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Gravitational radiation from collapsing magnetized dust

Hajime Sotani,"* Shijun Yoshida,>" and Kostas D. Kokkotas'~"*

'Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
Science and Engineering, Waseda University, Okubo, Shinjuku, Tokyo 169-8555, Japan

3Theoretical Astrophysics, University of Tiibingen, Auf der Morgenstelle 10, 72076, Tiibingen, Germany
(Received 12 February 2007; published 6 April 2007)

In this article we study the influence of magnetic fields on the axial gravitational waves emitted during
the collapse of a homogeneous dust sphere. We found that while the energy emitted depends weakly on the
initial matter perturbations it has strong dependence on the strength and the distribution of the magnetic
field perturbations. The gravitational wave output of such a collapse can be up to an order of magnitude
larger or smaller calling for detailed numerical 3D studies of collapsing magnetized configurations.
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I. INTRODUCTION

The direct detection of gravitational waves will be a
significant breakthrough both for fundamental physics
and astrophysics. With the information collected from
gravitational waveforms, one will be able to make valida-
tion of general relativity, collection of astronomical data,
and examine the nature of matter in supranuclear densities.
Among the most important applications of the gravitational
wave observations is the asteroseismology in which seis-
mic information for determining stellar structures is ob-
tained by gravitational waveforms [1-7]. Currently, several
ground-based acoustic and laser interferometric detectors
for gravitational waves like LIGO, TAMA300, GEO600,
and VIRGO are in operation but there is not yet any direct
detection of gravitational waves [8]. In addition to the
ground-based detectors, there is a project to launch a
Laser Interferometric Space Antenna (LISA), which is
planned to be launched by the end of next decade and to
operate for five years [9].

The nonspherical stellar collapse is one of the potential
sources of gravitational waves both for the ground-based
and for space detectors. The ground-based interferometers
target the formation of stellar mass black holes or neutron
stars because they are most sensitive to gravitational wave
frequencies in the range 10—1000 Hz. Space detectors with
sensitivities ranging from 10~% up to 10~ Hz might detect
signals from the creation of supermassive black holes [10—
15]. There are two approaches to calculate the energy
radiated away as gravitational radiation during stellar col-
lapse; the first is via direct numerical integration of the
exact Einstein and matter equations, which form a coupled
nonlinear system of partial differential equations, and the
second is by making use of the linear perturbation analysis.
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During the last decade, numerical relativity made remark-
able advances and many complicated matter and spacetime
configurations can be treated with a high degree of con-
fidence [16-21].

In spite of recent great progress in numerical relativity,
the accurate extraction of gravitational waveforms has
been proved a quite difficult task. The reason is that the
weak gravitational waves emitted during the stellar col-
lapse sometimes have amplitudes similar to those of un-
physical noises due to gauge modes and/or to numerical
errors. Linear perturbation theory is extremely efficient for
such processes since the nonradial perturbations which are
responsible for the emission of the weak gravitational
waves are separated from the nonradiative symmetric
background. For example, for spherically symmetric back-
grounds the physical quantities described by the perturba-
tions can be expanded in terms of tensor spherical
harmonics and this separation of variables simplifies con-
siderably the study of the problem. Actually, the master
equations for the perturbations are reduced to a simple set
of coupled linear partial differential equations, which can
be evolved with extremely high accuracy. On the other
hand via this procedure one might miss certain nonlinear
phenomena that take place at the very last stages of
collapse.

Linear perturbation analysis has been used in calcula-
tions of the gravitational wave emission from the stellar
collapse to a black hole [22—-25]. Cunningham, Price, and
Moncrief derived the perturbation equations on the
Oppenheimer-Snyder solution, which describes collapse
of homogeneous dust [26] and calculated gravitational
radiation emitted during the collapse to a black hole [22].
By using the gauge-invariant perturbation formalism on the
spherically symmetric spacetime formulated by Gerlach
and Sengupta [27], Seidel and co-workers [23] investigated
the gravitational waves from the stellar collapse in which a
neutron star is born. The gravitational waves from collapse
of an inhomogeneous dust, which can be described by
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nonradial perturbations of the Lemaitre-Tolman-Bondi so-
lution [28], are computed by Iguch, Nakao, and Harada
[24]. Harada, Iguchi, and Shibata [25] calculated the axial
parity gravitational waves emitted from collapse of a
supermassive star to a black hole by employing the cova-
riant gauge-invariant formalism for nonradial perturbations
on spherically symmetric spacetime and the coordinate-
independent matching conditions at stellar surface, devised
by Gundlach and Martin-Garcia [29].

Although, as mentioned above, there have been many
investigations of gravitational radiation from stellar col-
lapse with the linear perturbation analysis, effects of mag-
netic fields on the gravitational radiation have not been
taken into account. While Cunningham et al. dealt with
electromagnetic perturbations of the Oppenheimer-Snyder
solution [22], they omitted the conduction of the fluid. In
other words, Cunningham et al. did not consider the direct
coupling between fluid and magnetic field. However, it has
been realized recently the importance of effects of mag-
netic fields on the evolution of compact objects again due
to the advent of high-performance instruments like
satellite-borne detectors. One of the most impressive ex-
amples is the discovery of magnetars, which are neutron
stars whose strength of magnetic fields is estimated about
10" G. The magnetar model, in which observed activities
are powered by decay of the strong magnetic fields of
magnetars, successfully explains activity of soft gamma
ray repeaters (SGRs). All the four of the known SGRs have
rotation periods of ~5-8 s, and the three of them have
large period derivatives of ~107'9 ss™!, which infer the
existence of magnetic fields of B = (5-8) X 10'* G [30].
Since there is an ultrastrong magnetic field in some neutron
stars, which will be born by stellar collapse, it is natural to
take into account its effect on stellar collapse. Even if the
initial magnetic field is weak, it is conceivable that the
magnetic fields of the collapsing object are, due to the
magnetic flux conservation, amplified during the collapse
and will most probably affect the gravitational waves
emitted.

Another example for showing the importance of mag-
netic fields in the evolution of compact objects is related to
gamma ray bursts (GRBs). The short-duration GRBs could
result from hypergiant flares of magnetars associated with
the SGRs [31] or magnetized hypermassive neutron star
collapse [32]. For long-duration GRBs, strong magnetic
fields provide the excitation energy on the required time
scale and drive collimated GRB outflows in the form of
relativistic jets [33]. Additionally, the so-called hypermas-
sive neutron star, which can be formed after the merger of
binary neutron stars and can be in an equilibrium state due
to differential rotation, could lead to delayed collapse by
the magnetic braking and viscosity, even if the initial
magnetic field and the viscosity are very weak [34].
Notice that even if they are weak initially, the magnetic
fields can be amplified to the required strength by the
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winding-up of weak magnetic field due to differential
rotation [35].

All the examples mentioned above indeed suggest that
magnetic fields play an important role in the stellar col-
lapse. In this paper, we therefore consider gravitational
radiation from collapse of weakly magnetized dust spheres
to explore the effects of magnetic fields on the gravitational
waves from the stellar collapse to a black hole. For the sake
of simplicity, we consider, as the background spacetime,
the Oppenheimer-Snyder solution, which describes homo-
geneous dust collapse. The weak magnetic fields of the
dust spheres are treated as small perturbations around the
Oppenheimer-Snyder solution. We therefore regard both
the gravitational waves and the magnetic fields as pertur-
bations on the Oppenheimer-Snyder solution in this study.
Thus we introduced a dimensionless quantity related to the
amplitude of gravitational perturbations, € ~ |8g,,,[, and
another one for the strength of the magnetic field, n ~
|B/(GM?R™*)!/|. Here §g,,, stands for the metric pertur-
bation and B for the magnetic field strength while M and R
denote the mass and radius of the star. Note that in this
work we assume that the Lagrangian displacement of the
fluid &# satisfies the condition |£#|/R ~ €. It should be
emphasized that a perturbative treatment of the magnetic
fields is good enough to describe the strong magnetic fields
met in magnetars because dynamics of the stellar collapse
is basically governed by gravity. In other words, the ratio of
the magnetic energy £ to the gravitational energy £g is
sufficiently small even for magnetars, i.e. a typical value of
Em/Eg for magnetars is approximated by £/ =~
B?/(GM?*R™%) = 10~* X (B/10'¢ [G]). As for gravita-
tional perturbations, this paper focuses on the axial parity
perturbations as the first step. The axial parity gravitational
waves are treated with the covariant gauge-invariant for-
malism. We further assume that the two expansion parame-
ters, € and 7, satisfy € ~ n2. In other words, we consider
the gravitational radiation directly driven by the magnetic
field of the dust sphere.

