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Models where the dark matter component of the Universe interacts with the dark energy field have been
proposed as a solution to the cosmic coincidence problem, since in the attractor regime both dark energy
and dark matter scale in the same way. In these models the mass of the cold dark matter particles is a
function of the dark energy field responsible for the present acceleration of the Universe, and different
scenarios can be parametrized by how the mass of the cold dark matter particles evolves with time. In this
article we study the impact of a constant coupling � between dark energy and dark matter on the
determination of a redshift dependent dark energy equation of state wDE�z� and on the dark matter density
today from SNIa data. We derive an analytical expression for the luminosity distance in this case. In
particular, we show that the presence of such a coupling increases the tension between the cosmic
microwave background data from the analysis of the shift parameter in models with constant wDE and
SNIa data for realistic values of the present dark matter density fraction. Thus, an independent
measurement of the present dark matter density can place constraints on models with interacting dark
energy.
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I. INTRODUCTION

Supernovae of type Ia (SNIa) chronicle the recent ex-
pansion history of the Universe. The accumulated data
encrypts information about the composition of the
Universe and the physical properties of its main compo-
nents, in particular, of the dark energy (DE) [1] that drives
the accelerated expansion today.

Data from SNIa [2,3], the cosmic microwave back-
ground (CMB) [4] and large scale structure [5] converged
to a concordance �CDM model [6], with a nearly flat
Universe where a cosmological constant � is the current
dominant energy component, accounting for approxi-
mately 74% of the critical density, the remaining being
nonrelativistic nonbaryonic dark matter (DM, 22%) and
baryonic matter (4%).

This simple ‘‘vanilla’’ �CDM model is still compatible
with data but is not satisfactory mainly because it requires
a large amount of fine tuning in order to make the cosmo-
logical constant energy density dominant at recent epochs.

DE can also be modeled by a scalar field, the so-called
quintessence models, either slowly rolling towards the
minimum of the potential or already trapped in this mini-
mum [1,7–9]. In this case, the equation of state of DE may
vary with cosmological time.

In spite of the success of the concordance model, one
should keep in mind that there exists some tension between
SNIa and CMB data when the DE equation of state is

allowed to be different from a cosmological constant.
Best-fit models for one set of data alone is usually ruled
out by the other set at a large confidence limit [10]. SNIa
data typically favors large values of nonrelativistic dark
matter abundance �DM and a phantomlike DE equation of
state !<�1. Of course these conclusions are valid only
in standard models of DE and DM, that is, models where
DE and DM are decoupled. This tension has been amelio-
rated with the new data from the Supernova Legacy Survey
(SNLS) [3], as shown in [11].

An intriguing possibility is that DM particles could
interact with the DE field, resulting in a time-dependent
mass for the DM particles and a modification in its equa-
tion of state. In this scenario, sometimes called VAMPs
(VAriable-Mass Particles) [12], the mass of the DM parti-
cles evolves according to some function of the dark energy
field � such as, for example, a linear function of the field
[12–14] with a inverse power law dark energy potential or
an exponential function [15–19] with an exponential dark
energy potential. Some of these models have a tracker
solution, that is, there is a stable attractor regime where
the effective equation of state of DE mimics the effective
equation of state of DM [15,19].

The tracker behavior is interesting because once the
attractor is reached, the ratio between DM energy density
�DM and DE energy density �DE remains constant after-
wards. This behavior could solve the ‘‘cosmic coincidence
problem’’, that is, why are the DE and DM energy densities
similar today. However, even in these cases a large amount
of fine-tuning is required for the energy density scale of the
scalar potential [20].
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In this paper we investigate the effect of a DE-DM
coupling in deriving bounds on the DE equation of state
and on �DM from SNIa data. In particular, we show that
analyzing the SNIa data with a large positive coupling
results in a larger value of �DM, thus potentially increasing
the tension with CMB data. This is confirmed by an
analysis of the CMB shift parameter [21] for interacting
models with constant equation of state.

II. A PHENOMENOLOGICAL MODEL

Variable-mass particles generically arise in models
where the quintessence field is coupled to the nonbaryonic
dark matter field (coupling to baryonic matter is severely
restricted [22]). Such a coupling represents a particularly
simple and relatively general form of modified gravity:
they appear in fact in scalar-tensor models (in the
Einstein frame) and in simple versions of higher-order
gravity theories in which the action is a function of the
Ricci scalar. From a Lagrangian point of view, these cou-
plings could be of the form g���m0

�  or h���m2
0�

2 for a
fermionic or bosonic dark matter represented by  and �
respectively, where the functions g and h of the quintes-
sence field � can in principle be arbitrary.

