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We study the geometry and dynamics of both isolated and dynamical trapping horizons by considering
the allowed variations of their foliating two-surfaces. This provides a common framework that may be
used to consider both their possible evolutions and their deformations as well as derive the well-known
flux laws. Using this framework, we unify much of what is already known about these objects as well as
derive some new results. In particular we characterize and study the ‘‘almost isolated’’ trapping horizons
known as slowly evolving horizons. It is for these horizons that a dynamical first law holds and this is
analogous and closely related to the Hawking-Hartle formula for event horizons.
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I. INTRODUCTION

Fundamentally, there are two ways to characterize a
black hole. The first focuses on causal structure and says
that a point in an asymptotically flat spacetime is inside a
black hole if no signal from that point can reach future null
infinity (see, for example, [1]). The boundary of the black
hole region is the event horizon. This is an intuitive defi-
nition but at the same time is teleological and so highly
nonlocal—one must trace all causal curves from a point
before deciding whether or not it lies inside a black hole.
By this definition neither large spacetime curvatures nor
singularities are necessary for black hole existence.

In contrast, the second characterization is quasilocal and
geometric, saying that a point in spacetime is inside a black
hole if it lies on a trapped surface. Such surfaces, from
which both future-directed null expansions are everywhere
negative, are indicative of large spacetime curvature and so
this definition directly makes the association between
strong gravitational fields and black holes. It is also di-
rectly connected to spacetime singularities as the existence
of a trapped surface is sufficient to imply the existence of a
spacetime singularity [2].1

Traditionally, the second viewpoint inspired the defini-
tion of an apparent horizon. Given a Cauchy surface, the
trapped region is defined as the (closure of the) union of all
the trapped surfaces contained in that slice of spacetime.

The apparent horizon is then the (two-dimensional) bound-
ary of the trapped region [1]. Correspondingly, if a region
of spacetime is foliated by Cauchy surfaces, then one can
locate the apparent horizon on each slice and so define a
time-evolved (three-dimensional) version of the apparent
horizon. Often this is also referred to as the apparent
horizon.

For any given foliation of a spacetime, most trapped
surfaces will not lie in the specified slices. Thus the time-
evolved apparent horizon is defined by only a subset of the
total number of trapped surfaces and so is certainly slicing
dependent and contained in the ‘‘total’’ trapped region. The
time-evolved apparent horizons defined by various folia-
tions will typically intersect each other multiple times and
also will usually have fully trapped surfaces lying partially
outside of them (see for example [3–5] for discussions on
these points).

By definition, an apparent horizon is a boundary be-
tween regions containing trapped and untrapped surfaces.
As such, it is no surprise that it is marginally outer
trapped—that is the expansion, ��‘�, of its outward null
normal, ‘, vanishes [1]. Now, while it is certainly not true
that all such surfaces will be apparent horizons, in practical
terms it is clearly easier to find the marginally outer
trapped surfaces (MOTS) and then identify apparent hori-
zon candidates, rather than try to proceed by first identify-
ing all trapped surfaces. This is the approach taken in
numerical relativity (see for example [6]) and in fact in
that field ‘‘apparent horizon’’ is usually understood to
mean the outermost MOTS.

Other properties also can be expected from an apparent
horizon. First if there are fully trapped surfaces ‘‘just in-
side’’ the apparent horizon, then there should exist arbi-
trarily small inward deformations generated by some
spacelike vector field Xa under which the outward expan-
sion becomes negative, i.e. �X��‘� < 0. Furthermore, by
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1Of course the two definitions are not entirely independent. In

spacetimes with a well-defined future null infinity, trapped
surfaces necessarily lie within the causally defined black hole
region. Further the two characterizations both identify the same
region for the family of Kerr-Newmann solutions [1] (though
this is not necessarily true in more general spacetimes).
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continuity with the fully trapped surfaces, the expansion
��n� of the inward-pointing null normal n should be nega-
tive on the apparent horizon. Over a decade ago, Hayward
formalized this intuition in his definition of trapping hori-
zons [7]. Here, we will be mainly interested in future outer
trapping horizons (FOTHs) which are three-surfaces that
may be foliated by two-surfaces with ��‘� � 0, ��n� < 0,
and �n��‘� < 0. Although these will include most time-
evolved apparent horizons, the focus has now shifted to
the three-dimensional horizon surface itself. There is no
reference to a foliation of the full spacetime.

Marginally trapped surfaces are practical as they may be
(relatively) easily identified in simulations as well as
studied with standard geometric tools. However, they are
also philosophically appealing as, in contrast to event
horizons, their evolution is causal. As such, this idea of
studying the ‘‘boundary’’ of a trapped region without first
finding a corresponding bulk has become increasingly
popular in the last few years. Apart from the further studies
of trapping horizons [8,9] there are closely related pro-
grammes such as isolated horizons which identify and
study equilibrium states [10–14], dynamical horizons
which correspond to nontrivially evolving horizons [15–
25], and slowly evolving horizons which are ‘‘almost iso-
lated’’ trapping horizons [26,27]. For reviews of the field
see, for example [28–30].

Trapping and dynamical horizons each come equipped
with a preferred foliation into two-surfaces. It is this folia-
tion which is used to define the null normals and hence the
expansions. In this paper we will focus on variations of
these two-surfaces as a route to a better understanding of
the existence, evolutions, and deformations of the full
three-dimensional horizons. Given a vector field X �
A‘� Bn (where A and B are functions) normal to a
horizon cross section, the corresponding variations are
generated by �X. Particularly important is the variation
�X��‘� which turns out to be a second-order elliptic opera-
tor in B that is defined by the intrinsic and extrinsic
geometry of the two-surface along with components of
the Einstein tensor. The techniques used are similar to
those described in [18,31]; however, the emphasis is some-
what different. In those papers, the focus was on two-
dimensional MOTS in a three-dimensional slice of space-
time, whereas we consider general deformations of the
two-surface in the full four-dimensional spacetime.

Solutions of �X��‘� � 0 generate both the evolution and
the possible deformations of FOTHs. A judicious applica-
tion of a maximum principle to the resulting elliptic partial
differential equation is a key to both deriving new results
about these horizons and also unifying much of the existing
knowledge under a common formalism. Among other
results, this technique will be used to show that any folia-
tion of an isolated FOTH may be freely deformed (a well-
known result) while the foliation of dynamical FOTH is
rigid (a related version of this was first shown in [16]).

Conversely we will see that an isolated FOTH is rigid
against normal deformations (it may only be deformed
into itself ) while this is definitely not true for a dynamical
FOTH. However, the allowed deformations in the dynami-
cal case are strongly restricted by rules that are consistent
with, although slightly different from, those seen in [16].

Results from black hole physics also follow from the
deformation equations. Apart from the second law of hori-
zon dynamics [7,15,18] and angular momentum flux laws
[15,23,32] we will examine slowly evolving horizons in
some detail [26,27]. In particular we will explain how a
horizon may be invariantly characterized as almost iso-
lated. From this definition we will examine the circum-
stances under which a FOTH has a well-defined and slowly
varying surface gravity and derive the first law for slowly
evolving horizons. The related flux laws for event and
dynamical horizons also follow from the variation
equations.

The plan of the paper is as follows. We begin, in Sec. II,
by considering the geometry of general spacelike two-
surfaces embedded in four-dimensional spacetimes and
study how that geometry changes if the surfaces are de-
formed. From there we specialize to two-surfaces that
satisfy ��‘� � 0, ��n� < 0, and �n��‘� < 0 and study the
properties of deformations that preserve those conditions.
This is done in Sec. III. Next, in Sec. IV, we apply these
results to gain a better understanding of isolated, dynami-
cal, and future outer trapping horizons. With this general
understanding in hand we turn to a more specialized study
of slowly evolving horizons in Sec. V. Finally we compare
the flux laws for slowly evolving horizons to the corre-
sponding ones for dynamical and event horizons in Sec. VI.
Numerous technical results are found in Appendices A, B,
and C.

II. TWO-SURFACES AND THEIR DEFORMATIONS

To begin, we review the differential geometry of two-
surfaces embedded in four-dimensional spacetimes. Most
of the results appearing in this section are not new but it is
useful to gather them together here both for reference and
to set the notation and emphasis that will be found in future
sections.

A. Two-surface geometry

Let S be a closed and orientable two-surface that is
(smoothly) embedded in a four-dimensional time-oriented
spacetime �M;gab� which has metric compatible covariant
derivative ra. Then there are just two future-pointing null
directions normal to S. Let ‘a and na be null vector fields
pointing in these directions; in situations where this is
meaningful we will always take ‘a and na as, respectively,
outward and inward pointing. If we further require that ‘ �
n � �1 then there is only one remaining degree of rescal-
ing freedom in the definition of these vector fields.
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The intrinsic geometry of S is defined by the induced
metric and area form. The definition of these quantities is
independent of the choice of null vectors above; however,
for our purposes it is most useful to express them in terms
of these vectors. Thus, the induced metric on S can be
written as

 ~q ab � gab � ‘anb � ‘bna; (2.1)

while the area two-form ~� satisfies � � ‘ ^ n ^ ~� where �
is the four-volume form on M. This metric also defines the
compatible covariant derivative operator da and (two-
dimensional) Ricci scalar ~R on this two-surface.

The extrinsic geometry describes how S is embedded in
M and in the usual way is defined by how the (in this case
null) normal vectors change over S. The extrinsic curva-
tures are

 k�‘�ab � ~qca~qdbrc‘d and k�n�ab � ~qca~qdbrcnd: (2.2)

These are symmetric since ‘a and na are, by definition,
surface forming. In the standard way we decompose them
as

 k�‘�ab �
1
2��‘�~qab � �

�‘�
ab and k�n�ab �

1
2��n�~qab � �

�n�
ab ;

(2.3)

where the expansions

 ��‘� � ~qabra‘b and ��n� � ~qabranb; (2.4)

are the traces of the extrinsic curvatures and the shears

 ��‘�ab � �~q
c
a~qdb �

1
2~qab~qcd�rc‘d and

��n�ab � �~q
c
a~qdb �

1
2~qab~qcd�rcnd;

(2.5)

are the trace-free parts.
The last part of the extrinsic geometry is given by the

connection on the normal cotangent bundle T�?S, namely,

 ~!a :� �~qbancrb‘
c: (2.6)

To see that this is the connection consider a general normal
one-form �a � �‘a � �na 2 T�?S. Then a direct calcu-
lation shows that

 ~q carc�b � k���ab � �da�� ~!a��‘b � �da�� ~!a��nb;

(2.7)

where k���ab � �k�‘�ab � �k
�n�
ab . Thus, the covariant derivative

on this normal bundle is

 d?a ��‘b � �nb� :� �da�� ~!a��‘b � �da�� ~!a��nb;

(2.8)

and ~!a clearly acts as the connection. The gauge depen-
dence in this case is the scaling chosen for the null vectors.
If ‘! f‘ and n! n=f for some function f, then the
corresponding transformation for the connection is

 ~!a ! ~!a � da lnf: (2.9)

As usual the geometric, gauge independent, information
associated with the connection is contained in its curvature
which in this case is

 �ab � da ~!b � db ~!a; (2.10)

and this is constrained by the four-space curvature via the
Ricci equation (Appendix A 1):

 �ab � ~qca~qdb‘
enfCcdef � �

�‘�c
a ��n�bc � �

�‘�c
b ��n�ac ; (2.11)

where Ccdef is the Weyl curvature of the full spacetime. In
this paper we will usually be more interested in the con-
nection itself rather than this curvature.

