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We examine the prospects for detecting �-rays from dark matter annihilation in the six most promising
dwarf spheroidal (dSph) satellite galaxies of the Milky Way. We use recently measured velocity dispersion
profiles to provide a systematic investigation of the dark matter mass distribution of each galaxy, and show
that the uncertainty in the �-ray flux from mass modeling is less than a factor of �5 for each dSph if we
assume a smooth Navarro-Frenk-White (NFW) profile. We show that Ursa Minor and Draco are the most
promising dSphs for �-ray detection with GLAST and other planned observatories. For each dSph, we
investigate the flux enhancement resulting from halo substructure, and show that the enhancement factor
relative to a smooth halo flux cannot be greater than about 100. This enhancement depends very weakly on
the lower mass cutoff scale of the substructure mass function. While the amplitude of the expected flux
from each dSph depends sensitively on the dark matter model, we show that the flux ratios between the six
Sphs are known to within a factor of about 10. The flux ratios are also relatively insensitive to the current
theoretical range of cold dark matter halo central slopes and substructure fractions.
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I. INTRODUCTION

In the �CDM cosmological model, cold dark matter
(CDM) comprises approximately one-fourth of the total
energy density of the Universe [1]. However, the nature of
dark matter remains unknown. Extensions to the standard
model, such as those based on supersymmetry [2,3] and
universal extra dimensions [4], predict the existence of
stable, weakly interacting massive particles (WIMPs)
with mass ��101–104� GeV, which provide excellent can-
didates for cold dark matter. In these models, WIMPs
interact gravitationally as well as weakly, therefore
WIMP annihilation can produce �-ray photons.

Present and next-generation �-ray observatories such as
STACEE [5], HESS [6], MAGIC [7], VERITAS [8],
CANGAROO [9], GLAST [10], and HAWC [11] will
search for the signatures of dark matter annihilation. The
nearest location to search for this signal is the center of the
Milky Way, although uncertain backgrounds from astro-
physical sources would make the clean extraction of such a
signal difficult [12–14]. Additionally, there is wide empiri-
cal uncertainty as to the shape of the central dark matter
density profile, which may have been altered by the growth
of a supermassive black hole [15,16] or any process which
can exchange energy between the baryonic and dark matter
components (e.g. [17–19]).

In the case of dwarf spheroidal galaxies (dSphs), astro-
physical backgrounds and baryonic-dark matter interac-
tions are expected to be largely absent. The Milky Way

system contains at least 18 dSphs, which are observed to be
low-luminosity systems with an extent �kpc. Based on
their stellar mass-to-light ratios, dSphs contain of order
O�101–102� more mass in dark matter than in visible light
[20] and thus are ideal laboratories for studies that are
sensitive to the distribution of dark matter. Furthermore,
their relative proximity and high galactic longitude and
latitude makes them ideal for high signal-to-noise
detection.

In this paper, we consider the prospects for �-ray detec-
tion from dark matter annihilation in six dSphs of the local
group. The six dSphs are selected because of both their
proximity and estimated masses, the latter of which is
based on the most recent measurements of their velocity
dispersion profiles. We estimate the range of allowable
distributions of dark matter that satisfy the observed ve-
locity dispersion profiles, and deduce the �-ray flux ex-
pected from each dSph. We focus on quantifying the
uncertainty in the predicted fluxes that comes from the
dark matter density distribution in each system. As part
of this uncertainty, we determine the flux contribution of
substructure within the dSph dark matter halos.

Past work in the literature considered detecting �-rays
from dark matter annihilation in Milky Way-bound dark
matter halos: dSphs were studied in [14,21–24], more
massive galaxies in the local group were considered in
[25], potentially dark subhalos were studied in [26–31],
and the prospects of detecting microhalos were explored in
[32,33].

In comparison to previous studies of dSphs, our work is
the first to combine theoretical predictions for CDM halo
profile shapes and normalizations with specific dynamical
constraints for each observed system. Though the observed
velocity dispersion profiles are equally well fit by both
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central density cores and cusps, we restrict ourselves to
inner profile shapes � / r�� with � ’ 0:7–1:2 [34,35],
because this is what is expected for the subset of dark
matter candidates that actually annihilate into photons
(CDM). We show that the primary uncertainty in the
smooth dark matter flux contribution for CDM halos comes
not from the relatively narrow range of central cusp slopes,
but from the density and radius normalization parameters,
�s and rs for the halo. As we show below, the published
velocity dispersion data along with the predicted relations
between �s and rs for CDM halos allow a tight constraint
on the dark-halo density contribution to the annihilation
signal.

While the value of the expected flux signal for each dSph
is sensitive to the (unknown) nature of the underlying dark
matter candidate, we demonstrate that the relative flux
from system to system is significantly constrained. Ursa
Minor is the most promising dSph candidate for detection
and we present the expected �-ray flux ratios between the
remaining five dSphs and Ursa Minor. We also demonstrate
that enhancement of the signal due to the presence of
substructure in dSph halos themselves increases the pre-
dicted fluxes by at most a factor of �100.

This paper is organized as follows. In Sec. II, we discuss
the �-ray annihilation signal expected from CDM halos
and the enhancement of the flux due to the presence of
substructure within the dSph dark matter halos. In Sec. III
we discuss the dynamical modeling of the dSph galaxies.
In Sec. IV we present our results, and we conclude in
Sec. V. Throughout the paper, we assume a �CDM cos-
mological model with �m � 0:3, �� � 0:7, h � 0:7, and
�8 � 0:9.

II. GAMMA-RAYS FROM ANNIHILATION IN
COLD DARK MATTER HALOS

The �-ray flux from dark matter annihilation in a dark
matter halo with characteristic density �s and radius rs at a
distance D may be written as

 

dN�
dAdt

�
1

4�
P �h�vi;M�; dN�=dE�L��s; rs;D�: (1)

We have explicitly divided the flux into a term that depends
only on the dark matter particle and its annihilation char-
acteristics, P �h�vi;M�; dN�=dE�, and one that depends
only on the density structure of the dark matter halo, the
distance to the halo, D, and the angular size over which the
system is observed, L��s; rs;D�. The structure quantity L
is defined as

 L �
Z ��

0

�Z
LOS

�2�r��;D; s��ds
�
d�; (2)

where the integral is performed along the line of sight over
a solid angle �� � 2��1� cos��. The term that contains
the microscopic dark matter physics is given explicitly as

 P �
Z M�

Eth

X
i

dN�;i
dE

h�vii
M2
�
dE: (3)

Here, the mass of the dark matter particle is M�, the
annihilation cross section to a final state ‘‘i’’ is h�vii,
and the spectrum of photons emitted from dark matter
annihilation to that final state is dN�;i=dE. Our goal is to
use observed velocity dispersion profiles to empirically
constrain the L term. This allows observations from
�-ray telescopes to more effectively constrain the particle
nature of dark matter through P .

