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It is shown that the differential form of Friedmann equation of a FRW universe can be rewritten as the
first law of thermodynamics dE � TdS�WdV at apparent horizon, where E � �V is the total energy of
matter inside the apparent horizon, V is the volume inside the apparent horizon, W � ��� P�=2 is the
work density, � and P are energy density and pressure of matter in the universe, respectively. From the
thermodynamic identity one can derive that the apparent horizon ~rA has associated entropy S � A=4G and
temperature T � �=2� in Einstein general relativity, where A is the area of apparent horizon and � is the
surface gravity at apparent horizon of FRW universe. We extend our procedure to the Gauss-Bonnet
gravity and more general Lovelock gravity and show that the differential form of Friedmann equations in
these gravities can also be written as dE � TdS�WdV at the apparent horizon of FRW universe with
entropy S being given by expression previously known via black hole thermodynamics.
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I. INTRODUCTION

Semiclassical quantum properties of black hole can be
analyzed in the context of quantum field theory in curved
backgrounds, where matter is described by quantum field
theory while gravity enters as a classical background. In
this framework, it was discovered that black holes can emit
Hawking radiation with a temperature proportional to its
surface gravity at the black hole horizon and black hole has
an entropy proportional to its horizon area [1,2]. The
Hawking temperature and horizon entropy together with
the black hole mass obey the first law of black hole
thermodynamics [3]. The gravitational entropy of black
hole in Einstein gravity is given by

 S �
A

4G
; (1)

where A is the black hole horizon area and the units are
such that c � @ � k � 1. The Hawking temperature is
given by

 TH �
�

2�
; (2)

where � is the surface gravity of the black hole. The
Hawking temperature together with black hole entropy is
related by the first law of black hole thermodynamics
TdS � dM, where M is the black hole mass (For a more
general Kerr-Newman black hole, the first law is dM �
TdS��dJ ��dQ). The black hole thermodynamics
and the statistical property of black hole entropy have
been investigated from many different points of view in
literature [4]. Nowadays it is widely believed that a black
hole behaves like an ordinary thermodynamic system and
satisfies laws of thermodynamics. If one identities the

black hole mass M as the energy E, obviously, a work
term is absent in the first law of black hole thermodynam-
ics dE � TdS. To remedy this drawback, More recently,
Paranjape, Sarkar, and Padmanabhan [5] have considered a
special kind of spherically symmetric black hole space-
times, and found that it is possible to interpret Einstein’s
equations as the thermodynamic identity TdS �
dE� PdV by considering black hole horizon as the system
boundary. For related discussions on this issue see, for
example, citations in Ref. [6].

On the other hand, the thermodynamical properties of
the black hole horizon can be generalized to the space-time
horizons other than black hole horizon. For example, the de
Sitter space-time with radius ‘, there is a cosmological
event horizon. This horizon, like black hole horizon, can be
regarded as a thermodynamical system [7] associated with
the Hawking temperature T � 1=2�‘ and entropy S �
A=4G, where A � 4�‘2 is the cosmological horizon area
of the de Sitter space-time. For an asymptotic de Sitter
space, like Schwarzschild-de Sitter space-time, there still
exists the cosmological horizon which behaves like a black
hole horizon with entropy proportional to the area of the
cosmological horizon and whose Hawking temperature is
given by T � �=2�, where � is the surface gravity of the
cosmological horizon. It is easy to verify that the cosmo-
logical horizons of these space-times satisfy the first law of
black hole thermodynamics of the form TdS � �dM [8],
where the minus appears due to the fact that when the black
hole mass M increases, the cosmological horizon entropy
decreases.

Indeed black hole physics implies that there is some
relation between the first law of thermodynamics and
Einstein’s equations. Jacobson [9] is the first one to seri-
ously investigate such a relation. Jacobson finds that it is
indeed possible to derive the Einstein’s equations from the
proportionality of entropy to the horizon area together with
the fundamental relation �Q � TdS, assuming the relation
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holds for all local Rindler causal horizons through each
space-time point. Here �Q and T are the energy flux and
Unruh temperature seen by an accelerated observer just
inside the horizon.

