for the coefficients,

 a � 1
2�1� 2	� 2��

����������������
1� 4� 0

p
�; (11)

 b � 1
2�1� 2	� 2��

����������������
1� 4� 0

p
�; (12)

and for the exponents 	 and �,

 	 � 	i!; (13)

 � � 	
�������������������
!2 ��2

q
: (14)

Without loss of generality, above we choose the negative
signs. It is well-known that the hypergeometric equation
has three regular singular points, at z � 0, z � 1 and z �
1, and it has two independent solutions in the neighbor-
hood of each point [32]. The solutions of the radial equa-
tion reads as follows:
 

F�z� � C1F1�a; b; c; z�

� C2z1�cF1�a� c� 1; b� c� 1; 2� c; z�; (15)

where F1�a; b; c; z� is the hypergeometric function and C1,
C2 are constants. The solution for R�z� is then
 

R�z� � C1z
�i!�1� z��i

������������
!2��2
p

F1�a; b; c; z�

� C2z
i!�1� z��i

������������
!2��2
p

F1


 �a� c� 1; b� c� 1; 2� c; z�: (16)

Note that, when c � 1, two solutions become linearly
dependent and the general solution represents a bound
state. This point was discussed in Ref. [31].

In the neighborhood of the horizon (z � 0), the function
R�z� behaves as
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 R�z� � C1e
�i! lnz � C2e

i! lnz; (17)

and the scalar field ’ can be written in the following way:

 ’� C1e�i!�t�lnz� � C2e�i!�t�lnz�: (18)

From the above expression it is easy to see that the first
term corresponds to an ingoing wave, while the second one
represents an outgoing wave in the black hole. For comput-
ing the QNMs, we have to impose that there exist only
ingoing waves at the horizon so that, in order to satisfy this

condition, we set C2 � 0. Then the radial solution at the
horizon is given by

 R�z� � C1z
�i!�1� z��i

������������
!2��2
p

F1�a; b; c; z�: (19)

In order to implement the boundary conditions at the
infinity (z � 1), we use the linear transformation z! 1�
z, and then we apply the Kummer’s formula [32] for the
hypergeometric function. We obtain

 R�z� � C1z�i!�1� z��i
������������
!2��2
p ��c���c� a� b�

��c� a���c� b�
F1�a; b; a� b� c� 1; 1� z� � C1z�i!�1� z�i

������������
!2��2
p



��c���a� b� c�

��a���b�
F1�c� a; c� b; c� a� b� 1; 1� z�: (20)

The above solution near the infinity (z � 1) takes on the
form
 

R�z� � C1�1� z�
�i

������������
!2��2
p ��c���c� a� b�

��c� a���c� b�

� C1�1� z�
i
������������
!2��2
p ��c���a� b� c�

��a���b�
; (21)

while the solution for the scalar field near the infinity
behaves as
 

’� C1e
�i

������������
!2��2
p

�t�ln�1�z�� ��c���c� a� b�
��c� a���c� b�

� C1e�i
������������
!2��2
p

�t�ln�1�z�� ��c���a� b� c�
��a���b�

: (22)

In order to compute the QNMs, we also need to impose the
boundary conditions on the solution of the radial equation
at infinity, meaning that only purely outgoing waves are
allowed there. Therefore, the second term in the above
expression should be zero, what is fulfilled only at the
poles of ��a� or ��b�. Since the gamma function ��x�
has the poles at x � �n for n � 0; 1; 2; . . . , the wave
function satisfies the considered boundary condition only
upon the following additional restriction:

 a � �n; (23)

or

 b � �n; (24)

where n � 0; 1; 2; . . . . These conditions determine the
form of the quasinormal modes, that is, from Eqs. (12)
and (33), we find
 

! � �
i
4

�
1�

����������������
1� 4� 0

p
�
�1�

����������������
1� 4� 0

p
��2

n� n2 � � 0

� n
�
2�

2�2

n� n2 � � 0

��
: (25)