A. Photon spectrum and cross sections

As a fiducial case, we consider neutralino dark matter in
order to determine an appropriate value for P . Neutralino
annihilation to a photon final state occurs via: (1) loop
diagrams to two photons (��), each of energy E�� � M�;
(2) loop diagrams to a photon and a Z0 boson (�Z0) with a
photon energy of E�Z0 � M��1� �Mz0=2M��

2�; and
(3) through an intermediate state that subsequently decays
and/or hadronizes, yielding photons (h). For this latter
case, the resulting photon spectrum is a continuum and is
well approximated by [12]

 

dN�;h
dE

� �1
E
M�

�
E
M�

�
�3=2

exp
�
��2

E
M�

�
; (4)

where ��1; �2� � �0:73; 7:76� for WW and Z0Z0 final
states, ��1; �2� � �1:0; 10:7� for b �b, ��1; �2� �
�1:1; 15:1� for t�t, and ��1; �2� � �0:95; 6:5� for u �u. The
cross sections associated with these processes span many
orders of magnitude. For the direct annihilation to a �� or
�Z0 final states the maximum presently allowed value of
the annihilation cross section to these final states is roughly
�h�vi��;�Z0 � 10�28 cm3 s�1. The total cross section as-
sociated with photon emission from the hadronization of
the annihilation products has a corresponding upper bound
of h�vih � 5	 10�26 cm3 s�1. In the most optimistic
scenario, where the cross sections are fixed to their highest
value and the mass of the neutralino is �46 GeV, so that
P � P SUSY � 10�28 cm3 s�1 GeV�2.

The value of P will be different for different dark matter
candidates. For example, in models of minimal universal
extra dimensions, the annihilation cross section and the
mass of the lightest Kaluza-Klein particle can be signifi-
cantly higher than what we assumed here (e.g., M� *

800 GeV [36]). However, we emphasize that our results,
which constrain the density structure of dSph’s (and there-
fore L) can be rescaled to any dark matter candidate that
annihilates to photons, by simply multiplying predicted
fluxes from this work with P=P SUSY.

B. Dark matter distribution

Dissipationless N-body simulations show that the den-
sity profiles of CDM halos can be characterized as
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 ��~r� �
�s

~r��1
 ~r����
; ~r � r=rs; (5)

where rs and �s set a radial scale and density normalization
and � and � parametrize the inner and outer slopes of the
distribution. For field halos, the most recent high-
resolution simulations find � � 3 works well for the outer
slope, while 0:7 & � & 1:2 works well down to �0:1% of
halo virial radii [34,35]. It is currently unknown whether
there is a ‘‘universal’’ � for every halo or if there is a scatter
in � from halo-to-halo. The range quoted here character-
izes the uncertainty in the theoretical prediction for the
small-r slope, and certainly provides a conservative range
for the halo-to-halo scatter in central slope as well.

The structure quantity L that sets the annihilation flux
depends primarily on the rs and �s parameters for this
range of � (see discussion below) and is even less sensitive
to �. In what follows, we will fix � � 1 and � � 3 and
derive empirical constraints on the (more important) pa-
rameters �s and rs. Note that CDM simulations also predict
a specific relationship between �s and rs for halos [e.g.
[37,38]] and this prediction is at least as robust as the
overall shape of the profile. At the end of the next section,
we compare our direct empirical constraints on the rela-
tionship between �s and rs to the expected relationship

predicted from CDM simulations and use this to further
tighten our constraints on the dark matter structure in the
dSphs.

With � � 1 and � � 3 the profile given in Eq. (5) is the
NFW profile and we adopt this form as the basis for our
constraints. With the asymptotic slopes fixed, the values of
rs and �s define the profile completely. Any other non-
degenerate pair of halo parameters also suffice to charac-
terize an NFW halo. For example, halo concentration
(c � Rv=rs) and virial mass (M) define the profile as
well. This is a less physically relevant pair for our purposes
because the virial mass is set by determining the extrapo-
lated radius, Rv, within which the overdensity is equal to
the virial density, �v ’ 100�crit [39]. Given c and M, the
value of �s is determined as �s � �vc

3=f�c� with f�c� �
ln�1
 c� � c=�1
 c�. A second pair of parameters with
perhaps more physical relevance is Vmax and rmax. These
correspond to the maximum circular velocity curve,
Vc�r� �

��������������
GM=r

p
, and the radius where the maximum oc-

curs. Vmax is often adopted as the most direct characteriza-
tion of the potential well depth of a dark matter halo,
especially in the case of substructure.

Assuming a (smooth) NFW profile, the L term in Eq. (2)
becomes

 L ��s; rs;D� � 2��2
sr3
s

Z �max

0
sin�

�Z
LOS

ds

~r2��;D; s��1
 ~r��;D; s��4

�
d�; (6)

where ~r��;D; s� �
���������������������������������������������
D2 
 s2 � 2sD cos�
p

=rs, the angle
�max defines the solid angle over which the line-of-sight
(LOS) integral is performed �� � 2��1� cos�max�. In
the particular case where a dark matter halo is at a distance
D� rs, such as the case of subhalos within a dSph, we
can rewrite Eq. (6) as

 L ��s; rs� �
Z ~rmax���;D�

0

�2
sr3
s

~r2�1
 ~r�4
d3~r;

�
4�
3
�2
sr3
s

�
1�

1

�1
 ~rmax���;D��3

�
: (7)

For an NFW profile, 90% of the flux comes within the
region ~r  1. If the angular extent of rs is less than the
solid angle of interest, i.e., tan�1�rs=D�  cos�1�1�
��=2��, Eq. (7) reduces simply to

 L ��s; rs� �
7�
6
�2
sr

3
s : (8)

Typical values of the field of view of �-ray telescopes are
�10�2 steradians for atmospheric Čerenkov telescopes,
and �2:5 sr for space-based observatories (GLAST),
with angular resolutions of �1 and �10 arcminutes, re-
spectively. Note that a change in the central density profile
slope �will manifest itself as a change in the normalization
of the �2

sr3
s term Eq. (8). For example, if the inner slope is

as high as � � 1:2, then L will be a factor of �5:6 higher
than what is stated in Eq. (8). If the profile is as shallow as
� � 0:7, then L is smaller by a factor of �6:8.