In Ref. [10], one of the present authors and Kim are
able to derive the Friedmann equations of an (n� 1)-
dimensional Friedman-Robertson-Walker (FRW) universe
with any spatial curvature by applying the first law of
thermodynamics (TdS � �dE) to the apparent horizon
of the FRW universe and by working out the heat flow
through the apparent horizon. In the process, an ansatz is
made: suppose that the apparent horizon has temperature
and entropy expressed by

 T �
1

2�~rA
; S �

A
4G

; (3)

where A is the area of the apparent horizon. Also by using
the entropy expression of a static spherically symmetric
black hole in the Gauss-Bonnet gravity and in more general
Lovelock gravity, they reproduce the corresponding
Friedmann equations in each gravity. The possible exten-
sions to the scalar-tensor gravity and f�R� gravity theory
have been studied in Ref. [11]. In the cosmological setting,
related discussions see also Refs. [12–15].

Note that in the process of deriving the Friedmann
equations, �dE is interpreted as the amount of energy
flux crossing the apparent horizon within an infinitesimal
time interval dt and the horizon radius is assumed to be not
changed during the internal. On the other hand, we know
that the Friedmann equations of FRW universe are the field
equations with a source of perfect fluid. In this cosmologi-
cal setup, different from the case of black hole space-times
discussed in Ref. [5], there is a well-defined concept of
pressure P and energy density �. Therefore, it is very
interesting to see whether it is possible to rewrite the
Friedmann equations as a thermodynamical identity
TdS � dE� PdV at apparent horizon of the FRW uni-
verse? To resolve this issue we develop a procedure to
study the thermodynamical properties of Friedmann equa-
tions at apparent horizon of a FRW universe and show that
by employing Misner-Sharp energy relation inside a sphere
of radius ~rA of apparent horizon, it is indeed possible to
rewrite the differential form of the Friedman equations as
the form of the first law of thermodynamic dE � TdS�
WdV with W � ��� P�=2, where � and P are energy
density and pressure of matter in the universe. In the case
of Einstein gravity, we find that the horizon entropy S is
proportional to the apparent horizon area and the tempera-
ture T is given by T � �=2� with surface gravity at the
apparent horizon, and the Misner-Sharp energy is just the
total energy of matter inside the apparent horizon (E �
�V). We extend this procedure to the Gauss-Bonnet gravity
and in more general Lovelock gravity, and verify that the
Friedmann equations at apparent horizon can also be re-
written as a universal form dE � TdS�WdV in these

gravities. It is important to mention here that one can
pick up the expressions for entropy S from the identity
dE � TdS�WdV obtained from the field equations at
apparent horizon, which agrees with the expression pre-
viously derived by black hole thermodynamics. In addi-
tion, for the Gauss-Bonnet gravity and Lovelock gravity,
the energy in the first law is not the Misner-Sharp energy,
but the total energy (�V) of matter inside the apparent
horizon. This will be seen shortly.

This paper is organized as follows. In Sec. II, we shall
summarize the procedure constructed to study the thermo-
dynamic properties of the apparent horizon through the
Friedmann equations of a FRW universe. In Sec. III, we
shall apply our procedure to the field equations of FRW
universe in Einstein gravity. We shall extend our procedure
to the Gauss-Bonnet gravity and to more general Lovelock
gravity in Sec. IV and V, respectively. Finally in Sec. VI,
we shall conclude our results with some discussions.

II. THE PROCEDURE

We consider a spatially homogenous and isotropic uni-
verse described by the FRW metric. The line element of an
(n� 1)-dimensional FRW universe is represented by

 ds2 � �dt2 � a2�t��ijdxidxj; (4)

where the n-dimensional spatial hypersurfaces with nega-
tive, zero or positive curvature are parameterized by k �
�1, 0 and 1, respectively, and a�t� is the scale factor of the
universe with t being the cosmic time. The metric �ij is
given by

 �ijdx
idxj �

dr2

1� kr2 � r
2d�2

n�1: (5)

Here d�2
n�1 is the metric of (n� 1)-dimensional sphere

with unit radius and the spatial curvature constant k � 1, 0
and �1 correspond to a closed, flat and open universe,
respectively. Using spherical symmetry, the metric (4) can
be rewritten as

 ds2 � habdxadxb � ~r2d�2
n�1; (6)

where ~r � a�t�r and x0 � t, x1 � r and the two dimen-
sional metric hab � diag��1; a2=1� kr2�. The dynamical
apparent horizon is determined by the relation
hab@a~r@b~r � 0, which implies that the vector r~r is null
on the apparent horizon surface. The explicit evaluation of
the apparent horizon for the FRW universe gives the ap-
parent horizon radius

 ~r A � 1=
�����������������������
H2 � k=a2

q
: (7)