This paper is organized as follows. In Sec. I we make a
short introduction on the orders of the various perturbative
quantities that we use, then we briefly describe the gauge-
invariant perturbation theory, and finally we show the form
of the basic equations describing the magnetic fields. Next,
in Sec. III, we describe the formulation for the magnetized
homogeneous dust collapse including an analytic descrip-
tion of the background spacetime, the magnetic fields, the
axial parity perturbation equations, and the junction con-
ditions at stellar surface. In Sec. IV, we describe the details
of numerical procedures employed in this study, while the
code tests are presented in Sec. V. The results related to the
efficiency of the collapsing magnetized homogeneous dust
spheres in gravitational wave emission are shown in
Sec. VI. The final section, Sec. VII, is devoted to discus-
sion and conclusions. In this paper, we adopt the unit of
¢ = G =1, where ¢ and G denote the speed of light and
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the gravitational constant, respectively, and the metric
signature is (—, +, +, +).

II. PERTURBATION THEORY PRIMER

A. Ordering of perturbations

Since the energy of the magnetic field is much smaller
than that of the gravity even for magnetars, as mentioned in
the previous section, it is reasonable to treat the electro-
magnetic field in the dust sphere as small perturbations.
The perturbed metric, g,,,, the perturbed four-velocity of
the fluid, #*, and the perturbed electromagnetic tensor,

F ., can be expanded as

v
gﬂ,l/ = 8uv + Sg,uv + (9(62)’ (D

ik =ut+ surt + O(e?), )

F,,=F,, +68F,, + 0, 3)

where g v is the background metric tensor, u*, the four-
velocity of the fluid, and F v the electromagnetic tensor.
Both g, and u* are defined as solutions of a collapsing
spherical dust sphere in the absence of any electromagnetic
field. For convenience we introduced two small dimension-
less parameters related to the strength of the magnetic field
and to the amplitude of the gravitational waves, i.e., n ~
|IB/(GM*R™*)"/2| and € ~ |6 ,,|. Moreover, we assume
that the Lagrangian displacement is small i.e. |£#|/R ~ €.
Finally, we need to mention that in this study, we consider
an infinitely conductive fluid, i.e. we make use of the so-
called ideal magnetohydrodynamic approximation. Thus,
the master equations for describing the magnetic field are
given by the perfect conductivity condition, F wrlit” =0,
and the Maxwell equation F uva T F vau T F, wy = 0.
The first order (n') form of the above two conditions
will be written as

SF ,u" =0, )

8F,, ., + OF

wr, + 8F,,, =0, 5)

va, u au,v

which determine the magnetic field corrections to the
spherical dust sphere. Up to this order of approximation,
the variations induced by the presence of the magnetic field
do not affect the spherical symmetry of the system, since
the Lorentz force which induces deformations in the ge-
ometry is of second order (n?).

In a similar fashion, both the Einstein tensor and the
energy-momentum tensor can be expanded in powers of €
and 7 as

G,y =G, +8G,, + O, (6)
T = 1M + 5T + 0(e?), (7
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TEMW = 5T7EM + O(en?), (8)
where T%) and TLE,M) stand for the energy-momentum
tensors for the fluid and for the electromagnetic fields,

respectively, while STELEB/[ ) is of second order in 7. The
Einstein equations of order 1°e° are the evolution equa-
tions describing the unperturbed spherical dust collapse.
Here we focus in the study of the influence of magnetic
field on the efficiency of gravitational wave emission dur-
ing the collapse, and thus we consider only those terms of
the approximation that will be significant in this study.
That is we omit terms such as €' »* and we further assume
that € ~ n2. In this order of approximation, the Einstein
equations of order € are reduced to the following form:

8G,, = 8m{6TM) + 6THV} + O(€?)
=8moT,, + 0(e?), 9)

which describes gravitational perturbations driven both by
the magnetic field and the fluid motions of the collapsing
dust sphere.

B. Gauge-invariant perturbation theory

The gauge-invariant perturbation theory for spherically
symmetric background spacetime has been formulated by
Gerlach and Sengupta [27] while its covariant formulations
has been developed by Gundlach and Martin-Garcia [29].
Here we only briefly describe this formalism for the special
case of axial parity perturbations.

1. Background spacetime

A spherically symmetric four dimensional spacetime M
can be decomposed as a product of the form M = M? X
&2, where M? is a 2-dimensional (1 + 1) reduced space-
time and S? a 2-dimensional sphere. In other words, the
metric g, and the stress-energy tensor T, on M can be
written in the form

g/,LV = diag(gAB; R27ah)J (10)

Ty, = diag(Typ OR*Ya), (1D

where g,p is an arbitrary (1 + 1) Lorentzian metric on
M2 R a scalar on M?, Q some function on M?, and
Yap is the unit curvature metric on S?. Note that if the
background spacetime is spherically symmetric then Q =
T¢,/2. Here and henceforth the Greek indices denote the
spacetime components, the capital Latin indices the M?
components, and the small Latin indices are used to denote
the S? components. Furthermore, the covariant derivatives
on M, M?, and S* are represented by ., |4, and -,
respectively. Finally, the totally antisymmetric covariant
unit tensor on M? is denoted as e, and on S? as g,,.
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2. Nonradial perturbations

As mentioned before, in this paper, we only consider
axisymmetric axial parity perturbations both for the metric
0g 4, and the matter perturbations 67 ,,,, which are given

nvs
by
5 _ 0 h/%‘XialSi (12)
Sur =\ ngiasl, n(st,, + 85, )
6T, = oo AGS, (13)
r tiltxmlsil At(sz:b + Sé:a) '

where S!, = e’ ,P,, while P, stands for the Legendre
polynomial. The gauge-invariant variables of the perturba-
tions are then defined as

ka = h55 — Ry + 2hvy, (14)
LA = A[%xial — thxiall (15)
L=Ar— Qh, (16)

where v4 = Rj4/R [29]. In terms of the gauge-invariant
variables, the master equations for the axial parity pertur-
bations are given by

kA = 167L, (17
kA\lc kC\1a
_ 412 _ p4( _ A
[R <R2> R <R2> lc (= D+ 2k
= 167R>LA, (18)
(R*LA), = (1= 1)(I + 2)L. (19)

C. Basic equations for the magnetic field

As mentioned earlier, the electromagnetic field pertur-
bations, 6 F ,,,, are governed by the Maxwell equations, i.e.

+ 8F 4, + 8F,,, =0, (20)

s

oF

Mmv,o vo,

SFKY = Am8JH, 1)

where 8J* is the perturbation of the current four-vector.
Note that Egs. (20) and (21) are correct up to order of n'€®.
The perturbation of the electromagnetic field energy-
momentum tensor, 5T§LE,M ), in this order of approximation
has the form

Em) _ |
0Ty in

(22)

The electric E,, and the magnetic field B, associated with
the four-velocity of the fluid 1" are defined as

E, = 8F,u", 23)

B, =1&,,,5u"5F*F. (24)

1
<6F,u,a§Fvﬁga'B - ZgMVBFaB(SFAygaAgﬂ)/)'
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Finally, we remind the reader that in this paper we consider
infinitely conductive fluids, i.e. the ideal magnetohydrody-
namic approximation has been adopted, according to
which E w= oF wptt” = 0, where u” is the unperturbed
four-velocity of the infinitely conductive fluid.