The expression (25) for frequencies shows a possible in-
stability of the black hole under scalar perturbations, which
could imply an exponentially growing mode if the wrong
sign of the pure imaginary frequency had been chosen
(positive). This issue is clarified in Figs. (1 and 2.
Figure 1 shows the instability arising in the fundamental
mode for scalar perturbations that excite this mode, in the
range 0 � � 0 � 1=4. Note that in this range of the non-
minimal coupling parameter the quasinormal modes are
purely imaginary, as in the 2� 1-dilatonic case [33]. The
plot in the figure corresponds to a mass � � 1. If we
consider an arbitrary mass for the scalar field, the insta-
bility is also present, and depends on the values of � with
respect to n. In order to explicitly show this fact, we rewrite
Eq. (25) in the following form:

 

0,00 0,05 0,10 0,15 0,20 0,25
0
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n=0

Im
(ω )

ζ'

FIG. 1. The imaginary part of the QNM’s frequency of the
fundamental mode as a function of the nonminimal coupling
parameter. This plot shows an unstable behavior of a scalar
perturbation that excites the fundamental mode. We have taken
� � 1.
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 !2D � �i
1

4�n� n2 � � 0�
��n; � 0; �2�; (26)

where
 

��n; � 0; �2� � �1� 2n�
����������������
1� 4� 0

p
��n� n2 � � 0�

� �1� 2n�
����������������
1� 4� 0

p
��2: (27)

Clearly, a possible instability depends on the sign of
��n; � 0�. First, we examine the behavior of � of the fun-
damental mode for different values of coupling constant � 0.
In the minimal coupling case (� 0 � 0)

 ��0; 0; �2� � �2�2; (28)

and this expression shows that the instability arises in the
fundamental mode (see Fig. 1). For the conformal coupling
case (� 0 � 1=4)

 ��0; 1=4; �2� � 1=4��2; (29)

and if �> 1=2 we have instability. In the range 0< � 0 <
1=4, the following relation is satisfied 1�

����������������
1� 4� 0

p
> 1 so

that sgn���n; � 0�� is fully dependent of �2. For example if
�2 � 1, then sgn���n; � 0�� � �1 and we have instability,
a similar behavior occurs if �2 > 1. When �2 < 1 we
check if ��0; � 0; �2� _ 0 then �� 0 ��2� _ �2, and it is
straightforward to check that �< 0, that means instability.
In the same line, for the overtones we see that the overtones
n < � guarantees the instability under scalar perturbations
in the minimal case. A similar situation occurs in the
conformal case, where

 ! � �i
��1� 2n�2 � 4�2�

4� 8n
; (30)

if n <�� 1=2. This strong instability is due to the fact
that n is a mode number and when we perturb the black
hole, all the modes are excited, and not only those with n >
�� 1=2. In summary, the two-dimensional dilatonic black
hole shows an unstable behavior against scalar perturba-
tions. This results was shown in Ref. [34] where the
instability of 1� 1 dilatonic black holes has been shown
using metric perturbations. In the range of parameters � 0 >
1=4, the frequency of QNMs acquires a real part,
 

! � �

����������������
4� 0 � 1

p
4

�
1�

�2

n� n2 � � 0

�

�
i
4

�
1�

�2

n� n2 � � 0
� n

�
2�

2�2

n� n2 � � 0

��
: (31)

Figure 3 shows the behavior of both the real and imaginary
parts of QNMs. In this range, we observe that the black
hole is stable for all QNMs for � 0 > 1. When � � 1, for
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FIG. 3. The upper panel shows the real part of the QNM’s
frequency as a function of the nonminimal coupling parameter
for several overtones, in the case of the two-dimensional black
hole. Note that, for a high nonminimal parameter, the real part
coalesce. The lower panel shows the imaginary part of the
QNM’s frequency as a function of the nonminimal coupling
parameter, for several overtones. It demonstrates a stable behav-
ior of scalar perturbations for all overtones with � 0 > 1. We have
taken � � 1.
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FIG. 2. The imaginary part of the QNM’s frequency as a
function of the nonminimal coupling parameter, for several
overtones. This plot shows a stable behavior of scalar perturba-
tions for all overtones. We have taken � � 1.
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the fundamental mode the instability arises for � 0 <�2,
and for the overtones (n � 0) the instability is arise for
n�n� 1�<�2 � � 0.