Instead of postulating a definite model by choosing two
functions defining a DE self-coupling potential and DE-
DM coupling [23], one could alternatively follow an ap-
proach that is more model-independent and closer to ob-
servations by introducing a parametrization for the DE
equation of state wDE�a� and for the coupling function
��a�, where a�t� is the scale factor of the Universe.

The dynamics of the quintessence field, governed by its
potential, induces a time dependence in the mass of dark
matter particles. Therefore one would have m � m���a��
that we will parametrize in terms of a function of the scale
factor ��a� in the following way:

 m�a� � m0e
R
a

1
��a0�d lna0 (1)

where m0 is the particle mass today. In other words, in
addition to the usual parametrizations of the DE variable
equation of state we introduce a parametrization for the
DM variable mass. Just as for the equation of state wDE�a�,
this parametrization allows to study the observational data
in a systematic fashion in search of new physical phe-
nomena. The physical interpretation of the coupling ��a�
is therefore straightforward: it represents the rate of change
of the DM particle mass, � � d lnm=d lna. In this paper we
will focus on the simplest case, a constant coupling �.

This variable-mass results in the following equation for
the evolution of the DM energy density �DM:

 _� DM � 3H�DM � ��a�H�DM � 0 (2)

where H � _a=a is the Hubble parameter. Conservation of
the total stress-energy tensor them implies that the dark
energy density should obey

 _� DE � 3H�DE�1� wDE� � ��a�H�DM � 0: (3)

Recently, Majerotto et al. [24] (see also [25]) considered
the case of constant wDE and assumed a tracking behavior
of the DM and DE densities (�DE=�DM / a

�) in their
analysis of SNIa data. In this class of models the modifi-
cations of the abundance of mass-varying DM particles
were studied in [26] and consequences for the evolution of
the Universe were analyzed in [27].

However, in quintessence models the equation of state is
generally time-dependent. Therefore in this work we will
study the impact of a constant DM-DE coupling � on the
determination of a redshift dependent DE equation of state
wDE�z� and on the best-fit value of the dark matter abun-
dance today from SNIa data.

In the case of a constant interaction, Eq. (2) can be easily
solved:

 �DM�a� � ��0�DMa
�3��; (4)

where ��0�DM is the nonbaryonic DM energy density today.
Substituting this solution in Eq. (3) we obtain a differential
equation in the scale factor a

 

d�DE

da
�

3

a
�DE�1� wDE� � ��

�0�
DMa

�4�� � 0: (5)

Before proceeding to an evolving equation of state, it is
instructive to study the particular case of a constant
wDE�a� � w, where the solution to Eq. (5) is given by
 

�DE�a� � ��0�DEa
�3�1�w� �

�
�� 3w

��0�DM�a
�3�1�w� � a�3���

(6)

where ��0�DE is the DE energy density today. The first term of
the solution is the usual evolution of DE without the
coupling to DM. From this solution it is easy to see that
one must require a positive value of the coupling � > 0 in
order to have a consistent positive value of �DE for earlier
epochs of the Universe (it is to be noted however that
negative values of �DE could be allowed if the dark energy
is in fact a manifestation of modified gravity, see e.g. [28]).
This feature remains in the case of varying w and we will
consider only positive values of � throughout the paper.

Furthermore, if � <�3w one has a tracking of DE and
DM densities at earlier epochs

 

�DM�a�
�DE�a�

! �
�� 3w
�

(7)

resulting in

 �DE�a� �
�DE�a�

�DE�a� � �DM�a�
! �

�
3w

: (8)

Therefore, requiring �DE < 0:1 in the past fixes � <
�0:3w in this simple case of constant w. It is also interest-
ing that one can analytically compute the scale factor atr
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where the transition from DM to DE occurs in this simple
case:

 atr �

�
�1�

�� 3w
�

��0�DE

��0�DM

�
1=���3w�

: (9)

For instance, for w � �1 and � � 1:6 we find atr � 0:665
(corresponding to ztr � 0:5).

For the remainder of this work, we will study an equa-
tion of state with the commonly used parametrization

 wDE�z� � w0 � w1z; (10)

in order to compare with other results in the literature.
However, it should be stressed that SNIa data is not cur-
rently very sensitive to time variations in wDE. In some
cases, as in the comparison with the CMB data, we will use
a constant equation of state by fixing w1 � 0.