The associated temperature T � �=2� at the apparent
horizon is determined through the surface gravity

 � �
1

2
�������
�h
p @a�

�������
�h
p

hab@b~r�: (8)
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The explicit evolution of the surface gravity at apparent
horizon of FRW universe reads [10]

 � � �
1

~rA

�
1�

_~rA
2H~rA

�
; (9)

where an over-dot denotes the derivative with respect to the
cosmic time t. We now introduce the total energyE inside a
sphere of radius ~r defined by

 E �
n�n� 1��n~rn�2

16�G
�1� hab@a~r@b~r�; (10)

where V � �n~rn is the volume of an n-dimensional sphere
with radius ~r and �n �

�n=2

��n=2�1� being the volume of an
n-dimensional unit ball. The total energy (10) is actually
the direct �n� 1�-dimensional generalization of the �3�
1�-dimensional one, given by Misner and Sharp [16]. At
the apparent horizon ~r � ~rA, the term hab@a~r@b~r � 0 in
Eq. (10), therefore the total energy inside a sphere of radius
~rA is given by

 E �
n�n� 1��n

16�G
~rn�2
A ; (11)

which agrees with the expression for the mass in the �n�
1�-dimensional Schwarzschild black hole once the appar-
ent horizon is replaced by the event horizon of the black
hole. We consider the FRW universe as a thermodynamical
system with apparent horizon surface as a boundary of the
system. In general the radius of the apparent horizon ~rA is
not constant but changes with time. Let d~rA be an infini-
tesimal change in radius of the apparent horizon of FRW
universe during a time of interval dt. This small displace-
ment d~rA in the radius of apparent horizon will cause a
small change dV in the volume V of the apparent horizon.
This leads to build up two spherical systems of space-time
with radii ~rA and ~rA � d~rA having a common source T�� of
perfect fluid with nonzero pressure P and energy density �
near apparent horizon. Each space-time describing a ther-
modynamical system and satisfying Einstein equations,
differs infinitesimally in the extensive variables volume,
energy and entropy by dV, dE, and dS, respectively, while
having same values the intensive variables temperature T
and pressure P. Thus, for these two space-times describing
thermodynamical states, there must exist a certain relation
relating these thermodynamic quantities. It turns out it is
indeed the case. Mathematically, the main points of the
procedure can be summarized as follows.

(i) Write down the Friedmann equation of FRW uni-
verse in term of radius ~rA of the apparent horizon.
Then taking its differential, one gets a new form of
Friedmann equation called the differential form of
the Friedmann equation. The differential form of the
field equations describes how the changes near ap-
parent horizon are related through the field
equations.

(ii) Multiply by a factor n�n~rA�1�
_~rA

2H~rA
� on both sides

of the differential form of the Friedmann equation
and then simplify it to get an equation of the form

 TdS � n�n~rnA��� P�H
�
1�

_~rA
2H~rA

�
dt; (12)

where A � n�n~rn�1
A is the area of apparent horizon,

H denotes the Hubble parameter, T � �=2�, and �
and P are energy density and pressure of perfect
fluid in the FRW universe, respectively.

(iii) Write down the expression for the total energy E
for (n� 1)-dimensional FRW universe inside a
sphere of radius ~rA and then find out dE, an infini-
tesimal change in energy during a small interval dt
of time. After simplifying, one may get a relation of
the type

 dE � n�n~rn�1
A �d~rA � n�n~rnA��� P�Hdt: (13)

(iv) Using the relation d~rA � �H~r3
A�

_H � k=a2�dt [10],
we find that Eqs. (12) and (13) result in a thermo-
dynamical identity

 dE � TdS�WdV; (14)

where W � 1
2 ��� P�. Here the quantity W is noth-

ing, but the work density defined in [17] through
W � � 1

2T
abhab. Compared to the standard form of

the first law of thermodynamics, dE � TdS�
PdV, the work density W replaces the pressure P
in our expression (14).

In the present work, we shall apply this procedure to the
Friedmann equations in the Einstein gravity, Gauss-Bonnet
gravity and Lovelock gravity at apparent horizon of FRW
universe and show that the Friedmann equations in these
gravities all can be rewritten as a universal thermodynam-
ical identity (14).