III. MAGNETIZED HOMOGENEOUS DUST
COLLAPSE: FORMULATION

A. Background spacetime for perturbations

Here we briefly describe the background spacetime
which will be later endowed with a magnetic field. We
consider perturbations around a homogeneous spherically
symmetric dust collapse described by the Oppenheimer-
Snyder (OS) solution, whose line element inside the dust
sphere is given by

ds? = g uvdxtdx”
= —dr? + R*(7)[dx?* + sin®> x(d6? + sin’0d ¢p?)]
(25)

= RX(g)[—dn?* + dx? + sin’ x(d6* + sin>0d $?)],
(26)

where y is a radial coordinate defined in the range of 0 =
X = Xo- Here y is the stellar surface and it is assumed that
xo < /2. In the line element defined earlier, R(7) is the
scale factor and 7(n) is the proper time of an observer
comoving with the fluid, defined in terms of the conformal
time 7 as follows:

R(n) =

—— (1 + cosm), 27)
sin? y,

m(n) = (n + siny), (28)

sin® y,
where M is the total gravitational mass of the dust sphere.
The energy-momentum tensor for the dust fluid is written
as

T = pu,u,, (29)
where p is the rest mass density given by
3Sin6,\/0 3
p(n) = ppye (1 4 cosn) ™, (30)

and u* denotes the four-velocity of the dust, described in
terms of comoving coordinates as

ut = o#, or ut = R(n)d*,, (31D

where 6#, means the Kronecker delta. The spacetime
outside the dust sphere is described by the Schwarzschild
metric, i.e.,
ds* = —f(r)dt* + f(r)~'dr* + r*(d6? + sin’0d ¢p?),
(32)
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where f(r) = 1 — 2M/r. From the junction conditions at
the surface of the dust sphere, we obtain the relationships
between the (7, y) coordinates and the (¢, r) coordinates,
given by

rs = R(n) sinyo, (33)

| L/2M) — 117+ wan(n/2)
M~ [ [(r0/20) = 117 = tan(n/2)

(=) e (fe)m +siom | 0

aM
where ryy = ry(t = 0) = 2M/sin?y, is the initial stellar
radius in Schwarzschild coordinates.

B. The magnetic field of the star

As mentioned earlier, we consider weakly magnetized
dust spheres in which the magnetic effects on the dust fluid
are treated as small perturbations on the OS solution.
Moreover, for the sake of simplicity we assume that the
electromagnetic fields are axisymmetric. Thus, perturba-
tions of the electromagnetic fields, 6F,,, and the current
four-vector, 6J,,, can be described in terms of the Legendre
polynomial P,; by the following relations:

8Fyp; = —8F3 = e, sinfa,P,,, (35)
8F 3 = —8F3 = by sinfd,P, , (36)
8Fy; = —8F3, = b, sin6P, , (37)
0Fy = —6F = e;Py,, (38)
8Fy = —8Fy = e3dgP,,, (39)
8Fy = —8Fy = b3d,4P,,, (40)
87, = (jaPy,, J PP + JOSI). (41)

Notice that here we have used [/;; to denote the angular
quantum number with respect to the electromagnetic fields
to discriminate it from the one for the gravitational waves /.
In the interior of the dust sphere, the perfect conductivity
condition 6F,,u” =0 is reduced into 8F, = 0. This
assumption leads to the following simplifications:

€1 :€2:€3:0. (42)

By direct substitution of Egs. (35) through (40) into the
Maxwell Eq. (20), we obtain the basic equations describing
the magnetic fields, which have the following simple form:

anbl = aﬂbz = 6,,173 = 0, (43)

Iy(ly + )by + 9,b, = 0. 44)

The first of theses relations, Eq. (43), suggests that a
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comoving observer does not observe any change in the
magnetic field distributions. All the components of the
electromagnetic fields can be determined through
Egs. (42)—(44). The Maxwell Eq. (21) that we still have
not used can be regarded as the definition of the current
four-velocity. This implies that the perturbations of the
current four-velocity can be written as follows:

Jn =0 (45)
jy=- ZM(ZZI;— 1) stbi;/\/’ (46)
jr=- % (47)

The electromagnetic fields outside the star also are given
by similar expressions to Egs. (35)—(40). In order to avoid
mixing of the various quantities inside and outside the star
we will indicate the ones in the exterior with a tilde i.e. &y,
b 1> and so on. Since the exterior of the star is a vacuum, we
cannot make use of the perfect conductivity condition
there. Instead, we make an alternative assumption, that is
we demand the vanishing of the current perturbations out-
side the star, i.e. 6J#* = 0. This assumption simplifies
considerably the Maxwell Eq. (21) leading into the follow-
ing set of equations:

8,*(1‘252) - lM(lM + 1)53 = 0, (49)
3,(r?&) — Ly(ly + 1)fb3 =0, (50)
T

€1 ar*(fbl) ﬁbz =0, (51)

where r, is the tortoise coordinate defined as r, = r +
2M In(r/2M — 1). Furthermore, from Eq. (20), we get a set
of equations similar to Egs. (43) and (44), given by

&, — 0,83+ 9,b5 =0, (52)
Ly(ly + e, + 9,b, =0, (53)
Ly(ly + Dby + 9,b, = 0. (54)

The six equations for the electromagnetic fields, i.e.
Egs. (49) through (54), can be reduced to two decoupled
wave equations

Ly(ly + 1)

— 9%by + 92 b, — ——fb, =0, (55)
r

il 21 ap ) o) (s6)

— 02078 + 03.(°8;) — M

Moreover, these two wave equations can be rewritten in
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terms of the double null coordinates, i =t — r, and U =
t+ r, as

8252 + Iu(ly + 1)

s T b =0, (57)
uov

228,) | Iylly + 1
0°(r*é,) " m( M2 )f(rzéz) —o (58)
diuov 4r

At the surface of the star, we implement the following
junction conditions for the electromagnetic field

n*B, = "B, (59)

o

9. "Ey = 4, Ey, (60)

where n*, /i* are the unit outward normal vector to the
stellar surface defined in the interior and the exterior
coordinates, respectively, while ¢,”, g,” are the corre-
sponding projection tensors associated with n* and 7ii*.
Therefore the junction conditions reduced to the following
set of relations

~1

by =0, & +=5by=0, (61)
u

:1| <
ol =

b2 = bz, él +

9,R
= Tf tan y. (62)

:z|:1
=1

In conclusion, we mention that in this paper we focus
only on dipole electromagnetic fields, i.e., electromagnetic
fields associated with I;; = 1. Observations actually are in
favor of the existence of dipole electromagnetic fields and
moreover these fields can drive the quadrupole gravita-
tional radiation as we will see in the next section. Finally,
the formalism developed here accounts for electromag-
netic fields which lie both inside and outside the star, in
this study as a first step we take into account only magnetic
fields confined in the stellar interior. We therefore assume
that &, = b, =0 fori =1, 2, 3.

C. Basic equations for the axial parity perturbations
1. Interior region of the star

As we mentioned earlier, we will use the gauge-invariant
formulation in the treatment of perturbations of the OS
spacetime. The gauge-invariant form of axial perturbation
Egs. (17) and (18) for the OS spacetime is reduced to the
following set of equations:

— 0k, + 0k, — 167R2L = 0, (63)

k
3, (R*MIsin*y) + (I — 1)(I + 2)R—Z — 167L,,sin’y = 0,
(64)
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1 , k .

ﬁan(R“Hsm“/\O +({-1DI+ 2)}%2 — 167L,sin*y = 0,

(65)

where II is the gauge-invariant quantity, defined as

m=lo (-5 Y g (K (66)
R? [ "<R2 sin? ,\/) X <R2 sin? X> }

The regularity condition at the stellar center suggests the

introduction of a new function II defined as

IT = (Rsiny) 211, (67)

which is analytic at the stellar center. By using Eqs. (64)
and (65), one can derive a single wave equation for II,
given by

- J0,R _
o, f - )
ny R

— 0211 + 9210 + 2(1 + 1)(S
@I=1+ 2)R(0)I—I 167

= J,L
2R Rlsin’,\/( e

-9 nL)(),
(68)

where R(0) = 2M /sin? y,. Moreover the equation of mo-
tion (19) is rewritten as

— 9, (R*L,sin’x) + 9, (R*L,sin )
= (I = 1)(I + 2)R’L. (69)

The perturbation of the energy-momentum tensor 67,
can be split into two parts as shown before:

8T, = 8T\ + 8TH", (70)
where T%) and Tfy) are the energy-momentum tensors
for the dust and the electromagnetic field, respectively.
Since axial parity perturbations of the four-velocity of
the fluid, ou ,, defined as

u,, = (0,0, B(n, x)S4), (71)

the expansion coefficients of 6T,%) introduced in Eq. (13)
are given by

AR = Bpu,, (72)
AR = AfM) = 0, (73)

In this paper we constrain our study to the quadrupole
gravitational radiation emitted by axial parity perturba-
tions. The reason is that quadrupole radiation directly
couples with dipole magnetic fields and it is a dominant
component for gravitational wave emission. As discussed
before, the perturbations of the energy-momentum tensor
for the electromagnetic field, STLE,IW ) , are of order
~(8F ,,). Therefore, we cannot achieve separation of

variables for 6Tfy) even if the background spacetime is
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spherically symmetric. Since we assume dipole electro-

magnetic fields (/;; = 1), then BTEEVI ) will contain terms

associated with [ = 0 and [ = 2. For the detailed calcula-
TELE,M) inside the star, see