Other constraints relating the geometry of S to the full
four-space curvature come from the Gauss and Codazzi
equations. The Gauss equation is

 ~q ea~qfb~qgc ~qhdRefgh � ~Rabcd � �k
�‘�
ac k

�n�
bd � k

�n�
ac k

�‘�
bd�

� �k�‘�bc k
�n�
ad � k

�n�
bc k

�‘�
ad�; (2.12)

where Refgh and ~Rabcd are the (four- and two-
dimensional) Riemann tensors, while the (slightly modi-
fied) Codazzi equations are

 �da � ~!a���‘� � 2�db � ~!b��
�‘�b
a � ~qbaGbc‘c

� 2~qbaCbcde‘
c‘dne (2.13)

and

 �da � ~!a���n� � 2�db � ~!b��
�n�b
a � ~qbaGbcn

c

� 2~qbaCbcdenc‘dne; (2.14)

where Gab �Rab �
1
2Rgab is the Einstein tensor. A deri-

vation of these relations can be found in Appendix A.

B. Deforming a two-surface

1. Defining variations

A variation or deformation of a two-surface So is a
smooth, one-to-one function ��s; ��: So 	 
��o; �o� !
M (with �o some real number) such that ��So; 0� � So.
Thus, � generates a (finite) three-surface T � and that
surface is foliated by images S� � ��So; �� of So as
depicted in Fig. 1. The variation vector field Xa �
�@=@��a is tangent to the curves of constant s 2 So. The
flow generated by this vector field maps leaves of constant
� into each other. Unless otherwise noted, we will restrict
our attention to normal variations where Xa is everywhere
perpendicular to the S� and so can be written:

 Xa � A‘a � Bna; (2.15)

for some functions A and B. There are no restrictions on the
values of A and B. However, in later sections we will
usually assume that Xa is ‘-oriented so that A> 0. Then
if B> 0, Xa is spacelike while B< 0 means that it is
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timelike. We will mainly be interested in situations where
B> 0, hence the negative sign in (2.15). Figure 2 should
help to keep the various cases straight.

For any values of A and B, the map � deforms So into
successive surfaces S�. To quantify the change in the
geometry, we identify points along the curves of constant
s and then calculate derivatives of the intrinsic and extrin-
sic geometry with respect to the parameter �. Taking the
normal connection ~!a as an example, we write its variation
as �X ~!a and note that calculating this quantity amounts to

(1) using � to construct the S� in a neighborhood of
� � 0,

(2) constructing the ~!a on those S� (among other things
this will involve choosing a scaling of the null
vectors), and

(3) calculating the Lie derivative LX ~!a and pulling
back the result onto So.

Thus, once the two-surfaces are constructed and ~!a calcu-
lated, we have

 �X ~!a � ~qcaLX ~!c; (2.16)

in standard four-dimensional notation.

2. Calculating variations

We now calculate some of these variations for the geo-
metric quantities that are of interest in this paper. The
easiest calculation is the variation of the two-metric. A
couple of lines of algebra shows

 �X~qab � Ak�‘�ab � Bk
�n�
ab

� �A��‘� � B��n��~qab � 2�A��‘�ab � B�
�n�
ab �; (2.17)

from which it follows that

 �X~� � �A��‘� � B��n��~�: (2.18)

These expressions justify referring to ��‘� and ��n� as ex-

pansions and ��‘�ab and ��n�ab as shears; respectively, they
describe how So expands and shears if deformed in the null
directions.

Finding the variations of the extrinsic quantities is more
involved. Here we just outline the calculations but more
details can be found in Appendix A 2. First we note that
since ‘a and na are everywhere normal to the S�, both
�X‘a � 0 and �Xna � 0 (with the usual pullbacks under-
stood). Thus

 Xbrb‘a � ��da � ~!a�B� �X‘a; (2.19)

and

 Xbrbna � �da � ~!a�A� �Xna; (2.20)

where

 �X � �Xanbra‘b (2.21)

is the component of the connection on the S� normal
bundles in the X direction. Explicitly, under rescalings ‘!
f‘ and n! n=f,

 �X ! �X �LX lnf: (2.22)

We will usually refer to �X as the surface gravity associ-
ated with Xa in analogy with the corresponding quantities
on a Killing or isolated horizon (though at this stage we
make no claims about the physical content of this
nomenclature).

The importance of (2.19) and (2.20) is that they allow us
to convert expressions involving derivatives off of So into
ones containing only quantities defined on So plus the

 

FIG. 2. The normal space at a point s 2 S�. Normal vectors
written as Xa � A‘a � Bna point into the causal future if A � 0
and B  0. The shaded region represents the ‘-oriented vector
fields for which A > 0 and B may take any value.

 

FIG. 1. A schematic of a section of T � around So. The
variation vector field Xa is everywhere tangent to the tube, points
along curves of constant s, and generates the foliation. Thus for
sufficiently small 	, one can intuitively write S	 � So � 	X.
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gauge dependent surface gravity �X. Then, with the help of
these relations a direct calculation shows that

 �X��‘� � �X��‘� � �d2B� 2 ~!adaB� B
k ~!k2 � da ~!a

� ~R=2�Gab‘
anb � ��‘���n��

� A
k��‘�k2 �Gab‘
a‘b � �1=2��2

�‘��;

(2.23)

where k ~!k2 � ~!a ~!a and k��‘�k2 � ��‘�ab�
�‘�ab.

We will also need to know �X��n� and this is most easily
calculated by substitutions into the above expression
(2.23). Exchanging ‘a and na and sending A! �B and
B! �A it is straightforward to see that

 �X��n� � �X��n� � d2A� 2 ~!adaA� A
k ~!k2 � da ~!a

� ~R=2�Gabn
a‘b � ��‘���n��

� B
k��n�k2 �Gabnanb � �1=2��2
�n��:

(2.24)

Finally, the variation of the normal connection (also de-
rived in Appendix A 2) is
 

�X ~!a � da�X � �k
�‘�
ab
d

bA� ~!bA� � k�n�ab 
d
bB� ~!bB�

� ~qab

1
2Gbc
c � CbcdeXc‘dne�; (2.25)

where 
c � A‘c � Bnc is normal to Xc. Enlisting the help
of the Codazzi equations by combining A	 �2:13� � B	
�2:14� � 2	 �2:25� this can be rewritten as

 �X ~!a � �A��‘� � B��n�� ~!a � da�X � db�A�
b
�‘�a

� B�b
�n�a� � ~qabGbc
c

� 1
2da�A��‘� � B��n��

� ��‘�daA� ��n�daB;

(2.26)

which eliminates the Weyl dependence. This is the form
that we will use.

These variations will be sufficient for most of our con-
siderations. Note that equivalent or closely related versions
of the expressions for �X��‘�, �X��n�, and �X ~!a have
previously appeared in, for example, [3,18,23,25,30,33],
though not with the particular two-surface emphasis that
we adopt here.

C. Angular momentum and its evolution

Physically, the connection ~!a defines the angular mo-
mentum associated with any rotation vector field �a on a
closed two-surface S [9,15,19,23,26,32]. By definition the
flow associated with such a �a has only two fixed points
and foliates the remainder of S into closed integral curves
of parameter length 2�. The canonical example of such a
field is a Killing vector field of the two-metric ~qab and in
that particular case it replaces the flat-space notion of an

axis of rotation. However even if it is not a Killing vector
field, it is standard to define the angular momentum of S
relative to �a as

 J
�� �
1

8�G

Z
S

~��a ~!a: (2.27)

Note that any rotation vector field �a is necessarily diver-
gence free and a quick calculation with the help of (2.9)
shows that this expression is independent of the scaling of
the null vector fields. Alternatively if the surface S has a
suitable topology such as S2, then a divergence free �a can
necessarily be written in the form �a � ~	abdb for the
area form ~	ab and some function  . Then, the scaling
independence is made explicit if we rewrite (2.27) as

 J
�� �
1

8�G

Z
S
�; (2.28)

where as usual we drop the indices and write in bold any
form which is integrated over.

We now consider how the angular momentum changes
under deformations. To this end we multiply (2.26) by the
area form ~� and so obtain
 

�X�~� ~!a� � ~��da�X � db�A�
�‘�b
a � B��n�ba � � ~qa

bGbc

c�

� ~��12da�A��‘� � B��n��

� ��‘�daA� ��n�daB�: (2.29)

Now, extend �a off of S by demanding that �X�a � 0—
essentially this is equivalent to the flat-space requirement
that angular momentum be measured relative to a fixed
axis of rotation. Then, contracting (2.29) with �a and
integrating over S, several total divergence terms vanish
and we find that
 

�XJ
�� �
1

8�G

Z
S

~�fGab�a
b � ��
�:���� � A�ada��‘�

� B�ada��n�g; (2.30)

where the shear with respect to a general vector field wa is

 ��w�ab � �~q
c
a~qdb �

1
2~qab~qcd�rcwd; (2.31)

and ��
�:���� � ��
�ab�
���ab (this double contraction nota-

tion is adopted from [23]).
We will return to Eq. (2.30) in Sec. V C where we will be

able to neglect the last two-terms and so interpret the
change in angular momentum as coming from a flux of
stress energy (with the help of the Einstein equation) and a
flux of shear. A detailed discussion and fluid mechanical
interpretation of (2.29) and (2.30) can also be found in [23].

D. The ‘‘constraint’’ law

Finally, before specializing to the two-surfaces associ-
ated with horizons we derive the following relation. First,
combining A	 �2:23� � B	 �2:24� we find that
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�X�X�A�X��‘��B�X��n��da�Ad
aB�BdaA�2AB ~!a�

���
�:��X� �GabX
a
b�

1

2
��X���
�; (2.32)

where we again have 
a � A‘a � Bna and ��X� and ��
� are
defined in the obvious way. Integrating this over S, the total
divergence term vanishes and we find that
 

1

8�G

Z
S
�X�X~	 �

1

8�G

Z
S

~	
GabXa
b � ��X�:��
��

�
1

8�G

Z
S

~	
�
A�X��‘� � B�X��n�

�
1

2
��X���
�

�
: (2.33)

More generally for a vector field

 X a � Xa � ~xa; (2.34)

where ~xa is everywhere transverse to the Swe can combine
(2.29) and (2.32) to obtain

 

1

8�G

Z
S
f�X�X~�� ~xa�X�~	 ~!a�g

�
1

8�G

Z
S

~	
GabX
a
b � ��X�:��
�� �

1

8�G

	
Z
S

~	
�
A�X��‘� � B�X��n� �

1

2
��X���
�

�
: (2.35)

In cases where �X is constant and ~xa � ��a for some
constant � (which is not related to the curvature of the
normal bundle) and rotation vector field satisfying �X�a �
0, the left-hand side of this equation takes a particularly
familiar form:

 

�X
8�G

_a�� _J
��: (2.36)

The similarity to the first law of black hole mechanics is
not coincidence. In Secs. V and VI we will see that the
dynamical version of the first law for both event and
trapping horizon are closely related to (2.35).

A version of this relation was referred to as the horizon
constraint law in [17,26] due to its equivalence to the
integrated diffeomorphism constraint on T �. A discussion
of its terms and their interpretation if the horizon is viewed
as a viscous fluid can also be found in [23]. Furthermore, in
[24], Eq. (2.35) is interpreted as a second-order evolution
equation for the area.

III. FUTURE OUTER TRAPPED SURFACES

The expressions of the previous section hold for any
spacelike two-surface embedded in any four-dimensional
spacetime. In this paper, however, our main interest will be
in the two-surfaces that foliate future outer trapping hori-
zons which in turn are embedded in solutions of the
Einstein equations. Thus in this section we consider space-
like two-surfaces on which Gab � 8�Tab and for which

��‘� � 0, ��n� < 0 and there is a scaling of the null vectors
such that �n��‘� < 0. Adapting Hayward’s nomenclature
we will call such surfaces future outer trapping surfaces
(FOTS).