III. THERMODYNAMIC BEHAVIOR OF
FRIEDMANN EQUATION IN EINSTEIN GRAVITY

The Einstein field equations read

 G�� � 8�GT��; (15)

where G�� is the Einstein tensor and T�� is the energy—
momentum tensor of the matter fields. In the FRW uni-
verse, due to the symmetries of the FRW metric, the stress-
energy tensor T�� must be diagonal, and by isotropy the
spatial components must be equal. The simplest realization
of such a stress-energy tensor is that of a perfect fluid
described by a time dependent energy density ��t� and
pressure P�t�

 T�� � ��� P�U�U� � Pg��; (16)

where U� is the four velocity of the fluid. With the con-
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servation of stress-energy tensor T��;� � 0, one gets the
continuity equation of the perfect fluid

 _�� nH��� P� � 0: (17)

Solving Einstein’s Eqs. (15) in the background of metric
(4) and assuming the energy-momentum tensor (16) of
perfect fluid, one gets the Friedmann equation

 H2 �
k

a2 �
16�G
n�n� 1�

�; (18)

where H is the Hubble parameter with H � _a=a.
Combining (17) and (18), one has _H � k

a2 � �
8�G
n�1 ���

P�. It can be seen from the radius ~rA � 1=
�����������������������
H2 � k=a2

p
of

the apparent horizon that in the case of a flat universe, i.e.,
k � 0, the radius ~rA of the apparent horizon has the same
value as the radius ~rH of the Hubble horizon, which is
defined as the inverse of the Hubble parameter, that is,
~rH � 1=H. On the other hand, the cosmological event
horizon defined by

 

~r E � a�t�
Z 1
t

dt
a�t�

; (19)

exists only for an accelerated expanding universe. As a
consequence, for a pure de Sitter universe with k � 0, the
apparent horizon, the Hubble horizon and the cosmological
event horizon have the same constant value 1=H. Note that
though the cosmological event horizon does not always
exist for all FRW universes, the apparent horizon and the
Hubble horizon always do exist. The apparent horizon has
been argued to be a causal horizon for a dynamical space-
time and is associated with gravitational entropy and sur-
face gravity [17,18]. Thus for our purpose it would be
useful to study the thermodynamical properties of
Friedmann equations of FRW universe at the apparent
horizon. (Note that in some cases, thermodynamics is not
well-defined for Hubble horizon and event horizon [19]).
In terms of the apparent horizon radius, the Friedmann
Eq. (18) can be rewritten as

 

1

~r2
A
�

16�G
n�n� 1�

�: (20)

Then by taking differential of Eq. (20) and using the
continuity Eq. (17), one gets the differential form of the
Friedmann equation

 

1

~r3
A
d~rA �

8�G
n� 1

��� P�Hdt: (21)

Multiplying both hand sides of Eq. (21) by a factor
n�n~rnA�1�

_~rA
2H~rA
�, one can rewrite this equation in the form

 

�
2�

d
�
n�n~rn�1

A

4G

�
� �n�n~rnA��� P�H

�
1�

_~rA
2H~rA

�
dt:

(22)

From the left hand side of Eq. (22), one immediately

recognizes that the quantity �
2� and the quantity

n�n~rn�1
A

4G
inside parentheses on the left hand side are nothing, but
the temperature T � �=2� and entropy S � A=4G (A �
n�n~rn�1

A being the area of the apparent horizon).
Therefore the above equation can be rewritten as

 TdS � �n�n~rnA��� P�H
�

1�
_~rA

2H~rA

�
dt: (23)

Now we consider the Misner-Sharp energy (11) sur-
rounded by the apparent horizon ~r � ~rA of the FRW uni-
verse, given by

 E �
n�n� 1��n

16�G
~rn�2
A : (24)

Using Eq. (20), one gets

 E � �n~rnA�: (25)

This is nothing, but the total energy (�V) of matter inside
the apparent horizon. It means that in Einstein gravity, the
Misner-Sharp energy (11) surrounded by the apparent
horizon is just the total energy of matter inside the apparent
horizon. It no longer holds for Gauss-Bonnet gravity and
Lovelock gravity.

