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We introduce a model of scalar field dark energy, Cuscuton, which can be realized as the incompressible
(or infinite speed of sound) limit of a scalar field theory with a noncanonical kinetic term (or k-essence).
Even though perturbations of Cuscuton propagate superluminally, we show that they have a locally
degenerate phase space volume (or zero entropy), implying that they cannot carry any microscopic
information, and thus the theory is causal. Even coupling to ordinary scalar fields cannot lead to
superluminal signal propagation. Furthermore, we show that the family of constant field hypersurfaces
is the family of constant mean curvature hypersurfaces, which are the analogs of soap films (or soap
bubbles) in Euclidian space. This enables us to find the most general solution in 1� 1 dimensions, whose
properties motivate conjectures for global degeneracy of the phase space in higher dimensions. Finally, we
show that the Cuscuton action can model the continuum limit of the evolution of a field with discrete
degrees of freedom and argue why it is protected against quantum corrections at low energies. While this
paper mainly focuses on interesting features of Cuscuton in a Minkowski space-time, a companion paper
examines cosmology with Cuscuton dark energy.
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I. INTRODUCTION

There has been much recent interest in field theories
with noncanonical kinetic terms. Many of these theories
are inspired by purely phenomenological motivations.
k-essence [1,2] and k-inflation [3] have been designed in
order to solve the cosmological coincidence and inflation-
ary fine-tuning problems, while Bekenstein’s theory of
gravity [4] attempts to accommodate apparent deviations
from Newtonian gravity on galactic scales, within a rela-
tivistically covariant framework.

More theoretical motivations have led to theories such as
the ghost condensate [5], which is considered as an analog
of the Higgs boson for general relativity, or variations of
the Born-Infeld action that describe nonperturbative ob-
jects in string theory [6,7].

Here we present a new class of actions with a non-
canonical kinetic term which is characterized by the
Hamiltonian symplectic structure of the theory degenerat-
ing in a cosmologically interesting homogeneous limit. In
other words, in the limit that the field degree of freedom
becomes homogeneous in the locally freely falling frame
(where the metric is locally a Minkowski metric), the
equation of motion does not have any second order time
derivatives and the field becomes a nondynamical auxiliary
field, which merely follows the dynamics of the fields that
it couples to. Thus we call this field Cuscuton (pronounced

käs-kü-tän), after the Latin name for the parasitic plant of
dodder, Cuscuta [8].

Nonetheless, the Cuscuton action may a priori appear to
have dynamical degrees of freedom because there is a
nondegenerate conjugate momentum degree of freedom
if the field configuration has a nonvanishing spatial gra-
dient. It is this feature that justifies exploration of field
theoretic aspects of the class of theories presented here.

For concreteness, we will focus on scalar field actions of
the k-essence [1,10] form

 S’ �
Z
d4x

�������
�g
p

�
1

2
F�X;’� � V�’�

�
; (1)

where X � @�’@
�’with a particular choice for F such as

to satisfy our degeneration of the symplectic structure
feature that will be defined in the next section.

There has been some controversy in the literature re-
garding the causality of dynamical k-essence models with
cs > 1. While the original literature on k-essence (e.g.
[1,10]), as well as some follow-up studies [11,12], argue
that superluminal modes of k-essence cannot carry infor-
mation on closed loops, and thus do not break causality,
others [13,14] take cs > 1 at its face value, arguing that it
cannot be realized as the IR limit of an inherently causal
field theory. Superluminal scalar field models are also
claimed to lead to signal propagation out of the horizon
of a black hole [15], as well as large tensor-to-scalar ratios
for inflationary perturbations [16].

In Sec. III, we show that, although at face value
Cuscuton seems to possess dynamics, which allows super-
luminal signal propagation, it actually contains no local
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dynamical degree of freedom for X > 0. What that means
is that the theory, even with a kinetic term, acts like a pure
constraint system, modifying the dynamics of whatever it
couples to. In that sense, this is a k-essence theory which
behaves like modified gravity, since if it couples to gravity
and other fields, it merely provides a means of changing
those dynamical sectors through constraints without add-
ing any new local degrees of freedom of its own. Moreover,
the superluminal modes cannot carry any information due
to this degeneration of dynamical degrees of freedom [17].

Section IV demonstrates that constant field hypersurfa-
ces have constant mean curvature (CMC), making them
Minkowski space analogs of soap bubbles/films in
Euclidian space. This leads to exact solutions of theory
in 1� 1 dimensions in Sec. V, which enables us to make
general conjectures about uniqueness and generic singu-
larity of the solutions. We go on to briefly consider the
coupling of Cuscuton to gravity (in the context of homo-
geneous cosmology), as well as ordinary scalar fields, in
Sec. VI. The latter, in particular, shows that propagating
degrees of freedom remain subluminal, even after coupling
to Cuscuton.

In Sec. VII we discuss a possible physical model for the
Cuscuton action, and argue why it may be protected against
quantum corrections at low energies. Finally, Sec. VIII
summarizes our results and concludes the paper. A com-
panion paper [18] examines cosmology with a Cuscuton
dark energy fluid.