First, we consider the conditions under which a margin-
ally trapped surface S with ��‘� � 0 and ��n� < 0 is a
FOTS. To this end, we set A � 0, B � �1, and ��‘� � 0
in (2.23) and so find that on a marginally trapped surface

 �n��‘� �� ~R=2�k ~!k2�da ~!a��8�G�Tab‘anb: (3.1)

Then it is immediate that the �n��‘� < 0 condition is de-
termined entirely by this component of the stress-energy
tensor along with the intrinsic and extrinsic geometry of
S—no derivatives need to be taken off of the surface. That
said, checking this condition is slightly more complicated
than just calculating this quantity with an arbitrary scaling
of the null vectors. For example, in Appendix C it is shown
that for the standard scaling of null vectors on a Kerr
horizon, �n��‘� is not always less then zero. A rescaling
is necessary for this relationship to become apparent.

Now, for any spacelike two-surface on which ��‘� � 0,
Eq. (2.23) simplifies to become

 �X��‘� � �d2B� 2 ~!adaB� B�n��‘� � A�‘��‘�; (3.2)

where �n��‘� takes the form shown in Eq. (3.1) and

 �‘��‘� � �k�
�‘�k2 � �8�G�Tab‘

a‘b: (3.3)

If this is a FOTS we can adopt a scaling so that �n��‘� < 0,
while if we assume the null energy condition it also follows
that �‘��‘�  0. Then, we can draw several conclusions
about FOTS.

First strengthening to the dominant energy condition,
there is the well-known [34] restriction on the topology of
such a surface.

FOTS property 1.—If S is a closed and orientable FOTS
on which the dominant energy condition holds, then it is
homeomorphic to S2.

This follows from Eq. (3.1). On integrating this over S
and doing a bit of rearranging we find that

 � �
1

2�

Z
S

~	f��n��‘� � k ~!k2 � 8�Tab‘
anbg; (3.4)

where � is the Euler characteristic of S. Now, by assump-
tion �n��‘� < 0 while the dominant energy condition im-
plies that the matter term is positive. Thus �> 0 and this is
sufficient to tell us that S must be homeomorphic to a two-
sphere since that is the only closed and orientable two-
surface with positive Euler characteristic. �

Next, we consider the conditions under which a FOTS
may be deformed while preserving its defining character-
istics. Sufficiently small variations will always leave ��n� <
0 and �n��‘� < 0 and so the key to understanding these
deformations is finding normal vector fields Xa such that
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�X��‘� � 0. We assume that all fields are at least twice
differentiable.

We begin with the case where �‘��‘� � 0 everywhere on
a FOTS. Then we have the following:

FOTS property 2.—If S is a FOTS on which �‘��‘� � 0
everywhere, then variation vectors Xa satisfy �X��‘� � 0 if
and only if they are parallel to ‘a.

Starting with the first part, if �‘��‘� � 0 everywhere on S
then Eq. (3.2) becomes

 �X��‘� � d2B� 2 ~!adaB� B�n��‘�; (3.5)

and it is trivial that B � 0) �X��‘� � 0 for any value of
A. It is also straightforward to see that the converse must be
true. First applying the maximum principle of Appendix B
to �X��‘� � 0 we find that B must be either constant or
everywhere negative. Similarly applying the corresponding
minimum principle to��X��‘� � 0 we find that B must be
either constant or everywhere positive. Thus, B must be
constant and it is clear that since �n��‘� � 0 that constant
must be zero. The result is established. �

It is also true that all such deformations leave the intrin-
sic geometry of S invariant:

FOTS property 3.—Let S be a FOTS on which �‘��‘� �
0 everywhere and the null energy condition holds. Then
�X��‘� � 0 implies that �X~qab � 0. That is, all deforma-
tions leave the intrinsic geometry invariant.

If the null energy condition holds then all terms in (3.3)
are nonnegative and so if �‘��‘� � 0 they must all, includ-

ing��‘�ab , be zero. Then with B � 0 by property 2 and ��‘� �
0 by assumption, Eq. (2.17) implies that �X~qab � 0 as
required. �

Such results are familiar from the isolated horizon lit-
erature and we will return to them in Sec. IV. For now,
however, we consider FOTS on which �‘��‘� is somewhere
nonzero. In doing this we restrict our attention to
‘-oriented variation vector fields for which A> 0 (Fig. 2).

FOTS property 4.—Let S be a FOTS and assume the null
energy condition. Then, if �‘��‘� � 0 anywhere on S, all
‘-oriented variation vectors Xa that satisfy �X��‘� � 0 are
spacelike everywhere on S.

If the null energy condition holds then �‘��‘�  0 by
Eq. (3.3). Thus with A> 0, Eq. (3.2) implies that

 � d2B� 2 ~!adaB� B�n��‘� � 0; (3.6)

everywhere on S. Then by the minimum principle of
Appendix B, B is either everywhere positive or everywhere
constant. If it is constant then the derivatives in (3.2) vanish
and

 B � A
�
�‘��‘�
�n��‘�

�
(3.7)

everywhere on S. In particular this must hold at the point
where �‘��‘� < 0 and so with A> 0 and �n��‘� < 0 we
again find that B> 0. Thus in either case gabXaXb �
2AB> 0 and Xa is spacelike. �

Combining this with property 2 we see that FOTS sat-
isfying the null energy condition may be cleanly split into
two classes—those for which ‘-oriented variation vector
fields satisfying �X��‘� � 0 are null and those for which
these vectors are spacelike. Such an Xa cannot be timelike
and what is more it cannot be partly null and partly
spacelike.

We also know something about how the geometry of a
FOTS must change with respect to a spacelike ��‘� � 0
preserving deformation:

FOTS property 5.—Let S be a FOTS and assume the null
energy condition. Then if �‘��‘� is nonzero anywhere on S,
�X~�> 0 everywhere. The deformation causes S to expand
everywhere.

If �‘��‘� � 0 anywhere on S, then by property 4, Xa

must be everywhere spacelike with B> 0. Then �X~� �
�B��n�~� where �B��n� > 0 since ��n� < 0 by assumption.

�
Finally, it is quite clear that in general there will be an

infinite number of Xa that will solve �X��‘� � 0 and so an
equally infinite number of FOTS-preserving deformations.
For example, if �‘��‘� is nowhere zero and we choose any
B 2 C2�S� then we can always solve �X��‘� � 0 to find a
corresponding A (though unless B is constant, there is no
guarantee that the resulting Xa will be ‘ oriented).
Furthermore if �‘��‘� � 0 everywhere, then property 2
tells us that for any Xa � A‘a, �X��‘� � 0.

In contrast to the �‘��‘� � 0 case where all allowed
variation vector fields must be parallel to ‘a, if �‘��‘� is
somewhere nonzero then (apart from constant rescalings)
no two variation vector fields are parallel. Instead they
must interweave as shown in Fig. 3.

FOTS property 6.—Let S be a FOTS with �‘��‘� some-
where nonzero and assume the null energy condition.
Further let Xa and X0a be two ‘-oriented, FOTS-preserving
deformation vector fields. Then either

(1) X0a � �oX
a for some constant �o or

(2) X0a interweaves Xa in the sense that X0a
a takes
both positive and negative values on S, where 
a �
A‘a � Bna is the usual forward pointing timelike
normal to S.

 

FIG. 3. Given two spacelike variation vector fields Xa and X0a

on a FOTS that satisfy �X��‘� � �X0��‘� � 0, then if they are not
constant multiples of each other they must interweave so that X0a

will sometimes point into the future of Xa and sometimes will
point into the past.
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By property 4, both Xa and X0a are spacelike and so with
Xa � A‘a � Bna for some positive A and B, we have

 X0a � ��� ��A‘a � �Bna (3.8)

for some functions� and � that satisfy both � > 0 and��
� > 0.

Now, to begin our analysis, let us consider the case
where � takes both positive and negative values. Then
we immediately see that

 X0a
a � ��AB; (3.9)

and so this corresponds to the second posited behavior for
X0a.

By contrast, if � does not take both positive and negative
values then at least one of �  0 or � � 0 must be true. As
preparation to exploring these two possibilities, we note
that given �X��‘� � 0, it is straightforward to see that
�X0��‘� � 0 reduces to

 Bd2�� 2�daB� B ~!a�da� � �A�‘��‘�: (3.10)

Thus, if �  0 this equation implies that

 Bd2�� 2�daB� B ~!a�da� � 0: (3.11)

Now, � must achieve a maximum on S, so we can define
a new function �? � �� �max that also satisfies Eq. (3.11)
and achieves a maximum value of zero. Then, by our usual
maximum principle, since �? is not everywhere negative, it
must be constant. This means that � is also constant and so
by (3.10), � � 0. Thus �  0) X0a � �oXa for some
constant �o. Similar reasoning shows that � � 0 also
implies that X0a is a constant multiple of Xa. �

IV. HORIZONS AND THEIR PROPERTIES

In this section we apply the properties of FOTS to gain a
better understanding of future outer trapping horizons.
First though we recall some definitions.

A. Horizons

We begin with the definition of a future outer trapping
horizon (FOTH). A trapping horizon is a three-
dimensional submanifold of a spacetime �M;gab� that
may be foliated with closed and spacelike two-surfaces
Sv (where v is a foliation parameter) on which ��‘� � 0 [7].
Trapping horizons are classified by the values taken by ��n�
and �n��‘� on their leaves. A trapping horizon is said to be
future (past) if ��n� < 0 (��n� > 0) while it is outer (inner) if
there is a scaling of the null vectors such that �n��‘� < 0
(�n��‘� > 0).2 These names are taken from the horizons

that satisfy these conditions in a fully extended Kerr or
Reissner-Nordström spacetime. Thus the event horizon is a
future outer trapping horizon and the inner Cauchy horizon
is future inner. The corresponding white hole horizons are
past outer and past inner, respectively. In this paper, we will
be mainly interested in FOTHs (which are foliated by
FOTS).

As noted in the introduction, apart from (future outer)
trapping horizons, there are other closely related quasilocal
horizons. Here we recall the definition of isolated and
dynamical horizons, while in Sec. V we will consider
slowly evolving horizons.

A three-dimensional submanifold of a spacetime
�M;gab� is a nonexpanding horizon if (i) it is null and
topologically S	 R for some closed two-manifold S,
(ii) ��‘� � 0, and (iii) �Tab‘b is future directed and causal
[11]. As usual ‘a is an outward pointing normal and we
note that since the horizon is null, no foliation is required
for its construction. However, a foliation is certainly no
hindrance to a three-surface being a nonexpanding horizon,
and any null FOTH satisfying the null energy condition
will certainly be a nonexpanding horizon.

Nonexpanding horizons are the simplest objects in the
isolated horizon family. Any nonexpanding horizon can be
turned into a weakly isolated horizon if the scaling of the
null vectors is chosen so that L‘!a � 0 for

 !a :� �nbr
 
a ‘b � ��‘na � ~!a; (4.1)

where the arrow indicates a pullback into the cotangent
bundle of the nonexpanding horizon. With this scaling
zeroth and first laws of isolated horizon mechanics may
be established [11]. Furthermore, an isolated horizon is
obtained by strengthening the above conditions to require
that the entire extrinsic geometry encoded in the derivative
operator be time independent.

Finally, a three-dimensional submanifold of a spacetime
�M;gab� is a dynamical horizon if it (i) is spacelike and
(ii) can be foliated by spacelike two-surfaces such that the
null normals to those surfaces satisfy ��‘� � 0 and ��n� < 0
[15]. As we shall see in the next subsection, if the null
energy condition holds and �‘��‘� � 0 then dynamical
horizons are FOTHs and vice versa.

Nonexpanding, isolated and dynamical horizons each
have a rich set of properties that may be derived directly
from their definitions. However, examples of spacetimes
exist that contain (and are actually foliated by) isolated
horizons but do not contain trapped surfaces [14].
Similarly there are spacetimes with dynamical horizons
but no trapped surfaces [35]. Thus if we take trapped
surfaces as the defining property of black holes, neither
of these definitions is sufficient to specifically single out
black holes. Instead they represent necessary conditions
which must be supplemented to become sufficient.

