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We demonstrate that in a vacuum-energy-dominated expansion phase, surprisingly neither the decay of
matter nor matter-antimatter annihilation into relativistic particles can ever cause radiation to once again
dominate over matter in the future history of the Universe.
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The study of decaying particles in a cosmological con-
text has a long history [1–10]. Although there are many
variations on this theme, there is one constant result: if the
Universe is initially dominated by nonrelativistic particles,
and this matter undergoes a standard exponential decay
into relativistic particles, then the Universe rapidly transi-
tions from a matter-dominated phase into a radiation-
dominated phase when the age of the Universe is roughly
equal to the particle lifetime.

In this paper we show, rather suprisingly, that this con-
clusion is no longer valid at the present time, if the dark
energy reflects a constant vacuum-energy density in the
Universe. Once the Universe begins to enter a phase of
exponential expansion, no process leading to the disap-
pearance of matter can ever cause radiation to once again
dominate over the remnant matter density, no matter how
small.

Consider a nonrelativistic component with density �M,
decaying into a relativistic component �R, and take the
lifetime of this decay to be �, with a standard exponential
decay law. (For simplicity, we will assume that the decay
products are ‘‘sterile’’, i.e., that they do not interact sig-
nificantly with anything else, but our conclusions do not
depend on this assumption). Then the equations governing
the matter and radiation evolution are

 

d�M
dt
� �3H�M � �M=�; (1)

 

d�R
dt
� �4H�R � �M=�; (2)

where H is the time-dependent Hubble parameter:

 H �
�
8�G�

3

�
1=2
; (3)

with � being the total energy density. (We assume a flat
universe throughout). If the decaying nonrelativistic com-
ponent dominates the expansion, it is easy to show that the
energy density in the nonrelativistic component is rapidly
converted into relativistic energy density when t � � (see,

e.g., Ref. [7]); indeed, this assumption has become part of
the standard cosmological lore.

But now consider what happens for a vacuum-
dominated expansion, such as the Universe is experiencing
at present. We take the ratio of radiation density to matter
density to be given by r

 r � �R=�M: (4)

Then Eqs. (1) and (2) can be combined to yield an equation
for r

 

dr
dt
�

1

�
�

�
1

�
�H

�
r: (5)

In the matter-dominated era, H decreases with time, and as
long as H < 1=�, we see that r! 1, as expected. How-
ever, as the Universe evolves from a matter-dominated
state to a vacuum-energy-dominated state, the value of H
asymptotically approaches a constant value, H�, given by

 H� �

�
8�G��

3

�
1=2
; (6)

where �� is the (constant) vacuum-energy density. Define
a ‘‘time of no return’’, t� � 1=H�. Substituting H �
H� � 1=t� into Eq. (5), we can solve this equation analyti-
cally to yield

 

�
1�

�
t�

�
r � exp

��
1

�
�

1

t�

�
t
�
� 1; (7)

where r is normalized to be zero at t � 0, i.e. the initial
radiation density is negligible in the matter-dominated era.

In terms of the present-day Hubble parameter H0, and
the fraction of the critical density in vacuum energy, ��,
we have simply

 t� � H�1
0 ��1=2

� � 9:8� 109 yrh�1��1=2
� ; (8)

where h is the value ofH0 in units of 100 km sec�1 Mpc�1.
The asymptotic value of r is sensitive to the relative

values of � and t�. If � < t�, then as t! 1, Eq. (7) gives
r! 1, which is the same as the conventional result for

PHYSICAL REVIEW D 75, 083524 (2007)

1550-7998=2007=75(8)=083524(4) 083524-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.75.083524


decays during the matter-dominated phase, since at such
times the vacuum energy will indeed be cosmologically
irrelevant. But if � > t�, the right-hand side of Eq. (7) goes
to �1 as t!1, and r asymptotically approaches a con-
stant, given by

 r�t! 1� �
t�

�� t�
: (9)

Thus, the ratio of radiation to matter approaches a constant;
the matter never disappears relative to the radiation
(although of course both densities go to zero as t! 1).
Further, as long as � > 2t�, we have r < 1 asymptotically;
in this case the decay-produced radiation never dominates
the decaying matter! Finally, there is an intermediate case,
� � t�, for which the solution given in Eq. (7) does not
apply. In the case, the solution of the evolution equation is
simply r � t=�. In this case, r becomes arbitrarily large as
t! 1, but the increase is linear in time, rather than
exponential as is the case for shorter particle lifetimes.
(See also [11] which examines a different model for energy
exchange).

While this result is perhaps nonintuitive, there is a
straightforward physical explanation. Radiation redshifts
as one extra power of the scale factor relative to matter. For
a vacuum-energy-dominated universe the scale factor is
itself an exponential of the time. Thus, in the absence of
decay the energy density of matter in the Universe will
increase relative to radiation by an exponential function of
time. If the matter density itself decreases exponentially,
the two factors cancel, leading to a constant final ratio of
matter density to radiation density.

Our analytic solutions give the correct asymptotic be-
havior, but Eq. (5) must be integrated numerically to study
the physically realistic case of a universe containing both
decaying dark matter and vacuum energy. We have per-
formed this numerical integration for several illustrative
values of �=t�, (note that �M=�� at any time is a fixed
function of t=t�); the results are displayed in Fig. 1. This
figure clearly shows the asymptotic behavior discussed
above.