C. Substructure and density profiles

Dark matter halos form hierarchically, so it is expected
that they all contain some degree of gravitationally bound
substructure [40–44]. The issue of dark-halo substructure,
or ‘‘subhalos,’’ is important for annihilation signals from
dSphs for two reasons. First, the dark matter halos of the
dSphs are subhalos, as they orbit within the virial radius of
Milky Way’s dark matter halo. We might expect this to
have important implications for their density structure.
Second, dSphs themselves are also expected to contain
abundant substructure. This ‘‘sub-subhierarchy’’ should,
in principle, continue until we reach the low-mass cutoff
scale in the subhalo mass function, m0 � �10�13–
10�2�M�, which is approximately set by the CDM particle
free-streaming scale [45–50]. In this case, we might expect
significant enhancement of the annihilation signal com-
pared to the ‘‘smooth’’ halo assumption.

Depending on the time of accretion and orbital evolu-
tion, a subhalo will experience varying degrees of mass
loss as a result of tidal interactions with the host dark
matter halo potential. Simulations suggest that the majority
of the stripped material will be from the outer parts of
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halos. The outer slope � of subhalo density profiles will
become steeper than those of field halos. However, the
interior slope, �, will not be altered significantly [51].
Thus, our adopted NFW parametrization for the dSph
dark matter density profiles is a reasonable one for deter-
mining the structure factor in the annihilation signal. The
outer density profile slope does not affect the expected
annihilation signal and the inner slope is expected to
remain unchanged by tidal mass loss.

It is important to note that while the central slope � is not
expected to change as subhalos evolve, the normalization
of the central profile does evolve, as subhalos monotoni-
cally lose mass, even from the central regions [51]. One
implication of this is that the relationship between �s and
rs for subhalos is altered relative to that of field halos. The
most straightforward way to characterize this relationship
in numerical simulations is to compare the Vmax-rmax rela-
tionship for subhalos to field halos, and it is found that
subhalos tend to have smaller rmax values at fixed Vmax

such that �rS=rF� ’ 0:7�VS=VF�
1:35 [52,53] (see also

[51,54]), where the subscripts S and F denote stripped
and field quantities. As halos orbit within their parent
potentials, they become less dense and their scale radii
tend to shrink as a result of tidal interactions. We include
this possibility when we compare our empirical constraints
on the dSph density profiles to CDM expectations below.

D. Substructure and flux enhancement

Equation (6) assumes that the structure quantity L�M� in
the �-ray flux is set by a smoothly distributed dark matter
halo of mass M. Given the expectation for substructure, a
more realistic formulation is that L�M� is set by a smooth
halo component, ~L�M� (set by Eq. (6)), plus a substructure
component, that acts to enhance the flux above the smooth
component expectation. It is useful to quantify this sub-
structure component by introducing a ‘‘boost’’ factor B:

 L �M� � �1
 B�M;m0��
~L�M�: (9)

We have defined the boost such that B � 0 is a case with no
substructure and where all of the emission is from a smooth
halo. The boost depends on the host dark matter halo mass
M and, in principle, on m0, the fundamental subhalo cutoff
scale.

The value of B is determined by the integrated annihi-
lation factors L�m� for subhalos of massmwithin the host:
B ~L�M� �

R
�dN=dm�L�m�dm, where we have introduced

the subhalo mass function dN=dm. Unfortunately a brute-
force determination of B from numerical simulations is not
feasible at this time because the subhalos themselves will
be filled with sub-subhalos, and this progression continues
until the CDM cutoff scale m0 becomes important. This
requires a dynamic range of �13 orders of magnitude in
halo resolution, which is far from the current state of the art
dynamical range of numerical simulations.

Our goal is to determine the expected range for B, as
well as its dependence on m0. We rely on the fact that
subhalos tend to be less dense than halos in the field of the
same mass. More specifically, consider the case of a sub-
halo that has experienced significant mass loss, such that
now it has a maximum circular velocity Vmax � VS that
occurs at a radius rmax � rS. In cases of significant strip-
ping, the density profile will decline rapidly beyond rmax

[e.g. [51]] and the total subhalo mass will be well approxi-
mated asmS ’ rSV

2
S=G. Compare this object to a field halo

of the same mass: MF ’ 10rFV
2
F=G, where we have as-

sumed c ’ 30 such that �10% of the halo’s virial mass is
contained within rmax � rF. Adopting the numerical simu-
lation result quoted above, �rS=rF� ’ 0:7�VS=VF�

1:35, we
can derive the relative sizes of the subhalo and field halo
rmax’s and Vmax’s that give them the same total mass: VS ’
2:2VF and rS ’ 2rF. At fixed mass we therefore expect
~LS= ~LF / �rF=rS�

3 ’ 0:125< 1.
The above arguments, together with the fact that sub-

halos are expected to have less substructure than field halos
of the same mass [40,55], allow us to obtain a maximum
estimate for B by conservatively assuming that the total
structure factor L for a subhalo is the same as that for a
host halo of the same mass: LS�m� � LF�m� � L�m�.
Suppressing them0 dependence inB, this allows us to write

 B�M� �
1

~L�M�

Z M

m0

dN
dm

L�m�dm (10)

 �
1

~L�M�

Z M

m0

dN
dm
�1
 B�m�� ~L�m�dm (11)

 �
AM

~L�M�

Z lnqM

lnm0

�1
 B�m�� ~L�m�
d lnm
m

: (12)

In the last step we have used the fact that the substructure
mass function, dN=dm, is fairly well quantified from
N-body simulations to be a power law dN=d lnm �
A�M=m�� for m< qM, with � � 1 and q ’ 0:1 [56]. q <
1 quantifies the fact that the subhalo mass function cannot
extend to the mass of the host itself. The normalization A is
set by requiring a fraction f of the host mass M to be in
subhalos with mass in the range gM  m  qM.
Motivated by numerical simulations [43] and semianalytic
studies [40,41] we use f � 0:1, and g � 10�5 to obtain
A � f= ln�q=g� � 0:01 for � � 1.