Given this observation, we will take FOTHs as our basic
objects and classify them by hybridizing the naming sys-

2The original definition of [7] is phrased in terms of a dual-null
foliation of the spacetime in some vicinity of the horizon instead
of the variations that we use here. In constructing such a
foliation, one must usually abandon the ‘ � n � �1 normaliza-
tion [33]; however, having done this the definition can be
phrased in terms of Lie derivatives rather than variation opera-
tors. That said, the definitions are equivalent.
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tems. Thus a FOTH that also satisfies one of these other
sets of properties will be referred to as nonexpanding,
weakly isolated, or dynamical as appropriate.

B. Properties of FOTHs

A FOTH can be thought of as the variation surface
associated with a (finite) deformation of a FOTS (like the
one shown in Fig. 1). Specifically given a FOTH and a
foliation labelling v, we can always find a tangent vector
field V that is normal to the Sv and which satisfies

 LVv � 1: (4.2)

Then, V a can be viewed as a variation vector field and as
for other deformation vectors we write

 V a � A‘a � Bna; (4.3)

for some functions A and B. Further, identifying points on
the different Sv by the flow generated by V , we write
derivatives of the two-geometry with respect to v as

 

d
dv
� �V : (4.4)

Then we may apply our results on FOTS to learn about
FOTHs.

First, their topology is strongly constrained [7] and this
follows directly from FOTS property 1:

FOTH property 1.—Let H be a FOTH and assume the
dominant energy condition. Then H has topology S2 	 R.

Next, we consider the circumstances under which a
FOTH is nonexpanding and those by which it is dynamical.
In particular we will be interested in transitions between
these behaviors and so as a preliminary we define nonex-
panding and dynamical sections of a FOTH. If a FOTH H
is null (that is B � 0 everywhere) for some range v1 
v  v2 of the foliation parameter then we will refer to this
as a nonexpanding section of H. In contrast if H is space-
like (that is AB> 0 everywhere) for some range v01 < v<
v02 of the foliation parameter then we will refer to this as a
dynamical section of H.

Then by FOTS properties 2 and 4, on any Sv of a FOTH
either B � 0 everywhere or B � 0 anywhere. Thus, no
element of the foliation is partly nonexpanding and partly
dynamical. Transitions between nonexpanding and dy-
namical sections must happen ‘‘all at once.’’

FOTH property 2.— Let H be a FOTH with foliation Sv
and assume the null energy condition. Then H may be
completely partitioned into nonexpanding and dynamical
sections. On nonexpanding sections �‘��‘� � 0 every-
where while on dynamical sections �‘��‘� < 0 at least
somewhere on each Sv.

This surprising result was first shown (using slightly
different assumptions) in [18]. As one application, it guar-
antees that a FOTH on which �‘��‘� � 0 for at least one
point on each cross section is necessarily a dynamical
horizon. The converse is slightly more restricted and we

must require that �‘��‘� � 0 everywhere to ensure that a
dynamical horizon also be a FOTH. To see this consider
that a dynamical horizon is necessarily spacelike and so Xa

can always be oriented so that A> 0 and B> 0. Scaling
the null vectors so that B is constant on each cross section
of the horizon (3.2) simplifies to

 B�n��‘� � A�‘��‘�: (4.5)

Thus, if �‘��‘� � 0 everywhere on a cross section then the
null energy condition guarantees that it is strictly negative
and so �n��‘� < 0 everywhere as well. Consequently such a
dynamical horizon is a FOTH. However, if �‘��‘� � 0
somewhere (or everywhere) on the surface, then at those
points �n��‘� will also vanish and the dynamical horizon
will not be a FOTH. Examples of such dynamical horizons
are considered in [35].

Next by FOTS properties 3 and 5, dynamical versus
nonexpanding sections differ in more than just signature:

FOTH property 3.—Let �H be a (section of a) FOTH
and assume that the null energy condition holds.

(1) If �H is nonexpanding, then the intrinsic geometry
of the Sv is invariant. That is �V ~qab � 0.

(2) If �H is dynamical, then Sv locally increases in area
everywhere. That is �V ~� � F~� for some function F
that is everywhere positive.

The first part of this property is well known from the
isolated horizon literature [11,12]. The second part is
essentially Hayward’s second law of black hole mechanics
[7]. FOTHs expand if and only if they are dynamical.
Otherwise their intrinsic geometry is unchanging.

Having reaffirmed these basic results, we can consider
how FOTHs may be deformed while preserving their de-
fining characteristics. First we consider variations of the
foliation that leave H itself invariant.

FOTH property 4.—Let H be a FOTH and assume that
the null energy condition holds.

(1) If H is nonexpanding then the foliation may be
smoothly deformed by any vector field of the form
Xa � f‘a where f is any positive function.

(2) If H is dynamical then the foliation is rigid and can
be relabelled but not deformed.

The first part of this property follows directly from
FOTS property 2 which we apply to all of the Sv simulta-
neously.3 The second part follows from FOTS property 6
which tells us that if �V��‘� � 0 then ���V ���‘� � 0 if and
only if � is a constant over Sv. For such a constant � the
variation would preserve (but relabel) the foliation.

3Such variations of the foliation will generally only be allowed
for a finite range of the variation. Beyond that range we may
violate one of the defining conditions, for though the intrinsic
geometry of H will remain invariant, the extrinsic geometry of
the two-surfaces normal to H will change. Thus, finite variations
may ultimately generate foliation slices with ��n� or �n��‘�
nonnegative.
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Thus, the foliation may be deformed in an infinite num-
ber of ways on a nonexpanding (section of a) FOTH while
it may not be deformed at all on a dynamical section. The
first part of this property is consistent with the fact that
particular foliations are not important for most of the
isolated horizon formalism. The second part is consistent
with the more general result of [16] which says that if S is a
FOTS and H is a dynamical FOTH with foliation Sv, then
S � H if and only if it S � Sv for some v.

Next, we consider the other ways in which a FOTH may
be deformed. Again the nonexpanding and dynamical
cases are quite different.

FOTH property 5.—Let H be a FOTH and assume the
null energy condition. We consider variations that deform
H but preserve the FOTH conditions.

(1) If H is nonexpanding then all allowed variations
map H into itself.

(2) IfH is dynamical then all allowed variations deform
each leaf of its foliation partly into the causal future
and partly into the causal past of H.

This property also follows directly from FOTS proper-
ties 2 and 6 and can be rephrased to say that nonexpanding
FOTHs are stable against deformations but dynamical
FOTHs are not stable in his way. The second part is
consistent with [16] where it was shown that if H1 and
H2 are dynamical FOTHs with foliations Sv1

and Sv2
,

respectively, then no Sv1
can lie entirely in the causal

past (or future) of H2 and vice versa. Thus, either Sv1
is

causally disconnected from H2 or it intersects it so that it
lies partly in the causal future and partly in the causal past.
Property 5 may be thought of as a local version of that
global result.

V. SLOWLY EVOLVING HORIZONS AND THEIR
FLUX LAWS

A significant part of physics deals with systems that are
at or near equilibrium. For horizons, we naturally take
nonexpanding FOTHs to be equilibrium states. Included
in this class are the event horizons of all (nonextreme)
Kerr-Newmann black holes (whose properties are summa-
rized in Appendix C). Further, such FOTHs are automati-
cally isolated horizons and so all of the results from that
formalism apply to them. Recall too that by FOTH prop-
erty 5, these surfaces (locally) can only be deformed into
themselves, so there is no ambiguity about their exact
location.

It is then natural to consider near-equilibrium horizons,
which should be those that change slowly in time. Now,
while this is a very reasonable condition intuitively, it is not
so easy to geometrically and invariantly characterize such
horizons—keep in mind that dynamical FOTHs are space-
like and so there is no natural notion of time intrinsically
associated with the surface. In this section we will motivate
a definition of these slowly evolving horizons and then
explore some of its consequences. A version of the defini-

tion and many of the properties appeared in [26] but most
of the derivations appear here for the first time.

A. Slowly expanding horizons

Intuitively, we would expect the properties of a slowly
expanding horizon to be ‘‘close’’ to those of a nonexpand-
ing or isolated horizon. In this section we will formalize
this requirement. This is essentially done by performing a
perturbation expansion around a nonexpanding horizon in
powers of a small parameter 	. However, as we shall see,
care must be taken as spacelike and null surfaces are
fundamentally different, and, in particular, it is nontrivial
to find a normalization which transitions smoothly between
the dynamical and isolated regimes.

In order to proceed, we will slightly modify the formal-
ism introduced over the last three sections. First we loosen
it so that while the evolution vector field V a still generates
the foliation, it is no longer tied to a specific labelling; that
is we only require that LVv � ��v� for some positive
function ��v�. Next we tighten it by choosing A � 1 so
that

 V a � ‘a � Cna; (5.1)

where we change notation from B to C to avoid confusion
with the more general variations considered previously.
The net effect is to reduce the scaling freedom of the null
vectors to that contained in��v� so that for a fixed foliation
labelling

 V a � �V a
o; ‘a � �‘ao;

na �
1

�
nao; and C � �2Co;

(5.2)

where the subscript o indicates a quantity defined with� �
1.

If a FOTH is null and nonexpanding, then C � 0 and the
evolution vector field V � ‘. Thus, the most direct way to
define a slowly expanding horizon might seem to be to say
that it is a (section of) a horizon on which C is very small.
Unfortunately this is not a viable strategy as one can use
the rescaling freedom (5.2) to make C arbitrarily small on
any4H. Instead we proceed by focusing on how the Sv are
evolved by V a.

For our purposes nonexpanding horizons have two key
properties: they are null and the intrinsic geometry of their
foliating two-surfaces is invariant. Our invariant character-
ization of a slowly expanding horizon draws on both of
these ideas. First, we consider the evolution of the area
form ~� on Sv. From (2.18) we have

 LV ~� � �C��n�~�; (5.3)

which is certainly scaling dependent. However this depen-
dence may be easily isolated by rewriting
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 LV ~� � �C��n�~� � kV k
�
�

����
C
2

s
��n�~�

�
; (5.4)

so that the rescaling freedom is restricted to kV k. The
term in parentheses then provides an invariant measure of
the rate of expansion. Among other properties it vanishes if
the horizon is nonexpanding and on a dynamical horizon
section is equal to the rate expansion of ~� with respect to
the unit-normalized version of the evolution vector field.
We will consider the rate of expansion to be slow if this is
small and this approach is borne out by the examples of
[27]. In particular if �

����
C
p

��n� is of order 	 and the scaling
of the null vectors is chosen so that kV k is commensurate
(as would be reasonable for an ‘‘almost-null’’ surface) then
LV ~� will be of order 	2.

This notion of a slow area change captures the essence of
a slowly expanding horizon; however, we still need to
require both that the surface be almost-null and that the
rest of the intrinsic geometry also be slowly changing. We
have seen already that restrictions on the norm of V a are
not invariant, so instead we will implement these ideas
together by requiring that the evolution of the two-metric
be characterized by the expansion and shear associated
with ‘a (as they would be for a truly null surface). That
is from (2.17),

 LV ~qab � 2��‘�ab � ��C��n�~qab � 2C��n�ab � � 2��‘�ab:

Further, the matter flow across the horizon similarly should
be, to lowest order, the same as that across a null surface.
That is we expect

 V aTba
b � Tab‘a‘b; (5.5)

where 
a � ‘a � Cna is the usual timelike normal. Given
that these quantities vanish on a nonexpanding horizon we
would also expect both of these quantities to be small. An
invariant implementation of these ideas gives rise to the
following definition:

Definition.—Let 4H be a section of a future outer
trapping horizon foliated by spacelike two-surfaces Sv so
that 4H � f[vSv:v1  v  v2g. Further let V a be an
evolution vector field that generates the foliation so that
LVv � ��v� for some positive function ��v�, and scale
the null vectors so that V a � ‘a � Cna. Then 4H is a
slowly expanding horizon if the dominant energy condition
holds and

(1) 	� 1 where

 	2=R2
H � maximum
C�k��n�k2 � Tabn

anb

� �2
�n�=2��; (5.6)

(2) j ~Rj, k ~!k2 and Tab‘anb & 1=R2
H, where RH is the

areal radius
������������
a=4�

p
of the horizon, and

(3) two-surface derivatives of horizon fields are at most
of the same order in 	 as the (maximum of the)
original fields. For example, kdaCk & Cmax=RH,

where Cmax is the largest absolute value attained
by C on Sv.