Taking differential of Eq. (25), we get

 dE � n�n~rn�1
A �d~rA ��n~rnAd�: (26)

Substituting _� � �nH��� P� into Eq. (26), one reaches

 dE � n�n~rn�1
A �d~rA � n�n~rnA��� P�Hdt: (27)

With the help of Eq. (27), Eq. (23) can be further rewritten
to

 dE � TdS� 1
2n�n~rn�1

A ��� P�d~rA: (28)

Note that the volume V � �n~rnA and let W � ��� P�=2.
The above equation can be finally written to the form

 dE � TdS�WdV: (29)

Comparing this with the standard form of the first law of
thermodynamics, the negative pressure term is replaced by
the term W. In fact, this is not strange, the result (29) is
nothing, but the expression of the unified first law [17] of
thermodynamics in the setup of FRW universe. In the
second reference in Ref. [17], the author derived a similar
formula for the trapping horizon of dynamical black hole.
Here, it is important to note that the thermodynamic iden-
tity (29) is obtained by using the Friedmann equation of
FRW universe together with the feature of apparent
horizon.

In conclusion, by applying the Misner-Sharp energy
relation, the Friedmann equation of FRW universe can
be expressed as a thermodynamical identity dE � TdS�
WdV at the apparent horizon. On the other hand, from the
relation (29) we may ‘‘derive’’ that the apparent horizon
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has an associated thermodynamics with temperature T �
�=2� and entropy S � A=4G, where � is the surface
gravity and A is the area of apparent horizon.

IV. THERMODYNAMIC BEHAVIOR OF
FRIEDMANN EQUATION IN GAUSS-BONNET

GRAVITY

In the previous section, we have studied the behavior of
Friedmann equation at apparent horizon of FRW universe
in Einstein gravity and identified its behavior as a thermo-
dynamical system satisfying the unified first law of ther-
modynamics of the form dE � TdS�WdV. It has been
found that the apparent horizon of FRW universe has an
entropy proportional to its horizon area, very like the black
hole horizon entropy obeying the so-called area formula
[20]. However, it is well known that the area formula of
black hole entropy no longer holds in higher derivative
gravities. So it would be interesting to see whether, one can
identify or not the Friedmann equation as a thermodynam-
ical system near apparent horizon of FRW universe with
entropy of expression with structure similar to the black
hole horizon entropy in these gravities by the procedure
developed in the previous section. In this section, we shall
continue the previous procedure for a special form of
higher derivative gravity, called Gauss-Bonnet gravity.
This theory contains a special combination of curvature-
squared term, added to the Einstein-Hilbert action. The
Gauss-Bonnet term is given by

 RGB � R2 � 4R��R
�� � R����R

����: (30)

The Gauss-Bonnet term naturally appears in the low en-
ergy effective action of heterotic string theory. The Gauss-
Bonnet term is a topological term in four dimensions, and
thus does not have any dynamical effect in these dimen-
sions. The action of the Gauss-Bonnet gravity can be
written by

 S �
1

16�G

Z
dn�1x

�������
�g
p

�R� �RGB� � Sm; (31)

where R is the �n� 1�-dimensional Ricci scalar, Sm is the
action of matter and � is a constant with the dimension
�length�2. In the case of superstring theory in low energy
limit � is related to the inverse string tension and is positive
definite. The Gauss-Bonnet action is a natural extension of
the Einstein theory in the sense that no derivatives higher
than second order appear in the field equations. The equa-
tions of motion for the action (31) are given by

 G�� � �H�� � 8�GT��; (32)

where G�� � R�� �
1
2 g��R, and

 

H�� � 2�RR�� � 2R�	R	� � 2R��R���� � R
���
� R�����

� 1
2g��RGB: (33)

In the vacuum Gauss-Bonnet gravity with/without a cos-

mological constant, static black hole solutions have been
found and the associated thermodynamics has been dis-
cussed [21,22]. In this theory, the static, spherically sym-
metric black hole has the form

 ds2 � �e	�r�dt2 � e��r�dr2 � r2d�2
n�1; (34)

with

 e	�r� � e���r� � 1�
r2

2 ~�

�
1�

��������������������������������������
1�

64�G~�M
n�n� 1��nrn

s �
;

(35)

where ~� � �n� 2��n� 3�� and M is the mass of black
hole. In the limit �! 0, the above metric reduces to the
Schwarzschild metric in Einstein gravity. The entropy of
the black hole has the following form [22]:

 S �
A

4G

�
1�

n� 1

n� 3

2 ~�

r2
�

�
; (36)

where A � n�nr
n�1
� is the horizon area and r� is the

horizon radius of the black hole. The authors of Ref. [10]
have assumed that the entropy formula (36) also holds for
the apparent horizon of FRW universe in the Gauss-bonnet
gravity and the apparent horizon has the same expression
for entropy but replacing the black hole horizon radius r�
by the apparent horizon radius ~rA, i.e.,

 S �
A

4G

�
1�

n� 1

n� 3

2 ~�

~r2
A

�
; (37)

with A � n�n~rn�1
A being the area of the apparent horizon.