To estimate the mass dependence of ~L, we use the �s-rs
relation for subhalos from the model of Bullock et al. [38]
for field halos in a standard �CDM cosmology. As field
halos are expected to be more concentrated this will over-
estimate B�M� and is thus a conservative assumption. This
gives c � 33�M=108M��

�0:06 for halos of mass M &

108M�. Using the approximation f�c� � log�1
 c��
c=�1
 c� � 2:6�c=33�0:4, and that �s � c3=f�c�, we have
L / �2

sr3
s / Mc2:2 / M0:87.

STRIGARI, KOUSHIAPPAS, BULLOCK, AND KAPLINGHAT PHYSICAL REVIEW D 75, 083526 (2007)

083526-4



We could solve for B�M� numerically with the boundary
condition that B�m0� � 0. However, there is a simpler way
that provides an analytic estimate for B�M�. We note that if
the upper limit of the last integral in Eq. (12) is extended to
M, then we will have an estimate that will be larger that the
actual B�M�. Since our aim is to estimate how large the
boost can be, this is a useful manipulation. We then differ-
entiate Eq. (12). The resulting equation has an analytic
solution such that we may write

 B�M�< A
�M=m0�

���0
A � 1

�� �0 
 A
; (13)

where we have assumed that �0 � d ln� ~L�=d ln�M� is a
constant. The subhalo mass function will flatten off at
smaller masses and hence this, again, is a conservative
assumption. Note that we have imposed the boundary
condition B�m0� � 0. This does not result in B�M� depend-
ing sensitively on m0 because �� �0 
 A ’ 0:13 is small.
For a 108M� dark halo, B�M�< 41 if we choose m0 �
10�13M�, while B�M�< 2 if we choose m0 � 10�2M�.

III. MODELING OF DWARF SPHEROIDAL
GALAXIES

Twenty galaxies can be classified as residing in subhalos
of the Milky Way, and 18 of these are classified as dSphs.
Of the 18 dSphs, nine were discovered within the last two
years star counts [see e.g. [57]] and have very low lumi-
nosities and surface brightnesses. We consider six of the
brighter dSphs in our study: Ursa Minor, Draco, Sculptor,
Fornax, Carina, and Sextans. All of these galaxies have
measured velocity dispersion profiles based on the line-of-
sight velocities of �200 stars, which may be used to
constrain their dark matter halo potentials. The three re-
maining bright dSphs are Leo I, Leo II, and Sagittarius.
Both Leo I and Leo II are too far from the Milky Way
(� 250 kpc and 205 kpc, respectively) to be detectable

with �-rays, and in the case of Leo II no velocity dispersion
profile is published to our knowledge. Additionally, we do
not consider Sagittarius, as this galaxy is known to be
undergoing tidal stripping [58].

We assume the dSph systems to be in equilibrium and
spherically symmetric. Under these assumptions, the radial
component of the stellar velocity dispersion, �r, is linked
to the total gravitational potential of the system via the
Jeans equation,

 r
d��?�2

r�

dr
� ��?�r�V

2
c �r� � 2	�r��?�

2
r : (14)

Here �? is the stellar density profile, the circular velocity is
Vc�r� � GM=r, and the parameter 	�r� � 1� �2

r=�
2
t

characterizes the difference between the radial and tangen-
tial velocity dispersions. Taking 	 to be independent of
radius and integrating �2

r along the line of sight gives the
velocity dispersion as a function of projected radius, R,
[59]

 �2
LOS�R� �

2

I�R�

Z 1
R

�
1� 	

R2

r2

�
�?�

2
rr�����������������

r2 � R2
p dr: (15)

Here, I�R� is the projected surface density of the stellar
distribution. In Eq. (15), �r depends on the mass distribu-
tion of the dark matter, and thus the parameters in the NFW
profile �s and rs.

The surface density of stars in all dSphs are reasonably
well fit by a two-component, spherically symmetric King
profile [60],

 I�R� � k
��

1

R2

r2
c

�
�1=2
�

�
1


r2
t

r2
c

�
�1=2

�
2
; (16)

where rt and rc are fitting parameters denoted as the tidal
and core radii (see Table I), and k is a normalization
constant. The spherically symmetric stellar density can
be obtained with an integral transformation of the surface

TABLE I. Properties of the dSphs used in this study. The adopted distance to each galaxy is
shown in the second column. For reference, the third and fourth columns list the luminosity and
central velocity dispersion for each dwarf. The fifth and sixth columns give the King core and
tidal radii as determined from Refs. [61–66]. The last column shows a derived result: the range
of halo Vmax values that simultaneously matches the observed velocity dispersion profiles and the
CDM theoretical normalization priors (see Fig. 2).

dSph D [kpc] LV (106 L�) �0 rc rt Vmax

from [20] from [20] [km s�1] [kpc] [kpc] [km s�1]

Ursa Minor 66 0.29 15� 4 0.30 1.50 15– 40
Draco 80 0.26 5:5� 1:2 0.18 0.93 15–35
Sculptor 79 2.2 8:5� 1:0 0.28 1.63 11–19
Fornax 138 15.5 11:1� 2:5 0.39 2.71 19–36
Carina 101 0.43 6:8� 1:0 0.25 0.86 10–15
Sextans 86 0.50 5:8� 1:3 0.40 4.0 6–10
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density,

 �?�r� �
k

�rc�1
 �rt=rc�2�3=2

1

z2

�
1

z
cos�1z�

��������������
1� z2

p �
;

(17)

where z2 � �1
 r2=r2
c�=�1
 r

2
t =r

2
c�.

Recent reductions of the photometric sensitivity in the
extreme outer portions of dSphs show the surface density
to be falling off less sharply than expected from the above
King profile; outside of a ‘‘break’’ radius the surface
density falls off like a power law I�R� / R�2 [61–63].
Including these variations from the King profile has negli-
gible effects on the results, therefore for simplicity we
assume the spherically symmetric King profile for all
dSphs. We note that for the particular case of Draco, recent
studies have used a Plummer instead of a King profile, as
described in [67]. Using a Plummer profile has no effect to
this calculation, because the primary difference in the fits is
in the outer regions of Draco where the surface density is
exponentially declining.

In order to estimate the total mass in stars and its con-
tribution to the total gravitational potential, we need to
determine the typical range of stellar mass-to-light ratios
for dSphs. Draco was considered in Lokas et al. [68],
where they quote an upper limit to the stellar mass-to-light
ratio of �3, implying a total stellar mass of �6:6	
105M�. Though the stellar populations vary somewhat in
all dSphs, the stellar mass-to-light ratios are similar [20].
This is at the very least an order of magnitude below the
deduced total mass in dark matter in all cases (see below).