Throughout this definition and what follows, an expression
like X & Y means that X  koY for some constant ko of
order one, and in particular ko � 1=	.

As we will see shortly, the first condition is simply a
scaling invariant way of writing our earlier requirements
that the horizon geometry be slowly changing and that
those changes be dominated by the ‘ components of quan-
tities. Additionally, it introduces a simple way to define a
value for 	 on each cross section of the horizon. If the ��v�
is chosen so that

 C � 	2; (5.7)

then this scaling of the null normals is compatible with the
evolution parameter 	.

The second and third conditions are restrictions on the
horizon geometry. Effectively, they ensure that the geome-
try of the horizon is not too extreme. These conditions are
rather mild, and as a partial justification for these assump-
tions in Appendix C it is shown that they all hold on a Kerr
horizon with the standard foliation.

We now consider the implications of these assumptions.
To begin, by Eq. (3.1) our restrictions on the horizon
geometry immediately imply that

 j�n��‘�j &
1

R2
H

: (5.8)

Note the use of the absolute value sign. Even though we
must have �n��‘� < 0 for some scaling, in general this need
not be true for the particular A � 1 scaling that we have
chosen.

Next, we can bound the flux of matter and the gravitation
shear at the horizon. To do this, we make use of the fact that
�V��‘� � 0. Then, Eq. (3.2) along with the magnitude of C
fixed by (5.7) implies that

 j�‘��‘�j � k��‘�k2 � 8�GTab‘a‘b &
	2

R2
H

; (5.9)

or, using the null energy condition,

 k��‘�k2 &
	2

R2
H

and 8�GTab‘
a‘b &

	2

R2
H

: (5.10)

Thus these terms are bound by the size of 	. Explicit
examples of these bounds in action may be found in [27]
where both matter and shear driven expansions are consid-
ered in some detail.

From these results it follows that the two-metric is
slowly changing with the highest order contributions com-
ing from quantities associated with ‘a. We have

 LV ~qab � 2��‘�ab|�{z�}
O�	�

� �C��n�~qab � 2C��n�ab �|����������������{z����������������}
O�	2�

; (5.11)

while
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 LV ~� � �C��n�~�|����{z����}
O�	2�

: (5.12)

In addition, there is a bound on the rate of change of the
intrinsic curvature. The evolution of ~R is derived in (A20)
and is given by

 LV
~R � 2dadb���‘�ab � C�

�n�
ab � � d

2�C��n�� � C��n� ~R:

(5.13)

From this we see immediately that LV
~R & 	=R3

H. Thus,
the intrinsic geometry of the horizon is slowly varying, at a
rate 	. The choice (5.7) effectively scales V a to reflect the
slowly expanding nature of the horizon. In a transition to
isolation so that 	! 0 this choice will force kV k ! 0,
thus ensuring that the limit is continuous.

We also can bound the flux of energy momentum
through the horizon. We have seen already that Tab‘a‘b &

	2=R2
H. Furthermore, this is the main flux of energy

through the horizon as our definition implies that

 8�GV aTba
b � 8�GTab‘
a‘b|���������{z���������}

O�	2�

� 8�GC2Tabn
anb|������������{z������������}

O�	4�

:

(5.14)

If the dominant energy condition holds, then there is a
further constraint on the components of the stress-energy
tensor. In that case, with 
a future directed and timelike on
a dynamical FOTH, �Tab
b must also be future directed
and causal. Then,

 gab�Tac
c��Tbd
d�  0) k~qbaTbc
ck2

 2�Tab‘
a
b��Tcdn

c
d�: (5.15)

However, by (5.6), (5.7), and (5.10), �Tab‘a
b��Tcdnc
d� is
of order 	2=R4

H. Thus,

 k~qbaTbc
ck &
	

R2
H

: (5.16)

This result, in conjunction with (2.13) can be used to bound
one of the components of the Weyl tensor. We obtain

 

~q baCbcde‘c‘dne &
	

R2
H

: (5.17)

This is equivalent to �1 � Cabcd‘
amb‘cnd & 	=R2

H. For
an isolated horizon the equivalent quantities vanish,
namely, ~qbaTbc‘c � 0 and �1 � 0 [11].

The flux of incoming gravitational radiation is encoded
in �0 � Cabcd‘amb‘cmd, another of the components of
the Weyl tensor. For a horizon to be slowly expanding, one
would expect this quantity to be small. We can show that
this is the case by considering the evolution of the shear
��‘�, derived in (A15). Keeping only the lowest order
terms, we obtain

 LV�
�‘�
ab � �V�

�‘�
ab � ~qca‘

d~qeb‘
fCcdef �O�	

2�: (5.18)

Therefore, ��‘� will remain small only if �0 & 	=R2
H.

Finally, we turn to �2 � Cabcd‘amb �mcnd. Begin by
noting that �2 is invariant under rescalings of ‘ and n.
On an isolated horizon, the value of �2 is not restricted;
however, LV �2 � 0. For a vacuum, slowly evolving ho-
rizon, LV �2 & 	=R3

H. This follows from the Gauss and
Ricci relations of Appendix A 1 which can be used to
rewrite �2 in terms of the intrinsic and extrinsic horizon
geometry. The result then follows directly from the fact
that k��‘�k & 	=RH and the fact that ~!, ~R, and ��‘� are all
slowly evolving.

To summarize, we have seen that the definition of a
slowly expanding horizon captures many expected proper-
ties of a near-equilibrium black hole. Specifically, the
intrinsic geometry, including the area and two-curvature
is slowly changing and there is little flux of matter or
gravitational energy through the horizon. Of course, the
given orders of quantities are bounds rather than require-
ments on the size of those terms. For example, on a
spherically symmetric slowly expanding horizon, ��‘�ab van-
ishes identically and so the metric is unchanging at first
order. Similarly in a vacuum spacetime where a horizon
grows through the absorption of gravitational waves, all
matter terms will vanish. Examples of both of these be-
haviors may be found in [27].

B. Slowly evolving horizons and the first law

In the previous section, we have placed requirements on
the intrinsic geometry of the horizon and arrived at the
notion of a slowly expanding horizon. Now, we shall
impose some further restrictions in order to obtain the first
law of black hole mechanics. This will be done by restrict-
ing the extrinsic geometry of the horizon. The inspiration
for the extra conditions comes from the weakly isolated
horizons defined in Sec. IVA. A nonexpanding horizon
becomes weakly isolated if the scaling of the null vectors is
chosen so that

 L ‘!a � 0: (5.19)

In this case it is also true [12] that one can always find a
‘‘good’’ foliation of surfaces Sv such that

 L ‘��n� � 0: (5.20)

With this foliation, a suitable scaling sets na � �
dv�a
and (5.19) can be decomposed as

 L ‘�‘ � 0 and L‘ ~!a � 0: (5.21)

We will enforce versions of these conditions to obtain
slowly evolving horizons. However, there is a distinction
between the slowly evolving and isolated cases. Since
nonexpanding horizons do not have a predetermined, fixed
foliation, it is always possible to rescale the null normal ‘
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so that conditions (5.19) and (5.20) are satisfied. In con-
trast, a nonequilibrium horizon comes endowed with a
unique foliation, so the equivalent conditions are not guar-
anteed to hold, they will have to be checked. This motiva-
tion leads us to the following:

Definition.—Let4H be a slowly expanding section of a
FOTH with a compatible scaling of the null normals. Then
it is said to be a slowly evolving horizon if in addition

(1) kLV ~!ak and jLV�V j & 	=R2
H and

(2) jLV��n�j & 	=R2
H.

The first consequence of the above definition is that on a
slowly evolving horizon, the surface gravity is slowly
varying. It follows immediately from the definition that
�V is slowly changing in time.4 The fact that it is nearly
constant across each two-surface follows from (2.29).
Keeping only the lowest order terms, we have

 LV ~!a � da�V � d
b��‘�ab � 8�G~qbaTbc‘c �O�	2�:

(5.22)

From the definition above, (5.10) and (5.16), it follows
immediately that

 kda�V k &
	

R2
H

: (5.23)

That is, the surface gravity is approximately constant over
each slice of the foliation. Since we also have required the
surface gravity to be slowly changing up the horizon, it
follows that over a foliation parameter range on4H that is
small relative to 1=	,

 �V � �o �O�	� (5.24)

for some constant �o. Note however, that if a FOTH is
slowly evolving for long enough, then larger changes can
accumulate.

Slowly evolving horizons obey a first law of black hole
mechanics [26]. Applying the slowly evolving horizon
conditions to Eq. (2.33), it reduces to a dynamical version
of this first law. To order 	2 we obtain

 

�o _a
8�G

�
Z
Sv

~�
�
k��‘�k2

8�G
� Tab‘

a‘b
�
; (5.25)

where a is the area of the two-surfaces and _a �
R
Sv
LV ~�.

Interestingly, in [24], Eq. (2.33) has been interpreted as a
second-order evolution equation for the horizon area. In
the slowly evolving limit, this reduces to (5.25). In Sec. VI
we will compare this version of the first law with other
well-known flux laws, but for now consider it in its own
right.

Let us examine the two energy flux terms contributing to
the area increase. The first is the square of the gravitational
shear at the horizon, while the second is the flux of matter
stress energy through the horizon. The first term is neces-
sarily positive, and provided the null energy condition
holds, so is the second. Then, FOTH property 3 implies
that for a dynamical slowly evolving horizon �o > 0; the
average surface gravity of a slowly evolving horizon is
necessarily positive. See [36] for further discussion of this
point and its relation to extremal horizons.

Next, we would like to examine whether (5.25) can be
integrated to give a value for the horizon energy. For a
slowly evolving horizon, (2.24) reduces at leading order to

 �o��n� � � ~R=2� 8�GTab‘
anb � k ~!k2 � da ~!a �O�	�:

(5.26)

For a spacetime which is close to spherically symmetric,
such as those considered in [27], the ~!a terms are of order
	 or smaller while if the only matter is radially infalling
dust the matter term may also be neglected. Then

 �o��n� � �
~R
2
� �

1

R2
H

: (5.27)

If one scales the null vectors so that ��n� � �2=RH, which
is the value taken in the Schwarzschild spacetime, it fol-
lows that �o � 1=2RH. Then it is immediate that (5.25)
may be integrated to give an energy of E � RH=2. In this
case, the first law can be written as

 

_E �
d
dv

�
�oa
4�G

�
�
�o _a
8�G

�
Z
Sv

~�
�
k��‘�k2

8�G
� Tab‘

a‘b
�
;

(5.28)

where we have taken the foliation label v to be compatible
with null scaling (that is LVv � 1). Thus we recover all of
the standard notions of black hole mechanics: the energy is
given by the Smarr formula and its time rate of change may
be written in terms of both �o _a and a flux law. In more
general situations, however, things are not quite so tidy.
While (5.25) always holds, away from spherical symmetry
and in the presence of alternative matter fields the later
simplifications cannot be made. Thus, in general it is not
guaranteed that (5.25) will integrate to a tidy expression for
the energy—this is not too surprising given the well-
known uncertainties in defining (quasi)localized gravita-
tional energy.

C. Approximate symmetries and angular momentum

We would like to generalize the first law for slowly
evolving black holes to include angular momentum. We
begin by noting that on a slowly evolving horizon, (2.30)
simplifies to

 

_J
�� �
Z
S

~�
�
��‘�:����

8�G
� Tab‘a�b

�
; (5.29)

4As for a weakly isolated horizon [11] this condition can
equivalently be implemented by imposing conditions on the
various quantities that arise if one takes the LV derivative of
Eq. (2.24) and then deriving the desired result for LV�V .
However for simplicity we just impose the condition directly.