They reproduced Friedmann equations by applying the
relation TdS � �Q to the apparent horizon with the as-
sumption that the apparent horizon still has the horizon
temperature T � 1

2�~rA
. Now we show that the Friedmann

equation of a FRW universe in the Gauss-Bonnet gravity
also can be rewritten as the thermodynamic identity dE �
TdS�WdV at the apparent horizon.

The Friedmann equation for a FRW universe with per-
fect fluid as its source in the Gauss-Bonnet gravity is [23]

 

�
H2 �

k

a2

�
� ~�

�
H2 �

k

a2

�
2
�

16�G
n�n� 1�

�: (38)

In terms of the apparent horizon radius, the Friedmann
equation can be written as

 

1

~r2
A
� ~�

1

~r4
A

�
16�G
n�n� 1�

�: (39)

According to our procedure, one gets the differential form
of the equation of motion by taking differential of Eq. (39)

 

1

~r3
A
d~rA � 2 ~�

1

~r5
A

d~rA �
8�G
�n� 1�

��� P�Hdt; (40)

where the continuity equation _� � �nH��� P� has been
used. Now we multiply both hand sides of the above
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equation again by a factor n�n~rnA�1�
_~rA

2H~rA
� and rewrite the

above equation to the form

 

�
2�

d
��
n�n~rn�1

A

4G

��
1�

n� 1

n� 3

2 ~�

~r2
A

��

� �n�n~rnA�~�� ~P�H
�

1�
_~rA

2H~rA

�
dt: (41)

The first term in the left hand side of this Eq. (41) is in the
form TdS. If we take

 S �
n�n~rn�1

A

4G

�
1�

n� 1

n� 3

2 ~�

~r2
A

�
; T �

�
2�

; (42)

then Eq. (41) can be rewritten as

 TdS � �n�n~rnA�~�� ~P�H
�
1�

_~rA
2H~rA

�
dt: (43)

On the other hand, we note that the right hand side of the
above equation is the same as the case in Einstein gravity
(23). Thus one can immediately rewrite (43) as the ther-
modynamical identity

 dE � TdS�WdV: (44)

Here we would like to remind the readers that in Eq. (44),
the energy E � �V is the total energy of matter (25) inside
the apparent horizon, not the Misner and Sharp energy
inside the apparent horizon. The reason is that the Misner
and Sharp energy (24) cannot be written to the form (25) in
the case of the Gauss-Bonnet gravity.

Thus, once again, we are able to express the Friedmann
equation in the Gauss-Bonnet gravity as a thermodynam-
ical identity (44), here the temperature and entropy asso-
ciated with the apparent horizon are given by Eq. (42).

V. THERMODYNAMIC BEHAVIOR OF
FRIEDMANN EQUATIONS IN LOVELOCK

GRAVITY

In this section we extend the previous discussions to the
more general Lovelock gravity. The Lovelock theory of
gravity generalizes Einstein gravity when space-time has a
dimension greater than four. In this case the most general
Lagrangian [24] that gives second order equations for the
metric, is the sum over the dimensionally extended Euler
densities

 L �
Xm
n�0

cnLn; (45)

where cn is an arbitrary constant and Ln is the Euler density
of a 2n-dimensional manifold

 Ln � 2�n�a1b1���anbn
c1d���cndn

Rc1d1
a1b1
� � �Rcndnanbn

; (46)

where the generalized delta function �a1b1���anbn
c1d���cndn

is totally

antisymmetric in both sets of indices and R���
 are the

components of the curvature tensor. L0 is set to one, there-
fore, the constant c0 is just the cosmological constant. L1

gives us the usual curvature scalar term. In order for the
general relativity to be recovered in the low energy limit,
the constant c1 has to be positive. For simplicity, we can set
c1 � 1. L2 is just the Gauss-Bonnet term. Although the
Lagrangian of the Lovelock gravity contains higher order
derivatives curvature terms, there are no terms with more
than second order derivatives of metric in equations of
motion just as in Gauss-Bonnet gravity. Therefore, in this
sense, the Lovelock gravity theory is not a higher deriva-
tive gravity theory. Lovelock field equations are much
more complicated than Einstein’s equations, but they can
still be solved for some simple models as Friedmann uni-
verse and spherically symmetric black holes. The static
spherically symmetric black hole solutions can be obtained
in this theory in the sense that the metric function is
determined by solving for a real root of a polynomial
equation [21]. More recently, topological black hole solu-
tions have been also found in the Lovelock gravity [25]
(see also Ref. [26]). The horizon of these black holes can
be hypersurface with a positive, zero or negative constant
scalar curvature. In particular, it has been shown that the
entropy of black hole horizon has a simple expression in
terms of the horizon radius, while the expression for the
metric function and causal structure of these black holes
could be quite involved. For an �n� 1�-dimensional static,
spherically symmetric back hole with metric