Appendix A. Finally, the expansion coefficients for 8T,(LE,1VI)

associated with [ = 2 are given by

tions of various components of &

A =0, (74)
byb
AW = — — 22 75
X 127R?sin’ y (75)
bb
AfEM) = 153 76
127R? (76)

Thus we can derive the gauge-invariant quantities for the
total matter perturbations (the dust fluid and the magnetic
field), L, and L, which have the following form:

L, = —RBp, (77)
bybs
=—-—— 78
X 127R?sin’ y (78)
b bs
= . 79
127R? (79

Substituting Eqgs. (77) through (79) into Eq. (69), we get
the following equation of motion for B:

1
 127R3psiny

X b3(axb2)} (80)

9,8

[bZ(asz) + {1 - W}

notice that in this derivation we have used the perturbed
Maxwell Eq. (44). Using the relations, R’p =
3R(0)/87 = const, d,by =0, and 9,,b; = 0, we can ana-
lytically integrate Eq. (80) with respect to conformal time
7, to get the solution

B, x) = 21 [bz(axl%)

9R(0)R!*sin' 3 y

+ {1 _-net?) ])2(1 * 2)}b3(axb2)}
R(0)

I+1 _ ) .
+ s
< R ) Bolx (81)
where B = B/(Rsiny)"*! and By(x) is the initial distri-
bution of 8. Following Ref. [25], in this paper, we adopt
three different definitions for the initial distribution By(x)
ie.

Bo(x) = U, (= const), (82)
Bolx) = U, CXP[_<R(ORﬂ>2} (83)
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R(0) siny — rs0>2 }

% (84)

Bolx) = Us exp[—(
where ‘U; is an arbitrary constant and R, is a scale factor
describing the inhomogeneity of the fluid velocity’s initial
distribution. Here following Ref. [25] we choose R, =
r SO/ 3.

In the actual numerical calculations, we use the two null
coordinates, (¢« = n — y and v = 1 + y) and the master
Eq. (68) is rewritten in these coordinates as

0211 +l+1 COS/\/+37]R @
dudv 2 (sin,\/ R )au
I+ 1/cosy 9,R ﬂ N 21—+ 2)R(O)I=I
2 (sin/\/ R ) ov 8R
= S(n, x), (85)

S(n, x) = 47R*p{(l + 1) cosxB + siny(d,B)}
2b,b5(0,R
200 (86)
3R sin "y
In summary, inside the star, our basic equations describing
the gravitational perturbations are Egs. (85) and (86). The
source term S(, x) is given uniquely by the function
B(n, x), shown in Eq. (81), for a given initial distribution
of the electromagnetic field and the fluid velocity
perturbations.

2. Exterior region of the star

The Oppenheimer-Snyder solution (26) for the interior is
matched with the Schwarzschild solution (32) for the ex-
terior and the master equations for perturbations (17) and
(18) in the interior reduce to the well-known Regge-
Wheeler equation in the exterior, which has the form

- 92® + 92D — V(r)® = 16713, L, — fo,L,), (87)

— (83)

V() — f<l(l +1) 6_M>

r r

where @ is the Regge-Wheeler function, related to the
gauge-invariant variable II through the relationship

d =10 = r3[a,<%> - a(%ﬂ (89)

If the electromagnetic fields do not vanish outside the
star, we need take into account their influence on the
gravitational radiation emitted during the collapse. In the
exterior, the only nonvanishing contribution to the pertur-
bations of the energy-momentum tensor 571,, is the one
from the electromagnetic field. The expansion coefficients
for STW associated with the [ = 2 axial parity perturba-
tions are then given by the following formulas:
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. 1 .7 .z
L,=Af™ = ———(f2,b, + 5 &b, ), (90)
127 r
E_A%EM)__I 1~~+155 91
, = Aty _E}elez p23’ OD
[ = AFEM) — __b lglgg — fb,by).  (92)
127 \f -

Actually, in Appendix B, we present the detailed form of
the various components of the perturbed energy-
momentum tensor for the electromagnetic field outside
the star.

By usmg the vacuum Maxwell Egs. (49) —(54), we can
rewrite L,, L,, and L in terms of &, and b, as

2 - -
¢ = 24{[62(3 by) — *52192 - bZ(aréZ):|: (93)

1 - -
L,= [2,(0,b;) — b,y(9,85)], 94

2anf

- 1 - -

L =——[2r&,(9,by) + r*(8,b,)(3,8,) — r*(9,&,)
487

X (9,b,)]. (95)

Finally, the Regge-Wheeler Eq. (87) can be rewritten in
terms of the double null coordinates, # =t — r, and U =
t+ r,. as

AL 7Y, S

+-V(r)® =

a~a~ 4 31’2 EZ(ar*rzéZ)]y
uov

(96)

[’252(6&52) -

where we have modified the right-hand side of the Regge-
Wheeler equation by using Egs. (55) and (56). Still, since
in this study we do not take into account the influence of
the electromagnetic field outside the star, the right-hand
side of Eq. (96) vanishes.

D. Junction conditions at the stellar surface

In order to ensure that the spacetime is regular at the
stellar surface (y = xg), we impose three junction condi-
tions for the case of axial parity perturbations; first we
demand the continuity of II, second that nAIlj, —
167 (R siny) " u*L, = i* M, — 167r 2a*L,, and the
last is I, = ﬁAl:I| 4. These boundary conditions arise
from the continuity conditions for the induced metric and
the extrinsic curvature [29]. Therefore, the junction con-
ditions are explicitly given by

=1l o7)
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16
—z 4w+ 07BP (5 Rysing
Rsin? y,

Z
— Rcosyg) 7

w
+ ((0,,R) siny, + Rcosx0)7

167 -
- F(LIR COS X

+ flj,(a,,R) sinyy), (98)

, Z

Z+ W = (Rcosyy — (0,R) sm)(o)—

w

+ (Rcosyy + (9,R) s1n/\/0)7 (99)
where Z = 9I1/du, W = oIl /ov, Z = 911 /dii, and W =

oll /00. The last two conditions, (98) and (99), can be
rewritten as

w
= (Rcosy, + (9,R) sin/\/O)—

8mPBp
f 2(L Rcosyo + fL,(0,R) siny,) — Rsin’ g’
(100)
i Z
Z = (Rcosyy — (9,R) sm)(o)?
87 - - . 87TBp
+ f_rz(L'R cosxo + fL,(9,R)siny,) + Reinpy”
(101)

IV. NUMERICAL PROCEDURE

In this section we describe the numerical procedures that
we will follow and the way that we generate initial data. In
order to simplify the numerical procedure and to set the
initial data both in the interior and exterior of the collaps-
ing configuration, we divide the background spacetime into
three regions named I, II, and III, as illustrated in Fig. 1.
Region I represents the stellar interior, while regions II and
IIT the exterior spacetime. Region III is separated from
region II via the null hypersurface defined by ¢ = ¥,
which is generated by the ingoing null rays emitted from
the point where the stellar surface reaches the event hori-
zon. Note that it is sufficient to consider the regions I, II,
and III because the gray area in Fig. 1 is causally discon-
nected from the stellar interior at 7 = 0 when the magnetic
fields are confined inside the star. To solve the wave
equation numerically, we make use of the finite differenc-
ing scheme proposed by Hamadé and Stewart [36], in
which the double null coordinates (u, v) are employed in
region I and (&, ©) in regions II and III, respectively. Notice
that we integrate the wave equation in region I by using a
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initial hypersurface

t=0

n=0 4
stellar surface

FIG. 1. A schematic description of the Oppenheimer-Snyder
spacetime for the collapsing model in characteristic coordinates.
Region I denotes the stellar interior while regions II and III
correspond to the exterior. The stellar surface, where r = rg or
X = Xo, is the boundary between regions I and II, and the
stationary region outside the star is indicated by gray shading.

first order finite differencing scheme to avoid numerical
instabilities appearing near the stellar center, while
Hamadé and Stewart’s original scheme is of a second order
finite differencing scheme.

A. Initial data

In order to initiate the numerical calculations, we need to
provide a data set on the initial hypersurface for the quan-
tities I1, 9,11, 9,11, By, b,, and b, for the stellar interior,
and (f), GﬁCi), and af,Cf) for the stellar exterior. Following
[22], we assume that the initial perturbations are ‘““momen-
tarily static.” Outside the star, the momentarily static initial
condition for the metric perturbations is given as a static
vacuum solution of Eq. (87) in terms of hypergeometric
functions

. q  (2M\! 2M
D e = o () Fi( 1 = L1+ 3,21+ 2;7—),
static l(l+ 1)( > l< - >

"
(102)

where g; is a constant representing the multipole moment
of the star. Here we assume that g; = 2M. We remind the
reader that there is no electromagnetic field outside the star.
Since it is a static solution, the initial perturbation outside
the star (102) does not evolve until a light signal from the
stellar interior arrives there. Finally, set the initial data i.e.
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the static solution (102), on the null hypersurface i = i,
for the characteristic initial value problem.