II. DEFINING CUSCUTON ACTION

Here, we define the class of models of interest for this
paper. Readers interested in only concrete examples should
skip to Eq. (16). Consider the action of the form Eq. (1) in a
Minkowski space-time and choose F such that in the
homogeneous limit of the field the kinetic term becomes
a total derivative for _’ � 0 (and thus would drop out of the
equation of motion):

 F�X;’�x�� ! F� _’2; ’�t�� �
d
dt
J�’; _’; . . .�

� _’
@J
@’
� �’

@J
@ _’
� . . . : (2)

Since F does not contain any �’ or higher derivative func-
tions, we conclude J � J�’� and

 F� _’2; ’� �
������
_’2

q @J�’�
@’

; (3)

where we have absorbed the sign of _’ into @J�’�
@’ and F is

well defined with respect to the field variation as long as
the sign of _’ does not change. Hence, the action in the
homogeneous limit is simply

 Shomog
’ � �

Z
d4xV�’� (4)

(up to boundary terms) which when coupled to another
field, for example �, gives the total action

 Sexample� �
Z
d4x�L���;’�t�� � V�’�t��� (5)

giving rise to a constraint equation

 �
@V
@’
�
@L���;’�

@’
� 0: (6)

This modifies the dynamics of � depending on the choice
of function V�’�. As long as � has dynamics to make _’ �

0, the field ’ acts like a nondynamical auxiliary field.
Just because the homogeneous limit with _’ � 0 is non-

dynamical does not mean a priori that ’ does not have any
dynamics, especially since the classical equation of motion
in Minkowski space takes the form [for X > 0 with
F�X;’� �

����
X
p @J�’�

@’ coming from Eq. (3)]

 

1�������
�g
p @�

� �������
�g
p

2

@�’����
X
p

@J
@’

�
�

����
X
p

2

@2J

@’2 � V
0�’� � 0; (7)

which clearly has a second time derivative as long as
@i’ � 0. More formally, the existence of dynamics can
be studied in the Hamiltonian formalism

 fH�’;��; ’�x�g � @0’�x�; (8)

 fH�’;��;��x�g � @0��x�; (9)

 f��t; ~x�; ’�t; ~y�g � ��3�� ~x� ~y�; (10)

where H �
R
d3xH is the Hamiltonian, f; g are the func-

tional Poisson brackets, and � is the conjugate momentum
to ’. This set of equations preserves the classical phase
space whose volume element can be defined symplectically
in the form D� ^D’. In the case of Eq. (3), the
Hamiltonian density for the theory is

 H � sgn
�
@J
@’

�
jr’j

������������������������������
�2 �

1

4

�
@J
@’

�
2

s
� V�’�; (11)

while the canonical momentum � takes the form

 � �
1

2

@0’����
X
p

@J
@’

; (12)

which should satisfy Eqs. (8)–(10), and have a normal
phase space element D� ^D’. However, in the limit
that @i’! 0, � becomes only dependent on ’, as long
as _’�t� does not cross zero, i.e.

 ��t� �
1

2
sgn� _’�

@J�’�t��
@’

(13)

and the symplectic element D� ^D’ collapses (since
D’ ^D’ � 0). That is simply a signature of ’ becoming
nondynamical in the homogeneous limit—i.e. has no
phase space—except at the singular point _’ � 0.
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To summarize, we define the Cuscuton action as the
class of actions in which ’ becomes nondynamical in the
homogeneous limit. The most general such action, with a
single real scalar field, and a covariant kinetic term with no
more than first order gradients [as assumed in Eq. (1)], is

 S’ �
Z
d4x

�������
�g
p

�
1

2

@J�’�
@’

�����������������������������
jg��@�’@�’j

q
� V�’�

�
:

(14)

It is easy to see that, as long as @J
@’ > 0, the field ’ can be

redefined to set

 

@J�’�
@’

� 2�2 � const:; (15)

although the choice for the value of �2 is arbitrary. Thus,
for the rest of the paper, we will use the following form for
the Cuscuton action:

 S’ �
Z
d4x

�������
�g
p

��2
�����������������������������
jg��@�’@�’j

q
� V�’��: (16)

Note that we have inserted the absolute value in the
radicand of Eq. (16) to make the action well defined
when X � g��@�’@�’ < 0. However, when X < 0, @�’
is spacelike, implying that we cannot use a Lorentz boost to
reach a locally homogeneous (and thus nondynamical)
limit. Hence, the absolute value inside Eq. (16) is an ansatz
that does not follow from our general definition of
Cuscuton models and has been chosen merely for simplic-
ity. Finally, note that, even with an absolute value in
Eq. (16), the variation of the action is ill defined at X �
0. In such cases, the definition of the equation of motion
from the direct consideration of the action is necessary. For
example, the path integral of the form

 Z �
Z
D’eiS’ (17)

is likely to be well defined even though the variation of
�S’=�’ does not exist at X � 0. We will not deal with this
issue further in this paper.