We obtain a closed form solution for Eq. (5) as a
function of the redshift z

 �DE�z� � �NI
DE�z��1���z; w0; w1; ��� (11)

where

 �NI
DE�z� � ��0�DEe

3w1z�1� z�3�1�w0�w1� (12)

is the usual evolution of noninteracting (NI) DE density for
this parametrization of the equation of state and the cor-
rection � is given by

 

��z; w0; w1; �� � �e3w1�3w1�
3�w0�w1���

��0�DM

��0�DE

� ���3�w0 � w1�

� �; 3w1; 3w1�1� z�� (13)

where ��a; x0; x1� is the generalized incomplete gamma
function

 ��a; x0; x1� �
Z x1

x0

ta�1e�tdt: (14)

Notice that the correction � vanishes in the case of no
interaction, � � 0, as it should be. We have also found
solutions for different parametrizations of the dark energy
equation of state but will not use them in this paper.

We use the Hubble-free dimensionless luminosity dis-
tance dh defined in terms of the usual luminosity distance
dL as

 dh �
H0

c
dL: (15)

The Hubble-free luminosity distance in our model for the
parametrization used is given by (we are assuming a flat
Universe throughout the paper)

 

dh�z;�
�0�
DM;w0;w1;�� � �1� z�

Z z

0
dz0���0�b �1� z

0�3

���0�DM�1� z
0�3����1���0�b

���0�DM��1� z
0�3�1�w0�w1�

� e3w1z0 �1���z0;w0;w1;����
�1=2

(16)

where ��0�DM and ��0�b are the dark matter and the baryonic
density fractions today, respectively. In the next section we
will compare dh (or dL for a given value of the Hubble
parameter) obtained from our model to observations in
order to study the consequences of the coupling between
DE and DM.

III. RESULTS

We will work with two data sets, the so-called gold data
set consisting of 157 SNIa [2] and the recent SNLS data set
of 71 new SNIa with high redshift [3]. Since these two data
sets were obtained with different detection techniques and
use different methods to extract the distance moduli of the
supernovae, we will analyze them separately. Other recent
analysis can be found in [11,29–31].

In both cases we used the maximum likelihood method
for estimating the cosmological parameters. We find the
best-fit values by numerically minimizing the likelihood
function and the 68% confidence level contour plots were
obtained by direct integration of the likelihood function.
We fixed ��0�b � 0:05 throughout our analysis. Since the
impact of ��0�b on dh is very weak, the exact value of ��0�b is
not important.

The apparent luminosity m of a supernova in terms of its
absolute magnitude M is usually written as

 m � M� 5log10dh � 5log10cH
�1
0 � 25: (17)

The absolute magnitude of each SNIa has a spread around
a standard value

 M � M0 �� (18)

whereM0 is the absolute magnitude of a standard SNIa and
� represents the corrections arising from fits to the color
and light curves of each supernova. Hence one can write
the apparent magnitude as

 mcorr 	 m� � � 5log10dh � �M (19)

where the so-called nuisance parameter �M is given by

 

�M�H0;M0� � M0 � 5log10cH
�1
0 � 25: (20)

We will use the values of the distance modulus � given by

CONSEQUENCES OF DARK MATTER-DARK ENERGY . . . PHYSICAL REVIEW D 75, 083506 (2007)

083506-3



 � � m� �� �M � 5log10dh (21)

in order to derive bounds in the parameters in our model.
For the analysis of the SNIa gold data set, we follow

Ref. [32–34] and estimate the likelihood function already
marginalized over the nuisance parameter �M, which in-
cludes H0, for different values of the coupling �.

For the analysis of the 71 new SNIa data obtained by
SNLS we used the distance moduli values �i obtained
from the best-fit values (for h � 0:7) of the correction
parameters (� and�) andM0, and the corresponding errors
reported in [3]. The likelihood function is computed as:

 L �w0; w1;�DM� � exp
�
�

1

2

X71

i�1

��i � 5log10dL�h � 0:7; w0; w1;�DM; zi� � 25�2

�2
�i
� �2

v � �2
int

�
(22)

where ��i
is the uncertainty associated with the observa-

tional techniques in determining the magnitudes, �v is
associated with the peculiar velocities (and hence negli-
gible for large redshifts) and �int is due to the intrinsic
dispersion of the absolute magnitudes.