As for the initial condition inside the star, we have to
give a data set not only for metric perturbations but also for
fluid and electromagnetic perturbations. As mentioned ear-
lier, the initial fluid distribution 8 is given by Egs. (82)—
(84), while the initial distribution for the magnetic fields
b,, bz will be discussed later in Sec. VI. Finally, the
momentarily static initial data for metric perturbations I1
in region I are defined by the conditions anﬁ =0 and
6%1_1 = 0. The data sets at n = 0 for 9,11 and 9,11 are
then defined via the relations 9,11 = —(9 Xf[) /2 and
9,11 = (d Xﬁ) /2, respectively. The momentarily static
distribution of I1(n = 0) due to the conditions anf[ =0
and 637fl = ( is given as a regular solution of

200+ 20+ 1)S%X - B DUT2RO) g
o Sin/\/ X 2R
167
= Risiniy Oxbn k) (103)

The regular solutions of Eq. (103) must be smoothly con-
nected to the static exterior solution (102) through the
stellar surface. This leads to a boundary condition for
II(n = 0) at the surface of the star described by the
following equation:

rF; .\ = _

Fi )H + tany,IT , +

1678p
(R sinyg)' ™! cosxo
(104)

<21+1— =0,

where F; is the abbreviation for the hypergeometric func-
tion F;(I — 1,1+ 3,21 + 2;2M/r). Finally, the regularity
at the stellar center requires that the function I is analytic
for y — 0.

B. Boundary conditions

The boundary conditions for the numerical integration
are the regularity condition at the stellar center and that
there are no incoming waves at the infinity. The regularity

condition at the stellar center demands that 0 )(H =0,
which is reduced to

ot _ oIl

p Y (105)
u

Finally, for the no incoming radiation condition at the
infinity, we adopt the condition d®/di = 0 (see, e.g.,
[36D).

C. Special treatment of the junction conditions near the
event horizon

When the stellar surface reaches the event horizon, the
junction conditions discussed earlier in Sec. III D cannot be
used any more because the terms related to f~! diverge.
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Instead of these junction conditions, following [25], we
impose the following junction conditions on the null sur-
face of ## = 1, in the vicinity of the point H in Fig. 1:

HEH _ HNmax
H = HNm'dx —+ m(" - eraX), (106)
HNmax — HNmax_l
HEH = HNmax —+ (rEH - erux)’ (107)

erax — erax -1

where 1" and " are the values of II and r on ¥ = 7, at
nth time steps, while N,,,, denotes the total number of time
steps in region II, and r®H = 2M.

V. CODE TESTS

In order to check our numerical code, we have calcu-
lated the quadrupole gravitational radiation emitted during
the collapse of a nonmagnetized homogeneous dust sphere
(perturbations of the Oppenheimer-Snyder solution),
which has been studied already by several authors, e.g.,
[22,25]. For the test we will consider the collapse of the
homogeneous dust sphere which is initially at rest.
Therefore, we have to provide the initial radius of the
dust sphere to begin the numerical integration. Since the
amount of gravitational radiation emitted during the col-
lapse of a nonmagnetized homogeneous dust sphere is the
“typical value” with which we will compare the energy
emitted during the collapse of a magnetized homogeneous
dust sphere, we will briefly summarize these results.

In the present calculations, the number of the spatial grid
points inside the star (region I) is chosen to be N, = 1000.

6 x 1077 ————rrv

rso = 8.0M

Bg = const. 1

emitted energy / (2M)

2x10°7 N M-
300 1000 10000
N

30000

FIG. 2 (color online). The total radiated energy of quadrupole
gravitational waves from the OS collapse characterized by the
initial radius of the dust sphere r,, = 8M and B, = const
velocity distribution, as a function of the number of grid points
in region III.
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TABLE I. The total radiated energies of quadrupole gravita-
tional waves from the collapse characterized by the initial radius
of the dust sphere r,, = 8M and the B, = const velocity distri-
bution.

N; Aii emitted energy/(2M)
500 3.929M 5.614 X 1077
700 2.806M 3.641 X 1077

1000 1.964M 2.964 X 1077

5000 0.3929M 2.255 X 1077

10000 0.1964M 2.197 X 1077
20000 0.09822M 2.175 X 1077

Using this number of grid points we manage to obtain
numerical solutions and results with acceptable accuracy.
In region 111, the step size for integration is determined by
the relation Al = (up,, — ug)/Nj, Where g = fnax —
Feop- Here, t.. is the expected maximum time for obser-
vation and .y, is the position of the observer described in
tortoise coordinate units. In this paper, we assume that
tmax = 2000M while the fiducial observer is at r, = 40M.

As a first step we confirm the convergence of our nu-
merical code. For this purpose, by varying the value of N,
we calculate the total energy radiated in gravitational
waves during the collapse which will be characterized by
the initial radius of the dust sphere, r,, = 8M, and the

Bo = const velocity distribution. The radiated energy is

10 ————
Tso — 8.0M x (Aﬂ)Q
By = const. ’o
S 1k /’ u
= i ,oo
P o
S s
m o/
| 0.1 k // -
E o E
\q_/ o I/l
= oo | o .’ -
0.001 —_— —
0.1 1 10
Al [M]

FIG. 3. Convergence test of the numerical code. The vertical
axis denotes the “relative error,” that is the ratio of E(Aii) — E,,
over E,,, where E(Aii) is the emitted energy for various A# and
E,, is the energy for N; = 20000. The dashed line is o (A)?
suggesting that as Aii becomes smaller the “relative error”
reduces as (Aii)2.
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3x 1077 . =
: O % [y = const.
R A By ocexp[— (R(0)sinx/R.)?
o B x expl— (R(O)sinx — o)/ R’
g B CPMI1978
N
N
= -7
1x107"F 4
kal .
D) - R
S L
e
g '
é 2
[P
®
2
2% 1078 : : : : |
3 4 5 6 7 8 9 10
initial radius / (2M)

FIG. 4 (color online). The energy emitted in gravitational
waves from the homogeneous dust collapse without magnetic
field as a function of the initial stellar radius where ry = 8M,
12M, 16M, and 20M. The filled squares correspond to the results
by [22], while the rest correspond to our results. The different
marks correspond to different initial distribution 8,. The aster-
isks correspond to numerical results taken by a first order code.

estimated by integrating the luminosity of gravitational
waves Lgw,; with respect to time. Here, the luminosity
Lgw,; of gravitational waves is defined by the relation (see,

PHYSICAL REVIEW D 75, 084015 (2007)
e.g., [22,25])

LI+

Lowi ={e- t=Du+2 (@)

(108)

The outcome of this calculation i.e. the energy emitted in
gravitational waves during the collapse as a function of N;
is shown in Fig. 2 and tabulated in Table I. From Fig. 2 we
conclude that the amount of the total energy emitted during
the collapse converges for N; = 10000, thus we assumed
in all numerical runs N; = 10000. In Fig. 3, we give the
relative error in the total emitted energy obtained by our
numerical code as a function of Aii. Here, the quantity =
(E(A@t) — E,,)/E,, stands for the relative error, then E(A)
denotes the total energy emitted for various values of Aii
and E,, is the energy for some maximum value N; =
20000. It is obvious from Fig. 3 that our numerical code
achieves second order accuracy.