III. WHY IS CUSCUTON CAUSAL?

At the linearized level, most dynamical theories are
characterized by second order partial differential equations
whose characteristic curves delimit the support for Green’s
functions which propagate Cauchy data. If the character-
istic curves allow propagation of information outside of the
light cone (defined by the local Lorentz group), one may
worry that the theory is acausal, leading to an ill-defined
initial value formulation. With this reasoning, the condi-
tion for a well-defined causal Cauchy data problem of
linearized second order partial differential equations com-
ing from actions of the form given in Eq. (1) is given by
Aharonov, Komar, and Susskind [19]. The conditions for
causal structure and energy positivity to be preserved are

 F0�X�> 0; (18)

 F00�X� 	 0; (19)

where 0 denotes the derivative with respect to X, while the
stability of solutions with respect to small changes in
Cauchy data requires

 2XF00=F0 >�1: (20)

The latter condition is intimately related to the definition
of the speed of sound, cs, in scalar field theories with
noncanonical kinetic terms (or k-essence) [1,10]:

 c2
s �

1

1� 2XF00=F0
: (21)

Thus, the condition for stability of solutions [Eq. (20)] is
equivalent to c2

s > 0, while the causality conditions (18)
and (19) ensure cs 
 1.

With F coming from Eq. (3), Eq. (18) gives

 

1

2

1����
X
p

@J
@’

> 0; (22)

while Eq. (19) gives

 

�1

4

1

X3=2

@J
@’
	 0: (23)

It is clear that both of these conditions cannot be satisfied.
Hence, we would be naturally concerned that this class of
theories are acausal, especially since substituting Eq. (3) in
Eq. (21) yields cs � 1, or an infinite speed of sound.
However, as we will now argue, upon closer inspection,
the theory of Eq. (1) has no problems with causality from a
local signal propagation point of view.

The first argument comes from a linearized analysis. The
simplified equation of motion, Eq. (7), has a second order
differential operator that can be rewritten as

 

�
��� �

@�’@�’
X

�
@�@�’; (24)

which means that the characteristic curves for the linear-
ized equation (accounting only for the highest derivative
operator) are governed by the effective metric

 ~g �� � ��� �
@�’0@�’0

@�’0@
�’0

; (25)

where the linearization is about a background field con-
figuration ’0: i.e. ’ � ’0 � �’. Writing out a coordinate
dependent expression for ~g��, we see

 ~g �� �
1

_’2 � � ~r’�2

�
�� ~r’�2 �@0’0@i’
�@0’0@i’ �� _’2 � � ~r’�2��ij � @i’@j’

 !
;

(26)
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where the Latin indices denote the spatial components and
run over 1–3. All diagonal components of the effective
metric are manifestly negative, and by direct computation,
one sees that the determinant of this matrix is 0. Hence, the
theory is manifestly Euclidean at the linearized level (re-
quiring only Dirichlet initial data on a 3-surface and not
Cauchy data). Consequently, as far as the linear theory is
concerned, there is no dynamics which means that �’
merely satisfies a constraint equation. Even though the
effective metric seems to allow characteristic curves to
carry information about �’ outside of the light cone, there
is no information carried by �’ independently of the fields
to which �’ couples. On the other hand, the fields to which
’ couples, say �, can change their causal properties due to
the constraint equation. However, this is a model depen-
dent problem requiring the analysis of the propagator for �
subject to the solution of the constraint equation. For
example, we show in a companion paper [18] that metric
perturbations coupled to a Cuscuton field evolve causally,
as the scalar curvature does not change on superhorizon
scales.

The second argument, which is a generalization of the
argument above, is that, despite the generally nonvanishing
�, because of the underlying Lorentz symmetry, one can
always go to a frame in which D� ^D’ � 0 locally, and
hence there is no local dynamics to this system.

To understand what we mean by the collapse of the
phase space structure, let us consider a simple toy model
particle dynamical system consisting of the Lagrangian

 L�qi; _qi� �
�����������������
_q2
1 � _q2

2

q
� V�q1; q2�: (27)

Here, one can heuristically think of _q1 as @0’�t; ~x1� and _q2

as @0’�t; ~x2�with ~x1 � ~x2. In that sense, when _q2 � _q1, we
have @i’ � 0. Now, the conjugate momentum to qi is

 pi �
_qi�����������������

_q2
1 � _q2

2

q : (28)

Hence one sees an analogous degenerate structure in
which, when _q1 � _q2, the phase space structure

Q
idqi ^

dpi collapses. However, this is secretly a theory with
limited dynamics. To see this, consider making a change
of integration variables of the phase space from
�q1; p1; q2; p2� to �q1; _q1; q2; _q2�. The Jacobian for the
transformation of the measure is

 det
�
@�q1; p1; q2; p2�

@�q1; _q1; q2; _q2�

�
� det

1 0 0 0
0

_q2
2

X3=2 0 � _q1 _q2

X3=2

0 0 1 0
0 � _q1 _q2

X3=2 0
_q2
1

X3=2

0
BBB@

1
CCCA � 0;

(29)

where X � _q2
1 � _q2

2. Hence, one sees that this is manifestly
a theory with degenerate Hamiltonian dynamics, where, in
fact, the solutions only occupy a 3D hypersurface of the
full 4D phase space of �qi; pi�.