ISOLATED, SLOWLY EVOLVING, AND DYNAMICAL . . . PHYSICAL REVIEW D 75, 084019 (2007)

084019-13



where both terms are O�	� due to (5.10) and (5.16), re-
spectively. Thus, the angular momentum associated to any
rotation vector field � must be slowly varying, even if � is
not a symmetry of the horizon. However, in this case the
change in the angular momentum is only restricted to be at
most of order 	 while the area (and energy) evolve at a rate
proportional to 	2. This reflects the fact that we have not
required the vector field� to be a symmetry of the horizon.
Since the horizon is not in equilibrium, we do not expect it
to possess an exact symmetry and instead introduce the
notion of an approximate symmetry.

Definition.—Let 4H be a section of a FOTH and �a 2
TSv be a rotation vector field as defined in Sec. II C. Then
�a is said to be an approximate symmetry of the horizon if

(1) kL�~qabk & 	=R2
H,

(2) jL���n�j & 	=R2
H, and

(3) j8�GTab�a
bj & 	2=R2
H.

The first two conditions require�a to be an approximate
symmetry of the intrinsic and (part of) the extrinsic ge-
ometry of the two-surfaces. The third condition is not
really a symmetry condition but instead says that the
angular matter flux should be particularly small in the �a

direction (in general (5.16) only restricts such fluxes to be
of order 	). These conditions are sufficient to guarantee
that the angular momentum measured relative to �a

changes to order 	2 with the expression for the rate of
change given as before by (5.29). Furthermore, the change
in angular momentum is proportional to a gravitational
plus a matter flux. As for other slowly evolving relations,
these fluxes are calculated as if 4H was a null surface.
Finally, we note that the LV�

a � 0 condition can be
weakened to kLV�

ak & 	3=R2
H, without affecting the

angular momentum evolution. This allows for slight
changes in the approximate symmetry direction as the
horizon evolves.

Now, let us consider the first law for slowly evolving,
rotating horizons. In this case, we allow for a more general
evolution vector �a, tangent to the horizon but with com-
ponents both normal and tangent to the cross sections. We
restrict the allowed �a in the following manner. First �
should preserve the foliation of the horizon. That is �a �
V a ��a, for some normalization of V a and some �a

which is tangent to the horizon cross sections. Second, this
�a should generate rotations. That is, it should integrate to
a flow which foliates the cross sections into two fixed
points plus a congruence of closed curves and further those
closed curves should have a common period (see [17] for a
further discussion of rotations). Finally, we require that �a

respect the slowly evolving nature of the horizon in a
nontrivial way. That is we require that k�k � 	 while
the norms of L�~qab, L���n�, and L� ~!a should be of order
	. Then, we can write

 �a � V a ���a; (5.30)

where �a is an approximate symmetry and � is an angular

velocity which is constant on each horizon cross section.5

In addition, we require that � changes only very slowly
with respect to V so that LV � & 	3=R2

H. The evolution
vector field � is then the analogue of the Killing evolution
vector field on a Kerr horizon. Thus, combining (5.25) and
(5.29) and expanding to order 	2 we obtain the first law for
rotating horizons:

 

�o _a
8�G

�� _J
�� �
Z
S

~�
�
��‘�:����

8�G
� Tab‘

a�b
�
: (5.31)

To this order the fluxes can be calculated using �a � ‘a �
��a.

As in the last section this familiar form of the first law
will hold for all horizons of the considered class. Again,
however, care must be taken in the choice of scaling for the
null vectors and choice of � if one hopes to be able to
integrate it to give a simple energy expression for a rotating
FOTH. That said, for perturbations around a Kerr horizon it
is possible to scale the null vectors accordingly and so
obtain the standard functional dependence of energy on
area and angular momentum.

VI. COMPARISON WITH OTHER FLUX LAWS

The forms of the first law derived in the last section are
not new. Other dynamical flux laws may be found in the
literature which apply to other types of horizons. In this
section we see how two of these laws may also be derived
from the deformation equations of Sec. II and compare
them to our form of the first law.

A. The first law for event horizons

A version of the first law usually known as the Hawking-
Hartle formula can also be derived for event horizons. We
now outline how it arises with our chief focus being a
comparison with the first law for slowly evolving horizons.
For further details (and a slightly different derivation) see
the original paper [37].

An event horizon is a null surface ruled by a congruence
of geodesics. Thus its evolution is governed by
Raychaudhuri’s equation [1] which from our point of
view is either Eq. (2.33) or (3.2) with A � 1 and B � 0:

 �‘��‘� � �‘��‘� � k�
�‘�k2 �Gab‘

a‘b � �1=2��2
�‘�: (6.1)

While this is not strictly necessary for a null surface, we
will assume that the horizon is foliated by spacelike two-
surfaces and that the foliation is compatible with affine
scalings of the ‘a. Thus, we could scale this null evolution
vector so that �‘ � 0. However, even if we do not, it is
immediate that �‘ is a function of v alone and so da�‘ � 0.

Then, multiplying by the area element and writing var-
iations in Lie derivative form, we have

5Note that the angular velocity � is not related to the curvature
of the normal bundle �ab.
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 ��‘ � ��‘�=2�L‘~� � L‘�L‘~�� � ~��k��‘�k2 �Gab‘a‘b�:

(6.2)

If we think of this as a perturbation of a standard (sta-
tionary) black hole solution then the scaling of the null
vectors should be such that the surface gravity �‘ is of
order 1=RH while other quantities appearing in the above
equation should be close to zero. Thus we should have
��‘� � �‘ and so can drop the ��‘�=2 on the left-hand side
of the above equation. Then, integrating both over Sv and
‘‘up’’ the horizon between two surfaces S1 and S2 we find
that

 

Z v2

v1

dv��‘ _a� � _ajS2
S1
�
Z v2

v1

dv
Z

~��k��‘�k2 �Gab‘a‘b�:

(6.3)

While it is certainly true that an event horizon always
expands until it reaches an ultimate equilibrium state, it
is also true that during periods of quiescence when nothing
much is happening it can approach an isolated horizon. In
particular, as discussed in [30], _a can become arbitrarily
close to zero. If we consider an evolution between two such
‘‘equilibrium’’ states, the first term on the right-hand side
of (6.3) also can be neglected. Thus, we arrive at the
Hawking-Hartle formula:

 

Z v2

v1

dv��‘ _a� �
Z v2

v1

dv
Z

~��k��‘�k2 �Gab‘
a‘b�: (6.4)

This is the event horizon analogue of our (5.25).
However, the equation does not imply a causal relationship
from fluxes to changes in area. This reflects the teleological
nature of event horizons. Expansions of event horizons are
caused by an absence of interactions, while fluxes through
them instead force decreases of the rate of expansion
(again see [30]). One of the significant implications of
the Hawking-Hartle formula is that time averages smooth
out these strange behaviors.

Despite the very different character of FOTHs and event
horizons, there are remarkable similarities between the first
laws for slowly evolving horizons (5.25) and event hori-
zons (6.4). In both cases we must impose a condition which
forces the horizon to be slowly evolving in order to obtain
the first law. Thus, they both only hold near equilibrium.
Further, neither of these laws either specifies (or requires)
an energy definition for the black hole.

If we further assume that the event horizon has an
approximate symmetry generated by a spacelike vector
field �a so that L‘�

a and L���‘� can be neglected then
(2.30) again becomes

 

_J
�� �
Z
S

~�
�
��‘�:����

8�G
� Tab‘a�b

�
: (6.5)

In contrast to (6.4) this is a snapshot rather than time-
integrated flux law. This is a reflection of the much broader
applicability of the angular momentum flux law which

holds not just for horizons but for any surface
[15,17,23,32,38,39].

Then, given a slowly varying angular velocity �, we can
define an evolution vector field

 �a � ‘a ���a; (6.6)

and combine (6.4) and (6.5), to get the more general
dynamical first law for event horizons

 

Z v2

v1

dv
�
�o _a
8�G

�� _J
��
�
�
Z v2

v1

dv
Z
S

~�
�
��‘�:����

8�G

� Tab‘
a�b

�
: (6.7)

Apart from the time-integration this is, of course, the same
as the corresponding law (5.31) for slowly evolving
horizons.

B. Dynamical horizon flux law

Finally, we consider the dynamical horizon flux law of
[9,15]. Despite the by now familiar flux terms that appear
in this equation, it is different from the first laws that we
have already seen. Instead of linking a � _a term to fluxes of
gravitational and matter stress energy through the horizon,
it is concerned with how these fluxes change the energy
associated with the black hole. As we shall see, it is not
clear how the approaches can be directly connected.

Let H be a FOTH and further let E�v� be any function
that is increasing whenever H is dynamical but remains
constant whenever (if ever) it is isolated. The obvious
choice is some function of the area but in principle any
other function with this property would work just as well.
Thanks to FOTH property 2 (which excludes the possibility
of FOTS that are partially isolated and partially dynamical)
we can always scale the null vectors so that

 

B
2G
�
dE
dv

; (6.8)

where G is the gravitational constant. This means that B
will be constant on each leaf of the foliation.6 With a bit of
rearranging, Eq. (3.2) integrates over Sv to become

 

dE
dv
�
Z
Sv

~	
�
Tab‘

a
b �
Ak��‘�k2

8�G
�
Bk ~!k2

8�G

�
; (6.9)

where we have used the fact that the Sv is topologically S2

to rewrite
R
Sv

~� ~R � 8�. Then, integrating up the horizon
we find that

6This scaling is equivalent to requiring that the pullback of ‘a
to T?H satisfy

 
‘ � � dB

dv dv.
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E�v2� � E�v1� �
Z v2

v1

dv
�Z

Sv
~	
�
Tab‘a
b �

Ak��‘�k2

8�G

�
Bk ~!k2

8�G

��
: (6.10)

If E�v� is any state function of the horizon (such as
energy or entropy) this is interpreted as a flux law. This
flux law is valid for any functional E�v�, although Hayward
[9] has argued that the Hawking (or irreducible) mass is the
most natural choice. Given the dominant energy condition,
the right-hand side of (6.10) consists of three nonnegative
terms. The interpretation of the first two is reasonably
straightforward as a matter flux and a flux of gravitational
energy through the horizon. However, the third term is not
so easily understood. A possible interpretation is that this
represents a flux of rotational energy [9,15,19]; however,
this seems unlikely as ~!a is associated with the angular
momentum itself rather than its flux.

A direct comparison in the slowly evolving limit with
(5.25) cannot be made due to the different methods of
scaling the null vectors. The slowly evolving formalism
can be generalized to allow for such a comparison by
relaxing the requirement that A � 1; however, even then
the limit does not go through directly. To see this note that
we can expand the integrand of the right-hand side of the
dynamical horizon flux law as
 

A�k��‘�k2=�8�G� � Tab‘
a‘b�

� B�k ~!k2=�8�G� � Tab‘
anb�: (6.11)

In order to make a comparison with the slowly evolving
horizons, we consider the limit where A � 1 and B � 	2.
Then, all of these terms are of order 	2 and the last two—
which do not arise in the slowly evolving law—cannot be
neglected. Further, for the apparently common terms, the
A � 1 version of the slowly evolving constraint law (2.33)
gives rise to shear and flux terms

 A2�k��‘�k2=�8�G� � Tab‘
a‘b�: (6.12)

These differ by a factor of A from those in (6.11).
Clearly in the limit where the horizon is slowly evolving,

this part of the flux law will reduce to (5.25) up to the factor
of A discrepancy discussed above. Now, it is quite possible
that as a horizon approaches equilibrium, A will be con-
stant at leading order over each cross section. If this is the
case, the two results will agree as we can set A � 1�
O�	�. However, there does not seem to be any analytic
justification for this, and the examples of slowly evolving
horizons studied so far in [27] are all (approximately)
spherically symmetric, whence A is automatically (ap-
proximately) constant by construction. Thus, whether or
not this assumption holds is currently an open question.