Next, let us compare the total energy emitted during the
collapse as it has been calculated by our numerical code
with the results by Cunningham, Price, and Moncrief [22]
(CPM1978). In Fig. 4, we show the total energy emitted in
gravitational waves during the collapse as a function of the
initial radius of the dust sphere r . In this figure, the results
of CPM1978 are indicated by the filled squares, while the
other symbols represent our results. The results for the
initial distribution of the fluid velocity defined by
Eq. (82) are indicated by circles, those defined by
Eq. (83) are indicated by triangles, while for the distribu-
tion defined by Eq. (84) we used squares. Finally, the
results obtained by using a numerical code with the first

E— Bo = const. o
0.006 - |- By o< exp[— (R(0) sin x/R.)?| 107 k
— — Boox<exp[— ((R(0)sinx — r)/Re)?] r
0.004 - 105 F
i
0.002 - — 107k
LA I :
of 107 |
-0.002 - 101
_0004 FURE T T [N TN TN TN AU TS (N SN ST S ST U U S [ TN TS N S T 10_13 F
0 20 40 60 80 100 120 140 10

FIG. 5. The waveform of the quadrupole gravitational radiation emitted during the collapse of the nonmagnetized homogeneous
dust, as a function of time. The initial radius of the dust sphere is set to r,y = 8M while the fiducial observer is set at »r = 40M. In the
right panel the amplitudes of the gravitational waves are shown in a log-log plot and the late time is compared with its theoretical value
t~@*3  Three initial distributions of the fluid velocity B, were adopted and one can hardly trace their influence on the waveform.
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order accuracy are indicated by the gray asterisks. This
figure shows that there are small differences between our
results and those obtained by CPM1978. We however
observe that the results of CPM1978 agree well with those
with the first order accuracy (compare the filled squares
with the asterisks). Therefore, we conclude that our results
are in quite good agreement with the results of CPM1978.

In Fig. 5, we show the waveforms of the quadrupole
gravitational radiation from the collapse with an initial
radius ry, = 8M and for three different initial distributions
of the fluid velocity B, defined by Eqgs. (82)—(84). In this
figure, the left panel displays the waveforms as functions of
the time, while the right panel displays the absolute values
of the amplitudes as functions of the time in a log-log plot.
Figure 5 shows that the first part of the waveform is
characterized by the quasinormal ringing while at the late
times follows a power-law tail, as found in [22]. (For a
review of quasinormal modes for compact objects, see, e.g.
[37].) From the waveforms, we estimate the frequency of
the fundamental quasinormal mode to be 2Mw = 0.746 +
0.179i, which agrees very well with the quasinormal mode
frequency estimated by Chandrasekhar and Detweiler [38].
As for the late-time tail of the gravitational waves, in the
right panel of Fig. 5, we find that the amplitude decays as
t~7 at late times, which is in good agreement with the
analytical estimate of Price [39], that is #~**3 The ac-
curacy in the estimates of the quasinormal mode frequency
and the late-time tail therefore suggest that our numerical
code is accurate and reproduces all previously known
results.

Besides the tests of the code the following basic prop-
erties of the gravitational radiation emitted during the
collapse of the nonmagnetized homogeneous dust should
be emphasized. First, as it shown in Fig. 4, the total
radiated energy does not critically depend on the distribu-
tion of B, (this has been observed also in CPM1978) and
second, as shown in Fig. 5, that small modulations appear
just after the onset of the collapse only for the case of B, *

exp[—(R(0) siny/R,)*].

VI. GRAVITATIONAL RADIATION FROM THE
COLLAPSE OF THE HOMOGENEOUS
MAGNETIZED DUST SPHERE

A. Initial distribution of the magnetic field and
magnetic effects on the gravitational radiation

For the calculation of the gravitational waves emitted
during the collapse of a magnetized dust sphere, one needs
to provide the initial distribution (profile) of the magnetic
fields, i.e., to set up the functional forms of b, and b5 on the
hypersurface n = 0. In practice, one has the freedom in
choosing the initial distribution of b, and b5 as the follow-
ing two conditions are satisfied: (i) the regularity condition
at the stellar center, (ii) the junction condition (61) at the
stellar surface. Since here we made the assumption that the
magnetic field is confined inside the star, the second con-
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dition is reduced to b,(xy) = 0. In this work we assume a
dipole magnetic field, and for this specific geometry it is
convenient to introduce two new quantities for the descrip-
tion of the magnetic field, 52 and 153, defined as

by(x) (109)

= (Rsiny)?*by(n, x),

b3(x) = (Rsiny)3b3(n, x). (110)

If the new variables b,(7, x) and bs(n, x) are analytic at
x = 0, the regularity condition at the stellar center for the
magnetic field is automatically satisfied. Then for quadru-
pole perturbations (I = 2), the source term in the wave
equation S(7, y) and the perturbation for the four-velocity
B(n, x) are given by the following expressions:

S(n, x) = 47R*p{3B cosy + (3, B) siny}

R(O)sﬂ (Réo)> B, B,bybysing, (111)
_ 2nR? 0
B(n, x) = 9;7(12) (R( )> B, By{bygb3g tany

+ byg(0,b39) — (9 bzo)b30}+< (O)> Box).

(112)

where by, b3 are dimensionless functions of y, defined as

Baln x) = (R;O)) B oo ). (113)
im0 = (M) Bl 14

Here B, and B; are arbitrary constants related to the
strength of the magnetic field. It should be emphasized
that, as shown in Egs. (111) and (112), all terms related to
the magnetic fields in the source term S(7, y) vanish when
n = 0. In other words, the magnetic field does not affect
the momentarily static initial data for metric perturbations.
The geometry of the magnetic fields when the collapse sets
in is practically unknown. Based on this freedom we
adopted the following two types for the initial distribution
of the magnetic field:

(I): Baoly) = 1 — 2(%)2 + (ﬁ)“

by(x) =1— (ﬁ)ﬁ

(115)

(I): byo(x) = b3o(x) = 4[<ﬁ>2 - (ﬁ)q- (116)

Note that the maximum value of by, and b5, are chosen to
be one in the interval 0 = y = y,. For the first profile
function (I) the magnetic field is stronger in the center of
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the sphere while for profile function (II) the field becomes
stronger in the outer region.

It is more convenient to explore the effects of the mag-
netic field on the efficiency of the gravitational radiation
emission during the collapse, if one introduces the dimen-
sionless parameter «, defined as

_RO)B,3Bs
a ul .

Then the source term in the wave equation, S(1, x), can be
split as follows:

117)

S =8B + as®, (118)

where

R(0)

SB = 47TR(())2p<T){3B_O cosy + (GXBO) siny},

(119)

R(O)\ST 8 1 _

S =U,(—— R*pn—5— 0 {(baybsp t

7R 9R(0)? Pn sian x{( 20030 tany

+ byo(0,b30) = (9,,bag)bsp)sin’ x}

- 2520530 Sin/\/:|. (120)

Note that S can be attributed to the incompressible fluid

flow while S®) can be attributed to the Maxwell stress in

the magnetized dust sphere. The splitting of the source

term introduced with Eq. (118) suggests that any solution

of the wave Eqgs. (85) and (96) can b~e expressgd as a linear

superposition of the two solutions, ®# and &P, that are
independent of «, i.e.

O =¥ + ad?, (121)

where @) is the solution in the absence of magnetic field
(a = 0)and &P is the solution for the case of S = S i.e.
when the gravitational field is initially stationary. Since we
assume that the initial profile of the gravitational perturba-
tions does not dependent on the existence of magnetic
fields, the initial values of O®) were set to zero.

These assumptions, i.e. the splitting introduced by
Egs. (118) and (121), suggest modifications in the form
of Eq. (108) describing the luminosity in gravitational
waves which gets the following form:

L] I(1+1)
WL 16w (1— 1)1+ 2)

+ 2a(0D)(DD)).

{(@(@))2 + a2((i)({3))2
(122)

While the radiated energy in gravitational waves during the
collapse is then given by following relation

_ g®

EGW,I GW,! + CYQEE:?\;VJ + 2aCGW,Z’ (123)

where E(GB\{, ; and E(c?\gv ; stand for the total radiated energies
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associated with the solutions ®#) and @(B), respectively,
and Cgw is an integral quantity defined by the product of
&P and ®®. Their detailed form is

@ _ 1+
WL 16w (1= 1)(1+2) Jo—s

VU= VUmax

E (®B2am, (124)

1 I(1+1) 5
& = B2 ;-
Eow. = o 12
GW.L 16 (1— 1)+ 2) L—ﬁmax( )di,  (125)
! i+ 1) NN NP
— 5O gz,
N T e 1= 1)1 +2) Sy, (B P
(126)

where ¥,,,, 1s the maximum value of 7.
It is worth mentioning the following issue emerging
from the study of Eq. (123). It can be proved easily that

since Egw, is a quadratic function of « and Eg&, ;> Othen

by definition, Egyw,; gets its minimum value, Eg“\;f; -
E(GBV)VI a CZGW,I/EE?V)VJ, for a=a, where a, =

—Cow.i/ Eg&, ;- In other words, phase cancellation between
the two components ®P) and &P of the gravitational
perturbations become maximal around a = «,. As dis-
cussed earlier in Sec. V, E(GB\,L ; does not highly depend on
the initial profile of the fluid velocity. Thus, the total

0.006 ——————1——7 17—

0.004

—

2 0.002
A

-0.002

0004 b PR B | -
0 100 120 140

FIG. 6. The amplitude of quadrupole gravitational waves emit-
ted during the collapse. The continuous line stands for the
function ®#) and the dashed line for ®®. The efficiency of
the collapse depends on the initial radius of the dust sphere ry, =
8M, the initial profile of the fluid velocity B, = const, and the
initial profile of the magnetic field; here is the case (I). The
waveforms are monitored at r = 40M.
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radiated energy Egy, practically depends on a and the
initial radius of the dust sphere, r,, but not on 3.