It is straightforward to generalize the change of phase
space measure in the field theory case. The Jacobian relat-
ing D’ ^D� to D’ ^D _’ is

 det
@�’�x���x0��
@�’�y� _’�y0��

� det
��3��x�y� 0

�
X r’�x

0� � r��3��x0�y� ��2jr’�x0�j2

X3=2 ��3��x0�y0�

 !
: (30)

Now, because Lorentz symmetry allows us to locally rotate
r’�x0� � 0 for any vector @�’ such that @�’@�’> 0,
the symplectic structure of the phase space collapses with-
out any local dynamical degrees of freedom. Note that this
is in many ways just a corollary to the perturbative analysis
of the theory.

The degeneration of the local phase space volume also
implies that local perturbations do not carry any micro-
scopic information, or equivalently Cuscuton fluid has zero
entropy.

Here, we should point out that, although lack of internal
dynamics prevents any transfer of information through the
Cuscuton field, even superluminal propagation does not
necessarily lead to a breakdown of causality [12]. How-
ever, coexistence of interacting k-essence fields, which
allow superluminal signal propagations at different rest
frames (and thus different chronologies), can generically
yield the propagation of signals on closed timelike curves,
which does imply a breakdown of causality [20]. In con-

trast, in Sec. VI B we will show that even (stable) coupling
of Cuscuton to an ordinary field with propagating degrees
of freedom cannot lead to superluminal signal propagation.

Let us close this section by commenting on the causal
properties for X < 0. Note that in this case, plugging the
kinetic term from Eq. (14), the conditions of Eqs. (18) and
(19) become

 F0 �
1

2

@J
@’

sgnX�������
jXj

p > 0; (31)

 F00 � �
1

4

@J
@’

1

jXj3=2
	 0; (32)

which merely require @J=@’ < 0 for causality. Hence,
with an absolute value ansatz for the

�������
jXj

p
part of the

Lagrangian, it would be prudent to impose the @J=@’ <
0 condition to keep the theory causal in the regime X < 0
(see the Appendix for an explicit demonstration). Note that

AFSHORDI, CHUNG, AND GESHNIZJANI PHYSICAL REVIEW D 75, 083513 (2007)

083513-4



this will also keep the kinetic energy density positive
definite in the X < 0 regime.

To summarize, we argued that since the Cuscuton field
theory does not seem to have any internal dynamics, de-
spite its apparently acausal structure, it cannot be used to
send information. In the regime of X < 0, even though not
directly relevant to our analysis, we can recover internal
dynamics, a causal structure, and a positive definite energy,
but only if @J=@’< 0.

IV. CONSTANT MEAN CURVATURE SURFACES:
ANALOGY TO SOAP FILMS

In this section, we will show that hypersurfaces of
constant ’ have constant mean curvature, and thus are
Minkowski space analogs of soap films (or soap bubbles)
in Euclidian space.

For the simplified system of Eq. (16), the equation of
motion is

 

1�������
�g
p @�

� �������
�g
p @�’����������������������

j@�’@�’j
q �

�
V0�’�

�2 � 0: (33)

To get more insight into the geometrical nature of solu-
tions, we should point out that

 u� �
@�’������������������
@�’@�’
p (34)

are normal unit vectors to constant’ hypersurfaces. On the
other hand, the trace of the extrinsic curvature tensor K��,
or mean curvature of a surface, is defined as

 K � K�
� � r�u�; (35)

which in combination with Eq. (33) simply implies that the
mean curvature on constant ’ hypersurfaces is only a
function of ’ and hence constant:

 K�’� � �
V0�’�

�2 : (36)

CMC surfaces have been the subject of extensive study
both in mathematics and physics, for their important and
useful features. For example, we should note that a con-
stant mean curvature surface in Euclidean space can be
viewed as a surface where the exterior pressure and the
surface tension forces are balanced. This can be seen
explicitly by looking at the Cuscuton action itself
[Eq. (16)], which can be rewritten as

 S’ �
Z
d4x

�������
�g
p

��2
�����������������������������
jg��@�’@�’j

q
� V�’��

�
Z
d4x

�������
�g
p

�
�2
jg��@�’@�’j�����������������������������
jg��@�’@�’j

q � V�’�
�

�
Z
d4x

�������
�g
p

��2ju�@�’j � V�’��

� �2
Z
’
d’��’� �

Z
d4x

�������
�g
p

V�’� (37)

where ��’� is the area of constant ’ 2� 1 hypersurfaces
in 3� 1 space-time.

For this reason, CMC surfaces in Euclidian space can be
thought of as soap bubbles or films (depending on if they
have boundaries), as their configuration is also determined
by a similar balance between surface and volume terms in
their energy. In fact, it is easy to show that our action
exactly reproduces such solutions in the case of _’ � 0
and X < 0, and perturbations around _’ � 0 or constant ’
are analogous to propagating waves on a bubble surface
(see the Appendix).