 ds2 � �f�r�dt2 � f�1�r�dr2 � r2d�2
n�1; (47)

the metric function is given by f�r� � 1� r2F�r�, where
F�r� is determined by solving for real roots of the follow-
ing mth-order polynomial equation

 

Xm
i�0

ĉiFi�r� �
16�GM

n�n� 1��nr
n : (48)

Here, M is a constant of integration, which is just the mass
of the black hole, and the coefficients ĉi are given by

 ĉ 0 �
c0

n�n� 1�
; ĉ1 � 1;

ĉi � ci
Y2m
j�3

�n� 1� j� for i > 1:
(49)

The black hole entropy in terms of the horizon radius r�
can be expressed as [25]

 S �
A

4G

Xm
i�1

i�n� 1�

n� 2i� 1
ĉir

2�2i
� ; (50)

where A � n�nr
n�1
� is the horizon area of the black hole.

The above expression of black hole entropy does not con-
tain the cosmological constant term c0 because the black
hole entropy depends only upon the horizon geometry of
the black hole. The entropy formula (50) of black hole also
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holds for the apparent horizon of FRW universe and the
apparent horizon has the same expression for entropy in the
Lovelock gravity but the black hole horizon radius r� is
replaced by the apparent radius ~rA [10]. That is, the appar-
ent horizon has the entropy

 S �
A

4G

Xm
i�1

i�n� 1�

n� 2i� 1
ĉi~r

2�2i
A : (51)

The Friedmann equation of a FRW universe in the
Lovelock gravity is [10]

 

Xm
i�1

ĉi�H
2 �

k

a2�
i �

16�G
n�n� 1�

�: (52)

In terms of the apparent horizon radius ~r2
A � 1=�H2 �

k=a2�, the Friedmann Eq. (52) can be rewritten as

 

Xm
i�1

ĉi�~rA�
�2i �

16�G
n�n� 1�

�: (53)

One can get the differential form of the equation by taking
differential of Eq. (53) and then using the continuity equa-
tion

 

Xm
i�1

iĉi�~rA�
�2i�1d~rA �

8�G
�n� 1�

��� P�Hdt: (54)

We again multiply both hand sides of the above equation
by n�n~rnA�1�

_~rA
2H~rA
�. And then arrange the left hand side,

we have

 

�
2�

d
�
n�n~rn�1

A

4G

Xm
i�1

i�n� 1�

n� 2i� 1
~ci~r2�2i

A

�

� �n�n~rnA��� P�H
�

1�
_~rA

2H~rA

�
dt: (55)

The left hand side of the above equation is of the form TdS.
Thus the above equation can be rewritten as

 TdS � �n�n~rnA��� P�H
�
1�

_~rA
2H~rA

�
dt: (56)

Once again, the right hand side of Eq. (56) has the same
form as the case in Einstein gravity. Therefore we can
finally rewrite the Freidmann equation into the universal
form

 dE � TdS�WdV (57)

for the more general Lovelock gravity. Once again, here
the energy E is the total energy of matter inside the
apparent horizon, not the Misner-Sharp energy, as the
case of the Gauss-Bonnet gravity.