B. Numerical results for the initial magnetic field
profile (I)

In the numerical study for the influence of the magnetic
field on the gravitational wave output during the OS col-
lapse, as we mentioned earlier, we used two quite different
initial profiles for the magnetic field. These two profiles are
described by Eqgs. (115) and (116) and represent magnetic
fields which have their maximum either at the stellar center
or near the surface.

We first consider the case (I), given by Eq. (115). As
discussed in the previous subsection, the fundamental
quantities for estimating the gravitational radiation from
the collapse of the magnetized homogeneous dust sphere
are A and ®®)_ It is obvious that we can obtain solutions
of Egs. (85) and (96) for any value of « in terms of
and ®P through the relationship (121). In Fig. 6, we show
the waveforms ®# and ®® of the quadrupole gravita-
tional radiation from the collapse characterized by an
initial radius r,; = 8M and an initial distribution of the

0.015 T T T T T T T T
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fluid velocity 3, = const. We observe in Fig. 6 that the two
waveforms, &P and CID(B), are almost in phase. Therefore,
we expect the following properties of the gravitational
wave amplitude: (1) for a > 0, as « increases, the gravi-
tational wave amplitude ® increases monotonically and
the phase of ® does not change; (2) for @ <0, as «
decreases, the amplitude and phase of the gravitational
wave amplitude ® show a more involved behavior due to
the phase cancellation between the two gravitational wave
amplitudes &P and P It has been found also that the
amplitude of the emitted gravitational waves is almost
independent from the functional form of B, in agreement
with our previous results for the nonmagnetized collapse

(see Fig. 5).
In Fig. 7 we show the waveforms for a number of
positive and negative values of « i.e. for « = —9, —6,

—3, 3, 6, and 9. We also show, in every panel, the shape of
the waveform in the absence of magnetic field (o = 0)
with a bold line. This figure verifies the previously referred
theoretical estimations i.e. that for & > 0, the phase of the
various waveforms is almost the same as that of @ = 0 and
the amplitude becomes larger as « increases. The ampli-

 — Ef“ = const.
----- By o exp[— (R(0)sin x/R.)?]
— = Boocexp[— ((R(0)sinx — r)/R.)’]
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FIG. 7. Waveforms for gravitational radiation emitted during the collapse of a magnetized homogeneous dust sphere with initial
radius ry = 8M and initial distribution of the fluid velocity 8, = const. The gravitational waveforms are monitored at r = 40M. The
thick continuous line corresponds to the waveform of the nonmagnetized collapse (a = 0).
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TABLE II. The values of E\2)
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GW.1» E(cﬁzv ;» and Cgw,; for quadrupole gravitational waves (I = 2)

emitted during the dust collapse for four values of the initial radius of the dust sphere (r,; = 8M,
12M, 16M, and 20M) while we assumed that 3, = const. The value, o, = —CGW‘Z/EEQ“, ,1.e.
the minimum of the emitted energy Egw , is also shown.

r50=8M rs0=12M I’50=16M rs0=20M
E&, /M) 2197X 1077 8319x 1078 4354x10°% 2676 X 1078
ESy /M) 1296 X 1078 7.527X107°  5557X107°  4472X107°
Cgw.2/(2M) 4.722 X 1078 2.366 X 1078 1.501 X 1078 1.066 X 1078
. —3.64 —3.14 -2.70 -2.38

tude of the waveforms is considerably smaller for & <0,
due to the phase cancellation effects, and decreases for
smaller values of |a|; on the other hand the phase shift is
significant for large values of |«/|. Finally, one can observe
easily that the dependence of the amplitude on the initial
profile of B, is very weak. Moreover, we can see another
effect related to the magnetic field, i.e., there is a wave
packet before the actual quasinormal ringing is observed.
The appearances of this wave packet can be only attributed
to the functional form of ®®.

As it was argued earlier, the total energy emitted in
gravitational waves during the collapse of a magnetized

dust sphere for any value of « can be calculated as a proper

combination of the quantities Egﬁv)v I Eg;&, » and Cgy ; via

Eq. (123). The values of Etey o, Etoy o, and Cay, with
By = const for four different initial radius of the dust
sphere (ryy = 8M, 12M, 16M, 20M) are summarized in
Table II. By studying Eq. (123) we observe that the total

3 >< 1076 LI L S S S LIS LS S LS S S 1
o By=const. a ]
A By o< exp[— (R(0)sinx/R.)? a
o oo exp[— ((R(0)siny —74)/R.) 5 B
S 1x10°f a |
@\ ]
g 8
> a B
EP a
2 é
- &
8 2]
= A
g 1x107} .
(] 8 B
Al
3x 108 b v 0 o
12 8 4 0 4 8 12
«

FIG. 8. The total energy emitted in gravitational waves (I = 2)
during the homogeneous dust collapse with the magnetic field as
a function of a. The horizontal axis denotes the value of the
parameter « representing the strength of the magnetic field,
while the initial radius of the sphere is assumed to be r,y = 8M.

energy emitted in gravitational waves has a minimum for

collapsing models with o = a, <0. Since Egg&,yz’s are

almost independent from the initial distribution of the fluid
velocity B, as shown in Fig. 4, the total emitted energy
hardly depends on ;. These features can be seen in Fig. 8
where the total energy emitted in gravitational waves from
the collapse is studied as a function of a.

The most important conclusion that can be drawn from
this figure is that the total energy emitted in gravitational
waves from the magnetized dust collapse can be about 11
times higher than the energy of the nonmagnetized col-
lapse for & = 10 and about 5 times smaller for a = «,.
Thus, the effect of the magnetic field in the gravitational
wave outcome during the collapse can be significant and
might improve the possibility of detecting gravitational
waves from this type of sources.

Next we examine the dependence of the total energy
emitted during the collapse on the initial radius ry, of the
dust sphere assuming again that the initial profile of the
fluid velocity is B, = const. In Fig. 9 the waveforms from
the collapse with an initial radius r, = 20M are shown.
From this figure one can be see easily that the effect of the
magnetic field becomes more pronounced as the initial
stellar radius increases while the basic properties (depen-
dence on « and phase shift) are similar to those of the r,y =
8M case. The influence of the magnetic field in the gravi-
tational wave output increases with increasing radius; a
natural explanation is that the longer the collapse lasts the
longer the magnetic field will influence the dynamics of the
collapsing dust. Actually, if the collapsing sphere has an
initial radius ry = 8M then it takes ¢t ~ 50M until one
observes the first peak of the quasinormal ringing, while
it takes ¢t ~ 140M for the ry, = 20M model. Additionally,
we can observe that a wave packet before the quasinormal
ringing is suppressed; compare with Fig. 6.

In Fig. 10, we show the total energy emitted in gravita-
tional waves as a function of « for several values of the
initial radius of the dust sphere. From this figure, we can
see that the critical value «, increases as rq increases, see
also Table II, while the emitted energy decreases as ry
increases. However, the effect of the magnetic field is
stronger for the model with larger initial radius, i.e., the
emitted energy varies with the strength of the magnetic
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FIG. 9. Waveform of gravitational waves_forl = 2for (a) @« = 0 and (b) @ = 0. The initial radius is r,y = 20M while the observer is

set at r = 40M and we also assume that B, = const.

field. Actually, as we mentioned earlier, the ratio of the
energy of the magnetized collapse over the energy of the
nonmagnetized one varies from 0.22 (¢ = a,.) to 11.2
(a = 10) for rgy = 8M. For ry = 20M the same ratio
varies from 0.050 (at ¢« = «,) to 25.7 (at a = 10).