There are three empirically unconstrained parameters
which determine the observed line-of-sight profile in
Eq. (15): 	, �s, and rs. To determine the constraints on
these parameters, for each dSph we construct a Gaussian
likelihood function, L / exp���2�, where �2 �

P
{��

2
{ �

�2
th;{�=2
2

{ . Here �th;{ is the theoretical velocity dispersion,
�{ the measured dispersion in the {th bin, and 
{ is the error
on�{. The assumption of a Gaussian likelihood function on
the velocity dispersion is an excellent description of the
data for�200 line-of-sight velocities [69]. To construct the
allowed region, we determine the �2 for each dSph as a
function of the three parameters 	, �s, and rs. Including �
as a free parameter has minimal effect on the shape of the
allowed region, as long as � is restricted in the range 0.7–
1.2 [69]. Given L, we then integrate over the appropriate
range of 	 to obtain the two-dimensional likelihood func-
tion, L0, which we use to define the likelihood ratio ��2 �
�2 ln�L0=L0max�. We determine the allowed region in the
�s-rs plane using ��2 � 6:2, equivalent to the approxi-
mate 95% confidence level region for 2 degrees of
freedom.

Figure 1 shows an example fit for Ursa Minor, where we
have used 	 � 0:6. The short-dashed curve has a maxi-
mum circular velocity, Vmax � 70 km s�1, and the long-
dashed curve has Vmax � 20 km s�1. These correspond to

rmax � 0:6 kpc and �20 kpc, respectively. This particular
example highlights the degeneracy that currently exists
with the line-of-sight velocity dispersion data: large Vmax

solutions are still viable as long as they are accompanied
by an increase in the rmax.

Figure 2 shows the allowed regions in the �s-rs plane for
each dSph. In all of the galaxies, the minima in �2 is not
very well defined; there is a degeneracy along the axis of
the allowed region. This is particularly true for the cases
where the best-fitting value of rs occurs outside the region
probed by the stellar distribution. In this region, changes to
the combination of �s-rs have very little impact on the dark
matter distribution in the region probed by the stars, so the
allowed region actually extends well beyond what is shown
in the Fig. 2. We note that if the contours are created for
fixed values of 	, then as the value of 	 is changed, the �s
and rs allowed region shifts along the line of degeneracy
[e.g. [70]]. Thus our predicted L contribution changes very
little whether we keep 	 fixed or marginalize over it (as we
have done), especially when we demand consistency with
the CDM model expectation for the �s-rs relation (see
below).

Though Fig. 2 shows that the combination �s-rs is not
well defined, in all of the cases the data does approximately
fix the density at the mean radii r? of the stellar distribution
[69]. Calculating the total mass of the dark matter within
this characteristic radius, for all galaxies the minimum
implied dark matter mass �107M�, which occurs for the
lowest implied values of �s-rs in each case. This is at least

 

FIG. 1. The velocity dispersion profiles for Ursa Minor, with
data from [61]. The short-dashed curve shows a model with �s �
108M� kpc�3 and rs � 0:63 kpc, while the long-dashed curve
depicts a model with �s � 107M� kpc�3 and rs � 3:1 kpc.
Both curves have 	 � 0:6.
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an order of magnitude greater than the contribution to the
total mass in stars in all cases.

Over-plotted in Fig. 2 are lines of constant Vmax in the
�s-rs plane. Phrasing the dark matter halo properties in
terms of Vmax allows for a direct comparison to CDM
models, which provide predictions for the cumulative num-
ber distribution of halos at a given Vmax. Although the high
Vmax solutions are plausible by considering the data alone,
comparison to CDM models show that it is improbable that
all of these halos have Vmax in the high end of the allowed
regime [40,70–72] (although this solution may be viable
for some smaller fraction [73]). Typical CDM halos have
�1 system as large as �60 km s�1.

Dashed and dash-dotted lines in Fig. 2 enclose the
predicted �s-rs relation (including scatter) for cold dark
matter halos as determined from numerical simulations. In
order to provide a conservative range for the CDM expec-
tation, the upper (long-dashed) lines are obtained using the
relation that is 2-� above the median for field halos in
�CDM [38] and the lower (dash-dotted) lines show the
relation implied by the tidally stripped Vmax-rmax relation

with a 2-� scatter below the median c�M� relation [52,53].
We consider both the field and stripped relation because the
degree of tidal stripping experienced by each dSph is
uncertain, depending sensitively on the precise orbital
information and/or redshift of accretion, two quantities
that set the amount of tidal mass loss [40]. The region
where the CDM predictions cross with the observationally
allowed values of �s and rs in Fig. 2 defines a preferred
model for the structure of these dark matter halos within
the context of CDM.

IV. FLUXES FROM DWARF SPHEROIDAL
GALAXIES

A. Smooth halo

The flux of �-rays originating from the annihilation of
dark matter particles is sensitive to �2

sr
3
s (recall that L�

�2
sr

3
s , see also Eq. (6)). Even though �s and rs individually

can vary by orders of magnitude and still satisfy the
observed velocity dispersion profile (see Fig. 2), the prod-
uct �2

sr3
s is tightly constrained. Figure 3 shows the allowed

 

FIG. 2 (color online). The allowed region in the �s-rs plane for the six dSphs after marginalizing over the stellar velocity dispersion
anisotropy parameter 	. Solid lines correspond to contours with Vmax of 5, 10, 20, 40, 80, 150 km s�1. Long-dashed lines represent the
�s-rs relation as derived from the field halo relation, and the 2-� scatter above the median concentration vs mass relation. Dot-dashed
lines represent the �s-rs relation as derived from the tidally stripped halo relation, and the 2-� scatter below the median concentration
vs mass relation.
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region in the �2
sr3
s-�s plane. The tight constraint makes the

predictions for �-ray fluxes more robust. The hatched
regions correspond to solutions that overlap with the
CDM expectation in this parameter space. With the CDM
prior imposed, the �2

sr
3
s quantity is constrained to within a

factor of �3–6 in all cases. This corresponds to the width
of the hatched regions in Fig. 3.