V. EXACT SOLUTIONS, UNIQUENESS, AND
SINGULARITIES

In general, the question of the existence and uniqueness
of CMC surfaces (which constitute the classical solutions
to the Cuscuton field equation) for a given boundary con-
dition is of significant subtlety, and the subject of ongoing
investigation [21].

Nevertheless, we can gain significant insight by studying
the features of this problem in 1� 1 dimensions, where the
field equation (33) can be exactly solved. In this case, CMC
surfaces of curvature K are, in general, hyperbolae of the
form

 �t� t0�
2 � �x� x0�

2 � K�2; (38)

where x0 and t0 are constants. Note that the hyperbolae
degenerate into spacelike lines in the K ! 0 limit.
Therefore, using Eq. (36), the general solution to the
Cuscuton field equation is given by

 �t� t0�’��2 � �x� x0�’��2 �
�4

V 02�’�
(39)

where t0�’�, x0�’� can be multivalued functions of ’.
We can now argue that only a discrete set of possible

solutions exists after imposing just the Dirichlet conditions
and that general Cauchy data typically overconstrain the
partial differential equation, resulting in no solution.
Suppose ’0�x� � ’�t � 0; x� corresponds to the initial
Dirichlet data. Suppose there exists a set S � fxig which
satisfies’0�xi� � vwhere v is a particular fixed field value
occurring in the Dirichlet data. For any solution ’�t; x� to
the equation of motion consistent with the initial Dirichlet
data at t � 0, Eq. (39) describes the set of constant ’
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hyperbolae slices which must pass through all the points in
f�t � 0; xi�jxi 2 Sg [22]. Since the curvature K is fixed for
each of the hyperbolae (because v is fixed), the sets of
possible hyperbolae form a discrete set. (Clearly, the set
need not be discrete if the curvatures of the hyperbolae can
be adjusted.) This is remarkable because the set of possible
solutions to the naively ‘‘hyperbolic’’ partial differential
equation is a discrete set rather than a continuous set even
when only Dirichlet conditions are imposed.

A corollary to this result is that a Cauchy initial condi-
tion, which fixes both ’0 and _’0 (although locally consis-
tent), typically overconstrains the system globally, and thus
is inconsistent forK�’� � 0 except for discrete exceptions.
Of course, this is in contrast with regular field theories
which require Cauchy initial conditions to fix their future
evolution, and is reminiscent of local phase space degen-
eration of Cuscuton, discussed above (see Sec. III), since a
discrete set of points forms a set of measure zero for a
continuous measure.

Another corollary of the exact solution (39) is that, since
the hyperbolae that thread the points in the set S generi-
cally intersect in the finite future or past, the normal
derivatives at the intersections are generically not well
defined. Even when single constant v hyperbolae do not
intersect (for example, in the case of there being one
hyperbola), for different values of ’0�x�, the hyperbolae
will have different curvatures and thus can intersect, this
time making the field value ill defined at the intersection. In
these cases, singularities or discontinuities will generically
develop in the solutions within a finite time.

The development of the field discontinuities is in nature
similar to the development of shocks in fluid mechanics,
which suggests that they can be traced using appropriate
jump conditions. In our case, the jump condition is simply
a generalization of Eq. (36):

 ��2Kdis �
�V
�’

; (40)

where �V and �’ are changes in potential and field
values, respectively, across the discontinuity, while Kdis

is the mean extrinsic curvature of the discontinuous
hypersurface.

We will close this section by commenting on the exten-
sion of these results to 3� 1 dimensions. It is easy to
construct a family of exact solutions by considering
CMC hyperboloids of the form

 �t� t0�’��2 � jx� x0�’�j2 �
9�4

V 02�’�
: (41)

However, this is not the most general solution to the field
equation, as it only accommodates spherical surfaces of
constant’ in 3-space. Therefore, if the surfaces of constant
’ are not spherical for initial conditions in configuration
space, a more general solution should be sought.

Nevertheless, the statement that given Dirichlet initial/
boundary conditions [plus sgn� _’�] only admit a discrete set
of solutions is still a reasonable conjecture. This conjecture
could be more motivated through the analogy with soap
films/bubbles in Euclidian space (see Sec. IV). For the case
of soap films/bubbles, and assuming a fixed pressure dif-
ference, a given boundary condition only admits a discrete
set of solutions [21], which suggests that the same may be
true in Minkowski space. A generic singularity of the
solutions naturally follows from this conjecture in a similar
way to the 1� 1 dimensional case.

One can gain another perspective on the solutions to the
Cuscuton equation of motion, Eq. (33), in Minkowski
space by rewriting Eq. (41) with x�0 set to a constant.
One can identify ’�x� � f��x��x�� (where �x� � x� �
x�0 ) as the solution to the equation of motion with the
potential

 V�’� � 3�2
Z d’���������������

f�1�’�
p (42)

with any suitable choice of a single variable function f�z�.
For example, with the choice f�z� � Me��z

2
, the potential

is

 V�’� � 3�2M�1=4�
�
3

4
;� ln

’
M

�
(43)

where ��a; b� is the incomplete gamma function, and the
solution is

 ’ � Me����x��x��2 : (44)

Notice that this solution is not singular, which is consistent
with our discussion of singularities, because it does not
have intersecting hyperbolae for two different field values
nor does it have two different hyperbolae characterizing
the same field value.