Finally, note that the real part of the QNMs, in the limit
of highly damped modes (i.e., QNMs with a large imagi-
nary part), tends to a constant, that is in agreement with
Refs. [35,36]. This result satisfies the Hod’s conjecture
[37].

IV. DILATONIC BLACK HOLE IN FIVE
DIMENSIONS

There is a growing interest in five-dimensional dilatonic
black holes in last years, since it is believed that these black
holes could shed some light on the fundamental problem of
the microscopic origin of the Bekenstein-Hawking en-
tropy. The area-entropy relation SBH � A=4 was obtained
for a class of five-dimensional extremal black holes in
Type II string theory, using D-brane techniques [6]. Also,
in Ref. [4], the U-duality that exists between the five-
dimensional black hole and the two-dimensional charged
black hole [5] was used to microscopically compute the
entropy of the latter.

The metric of the five-dimensional dilatonic black hole
can be written as [4]
 

ds2 � �

�
1�

r2
0

r2

��
1�

r2
0sinh2	

r2

�
�2

dt2

�

�
r2

r2
0

� 1
�
�1

dr2 � r2
0d�3

2: (32)

This metric is the product of the two completely decoupled
parts, namely an asymptotically flat two-dimensional ge-
ometry which describes a two-dimensional charged dila-
tonic black hole and a three-sphere with constant radius.
This statement can be directly shown if we apply in the
�t; r� sector the transformation defined by

 e�2=r0�x � 2�r
2

r2
0
� sinh2	��m2 � q2�1=2; (33)

where m and q are related to the mass and charge of the
dilatonic black hole [5]. Then Eq. (32) reads as follows:

 ds2 � �N2dt2 � N�2dx2 � r2
0d�3

2; (34)

with

 N2 � 1� 2me�Qx � q2e�2Qx: (35)

Now we consider the uncharged dilatonic black hole met-
ric, with q � 0,

 ds2 � ��1� 2me�Qx�dt2 �
dx2

1� 2me�Qx
; (36)

as the two-dimensional sector of five-dimensional dila-
tonic black hole that we are interested in computing for
the QNMs. To complete this issue we need to solve the
equation of motion associated to the action

 S�’� � �
1

2

Z
d5x

�������
�g
p

��r’�2 � �m2 � �R�’2�; (37)

where � is a parameter from nonminimal coupling. The
field equation reads as follows:

 ����2 � � 0R�r2
�S3�
�’ � 0; (38)

where � � r0m, � 0 � �
r2

0
and r2

�S3�
is the Laplace-Beltrami

operator in the S3 sphere. We adopt the following ansatz,

 ’���t; x�Y�
; �;��; (39)

where Y is a normalizable harmonic function on S3, i.e., it
satisfies the equation r2

�S3�
Y � 	Y, that in terms of the

coordinates in S3 can be written as
 

ccs2

�
@
@


�
sin2


@Y
@


�
� ccs2�

�
@
@�

�
sin2�

@Y
@�

��

� ccs�
@2Y

@�2

�
� 	Y�nlm�; (40)

and its solutions are given by
 

Y�nlm��
; �;�� �
�
22l�1�n� 1��n� l�!l!2

��n� l� 1�!