The mild change in �2
sr3
s with �s can be explained by

looking at the radial velocity dispersion measure. First note
that the contours in Fig. 3 have a common shape. They
slope gently down for about a decade in �s, remain con-
stant, and then start to slope upwards (as �s is increased).
In addition the area where the contours remain roughly
constant is where rs � rt; recall that rt is the tidal radius of
the stars. The LOS velocity dispersion is a weighted aver-
age of the radial velocity dispersion for r < rt, see
Eq. (15). Thus the �s-rs scaling must trace back to the
scaling of �2

r�r�. For a constant stellar anisotropy, we have

 �2
r�r� �

Gr�2	

�?�r�

Z 1
r
dr0�?�r

0�r02	�2M�r0�; (18)

where M�r� is the total mass profile, which is to a good

approximation the dark matter mass profile. We are inter-
ested in the scaling of �2

r�r� with �s and rs. It is clear
from Eq. (18) that �2

r�r� / �s always. To understand the
scaling with rs, we consider the following integral,
r3
s
R
rt
r dr

0�?�r0�r02	�2�ln�1
 r0=rs� � r0=�r0 
 rs��. This
integral, obtained from Eq. (18), has all the information
about the scaling of �2

r�r� with rs. For rs � rt, the NFW
mass term can be replaced with r02rs, which implies that
�2
r�r� scales as �srs for a given r, and hence we would

predict that �s scales as 1=rs for rs � rt. This prediction is
verified by the shape of the contours for the smaller values
of �s (larger values of rs) in Figs. 2 and 3.

For rs � rt, the NFW mass term varies slowly com-
pared to �? and possibly the 	 terms. This means that
�2
r�r� should scale (in the above limit) as �sr3

s or the
contour of �2

sr
3
s should increase linearly with �s. We can

discern this behavior for Sextans, which has a large rt. In
the intermediate region where rs � rt, �2

r�r� varies faster
than linearly with rs. To see this, we first note that ��r� �
d lnM�r�=d lnr is 1.3 at r � rs and is 1.8 at r � 0:2rs.
Also, rc=rt is between 0.1 and 0.3 for these galaxies and
most of the contribution to the LOS dispersion comes from

 

FIG. 3 (color online). The allowed region in the �2
sr

3
s-�s plane for each dSph after marginalizing over the stellar velocity dispersion

anisotropy parameter 	 filled region, and contour levels for the expected �-ray flux. Contours are shown for log10�dN�=dAdt� � �13,
�12,�11, and�10, where the flux is measured in photons cm�2 s�1. Solid contours depict the flux expected within a region of radius
2 degrees centered on the dwarf, while dot-dashed contours depict the same flux thresholds for a region of radius 0.1� centered on the
dwarf. The hatched regions represent the preferred region from CDM theoretical modeling (see Fig. 2 and discussion in text).
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the region around rc. Therefore we expect the contours to
be along curves of constant �sr

3���rc�
s , which explains the

flat parts of the contours in Fig. 3 (where they overlap with
the CDM priors).

The contours in the �2
sr

3
s-�s plane in Fig. 3 have been

calculated assuming a smooth dark matter distribution. The
flux enhancement due to the presence of substructure
will be discussed below. We have used P � P SUSY �
10�28 cm3 s�1 GeV�2, which corresponds to the most op-
timistic scenario for neutralino CDM. For other dark mat-
ter candidates, the fluxes shown should be rescaled by a
factor of P=P SUSY.

Figure 3 shows that the most promising candidates for
detection are Ursa Minor and Draco, with the largest flux
coming from Ursa Minor. These two dSphs have fluxes
�10�11 cm�2 s�1, within potential reach of upcoming
�-ray detectors. For example, the integral sensitivity for
a 5-� detection in 5 years of exposure with GLAST in the
signal dominated regime (energies above �5 GeV) is
�3	 10�11 cm�2 s�1, and therefore these two dSphs
should be prime targets for observation with GLAST.

The various lines in Fig. 3 show flux levels for different
solid angles of integration centered on the dSph. Because
most of the flux from a dark matter halo described with an
NFW profile originates from the region inside of rs, inte-
grating over an area that is larger than the apparent angular
extent subtended by rs does not lead to a marginal increase
in the flux (see e.g. Eq. (8)). For a dSph at a distance D this
angular extent is tan�1�rs=D�. Integrating over an angular
area which has an apparent radius smaller than rs leads to a
reduction in flux (see e.g. Eq. (7)). This is shown with the
dot-dashed contours in Fig. 3, where the solid angle is
0.1 degrees relative to the solid contours which are for
2 degrees.

In order to quantify the prospects for detection we
consider the following examples. If a region of radius
0.1 degrees centered on Ursa Minor is integrated upon
with GLAST (with an orbit-averaged area of Aeff � 2	
103 cm2 [74]) for 5 years, and P � 10�28 cm3 s�1 GeV�2,
then the range in the number of photons expected is
��5–35� based on the allowed range of values in the
�s-rs plane. Integrating over the same region with a
Čerenkov detector (such as VERITAS (atmospheric) or
HAWC (water)) has the advantage of a much larger effec-
tive area (Aeff � 108 cm2), but the disadvantage of a
much larger background (due to the hadronization of cos-
mic rays) and much smaller integration time scale (of
order hours instead of years). For ground detectors
such as VERITAS, or HAWC, with an effective area
Aeff � 108 cm2, and as an example, 50 hours of integra-
tion, the corresponding range in the number of photons
expected is [10–70]. For this latter estimate we assume
P � 10�31 cm3 s�1 GeV�2 which corresponds to a neu-
tralino of M� � 200 GeV and a threshold energy of
�100 GeV.

As can be inferred from Fig. 3, the predicted fluxes are
roughly similar to within 2 orders of magnitude. If a �-ray
flux is detected in the direction of, for example, Ursa
Minor, then from the allowed �s-rs parameter space of
Ursa Minor we can determine the range of expected fluxes
for the remaining five dSphs, by taking into account the
respective allowed �s-rs parameter space in each case.
Table II provides the flux ratios expected relative to a
flux measurement from Ursa Minor. We calculate these
flux ratios by considering the highest and lowest flux in the
�2
sr3
s-�s parameter space which is also consistent with the

CDM priors (shaded areas in Fig. 3). If the highest flux
predicted from Ursa Minor is �max

UMI and the minimum is
�min

UMI, then the range of flux ratios from the rest dSphs
relative to the flux from Ursa Minor is �max

dSph=�min
UMI �

�min
dSph=�max

UMI. We calculate flux ratios for two different
angular integrations, such that combinations of the two
remove any correlations between the allowed regions by
the inclusions of the distance to each dwarf, i.e., a same
allowed value of �2

sr3
s in, for example, two different dSphs

does not necessarily correspond to the same flux (recall
that the angular extent of rs for a dSph atD is tan�1�rs=D�,
and that the flux is proportional to �2

sr
3
s). This prediction is

quite robust. First, because measurement of �-ray fluxes
must fall within the prescribed tight range in the �2

sr3
s-�s

plane if all dSphs are composed of the same CDM parti-
cles, and second because the predicted flux ratios are less
sensitive to astrophysical processes, which may contami-
nate the �-ray emission. Therefore, correlated fluxes be-
tween dSphs should be expected in future measurements.