In the case where there is no interaction between DE and
DM, we find that the best-fit values for ��0�DM in a �CDM

model (w1 � 0 and w0 � �1) are ��0�DM � 0:26
 0:04

and ��0�DM � 0:19
 0:02 for the gold set and SNLS data,
respectively. The best fit from the SNLS data is in remark-
able agreement with the recent analysis of the 3-year data
from the Wilkinson Microwave Anisotropy Probe
(WMAP3y) [4] alone, which results in ��0�DM � 0:18

0:04, whereas the best fit from the gold data set has a
somewhat poorer agreement.

Many parametrizations for the DE equation of state were
tested with SNIa data but frequently fixing a particular
value of ��0�M or marginalizing over a flat or gaussian prior
around ��0�M � 0:27 [2,10,32–34]. However, the agree-
ment between SNIa and CMB gets particularly worse for
the gold data set when we allow for wDE�z� and ��0�DM to
vary simultaneously without any priors. For instance, fix-
ingw1 � 0, that is, a constant DE equation of state, we find
the best-fit values are w0 � �2:4 and ��0�DM � 0:44 for the
gold set and w0 � �1:0 and ��0�DM � 0:21 for the SNLS
data. Allowing for an evolving equation of state does not
significantly alter the fits. A possible tension between SNIa
and CMB data which was present in the gold data set when
one considers models other than the �CDM model practi-
cally disappeared in the SNLS data [11].

We want to investigate in this article the effects of add-
ing a coupling between DE and DM on these fits to SNIa
data. The coupling will be characterized by the constant �.
We analyze first the case of constant w (i.e. w1 � 0) and
then generalize to a variable equation-of-state.

A. Constant equation of state

We show in Fig. 1 the 68% confidence level contour
plots in the w0 ���0�DM plane for different values of the
coupling �, keeping w1 � 0 (constant equation of state).
Notice that the SNLS data results in a better agreement

with CMB measurements. One can see the existence of a
correlation between w0 and ��0�DM and that turning on the
interaction results in a marked tendency towards increasing
the best value for ��0�DM, against the CMB results.

However, a direct comparison of our result for ��0�DM with
the CMB results is not possible, since the latter has been
obtained in the context of uncoupled models. It is therefore
important to see whether there are upper limits to ��0�DM
which are independent of the cosmological model. An
upper limit to ��0�DM which does not depend on the back-
ground cosmology can be obtained from the galaxy cluster
dynamics. However the current data yield very weak con-
straints: Ref. [35] gives ��0�m � 0:30�0:17

�0:07 so that even
��0�DM � 0:6 is not excluded at more than 95% c.l. and
actually the strong degeneracy with �8 allows for even
higher values.

On the other hand, for a constant equation of state, we
can use the CMB shift parameter in order to study the
effects of interaction. The shift parameter encapsulates
information contained in the detailed CMB power spec-
trum and, more importantly, its measured values is weakly
dependent of assumptions made about dark energy. It has
been used recently to put constraints on models with brane-
world cosmologies [36].
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FIG. 1. Contour plots in the w0 ��DM plane for a constant
equation of state with 68% confidence level for different values
of the DM-DE coupling � (� � 0 (dotted line), � � 0:2 (dashed
line), and � � 0:6 (solid line)). The best-fit values are marked by
an ‘‘�’’ (� � 0), ‘‘�’’ (� � 0:2) and an ‘‘X’’ (� � 0:6), using
the gold SNIa (left panel) and SNLS (right panel) data.
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The shift parameter R is defined by

 R � ��1=2
M �

Z zdec

0

dz0

E�z0�
(23)

where zdec � 1088 is the redshift of matter-radiation de-

coupling and E�z� � H�z�=H0. We will use the value R �
1:70
 0:03, obtained from WMAP3y data [21]. Clearly
for such calculations a radiation component with standard
conservation equation was appropriately included.

In Figs. 2 and 3 we compare the resulting 3� bounds
obtained from R and from SNIa data. Figure 2 clearly
shows the tension between CMB and the gold data set
referred to earlier. It is clear that the introduction of the
coupling makes the CMB and the gold data set more
incompatible with each other. The coupling favors smaller
values of �DM from CMB at the same time favoring larger
values of the same quantity from SNIa data. The same
qualitative behavior is seen for the SNLS data, although
since there is already a good agreement with � � 0, the
situation is less drastic in this case. It is interesting to notice
that assuming a constant wDE ’ �1 and requiring �DM *

0:1 seems to rule out a coupling � * 0:5 from the bounds
arising from the shift parameter.