Motivated by the results for slowly evolving horizons,
we can derive an alternative flux law which is valid on all
dynamical horizons. On a dynamical horizon, we must

have �‘��‘�  0 and �n��‘�  0 with strict inequality at
some point on the horizon. If these conditions do not hold,
then the horizon will not be spacelike. Making use of these
conditions, we can rewrite (3.2) as

 � B�n�‘ � �A�‘��‘�: (6.13)

On integration over a cross section of the horizon, both
sides are guaranteed to be positive. Therefore, making use
of (3.1) and (3.3) we obtain

 �1� e�
�
B

2G

�
�
Z
S

Ak��‘�k2

8�G
� ATab‘a‘b; (6.14)

where

 e :�
Z
S

1

4�
k ~!2k � 2GTab‘anb (6.15)

and e is related to the extremality of the horizon as
described in detail in [36].

Given the energy functional E�v� we simply set

 �1� e�
B

2G
�
dE
dv

(6.16)

[compare this with (6.8)]. Then given this normalization,
the dynamical horizon flux law becomes

 E�v2� � E�v1� �
Z v2

v1

dv
�Z

Sv
~	
�
ATab‘a‘b �

Ak��‘�k
2

8�G

��
:

(6.17)

Although this flux law is similar to (6.9), there are obvious
differences. Specifically, the k!k2 and Tab‘anb terms are
no longer present—they have been absorbed into the
definition of B, and consequently the scaling of the null
vectors. In many ways, this is preferable as these terms
appear to be associated to intrinsic features of the horizon
and not to fluxes of matter or gravitational energy through
the horizon. In particular, for a charged black hole e �
Q2=R2, while for the Kerr metric e is a function of J=M2.

Despite the similar forms and origins of the dynamical
and slowly evolving flux laws, a closer analysis shows that
they are actually quite different. We have managed to
rewrite the dynamical horizon law in a manner which
more closely resembles the slowly evolving horizon result.
However, differences still remain. Further discussion of the
dynamical horizon flux law and its relation to other formal-
isms may be found in [15,17,19,23,30].

VII. CONCLUSIONS AND OUTLOOK

By concentrating on the foliating two-surfaces that are
the constituent parts of future outer trapping horizons we
have constructed a framework that encompasses isolated,
slowly evolving, and dynamical horizons. The techniques
used are similar in spirit to previous geometric analyses of
horizons [18,31], although our focus here has been on the
deformations of MOTS in the full four-dimensional space-
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time, rather than a three-dimensional slice. Furthermore,
we have seen that horizon evolutions and variations are
both governed by the same underlying equations.
Additionally, this set of equations is responsible for the
various flux laws associated with these surfaces. Most of
these results have been obtained previously by various
authors [7–11,15,16,18,20,28] using a variety of methods.
The contribution of this paper is to rederive many of these
properties of horizons using a common geometrical frame-
work which highlights the connections between the various
results.

Thus we have seen that along with the freedom to
refoliate an isolated FOTH is the concomitant rigidity
that prevents us from varying its three-dimensional struc-
ture. In contrast, the uniqueness of the foliation for a
dynamical FOTH is the flip side of their well-known lack
of rigidity against out-of-surface deformations. The free-
dom to vary dynamical FOTHs is also equivalent to the fact
that there is no unique method for evolving a given FOTS
into a FOTH. Instead its evolution is many fingered and any
FOTS can be (locally) extended into many different
FOTHs.

This provides some insight into one of the most interest-
ing open problems about these quasilocally defined hori-
zons. It is well known that apparent horizons (in this case
defined as the outermost marginally trapped surface on a
spacelike slice �) can discontinuously jump during espe-
cially dramatic events such as black hole mergers.
However, it is widely suspected (see for example
[5,20,30]) that many of these discontinuities may result
from the interweaving of the foliation with a continuous
��‘� � 0 surface that is sometimes a FOTH but at other
times fails to satisfy one or both of ��n� < 0 and �n��‘� < 0.

Therefore, it becomes important to understand the cir-
cumstances under which a FOTH may end. We have seen
that a FOTH may always be locally extended; however, this
certainly does not guarantee the existence of global exten-
sion. For example, in [20] it was seen that on horizons in
Tolman-Bondi spacetimes, it is possible for �n��‘� to
switch signs and become positive. At this point, the
FOTH ends while a future inner trapping horizon begins.
In these examples, there exists a continuous three-surface
foliated by ��‘� � 0 cross sections, though only part of that
surface can be identified as a black hole horizon. A ques-
tion deserving further investigation is then, what happens
to FOTHs under finite extensions? More specifically, can a
FOTH always be extended into an unending structure that
is foliated by ��‘� � 0 surfaces? These extensions could
fail if, for example, the repeated deformations broke the
spacelike nature of the foliation two-surfaces or if there are
circumstances under which the extension is open but
bounded—that is H � [vSv with v 2 �v1; v2� where v1

and/or v2 are finite.
On a related note we motivated our horizon definitions

by the notion that the interior of a black hole should consist

of all points that lie on a trapped surface. However, we have
seen that future outer trapping horizons are typically only
the boundary of the trapped region associated to a particu-
lar slicing of the given spacetime. Another important ques-
tion is then, what is the real boundary of the trapped
region? It is widely believed [5,16,30] that this boundary
corresponds to the event horizon in spacetimes where this
structure is defined; however, this has not been proved. A
study of the finite extensions of FOTS where one tries to
‘‘push’’ them towards the event horizon would be one way
of gaining insight into this problem.

Returning to the results of this paper, a particularly
interesting application of the deformation rules comes in
the detailed investigation of the near equilibrium slowly
evolving horizons, originally introduced in [26]. We char-
acterized these as being almost-null in the sense that the
equations governing their evolutions are almost the same
as those for null surfaces in general and isolated horizons,
in particular. Slowly evolving horizons were shown to obey
a dynamical version of the first law of black hole mechan-
ics, just as in standard thermodynamics near-equilibrium
systems obey the TdS form of the first law. This result was
first reported in [26] but the derivations appear here for the
first time. We also saw that this result follows from the
same constraint equations that are responsible for the
corresponding Hawking-Hartle formula for event horizons.
The fact that both of these results depend on the horizons
being almost nonexpanding (as well as some of the ex-
amples considered in [27]) leads one to speculate that an
eternally slowly evolving horizon might be indistinguish-
able from the corresponding event horizon to the same
order of accuracy for which the other results hold.
Further the rigidity of isolated horizons against deforma-
tions suggests that slowly evolving horizons might also be
rigid up to this order.

Our focus on the deformations of two-surface has been
demonstrated to unify and illuminate diverse results in the
study of quasilocal horizons. It seems likely that it will
continue to be useful in studying future problems, includ-
ing those outlined above.
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APPENDIX A: DERIVING THE TWO-SURFACE
EQUATIONS

In this appendix we catalogue some useful relations for
two-surfaces embedded in four-space and use them to
derive the equations of Sec. II.
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1. Preliminaries

It is often useful to decompose the four-dimensional
Riemann tensor into its Weyl and Ricci tensor components.
Thus we note that [1]

 R abcd � Cabcd � �ga
cRd�b � gb
dRc�a�

� 1
3�ga
cgd�b�R; (A1)

whereCabcd is the Weyl tensor and as usual square brackets
indicate antisymmetrization.

Next, given a two-surface �S; ~qab; da� in four-space
�M;gab;ra� the Gauss, Codazzi, and Ricci equations relate
the curvature of spacetime to the intrinsic and extrinsic
geometry of the two-surface. They may be derived fairly
directly from a few facts. First, the push-forward of the
inverse two-metric on S can be written as

 

~q ab � gab � ‘anb � ‘bna; (A2)

for any two null normals to S that satisfy ‘ana � �1.
Second, covariant derivatives of tensors defined intrinsi-
cally to S may be written in terms of the full four-
dimensional derivative with the help of appropriate projec-
tions. Thus, for example, for a one-form �a 2 T?S,

 dadb�c � ~qda~qeb~qfcrd�~q
g
e ~qhfrg�h�: (A3)

Finally, the Riemann tensors on M and S, respectively,
satisfy

 �rarb �rbra�Wc �RabcdW
d (A4)

and

 �dadb � dbda�wc � ~Rabcdw
d; (A5)

for one-forms Wa 2 T?M and wa 2 T?S.
Then substituting (A5) into (A3) and doing some alge-

bra, one can show that

 ~q ea~qfb~qgc ~qhdRefgh � ~Rabcd � �k
�‘�
ac k

�n�
bd � k

�n�
ac k

�‘�
bd�

� �k�‘�bc k
�n�
ad � k

�n�
bc k

�‘�
ad�; (A6)

where k�‘�ab and k�n�ab are the extrinsic curvatures defined in
(2.2). This is the Gauss relation.

Through similar calculations one can also derive the
Codazzi relations:

 

~q ea~qfb~qgc‘hRefgh � �da� ~!a�k
�‘�
bc � �db� ~!b�k

�‘�
ac ;

~qea~qfb~qgcnhRefgh � �da� ~!a�k
�n�
bc � �db� ~!b�k

�n�
ac ;

(A7)

where ~!a is the normal bundle connection defined in
Eq. (2.9). Alternatively, applying (2.3) and (A1) these
may be expanded as

 �da � ~!a���‘� � 2�db � ~!b��
�‘�b
a � ~qbaGbc‘c

� 2~qbaCbcde‘
c‘dne (A8)

and

 �da � ~!a���n� � 2�db � ~!b��
�n�b
a � ~qbaGbcnc

� 2~qbaCbcden
c‘dne: (A9)

Finally, by the same kinds of calculations used to derived
the Gauss and Codazzi relations we can also derive the
Ricci relation

 ~q ca~qdb‘
enfCcdef � ~qca~qdb‘

enfRcdef

� �ab � �
�‘�
ac�

�n�c
b � ��‘�bc�

�n�c
a ; (A10)

where �ab is the curvature of the normal bundle defined in
Eq. (2.10).

2. Deformation equations

Next we consider the derivation of the deformation
equations. As an initial step towards calculating �X��‘�,

we find �Xk
�‘�
ab . To this end a few carefully chosen lines of

algebra along with an application of Eq. (2.19) show that

 �Xk
�‘�
ab � �

1
2~qca~qeb�X

d‘f � Xf‘d�Rcdef

� ‘f~qc
�a~qdb�rc�~q

e
dreXf� � �Xk

�‘�
ab; (A11)

where the round index brackets indicate the usual symmet-
rization of the enclosed indices. Now Eqs. (A1) and (A6)
can be used to rewrite the first term, while the second can
be shown to be

 � ‘f~qca~qdbrc�~q
e
dreXf�� � k�‘�ac k

�X�c
b � dadbB� Bda ~!b

� 2 ~!�adb�B� B ~!a ~!b:

(A12)

Then, we find that
 

�Xk
�‘�
ab � �dadbB� 2 ~!�adb�B� �Xk

�‘�
ab � A�k

�‘�
ac k

�‘�c
b

� ~qca‘d~qec‘fCcdef �
1
2~qabGcd‘c‘d�

� B�12
~Rab �

1
2
��‘�k

�n�
ab � ��n�k

�‘�
ab� � 2k�‘�c�ak

�n�c
b� �

� B��1
2~qca~qdbRcd � d�a ~!b� � ~!a ~!b�: (A13)

With the help of (2.17) it is then straightforward to show
that

 �X��‘� � �X��‘� � �d2B� 2 ~!adaB� B
k ~!k2 � da ~!a

� ~R=2�Gab‘
anb � ��‘���n��

� A
k��‘�k2 �Gab‘
a‘b � �1=2��2

�‘��;

(A14)

where k ~!k2 � ~!a ~!a and k��‘�k2 � ��‘�ab�
�‘�ab. Similarly,

we can take the trace-free part of the above to obtain
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�X�
�‘�
ab � �X�

�‘�
ab � �dfadbgB� 2 ~!fadbgB

� A~qca‘d~qeb‘
fCcdef � B


1
2��‘��

�n�
ab

� 1
2��n��

�‘�
ab � dfa ~!bg � ~!fa ~!bg

� 1
2~qc
fa~qdbgGcd� � A
�

�‘�
ac�

�‘�c
b

� 1
2k�

�‘�k2 ~qab� � B
�
�‘�
ac�

�n�c
b

� ��‘�bc�
�n�c
a �: (A15)

Here curly brackets around a pair of indices indicates their
symmetric trace-free part (with respect to the two-metric).
Thus, for example,

 ~! fadbgB � ~!�adb�B�
1
4~qab ~!cdcB: (A16)

Note that even though ��‘�ab is trace-free, its variation will
not usually inherit this property (this follows from the fact
that �X~qab � 0). Thus, in the above expression, the first
two lines are trace-free while the last line is not.