The results presented in Fig. 3 are fluxes integrated over
an energy regime that contains the signal from dark matter
annihilation for a fiducial value of P . Extraction of a signal
from dark matter annihilation will depend on the shape of
both the input and the background spectra. In Fig. 4, we
show an example of the spectrum from dark matter anni-
hilations in Ursa Minor,
 

E2
dN�

dAdtdE
� 5	 10�12 GeV cm�2 s�1E2

dN�
dE

	

�
�v

5	 10�26 cm3 s�1

��
46 GeV

M�

�
2

	

�
B
 1

1

��
L��s; rs;D�

1:25	 1015 GeV2 cm�5

�
: (19)

TABLE II. The predicted flux ratios for dSphs relative to the
�-ray flux from Ursa Minor in CDM theory.

dSph Within 0.1 deg Within 2 deg

Draco 0.1–3.2 0.1–2.8
Sculptor 0.07–1.6 0.05–0.7
Fornax 0.07–2.2 0.05–1.1
Carina 0.04–1.0 0.02–0.4
Sextans 0.02–0.5 0.007–0.02
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The assumed values of �s and rs in this example are
consistent with the observed velocity dispersion-derived
profile, and also with the predictions of CDM theory (see
Fig. 2). This highlights the range of values that the ampli-
tude of the spectrum may take. As shown in Fig. 3, the
structure quantity L can be a factor of 3 greater, or a factor
of 2 smaller than what is assumed in this example. On the
other hand, the cross section assumed represents an upper
bound for the continuum emission of �-rays from the
hadronization of the annihilation products, and can be
smaller by up to 6 orders of magnitude, while the mass
of the dark matter particle represents the lower experimen-
tal bound for neutralino dark matter. Note that the boost
factor B in this particular example is taken to be 0. We will
discuss this in the next section.

In Fig. 4 we show the spectrum of photon emission from
within an angular region of 0.1 degrees for different
choices of the values of �s, rs, and M�. Shown are also

the �-ray background spectrum that have extragalactic [75]
and galactic [76] origin. Increasing the angular acceptance
of a detector from 0.1 degrees to radii larger than the
projected angular size of rs does not lead to a significant
increase in the flux from the dSph, but it does increase
considerably the flux from the two diffuse components.
This can be understood in the following way. For an NFW
profile, the majority of flux originates from the region
within rs. The distance to Ursa Minor is D � 66 kpc,
and therefore the observed angular extent of the scale
radius of Ursa Minor is tan�1�rs=D� � 0:7 degrees.
Thus, integrating over a region greater than 0.7 degrees
does not lead to a substantial increase in the flux. On the
other hand, we can find the decrease in the measured flux
that results from an integration over an area smaller than
the angular extent of rs, say, 0.1 degrees. In this case, we
use Eq. (7), and find that the emitted flux should be a factor
of � 1:7 less than the value obtained by integrating out to
0.7 degrees.

We therefore emphasize that increasing the area of in-
tegration does not significantly increase the flux from the
dSph as long as it is of order or larger than tan�1�rs=D�.
However, increasing the integration area does increase the
photon counts that originate from contaminating sources.
In Table III we show the range of the angular extent in
degrees where 90% of the flux will originate for each dSph.
We calculate this quantity using the values of rs consistent
with CDM predictions (see Fig. 2). Future observations of
the six dSphs presented here should concentrate on inte-
grating over areas with radii as shown in Table III centered
on each dSph.

B. Including substructure

In this section, we study the effect of substructure on the
�-ray flux. We assume the same constraints on the dark
halos as shown in Fig. 2, and combine them with Eq. (12)
in order to determine the substructure flux boost factor B
introduced in Eq. (9). We will first need an estimate for the
total mass of the dark halos for a given point in the �s-rs
parameter space. For these estimates, we first use
the Jacobi approximation to determine the tidal radius,
rt ’D�m�rt�=3=MMW�D��

1=3. Here D is the distance to

 

FIG. 4 (color online). Examples of the flux spectrum of Ursa
Minor for three cases where the quantities �log10�s; log10rs;M��

take the values of (7.4, 0.033, 46) depicted with the long-dashed
line, �7:9;�0:067; 46� shown as a short-dashed line, and
�7:9;�0:067; 500� shown as the dot-dashed line. The value of
L that corresponds to these 3 cases is �2:08	 1014; 1:25	
1015; 1:25	 1015� GeV cm�2 s�1, respectively. The units for
�s are M� kpc�3, while rs is in kpc and M� in GeV. No
enhancement of flux from substructure is included; substructure
could increase the flux by up to a factor of 100, increasing the
prospects for detection. The calculated flux is integrated over an
angular region of radius 0.1 degrees centered on the dSph, and
the value of P � P SUSY � 10�28 cm3 s�1 GeV�2, which corre-
sponds to the most optimistic scenario for supersymmetric dark
matter (see Sec. II). Open squares show the amplitude of the
�-ray extragalactic emission [75], while filled circles correspond
to the galactic emission of �-rays at high galactic latitudes [76].

TABLE III. The CDM-predicted angular extent in degrees
where at least 90% of the �-ray flux should originate for each
dSph.

dSph Radius of the area of
90% flux emission in degrees

Ursa Minor 0.4–2.7
Draco 0.3–1.8
Sculptor 0.2–0.9
Fornax 0.2–1.0
Carina 0.1–0.6
Sextans 0.1–0.4
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the dSph, MMW�D� is the extrapolated mass of the
Milky Way at that distance, and m is the mass of the
dSph which we wish to determine. For the Milky Way
mass, we use an asymptotically flat rotation curve, with
Vmax ’ 220 km s�1. Because D is much larger than the
typical scale radius of the Milky Way halo when fit by an
NFW profile, our results are insensitive to the choice of the
mass model for the Milky Way. For each galaxy, we thus
solve for rt, and then the total mass within rt, given an
input pair of �s-rs.