Now consider our present-day universe. Taking reason-
able values of h � 0:7 and �� � 0:7 in Eq. (8), we obtain
a value of t� � 1:7� 1010 yr. Current constraints on the
decay of the dark matter yield � > t�. For example, Ichiki
et al. [12], using the WMAP data, derive a 95% confidence
limit of � > 5:2� 1010 yr, which corresponds to �=t� > 3.
Thus, we conclude that we have already entered the era at
which it is no longer possible for relativistic energy density
from decaying dark matter to ever dominate the dark
matter density itself.

There are other mechanisms to convert the dark matter
into relativistic energy density. For example dark matter
within the dense cores of halos can annihilate into relativ-
istic particles (see, e.g., Refs. [13,14]). As Krauss and
Starkman have recently demonstrated [15], such processes

will have dramatic consequences for the future of large
scale structure.

In general, as described in [15], at late times the anni-
hilation rate for dark matter in halos with density n, given
by �ANN � nh�vi, will fall as t�1. Nevertheless, even if it
were to remain constant over time, this annihilation rate
would still not be fast enough produce a radiation density
that would overwhelm that in matter.

In the case of falling annihilation rates one can in fact
produce a stronger bound. If _M � M=t, which will be the
case for bound systems whose density changes only due to
annihilations as the Universe ages [16], then M�t� � M0=t.
In this case, as long as the expansion of the Universe is
such that R � t� where � 	 1 then radiation will redshift
faster than the mass decreases, and the radiation density
will never overwhelm the matter density. This will occur if
the equation of state parameter w � p=� <�1=3 for the
dominant energy in the Universe. However, for systems
bound by gravity, where adiabatic expansion will accom-
pany annihilations, supplanting annihilation in reducing
core densities, then _M � M=4t [15]. In this case, M�t� �
M0=t1=4. For this case, no expansion involving radiation or
matter is sufficiently slow to allow the radiation produced
by annihilations to overwhelm the matter density.

In the unphysical but conservative case where annihila-
tion occurs at a constant rate, dark matter annihilation
would then map directly onto the decaying particle prob-
lem we have already solved. With a constant annihilation

 

FIG. 1. The ratio of decay-produced relativistic energy den-
sity, �R, to decaying nonrelativistic dark matter, �M, as a
function of the time measured in units of the decaying particle
lifetime �. From top to bottom, the curves correspond to �=t� �
0:5, 1, 2, 5.
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rate, each galaxy halo would act as a very massive decay-
ing ‘‘particle’’, with lifetime � � 1=�ANN, and our pre-
vious analysis would then hold. Studies of galaxy halo
profiles today (i.e. [13,17]) imply that the characteristic
annihilation time, �, in galaxies must greatly exceed the
present age of the Universe, and hence also greatly exceed
t� today. Moreover for annihilation into standard particles
and for dark matter whose remnant abundance today was
determined by freeze-out at early times, the inverse anni-
hilation rate will in fact be many orders of magnitude larger
than the current age today. In either case, our previous
argument holds: the ratio of �R to �M will remain small
regardless of the particle annihilations.

Our consideration of dark matter annihilation is particu-
larly relevant if ordinary matter is in fact unstable, due to
proton decay. In this case, our arguments tell us that even if
dark matter annihilates away, remnant baryons will still
dominate compared to radiation. Moreover, even once
baryons start to decay significantly in the far, far future
[18] they will still dominate over the energy density of their
relativistic decay products until these decay products them-
selves become nonrelativistic, assuming they are massive.
Thus, matter, even ordinary matter, will always continue to
dominate over radiation for all times.

We further point out in this regard that our analysis
clearly applies in the case of two decaying matter species
with different timescales, as for example might occur for
decaying dark matter and decaying baryons. Since the
latter are likely to have a far longer lifetime, our analysis
is trivially extended by considering two species with differ-
ent exponential timescales for decay. Consider two such
species with lifetimes �1 and �2, with �1 
 �2. Once t >
�1, while the ratio of energy densities in the first decaying
particle and the radiation produced by it will become
constant, nevertheless the total energy density in both
will quickly become insignificant relative to the energy
density in the second, more stable, nonrelativistic species.
Then when the second nonrelativistic species decays, our
original analysis applies.

In the extremely far future, individual galaxies, or clus-
ters of galaxies will become essentially isolated ‘‘island

universes’’ [19]. Nevertheless, on sufficiently large (per-
haps even superhorizon) scales these will behave like a
homogenous gas of particles amidst a background vacuum-
energy sea from the perspective of this analysis, and if the
matter within them decays or annihilates, as discussed
above, they can be treated as decaying particles and our
analysis continues to hold.

To be sure, it is true that in the far future of a vacuum-
dominated universe, neither matter nor radiation will sig-
nificantly affect the dynamics of the Universe, and there-
fore which dominates over the other is, from a practical
perspective, not dynamically significant. Nevertheless,
many scenarios in early universe cosmology are based on
decaying systems which cause the Universe to shift from
matter to radiation domination. One’s intuition suggests
this will always be the case, and thus this result is interest-
ing because it demonstrates that conventional wisdom
about the past Universe cannot be applied to the future
Universe, if it remains vacuum or dark energy dominated.
In this regard, our result may also be relevant for determin-
ing the initial conditions of a post-vacuum-dominated uni-
verse, if the dark energy is not vacuum energy, but instead
evolves.

This latter comment, of course, reinforces the fact that
our results depend crucially on the assumption that the dark
energy is, indeed, a vacuum energy (cosmological con-
stant) with �� � constant, and that it, itself, does not
decrease with time, in which case the Hubble parameter
will once again decrease with time. Thus, in spite of the
many negative facets of a future with a cosmological
constant [20], only persistent vacuum energy remarkably
preserves this surprising eternal dominance of matter over
radiation.
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