Another example of a nonsingular solution is in the case
of V�’� being a constant. In that case, the solution to the
equation of motion is any smooth function

 ’�x� � F�k � x� (45)

for any constant one-form k�. Again, this solution can be
nonsingular because the constant ’ surfaces are parallel
planes.

To summarize this section, we have demonstrated that
Cauchy boundary conditions generically overconstrain the
equation of motion of Cuscuton field theory in 1� 1
dimensions. We have also demonstrated in the same theory
that the classical solutions generically have singularities
(or discontinuities) except in some special cases. While we
can prove these theorems in 1� 1 dimensions, they remain
conjectures in higher dimensional space-time.
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VI. COUPLED CUSCUTON

In this section, we provide two examples of how cou-
pling to Cuscuton can modify the dynamics of physical
systems. We first show how homogenous, or Friedmann-
Robertson-Walker (FRW) cosmology is modified by the
presence of the Cuscuton field, with only minimal coupling
to gravity. Then we consider how the Klein-Gordon dis-
persion relation of perturbations in an ordinary scalar field
is modified through Cuscuton coupling, and show that
propagating degrees of freedom remain causal.

A. Homogeneous (FRW) Cuscuton cosmology

A comprehensive study of homogeneous cosmology as
well as linear perturbations and observational constraints
can be found in our companion paper [18]. Here, for
completeness, we provide a brief treatment of homogene-
ous (FRW) Cuscuton cosmology.

The mean extrinsic curvature of comoving hypersurfa-
ces has a particularly simple interpretation in a cosmologi-
cal context. Equation (35) is also the definition of the
expansion rate, or 3 times the Hubble constant, H �
_a=a, where a is the scale factor in FRW cosmology.

Therefore, Eq. (36) takes the form

 3Hsgn� _’� � �
V 0�’�

�2 : (46)

Moreover, in Sec. II [Eq. (11)], we saw that the
Hamiltonian (or energy) density of Cuscuton approaches
V�’� in the homogeneous limit. Therefore, the Friedmann
equation will take the form

 H2 �
K

a2 �
�m � V�’�

3M2
p

; (47)

where �m is the mean matter density of the Universe,
Mp � �8	G�

�1=2 is the reduced Planck mass, and K is
the (constant) spatial curvature of the Universe. The
Cuscuton field ’ can be simply eliminated from
Eqs. (46) and (47), to yield a modified Friedmann equation:

 H2 �
K

a2 �
�m � V�V 0�1�3�2H��

3M2
p

; (48)

where V 0�1 is the inverse function of V 0�’� and, without
loss of generality, _’< 0 is assumed. Equation (48) illus-
trates the auxiliary nature of Cuscuton, and shows that it
simply modifies the dependence of the Hubble expansion
rate on matter density and the spatial curvature of the
Universe.

A simple example is the quadratic Cuscuton potential

 V�’� � 1
2m

2’2; (49)

which yields the modified Friedmann equation

 H2 �
K

�1� 3�4

2m2M2
p
�a2
�

�m

3�M2
p �

3�4

2m2�
; (50)

implying that the quadratic Cuscuton renormalizes the
spatial curvature and Planck mass to K0 and M0p, where

 M02p � M2
p �

3�4

2m2 ; (51)

 K 0 �
K

1� 3�4

2m2M2
p

: (52)

This is a manifestation of why Cuscuton can be considered
to be a theory of modified gravity [18].

Because of its infinite speed of sound, Cuscuton does not
cluster on subhorizon scales, implying that the Planck mass
approaches its ‘‘fundamental’’ value in the UV limit.
Therefore, a signature for the quadratic Cuscuton model
will be a running (or mismatch) of the Planck mass from
the (cosmological) IR to the UV regime. Other cosmologi-
cal features and observational constraints on the quadratic
Cuscuton are discussed in [18].

B. Coupling to an ordinary scalar field

Let us study an ordinary scalar field,  , that is coupled to
Cuscuton through its potential V�’; �:

 L �’; � � 1
2@� @

� ��2
����������������������
j@�’@�’j

q
� V�’; �:

(53)

We now study the dispersion relation for linear pertur-
bations � �x; t� and �’�x; t�, around a homogeneous
background  �t� and ’�t�, in the short-wavelength (or
WKB) approximation. After decomposing perturbations
into plane wave solutions, or their Fourier components,
�’!;k and � !;k, the linearized Cuscuton field equation
(33) takes the following form [23]:

 �’!;k � �
� V;’ 
k2 � V;’’

�
� !;k; (54)

where, without loss of generality, we have locally redefined
’ to have j _’j � �2, for the background ’�t�. This can be
plugged into the linearized Klein-Gordon equation for  ,