A direct expansion of ~qbaLX�ncrb‘c� with applications
of (2.19) and (A1) gives us the variation of the angular
momentum one-form:
 

�X ~!a � da�X � �k
�‘�
ab
d

bA� ~!bA� � k�n�ab 
d
bB� ~!bB�

� ~qa
b
12Gbc


c � CbcdeX
c‘dne�: (A17)

Finally, we can calculate the deformation of the two-
curvature. Taking the standard variation of the Ricci scalar
(which is used, for example, in deriving the Einstein equa-
tions from the Einstein-Hilbert action [1]) and adapting it
to two dimensions, the variation
 

��~� ~R� � ~�� ~Rab � 1=2 ~R~qab��~qab � ~�da�~q
ad~qbc
dc�~qbd

� dd�~qbc��: (A18)

Taking the �’s as �X’s and doing a little algebra this
becomes

 �X�~� ~R� � 2~�dadb�A��‘�ab � B�
�n�
ab � � ~�d2�A��‘� � B��n��;

(A19)

since the ~Rab �
1
2

~R~qab is in two dimensions. Then,
 

�X ~R � 2dadb�A��‘�ab � B�
�n�
ab � � d

2�A��‘� � B��n��

� �A��‘� � B��n�� ~R: (A20)

APPENDIX B: MAXIMUM AND MINIMUM
PRINCIPLES ON S2

In this appendix we briefly review the maximum prin-
ciple for linear second-order elliptic partial differential
operators and then apply it to operators and functions
defined on a surface which is diffeomorphic to S2.

As motivation we begin with a local maximum principle.
Let U � Rn be an open set parameterized by coordinates
xi where i 2 f1; 2; . . . ng. Then any second-order differen-

tial operator on the set of twice-differentiable functions
over U takes the form

 L
f� � �ij
@2f
@xi@xj

� �i
@f
@xi
� �f; (B1)

for some functions �ij, �i, and � where i, j are indices and
we assume the usual summation convention. If �ij is
positive definite then we say that L is elliptic.

Now if f satisfies L
f�> 0 everywhere on U for an
elliptic L with �  0, it is easy to show that f cannot
have a nonnegative local maximum in U. To see this recall
from elementary calculus that if f has a local maximum at
p, then @f=@xi � 0 for all i and the matrix @2f=@xi@xj is
negative definite. Equally elementary linear algebra tells us
that for positive definite �ij we must have

 �ij
@2f
@xi@xj

< 0 (B2)

at p. Then a term-by-term analysis of the right-hand side of
(B1) quickly shows that if f � 0 at p then L
f�< 0 in
contradiction to the original assumption. Therefore, if a
local maximum exists, it must be negative.

Note that as formulated this result does not cover cases
where det�@2f=@xi@xj� � 0 at fmax. However, the princi-
ple may be extended to all maxima and that is the content
of the following theorem which is stated and proved in, for
example, [40].

Theorem 1 (Hopf’s maximum principle).—Consider a
second-order differential operator

 L
f� � �ij
@2f
@xi@xj

� �i
@f
@xi
� �f; (B3)

on a connected open set U 2 Rn over which �  0.
Assume that the functions �i and � are locally bounded
and that in a neighborhood of any point of U there are
constants M1 and M2 such that

 M1�� � ��  �ij�i�j  M2�� � ��; (B4)

for all �i 2 Rn, where � is the usual Euclidean dot product
for Rn, and we understand summation over repeated in-
dices. Finally let f 2 C2�U� and assume that it satisfies

 L
f� � 0; (B5)

everywhere in U. Then f cannot have a nonnegative maxi-
mum on U, unless f is everywhere constant.

We can then apply this theorem to show the following:
Corollary 1 (maximum principle on a two-sphere).—Let

S be a two-manifold that is topologically S2 and has space-
like two-metric ~qab and compatible covariant derivative
da. Further, let f 2 C2�S� be a scalar field that satisfies

 L
f� � 0 (B6)

everywhere on S for a differential operator of the form

 L
f� � ~qabdadbf� �adaf� �f; (B7)
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where �a 2 TS and �  0. Then f is either constant or
everywhere negative.

To see this first note that S2 is compact and so f must
have (and achieve) an absolute maximum. However, if we
consider any finite set of charts that cover S, theorem 1
applies to the coordinate realization of L
f� on each of
those charts. Thus working chart-by-chart and piecing the
results together, either f is constant over S or the absolute
maximum fmax < 0. That is, f is either everywhere con-
stant or everywhere negative. �

Similarly with a simple substitution f ! �f we have a
minimum principle:

Corollary 2 (minimum principle on a two-sphere).—Let
S be a two-manifold that is topologically S2 and has space-
like two-metric ~qab and compatible covariant derivative
da. Further, let f 2 C2�S� be a scalar field that satisfies

 L
f� � 0; (B8)

everywhere on S for a differential operator of the form

 L
f� � �~qabdadbf� �
adaf� �f; (B9)

where �a 2 TS and � � 0. Then f is either constant or
everywhere positive.

These results are used repeatedly in Sec. III.

APPENDIX C: CLASSIFICATION OF KERR
HORIZONS

To justify some of the assumptions made in defining
FOTHs and slowly evolving horizons, we consider the
values that some of the key geometric quantities take in
the Kerr spacetime.7 This should certainly contain both a
FOTH and a slowly evolving horizon (with 	 � 0) so we
must verify that the various assumptions hold on the Kerr
horizon. Further, for spacetimes that are perturbations of
Kerr the values of these quantities should be similar and so
these calculations gives us some intuition about these
spacetimes and their classification as well.

In generalized ingoing Eddington-Finkelstein coordi-
nates, the Kerr metric takes the form

 ds2 � �

�
1�

2mr
�

�
dv2 � 2dvdr�

4amrsin2�
�

dvd�

� �d�2

�
sin2���r2 � a2�2 � a2sin2��r2 � 2mr� a2��

�
d�2;

(C1)

where � � r2 � a2cos2� and the event horizon is at r �
m�

������������������
m2 � a2
p

.
It is common to scale the null vectors so that ‘a is

proportional to the global ‘‘time translation’’ Killing vector

field on H and the corresponding flow evolves the v �
constant two-surfaces into each other. Identifying this scal-
ing with a subscript/superscript K we have

 ‘aK �
�

1; 0; 0;
a

r2 � a2

�
and

nKa �
�
�1;

a2sin2�

2�r2 � a2�
; 0; 0

�
;

(C2)

where the coordinate ordering is fv; r; �;�g. This is also
the scaling for which the surface gravity is constant and
takes the value

 �‘ �
1

2r

�
r2 � a2

r2 � a2

�
: (C3)

In Figs. 4(a) and 4(b) we plot ��n� and �n��‘�, respec-
tively, for this scaling of the null vectors. It is immediately
apparent that while ��n� < 0, horizons with sufficiently
large angular momentum have �n��‘� � 0 over some re-
gion. However, this does not imply that for these horizons
the v � constant surfaces fail to be FOTHs. Instead it
nicely demonstrates that different scalings of the null
vectors generate different deformations of the two-surfaces
and that not all of the resulting two-surfaces are fully
trapped. If we rescale the null vectors to become

 ‘aTH �
1

�
‘aK and nTHa � �nKa ; (C4)

then �n��‘� calculated with respect to these vectors is
everywhere negative, as shown in Fig. 4(c). Thus the v �
constant slices are FOTS, but the standard scaling of the
Kerr null normals does not show this.

Computationally we can understand what is happening
for these two different scalings by considering the individ-
ual components that went into the calculations.
Equation (3.1) tells us that in the absence of matter fields

 �n��‘� � � ~R=2� k ~!k2 � da ~!a: (C5)

Figure 5 graphs these quantities for the standard scaling
(C2) of the null vectors. The Ricci scalar is, of course,
scaling invariant and Fig. 5(a) shows that for horizons with
large angular momentum it can be negative. Thus, the
scaling dependent da ~!a term must be positive and large
enough to compensate for this. However, a quick exami-
nation of the shapes of Figs. 5(b) and 5(c) shows that for
the standard rescaling, this term is also negative.

In fact these figures are also sufficient to show why the
rescaling (C4) resolves this problem—although in a
slightly roundabout way. To see this we first note that for
any (topologically) spherical surface embedded in a space-
time, there is always a scaling of the null vectors so that
da ~!a � 0 (as discussed in [12,41] this ultimately follows
from the Hodge decomposition theorem). For the two-
surface under consideration this scaling is

7Similar results hold for the Kerr-Newmann family, but for
ease of presentation we restrict our attention to pure Kerr.
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FIG. 5 (color online). The quantities that determine �n��‘� (which also appear in the first condition of the definition of a slowly
expanding horizon) as calculated for the standard scaling of the null vectors (C2).

 

FIG. 6 (color online). The quantities appearing in the definition of the slowly evolving parameter 	 as calculated for the standard
scaling of the null vectors (C2).

 

FIG. 4 (color online). The FOTS defining quantities for a Kerr horizon. That ��n� < 0 everywhere on all Kerr horizons is shown by
(a) which graphs it for the standard scaling of the null vectors. However (b) and (c) demonstrate that the �n��‘� < 0 condition is not so
trivial. For the standard (C2) scaling of the null vectors �n��‘� can be positive and we must rescale as in Eq. (C4) to show that the
condition is always satisfied.
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 ‘ao �
1����
�
p ‘aK and noa �

����
�

p
nKa : (C6)

Taking this as a reference, Eq. (2.9) tells us that if ‘a � f‘ao
and na � �1=f�noa then

 k ~!k2 � k ~!ok
2 � 2 ~!a

oda lnf� kd lnfk2 (C7)

and

 da ~!a � d2 lnf: (C8)

On an axisymmetric horizon, the second term on the right-
hand side of (C7) will vanish. Meanwhile, k ~!k2 is invari-
ant under a rescaling f ! 1=f, while da ~!a ! �da ~!a.
Just such a rescaling is made in the change from the
Killing normalized null vectors (C2) to the FOTH normal-
ized ones (C4), where in this case f � 1=

����
�
p

. Thus, it
follows that

 
�n��‘��TH � � ~R=2� k ~!Kk
2 � da ~!a

K; (C9)

and in this case the da ~!a term is precisely what is required
to guarantee that �n��‘� > 0 over the whole horizon.

Figure 5 also demonstrates that ~R, k ~!k2, and da ~!a are
each of order 1=R2

H as required for a slowly expanding
horizon. Combining this with the fact that the expansion
parameter C � 0 for the v � constant two- surfaces, we
confirm that the event horizon of a Kerr black hole is not
only a FOTH but is also a slowly evolving horizon.

Finally, Fig. 6 graphs the quantities that appear in (5.6)
in the definition of a slowly expanding horizon. Although
in this case their exact form does not matter (since C �
	 � 0), it is useful to note that they too are of order 1=R2

H.
Thus, for perturbed Kerr solutions (5.6) will be satisfied
and the horizon will be slowly expanding, as long as C is
sufficiently small.
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