C. Numerical results for the initial magnetic field
profile (IT)

The second magnetic field profile considered in this
work is the one that has its maximum close to the stellar
surface and is described by Eq. (116). Here, again, we
assume an initial profile for the fluid velocity that has

' ' ' ' ' 1
I — 30

106 ¢ . S $(B) with (1)
s E : 0.004 b (B) with (II)
@\
v —
> 2 0.002
> 2 0002k
;b_P 10-7 | i H'e’l
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hol g ok
2 ; =Y
g 108¢ s /¢ 1 I
) s \\ ;! —o— 8.0M 0002
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FIG. 10. The total energy emitted in gravitational waves (I =

FIG. 11 (color online).

Waveforms of quadrupolar gravita-

2) from the homogeneous dust collapse with magnetic field for
four values of initial radius r,y = 8M, 12M, 16M, and 20M as a
function of the magnetic field strength.

tional radiation from the magnetized OS collapse associated
with & and CI)(B), for the two initial profiles (I and II) for
the magnetic field.
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FIG. 12 (color online). Total energy emitted in quadrupole
gravitational waves from the homogeneous dust collapse with
two different initial magnetic field profiles as functions of the
magnetic field strength. The filled circles correspond to results
for the profile (I) and the filled triangles for profile (II).

B, = const and the initial radius of the dust sphere is set to
reo = 8M. In Fig. 11, we show the two components of the
waveforms @) and ®® for profiles (I) and (IT). From this
figure, we can see that the phase of ®P is almost inde-
pendent of the initial profile of the magnetic field while the
amplitude of the gravitational wave associated with the
profile (II) is smaller than the one associated with the
profile ().

In Fig. 12, we compare the total energy emitted in
gravitational waves as functions of the magnetic filed
strength for the two initial magnetic field profiles. In this
figure, we observe that the critical value «., depends
strongly on the initial profile of the magnetic field.
Actually, for the profile (IT) we get Egg\;v,z (2M) = 3.267 X
107, Cgw.,/(2M) = 2314 X 1078, and .= —7.08.
These differences suggest that the form of the magnetic
field affects in a critical way the amount of the emitted
gravitational waves and is worth more elaborate study.

VII. CONCLUSION

In this paper we have studied the influence of magnetic
fields on the efficiency of collapse in emitting gravitational
waves. We have considered an interior Oppenheimer-
Snyder solution describing collapsing dust and we studied
how the amplitude and the waveform of the quadrupole
axial perturbations were affected by the magnetic field,
which actually enters as a second order perturbation term.
These second order terms coming from the magnetic field
are initially small but as the collapse proceeds they get
amplified and become significant. For this study we have

PHYSICAL REVIEW D 75, 084015 (2007)

assumed that the magnetic field is axially symmetric and
the /), = 1 magnetic field perturbations are the ones that
couple to the [ = 2 axial perturbations of the gravitational
field. Additional assumptions have been made concerning
the initial data and the influence of the magnetic field in the
exterior. That is, we assumed momentarily static initial
data independent of the magnetic field, and we have not
taken into account the influence of the exterior magnetic
field in the propagating gravitational waves.

The main result of this study is the proof of the strong
influence of the magnetic field in the gravitational wave
luminosity during the collapse. Depending on the initial
profile of the magnetic field and its strength, the energy
outcome can be easily up to one order higher than what we
get from the nonmagnetized collapse. Additionally, we
observed that the initial profile of the magnetic field per-
turbations can affect the energy output while it is possible
to observe important phase shifts induced by the presence
of the magnetic field. Since for a large initial radius the
time needed for the black hole formation is longer, then the
magnetic field acts for longer time on the collapsing fluid
and its effect becomes more significant in the emitted
gravitational wave signal.

Concluding, we believe that although this study might
be considered as a ‘“‘toy problem” it has most of the
ingredients needed in emphasizing the importance of the
magnetic fields in the study of the gravitational wave out-
put during the collapse. It is obvious that 3D numerical
MHD codes will provide the final answer to the questions
raised here, but this work provides hints and raises issues
that need to be studied.

ACKNOWLEDGMENTS

We would like to thank Tomohiro Harada, Kenta Kiuchi,
Hideki Maeda, and Kei-ichi Maeda for helpful conversa-
tions. This work was supported in part by the Marie Curie
Incoming International Fellowships (MIF1-CT-2005-
021979) and by the Grant-in-Aid for Scientific Research
from the Ministry of Education, Culture, Sports and
Technology of Japan (Young Scientist (B) 17740155).
S.Y. is supported by the Grant-in-Aid for the 2Ist
Century COE “Holistic Research and Education Center
for Physics of Self-organization Systems” from the
Ministry of Education, Culture, Sports, Science and
Technology of Japan. K. K. acknowledges the support of
the GSRT via the Pythagoras II program.

APPENDIX A: PERTURBED ENERGY-
MOMENTUM TENSOR FOR THE
ELECTROMAGNETIC FIELD INSIDE THE STAR

The nonzero components of the perturbed energy-
momentum tensor ST,(EV[) for the electromagnetic field
associated with dipole (/;; = 1) perturbations inside the

star are given by the following relations:
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Following [29], we can expand the perturbed energy-
momentum tensor for polar parity perturbations in terms
of tensor spherical harmonics as

1
AT = At,pP, AR PL, (A8)
M AP0 p 2A43 N/
A la r t Plyab + At Zab

where Z!, = Py, + (I + 1)P;y,,/2. [See, for the axial
parity perturbations, Eq. (13).] Then, it has been found that
the nonzero tensor-harmonic expansion coefficients of

STLE,E\A ) for 1 u = 1 are coupled with the [ =0 and / =2
perturbations.

The expansion coefficients for the [ = 0 perturbations
are the following:

1 [2(b,2+ b2 b,?
At = L 3142 | A9
i 2477[ R?sin’y R%sin*y (A9)

1 [2(b,2+ b2 b,?
At,, = ' e el A10
X 247T|: R?sin’ y R%sin*y (A10)

b 2
AP = f (A11)
24 R*sin*y
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while the coefficients for the / = 2 perturbations are

byb bb
Al = 2283 =12 an
X 127R%sin? y 127R? (Al2)
VRN A S R
" 127 | R%sin*y  R%sin’y
(A13)
IV S S
xx 127T|:R2sin4/\/ R%sin? y
At(p)= byb, At2=b32_b]2
Y 127R%sin?y’ 127R?
. (Al4)
AP = b
1277R*sin* y’

where (A12) belongs to axial parity perturbations, and
(A13) and (A14) belong to polar parity perturbations.

APPENDIX B: PERTURBED ENERGY-
MOMENTUM TENSOR FOR THE
ELECTROMAGNETIC FIELD OUTSIDE THE STAR

The nonzero components of the perturbed energy-
momentum tensor 6T(EM) for the electromagnetic field
associated with dipole (l u = 1) perturbations outside the
star are given by the following relations:

s7EM — 1 f 52+£
. 241 24
2 o
+ ﬁ{ﬁz +&2 + f2(b* + bsz)}}Po
1 b\ 1 3
+ m[‘f(ezz + r_24> - ﬁ{elz + 632
+ fz(b~12 + 532)}i|P2; B1)
. e,b, + &b &b, + &b
BT(EM)Zell 303 , €10 303 , B2
" 67r? 0 67r? 2 (B2)
~(EM) 1 1 I
0Ty o —féxbs + elb2 (09P>), (B3)
STENW = S féb, + i53152 sinf(dyP,), (B4)
t¢ 127 r2
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As for the interior, the nonzero expansion coefficients of
8T§LE3A) for [, = 1 electromagnetic field perturbations are
coupled with the / = 0 and [ = 2 perturbations.

The expansion coefficients for the / = 0 perturbations

are
. 1 ., b
- aelo )
2 . 3
+ p{elz + &2 + f2(bi + by )}} (B11)
. &b+ &b
A7, =Gl * &by (B12)
67r

PHYSICAL REVIEW D 75, 084015 (2007)

O R WA
= | ——(&2+
Al =3 w[ f< r)

2425+ 1532)}} (B13)

(B14)

while the coefficients for the [ = 2 polar parity perturba-
tions have the form

1 _ ., by
Attt 27 |:f<622 + 7)

- ﬁ{éf + 8,2 + f2(b} + 532)}} (B15)

A7, = —% (B16)
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AFP) = % <—fé253 4 %éﬁz), (BI83)

AR = %(—%5253 + %5152) (B19)
AP = 12177 f[él b2 = b)) (B20)
! (SRS M)

Finally, the coefficients for the / = 2 axial parity perturba-
tions have the form

” 1 . 1 _ -
AR = _F<f€2b1 + —2€2b2>, (B22)
o r
a 1
Af«) = - 127 <?61€2 bzbg) (B23)
N 1 /1. 3
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