 �!2 � k2�� !;k � V;  � !;k � V;’ �’!;k; (55)

to give the modified dispersion relation for � !;k pertur-
bations. After simple manipulations, the dispersion rela-
tion takes the form

 !2 �
k4 � �V;’’ � V;  �k2 � V;’’V;  � V2

;’ 

k2 � V;’’
: (56)

Notice that, again, ’ acts as an auxiliary field and is
dropped out of the field equation, without introducing
any additional degree of freedom.
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Assuming a positive determinate Hessian matrix, V;ab,
for the second derivatives of the potential V�’; �, we
require that both the trace and the determinant of V;ab are
positive:

 V;’’ � V;  > 0; (57)

 V;’’V;  � V
2
;’ > 0; (58)

which ensures that there will be no tachyonic solutions
(!2 > 0, i.e. no instability).

To demonstrate causal propagation of dressed � per-
turbations, we can calculate the group velocity in the short-
wavelength limit:

 vg �
d!
dk
� 1�

V;  
2k2 �O

�V2
; ’

k4

�
< 1: (59)

Therefore, given that we require V;  > 0 from Eqs. (57)
and (58), signal propagation will always be subluminal/
causal in the regime of validity of the plane wave (WKB)
approximation.

VII. CUSCUTON AS AN EFFECTIVE ACTION AND
QUANTUM CORRECTIONS

In this section, we discuss whether the Cuscuton action
may be derived from an ordinary field theory by integrating
out degrees of freedom. In the process, we elucidate the
physical intuition for this theory. We also discuss whether
this type of action can be stable against quantum
corrections.

One may wonder whether one can introduce auxiliary
fields that lead to the Cuscuton action after the constraints
involving the auxiliary fields are solved for. Such systems
can certainly be written, but unless the auxiliary fields are
made dynamical (by giving them kinetic terms), such
theories are identical to the original theory. We have tried
several actions with auxiliary fields whose solutions to the
constraint equations lead to the Cuscuton action.
Unfortunately, when dynamics (in the form of canonical
kinetic terms) are given to the auxiliary fields, even after
fine-tuning of couplings and scales, the would-be auxiliary
fields settle to a field configuration different from the case
when the fields were nondynamical.

Given that the action may have something to do with
soap films/bubbles, we have also tried to interpret the
theory in terms of integrating out short-wavelength degrees
of freedom which include instanton transitions. Imagine a
regular field theory with a tilted washboard potential that
has an infinite number of discrete local minima at
�1; �2; �3; . . . , with the values V1;V2;V3; . . . , which
monotonically decrease with the field value. While, clas-
sically, the field could have multiple vacua at each mini-
mum, none of them is stable under quantum tunneling.
Therefore, assuming a low tunneling probability, the full
evolutionary history of the field consists of a series of

tunnelings V1 ! V2 ! V3 ! . . . , as shown in Fig. 1,
plus small oscillations around each minima following
each tunneling event. The Euclidian instanton action for
the successive tunnelings has the form

 SE �
Z
d4x

�
1

2
@a�@a�� V���

�
; (60)

where a � 1; . . . ; 4 counts over the 4-coordinates, includ-
ing Euclidian time.

Now, let us focus on long-wavelength limit, k
��Vmax�

1=2=��, which is equivalent to integrating out
modes that are shorter than the tunneling time. In the
thin-wall approximation limit, where Vi � Vi�1 is much
smaller than the height of the potential barrier, �Vmax [24],
one may naively guess an effective action of the form

 SE;eff ’
X
i

Ji
Z
d�i �

Z
d4xV���; (61)

where

 Ji �
Z �i�1

�i
d�

����������������������������
2�V��� � Vi�

q
; (62)

and d�i is the volume of the tunneling hypersurface for the
Vi to Vi�1 transition [24,25].

Now defining

 �2�’i�1 � ’i� � Ji �
Z �i�1

�i
d�

����������������������������
2�V��� � Vi�

q
(63)

and rotating back to the Minkowski coordinates, one would
end up with the action

 Seff ’ �
2
X
i

�’i�1 � ’i�
Z
d�i �

Z
d4xV�’�; (64)

 

FIG. 1. Top: Correspondence between the potential of an
ordinary scalar field V��� and the effective Cuscuton potential
V�’� which only passes through the minima of V���. Bottom:
Corresponding space-time diagram for consecutive tunneling
events through minima of V���.
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where we also define

 V�’i� � V��i�: (65)

This is interesting since Eq. (64) becomes equivalent to the
Cuscuton action [Eq. (37)] in the continuous limit.

Unfortunately, because Eq. (61) is valid only for a some-
what ill-defined restricted class of field variations close to
those mimicking thin walls, and because the action is based
on analytic continuation into Euclidean space, the extent to
which Eq. (61) can be interpreted as that due to integrating
out tunneling transitions is unclear, at best. Note that the
field path in the analytically continued saddle-point ap-
proximation does not have a simple connection with the
space-time picture of the process since the former is simply
an approximation scheme. Hence, although tantalizing, we
cannot make any rigorous connection of Cuscuton to in-
stanton induced bubble walls.