�


 sinl
C�l�1�
n�l �cos
�Y�lm���;��: (41)

Here, C�l�1�
n�l �cos
� are the Gegenbauer polynomials

[32,38], Y�lm���;�� are the S2 scalar harmonics, and the
coefficient is chosen to normalize the harmonics. The
eigenvalues are

 	 � �n�n� 2�; jmj � l � n � 0; 1; 2; . . . : (42)

Therefore, in this Ansatz, we can write Eq. (38) in the
following form:

 ����2 � � 0R� n�n� 2����t; x� � 0; (43)

that is identical to Eq. (6) where the term n�n� 2� is an
additive constant. If we repeat the analysis made in the
previous section, we find that the frequencies of the QNMs
are given by
 

!5D � �
i
4

�
1�

����������������
1� 4� 0

p

�
�1�

����������������
1� 4� 0

p
��2 � n�n� 2�

n0 � n02 � � 0

� n0
�
2�

2�2 � 2n�n� 2�

n0 � n02 � � 0

��
; (44)

with n (angular number) and n0 (modes number) are integer
numbers. Analogously to the 1� 1 case, we rewrite the
Eq. (44) as follows:
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 !5D � !2D � i
1

4�n0 � n02 � � 0�
�1� 2n0�n�n� 2�:

(45)

The last expression shows a similar behavior to the two-
dimensional black hole in the range 0 � � 0 � 1=4, when
n � 0 (s-waves). If n � 0, the situation is completely
different due to the inclusion of the transverse part that
ensures the stability of the five-dimensional black hole
over all QNMs. This result is shown in Fig. 4 for n � 1
and � � 1.

In the range � 0 > 1=4, a behavior similar to the one of
two-dimensional case is obtained; that is, the QNMs ac-
quire the same real and imaginary parts, and the inclusion
of the transverse term ensures the stability in this case as
well. Note that, in the limit of high damping, the real part
tends to the same constant as in the two-dimensional case.

V. FINAL REMARKS

In this paper we computed the exact values of the
quasinormal modes of dilatonic black holes in 1� 1 and
4� 1 dimensions and we have shown that the QNMs are
purely imaginary (this kind of QNM was also reported in
Refs. [22,33,39–42]) in the range 0 � � 0 � 1=4 for the
nonminimal coupling parameter. For values of this parame-
ter in the range � 0 > 1=4, we found that the QNMs acquire

real parts in both two- and five-dimensional cases, and in
the limit of higher damping they tend to have the same
constant. This result is in agreement with the Hod’s con-
jecture [37] and it also matches with the results obtained in
Ref. [35] using the WKB approximation, and in Ref. [36]
where the monodromy approach was adopted. Because the
considered kind of black hole does not exhibit a real part of
the frequencies of QNMs (analogous to the electromag-
netic perturbations for a Schwarzschild black hole, where
the real part disappears in the limit of higher damping
modes) in the range 0< � 0 < 1=4, and as the asymptotic
values of the Re�QNMs� must reproduce the black hole
entropy, Hod’s proposal could imply vanished entropy. A
possible verification of the Hod’s proposal depends on the
values of the nonminimal coupling parameter. In the con-
text of dilatonic black hole this fact does not apply in the
range 0< � 0 < 1=4 because the real part of QNMs van-
ished. This point is still an open problem and we expect to
discus it elsewhere. This shows that the Hod’s conjecture is
not clearly established at present, and is only fully appli-
cable for a single horizon black hole obtained in pure
Einstein gravity theory.

Additionally, we found that the fundamental modes of
QNMs are unstable for all values of nonminimal coupling
parameter in the range 0< � 0 < 1=4. This implies the
instability of dilatonic black holes in 1� 1 dimensions
against a scalar perturbation. For the range � 0 > 1=4 a
similar behavior occurs, and we observe that the black
hole is stable for all QNMs for � 0 > 1. In the case of � �

1 for the fundamental modes the instability arises for � 0 <
�2, and for the overtones (n � 0) the instability arises for
n�n� 1�<�2 � � 0.

Finally, we would like to emphasize that this result can
also be applied to compute the QNMs in the five-
dimensional case [4,5], where the metric is the product
of a two-dimensional asymptotically flat geometry and a
three-sphere with constant radius, which are completely
decoupled from each other.
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FIG. 4. The imaginary part of the QNM’s frequency as a
function of the nonminimal coupling parameter is illustrated
for several overtones. This plot shows the stable behavior of
scalar perturbations for all overtones of the five-dimensional
dilatonic black hole.
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