In the left panel of Fig. 5 we show the range of values of
the substructure boost factor for each dSph, based on the
allowed region from combining CDM theory and velocity
dispersion data in the �s-rs parameter space (see Fig. 2).
We note two important results: (1) the value of B is only
weakly dependent on the cutoff scale of the subhalo mass
function, and (2) the boost factor can take values which are
at most of order �100 in all dSphs. We can understand
these effects by recalling the solution to Eq. (13), where the
boost factor of a halo of mass M (with a subhalo mass
function with a cutoff at a scalem0) is approximately given
by B�M;m0� � 0:1��M=m0�

0:13 � 1�. The weak depen-
dence on m0 is a result of the flatness of the relationship
between the concentration and mass in CDM halos (which
is an outcome of the flatness of the dark matter power
spectrum). For scales �107M�, the concentration parame-
ter scales with mass as c�m�0:06, while for much smaller
scales, e.g. �10�5M�, it becomes even shallower, c�
m�0:037. As such, the boost factor in dark matter halos
does not increase dramatically when the cutoff in the
subhalo mass function is reduced.

In the right panel of Fig. 5 we show the effect of the
subhalo mass function power law to the boost factor. As an

example, we use Ursa Minor, with a mass of M � 3:02	
108M�, and characteristic density and radius of �s �
6:3	 107M� kpc�3 and rs � 0:8 kpc, respectively. A
change in the power-law index leads to significantly differ-
ent behavior. For example, if the subhalo mass function has
a cutoff at 10�5M�, then a 5% uncertainty in the subhalo
mass function power law manifests itself into a difference
in B by as much as a factor of 80. In addition, note that for a
subhalo mass function dN=d lnm�m��, and a luminosity
of L� �2

sr3
s �m0:87, the luminosity per logarithmic mass

interval in substructure is dL=d lnm�L�m�dN=d lnm�
M0:87��. Therefore, for mass functions with �� 0:9, the
contribution to the boost factor per logarithmic mass inter-
val is a very weak function of subhalo mass.

V. SUMMARY

We address the prospects for detecting dark matter
annihilation from six dwarf spheroidal satellites of the
Milky Way. Using the stellar velocity dispersion profiles
for each dSph, and assuming an NFW profile for the dark
matter, we deduce constraints on both the characteristic
density �s and characteristic radius rs. We show that each
dSph exhibits a degeneracy in the �s-rs parameter space.
We have assumed that the stellar velocity dispersion has a
constant anisotropy and allowed it to vary. However, the
degeneracy exists even if the anisotropy is kept fixed. The
�s-rs degeneracy translates to a degeneracy in the more
observationally relevant parameters of Vmax and the radius
where the maximum rotation speed is attained rmax. The
degeneracy direction is such that larger values of Vmax are
allowed as long as they are accompanied by the corre-
sponding increase in rmax. However, this degeneracy is

 

FIG. 5 (color online). Left: The predicted substructure boost factors assuming a subhalo mass function scaling as dN=dM�M�1:9.
Right: The dependence of the overall substructure boost factor to the slope of the subhalo mass function for Ursa Minor. The assumed
parameters are M � 3:02	 108M�, �s � 6:3	 107M� kpc�3, and rs � 0:8 kpc.
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broken substantially because in CDM theory, there is a
relation between �s and rs. We find that imposing this
CDM ‘‘prior’’ constrains 5 km s�1 <Vmax < 40 km s�1

in all the dSphs we consider (see Table II).
Assuming a smooth dark matter distribution in the dSph

halos, we find that Ursa Minor and Draco are the most
promising dSph’s for detecting products of dark matter
annihilation. Fornax and Sculptor are a factor of �10
fainter, while Carina and Sextans are fainter by a factor
of �100. In the most optimistic scenario for neutralino
dark matter, the largest-predicted flux from Ursa Minor is
�3	 10�11 cm�2 s�1. This is the flux within a 0.1� radius
centered on Ursa Minor, and is within the sensitivity
threshold of future detectors, such as GLAST [10]. Given
the fact that all dSphs will have the same spectrum from
dark matter annihilation, the prospects of detection may be
further enhanced by stacking the signal from all 6 dSphs
presented in this work. This can lead to an increase in the
total flux up to a factor of 2. The flux predictions presented
here can easily be rescaled to any dark matter candidate
that annihilates to photons (see Sec. IV).

The dark matter distribution is certainly not smooth and
the presence of rich substructure in dark matter halos can
enhance the flux from annihilation of dark matter particles.
We calculate this enhancement resulting from substructure,
and find that it can be at most �100, independent of the
cutoff scale in the subhalo mass function. In the most
optimistic particle physics scenario, this enhancement
puts the fluxes from all the dSph’s we consider above the
threshold of future �-ray detectors.

While the allowed region in �s-rs parameter space is
degenerate, we show that the corresponding range in the
product �2

sr3
s is much more tightly constrained. This is

important because the �-ray luminosity from dark matter
annihilation is L� �2

sr3
s , implying that the range of pre-

dicted fluxes is narrow. We find that the observationally

deduced values in the fluxes can vary by a factor of �10
and imposing the CDM prior further reduces the uncer-
tainty to a factor of �3–6, depending on the particular
distribution of dark matter in each dSph. This range will
only be reduced with the inclusion of more stars in the
analysis of the line-of-sight velocity dispersion profiles.

Throughout this work, we have assumed that the dark
matter density profiles are described with an inner slope of
� � 1 (NFW). Dark matter annihilation signal is propor-
tional to the square of the density, so the predicted flux is
sensitive to the value of �. Varying the inner slope within
the current theoretical uncertainty 0:7< �< 1:2 results in
a flux increase or decrease by a factor of �6. It is not yet
clear if the spread in � we quote above is truly the scatter
from halo to halo or if much of it reflects numerical
resolution issues. If there is a distribution of values in �
as large as that quoted above, and it is independent of host
halo mass, then this uncertainty will have to be factored
into the flux predictions. If the inner slope correlates with
mass or if the true scatter in � from halo to halo is small,
then our predictions for flux ratios are robust. Future
N-body simulations will be crucial in constraining the
theoretical uncertainty in �.
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