On the other hand, what we have learned from this
exercise is that, if there is any quantum action which can
be reduced to a set of discrete degrees of freedom described
by the action of the form Eq. (64), then this dynamics can
be encoded by the Cuscuton action in the limit that the
number of discrete degrees of freedom is large.

Furthermore, notice that the action, Eq. (37) [or
Eq. (64)], is the most general local action that remains
invariant under the field transformations that preserve the
area ��’� and volume V �’� of constant field hypersurfa-
ces, where

 ��’0� �
@
@’0

Z
d4x

�������
�g
p ����������������������

j@�’@�’j
q

��’0 � ’�; (66)

 V �’0� �
@
@’0

Z
d4x

�������
�g
p

��’0 � ’�: (67)

Therefore, it is reasonable to expect the quantum correc-
tions to be under control at low energies, where higher
order curvature effects could be neglected. This is also
consistent with the absence of quantum corrections to the
Cuscuton action, as the linear perturbations have a degen-
erate phase space.

The attempted instanton picture for the Cuscuton action
involves a potential, V���, which is qualitatively very
similar to the recently proposed model known as devalu-
ation [26] (or chain inflation [27]). It remains to be seen if
their picture of rapid bubble nucleation has any relevance
to our picture of coherent Cuscuton evolution [18], in an
appropriate limit, where the radiation generated due to
bubble collisions can be neglected.

VIII. CONCLUSIONS

In this paper, we have analyzed the flat space field
theoretic aspects of the Cuscuton action, which we define
as a scalar field theory whose kinetic term reduces to a total
derivative in the homogenous limit. The theory was defined
in this way and may be of interest to cosmology because it

is equivalent to a k-essence fluid with an infinite speed of
sound.

The surprise is that, even though the dynamical equa-
tions seem to admit superluminal signal propagation, there
is no physical violation of causality, as perturbations have
degenerate phase space and thus transport no information.
That means this can be used to modify gravity and other
field theories to which it couples in a novel manner since
the fields have a kinetic term, unlike the usual Lagrange
multipliers or auxiliary fields. We have also verified that
this modification does not lead to superluminal propaga-
tion in ordinary scalar fields.

We have found some general, interesting features of
classical solutions to this theory. Constant field hypersur-
faces have constant mean curvatures, which makes them
the Minkowski space analogs of soap films (or soap bub-
bles) in Euclidian space. We can also solve the theory
completely in 1� 1 dimensions, and thereby prove non-
local degeneracy of phase space (which is equivalent to the
overconstraining behavior of Cauchy initial conditions), as
well as the generic presence of singularities in the solu-
tions. Extension of these results to higher dimensions is a
plausible conjecture.

As far as the qualitative behavior of the physics is
concerned, the Cuscuton action can be viewed as a con-
tinuum limit of an action of the form Eq. (64) governing a
large number of discrete degrees of freedom. It is the most
general (local) action that only depends on the area and
volume of constant field hypersurfaces, which is why it can
be protected against quantum corrections at low energies.
This is consistent with the absence of quantum corrections
to the Cuscuton action as a result of its degenerate phase
space.

Cosmology literature does not lack in abundance of
models of dark energy (or its alternatives). The features
that still make Cuscuton interesting are the following:

(i) Even though it has a kinetic term and modifies the
cosmic dynamics, it does not introduce any addi-
tional (perturbative) degree of freedom. Therefore, it
can be considered a minimal modification of a cos-
mological constant, or a minimal model for evolving
dark energy.

(ii) It is protected against quantum corrections at low
energies.

A companion paper [18] examines cosmology with a
Cuscuton dark energy fluid.
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APPENDIX: PROPAGATING WAVES IN X < 0
REGIME

In this section, we show that perturbations in an X < 0
background are similar to waves propagating on the sur-
face of a bubble. To see this, consider ’0�x� to be a sta-
tionary solution; thus ui � r’0=jr’0j represents the
normal vectors to two dimensional constant ’0 CMC
surfaces in 3-space.

Now perturbing the field around this solution,

 ’�x; t� � ’0�x� � �’�x; t�; (A1)

and substituting ’�x; t� back into the equation of motion
(33), in the short-wavelength limit where the changes in

jr’0j can be neglected, we find
 

@�@
��’�x; t� � uiuj@

i@j�’�x; t� �
V00�’0�

�2 jr’0j�’�x; t�

’ 0: (A2)

Note that �2 < 0 to ensure energy positivity, as discussed
in Sec. III. In Fourier space �’�x; t� �

R d4k
�2	�4 ’ke

k�x� , this

equation imposes the following dispersion relation modes:

 !2 � jkkj2 �
V 00�’0�

�2 jr’0j � 0; (A3)

where ! � k0 and kk is the component of the spatial wave
vector parallel to a constant field surface. Equation (A3)
describes modes that propagate along the surfaces of con-
stant ’ and are thus analogous to waves on the surface of a
bubble.
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