VI. CONCLUSION AND DISCUSSION

In this work we have shown that the differential form of
Friedmann equation can be rewritten as a form dE �
TdS�WdV, at the apparent horizon of a FRW universe
with any spatial curvature in arbitrary dimensions. Here E
the total energy (�V) of matter inside the apparent horizon,
W � ��� P�=2 and V is the volume inside the apparent
horizon. Compared to the standard form of the first law of
thermodynamics, the negative pressure term �P is re-
placed by the work density W. Note that for pure de
Sitter space-time, � � �P, one then has a standard form
dE � TdS� PdV. We have also shown that the
Friedmann equations in the Gauss-Bonnet gravity and
Lovelock gravity can also be expressed as the universal
form. In particular, if associate a temperature T � �=2� to
the apparent horizon, we can obtain an associated entropy
S � A=4G with the apparent horizon in the Einstein grav-
ity, which has the same form as that of black hole entropy.
In the Gauss-Bonnet gravity and Lovelock gravity, we have
also obtained corresponding expressions of entropy, they
keep the same forms as those of black hole entropy in each
gravity. In other words, if we regard that the apparent
horizon has a universal temperature T � �=2�, we can
pick up in our procedure the expression of entropy in
different gravity theories. The resulting expressions of
entropy have the same forms as obtained previously by
using black hole thermodynamics. In addition, let us men-
tion that in Einstein gravity, the total energy E of matter
inside the apparent horizon is just the Misner-Sharp energy,
but they are not equal in Gauss-Bonnet gravity and
Lovelock gravity.

Here more remarks are in order. First, it can be seen from
Eq. (9) that if _~rA < 2H~rA, the apparent horizon has a
negative surface gravity; if one further defines temperature
T � �=2�, the temperature is negative. This case is quite
similar to the case of the cosmological event horizon in the
Schwarzschild-de Sitter space-time. In that case, one
should define temperature T � j�j=2�, and when the en-
ergy E increases inside the apparent horizon, the apparent
horizon radius ~rA decreases. The universal form should
change to �dE � TdS�WjdVj in this case. In addition,
like the case of black hole space-time, the temperature
defined in this way only depends on the geometry, but
not gravity theory under study. For the FRW universe, the
apparent horizon has a universal expression T � �=2�
with � given by Eq. (9).

Second, in Ref. [10], Cai and Kim have derived the
Friedmann equations by applying the first law of thermo-
dynamics, TdS � �dE, to the apparent horizon of a FRW
universe with the assumption that the apparent horizon has
temperature T � 1=2�~rA and entropy S � A=4G. One
might worry that the result in Ref. [10] is not consistent
with the one in the present paper. This is not the case, in
fact, they are consistent with each other. To be not con-
fused, first, we would like to stress here that the notation
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dE in Ref. [10] is quite different from the same one used in
the present manuscript. In Ref. [10], �dE is actually just
the heat flux �Q in Ref. [9] crossing the apparent horizon
within an infinitesimal internal of time dt. The quantity is
given by

 �Q � �dE � n�n~rnA��� P�Hdt: (58)

In this calculation, the apparent horizon radius has been
assumed to be fixed. In this manuscript we have used the
matter energy E given in Eq. (25) inside the apparent
horizon. We have assumed that d~rA be the infinitesimal
change in the radius of the apparent horizon in a small
interval of time dt which causes a small change dV in
volume of the apparent horizon. Since the matter energy E
is directly related with the radius of the apparent horizon,
therefore, the change of apparent horizon radius will
change the energy dE inside the apparent horizon. By
this procedure, we worked out the change of energy dE
inside the apparent horizon is

 dE � n�n~rn�1
A �d~rA � n�n~rnA��� P�Hdt: (59)

Therefore in our definition, a new term n�n~rn�1
A �d~rA

appears. Since the apparent horizon radius is assumed to
be fixed in calculating (58) in Ref. [10] (see also Refs. [12–
14]), from Eq. (9) the temperature therefore has the form
T � 1=2�~rA in that case. Furthermore, a natural conse-
quence is that the term of volume change is absent in
Ref. [10].

Third, one interesting question may arise; whether one
can always express the Friedmann equations to the ther-

modynamic identity TdS � dE�WdV at apparent hori-
zon in any gravity theory? Since in Einstein, Gauss-Bonnet
and more general Lovelock gravity theories, the fact that
the Friedmann equations can be rewritten to the universal
form dE � TdS�WdV, might be related to the observa-
tion that in these gravities, the equations of field can be
derived from a holographic surface term [27]. If it is
possible, is it always possible to pick up the expressions
for entropy from the identity dE � TdS�WdV, which
agree with previously known results? For example, in cases
of f�R� and scalar-tensor gravities, can one apply this
approach to identify field equations as the universal ther-
modynamic form at apparent horizon and pick up the
expressions for entropies in these gravities? Partial results
of these issues are obtained recently [28].

Finally, one more question is whether this is a procedure
applicable for all types of horizons of space-times? These
issue are certainly associated with the holographic proper-
ties of gravity. It would be of great interest to examine
further the consequences of these observations to the holo-
graphic principle.
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