B. Variable equation of state

Allowing w1 � 0 does not change the qualitative fea-
tures of Fig. 1. We show in Fig. 4 the 68% confidence level
contour plots in the w0 ���0�DM plane obtained with a
marginalization over w1 and as expected the allowed re-
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the DM-DE coupling �. We compare constraints from the SNLS
SNIa (solid line) and CMB (dashed line) data.
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the gold SNIa (left panel) and SNLS (right panel) data.
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gion gets somewhat broader, with the best-fit of ��0�DM
shifting to larger values.

In Fig. 5 we show the marginalized likelihood function
over w0 and w1 in order to obtain the 68% confidence level
estimation for �m. The main effect of the coupling is to
increase the estimation of ��0�DM. It is interesting to observe
that for the SNLS dataset the WMAP3y value for �DM is
rejected at more than 95% c.l. already for � � 0:2: how-
ever, as we anticipated, such a direct comparison is not
correct.

These results are summarized in Table I, where we show
the best-fit values of w0 and �DM with their corresponding
1� errors obtained by marginalizing over w1 and �DM (in
the case ofw0) andw1 andw0 (in the case of �DM) for both
sets of SNIa data. Although the best-fit values for �DM are
quite large when � is included, the distribution is nonzero
even for small values of �DM.

It is also interesting to study the consequences of the
DM-DE coupling in the determination of the parameters

characterizing the DE equation of state. In Fig. 6 we plot
the 68% confidence level contour plots in the w0 � w1

plane obtained by marginalizing the likelihood function
over �DM using a gaussian prior �DM � 0:18
 0:04, as
obtained from the WMAP3y data. The effect of the cou-
pling is very small when the prior on the DM density is
taken into account.

IV. CONCLUSIONS

There is a vast amount of work studying the possibility
of having an interaction between the dark energy and the
dark matter components of our Universe. In this paper we
analyzed a simple model for the interaction between these
two fluids, in which the mass of the dark matter particles
increases at a constant rate. We have shown that introduc-
ing a coupling between the dark energy component of the
Universe with dark matter particles has the effect of in-
creasing the best-fit values of the DM density today ob-
tained from current SNIa data.

We performed a comparison with CMB data for the case
of constant equation of state, using the shift parameter. We
found that the introduction of the coupling results in a
poorer compatibility between CMB and SNIa data. Our
results showed that assuming a constant wDE ’ �1 and
requiring �DM * 0:1, a coupling � * 0:5 seems to be
ruled out. This must be checked by model-independent
measurements of �DM from large scale structure and also
with a more careful analysis of the CMB data including
more observables in addition to the shift parameter. We
also found that introducing the coupling does not change
significantly the determination of the DE equation of state
when a prior on �DM is adopted.

We worked with a simple parametrization of the dark
energy equation of state and for the DM-DE coupling but
we believe that our results are fairly general for the type of
interaction that we introduced. It would be interesting to
extend our analysis to more general parametrizations for
both the interaction and the equation of state available in
the literature. However, it should be stressed that SNIa data
is not currently very sensitive to a time-varying wDE.
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FIG. 6. Countor plots in the w0 � w1 plane marginalized with
a gaussian prior over values of �DM with 68% confidence level
for different values of the DM-DE coupling � (� � 0 (dotted
line), � � 0:2 (dashed line), and � � 0:6 (solid line)). The best-
fit values are marked by an ‘‘�’’ (� � 0), ‘‘�’’ (� � 0:2) and an
‘‘X’’ (� � 0:6), using the gold SNIa (left panel) and SNLS (right
panel) data.

TABLE I. Best fits obtained for w0 and �DM for both sets of
SNIa data.

Gold SNLS Gold SNLS
� w0 w0 �DM �DM

0.0 �2:6�1:2
�2:1 �0:95�0:32

�0:42 0:48�0:03
�0:04 0:37�0:06

�0:08

0.2 �3:2�1:5
�2:8 �1:00�0:35

�0:52 0:51�0:04
�0:05 0:40�0:07

�0:08

0.6 �6:0�2:4
�3:7 �1:15�0:42

�0:82 0:58�0:03
�0:04 0:48�0:08

�0:09
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