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We derive the conditions under which dark energy models whose Lagrangian densities f are written in
terms of the Ricci scalar R are cosmologically viable. We show that the cosmological behavior of f�R�
models can be understood by a geometrical approach consisting of studying the m�r� curve on the �r;m�
plane, where m � Rf;RR=f;R and r � �Rf;R=f with f;R � df=dR. This allows us to classify the f�R�
models into four general classes, depending on the existence of a standard matter epoch and on the final
accelerated stage. The existence of a viable matter-dominated epoch prior to a late-time acceleration
requires that the variable m satisfies the conditions m�r� � �0 and dm=dr >�1 at r � �1. For the
existence of a viable late-time acceleration we require instead either (i) m � �r� 1, �

���
3
p
� 1�=2<m �

1 and dm=dr <�1 or (ii) 0<m � 1 at r � �2. These conditions identify two regions in the �r;m� space,
one for the matter era and the other for the acceleration. Only models with an m�r� curve that connects
these regions and satisfies the requirements above lead to an acceptable cosmology. The models of type
f�R� � �R�n and f � R� �R�n do not satisfy these conditions for any n > 0 and n <�1 and are thus
cosmologically unacceptable. Similar conclusions can be reached for many other examples discussed in
the text. In most cases the standard matter era is replaced by a cosmic expansion with scale factor a / t1=2.
We also find that f�R� models can have a strongly phantom attractor but in this case there is no acceptable
matter era.
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I. INTRODUCTION

The late-time accelerated expansion of the universe is a
major challenge to present-day cosmology (see Refs. [1,2]
for review). A consistent picture, the concordance model,
seems to emerge from the bulk of observations probing the
background evolution of the universe as well as its inho-
mogeneities: supernovae Ia [3], cosmic microwave back-
ground anisotropies (CMB) [4], large scale structure
formation (LSS) [5], baryon oscillations [6], weak lensing
[7], etc. If one assumes today a flat universe with a cos-
mological constant � and with pressureless matter, obser-
vations suggest the following cosmological parameters,
��;0 � 0:7, �m;0 � 0:3 where �X;0 � �X;0=�cr;0 for any
component X, where the subscript 0 stands for present-day
values and �cr is the critical density of the universe.

A cosmological constant term is the simplest possibility
to explain the observational data. In fact, the recent data
analysis [8] combining the supernovae legacy survey
(SNLS) data [9] with CMB, LSS, and the Lyman-� forest
shows that, assuming wDE is constant, the equation of state
parameter of dark energy (DE) is found to be wDE �
�1:04	 0:06 and is therefore consistent with a cosmo-
logical constant. However, a cosmological constant suffers
from an extreme fine-tuning problem of its energy scale if
it originates from vacuum energy. For this reason several

works have explored alternative explanations, i.e., dynami-
cal forms of dark energy. In the absence of any compelling
dynamical dark energy model, further insight can be
gained by considering general models with constant equa-
tion of state or some fiducial parametrization; see e.g.
[10,11] for a recent review.

The first alternative possibility to a cosmological con-
stant is a minimally coupled scalar field �, usually called
quintessence [12]. In analogy with inflationary scenarios,
this scalar field would be responsible for a stage of accel-
erated expansion, while in contrast to inflation this stage
occurs in the late-time evolution of the universe. The
energy density of the scalar field should therefore come
to dominate over other components in the universe only
recently. This is the so-called cosmic coincidence problem
faced by most dark energy models. In order to alleviate this
problem various generalizations have been considered, like
coupled quintessence models [13] in which matter and
dark energy scale in the same way with time during some
epochs. It is, however, still a challenging task to construct
viable scaling models which give rise to a matter-
dominated era followed by an accelerated scaling attractor
[14].

An important limitation of standard quintessence mod-
els is that they do not allow for a phantom regime with
wDE <�1. A phantom regime is allowed by observations
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and even favored by some analyses of the data [15]. To
achieve wDE <�1, the scalar field should be endowed
with a generalized kinetic term, for instance, one with a
sign opposite to the canonical one [16]. This intriguing
possibility is, however, plagued by quantum instabilities
[17]. A further interesting possibility is provided by non-
minimally coupled scalar fields [18] and scalar-tensor
cosmology [19,20]. Scalar-tensor DE models can have a
consistent phantom regime and a modified growth rate of
structure [21]; see also [22] for a systematic study of the
low-redshift structure of such theories including a detailed
analysis of the possibility to have a phantom regime and
the constraints from local gravity tests, and [23] for some
concrete examples of this scenario. In scalar-tensor DE
models gravity is modified by an additional dynamical
degree of freedom, the scalar partner of the graviton.

Recently there has been a burst of activity dealing with
so-called modified gravity DE models (see Ref. [2]
for recent review and references therein). In these
theories one modifies the laws of gravity whereby a late-
time accelerated expansion is produced without recourse to
a DE component, a fact which renders these models very
attractive. In some models one can have in addition a
phantom regime, which might constitute an interesting
feature.

The simplest family of modified gravity DE models is
obtained by replacing the Ricci scalar R in the usual
Hilbert-Einstein Lagrangian density for some function
f�R�. In the first models proposed in DE literature, where
a term 1=R is added to R [24,25], one typically expects that
as the universe expands the inverse curvature term will
dominate and produce the desired late-time accelerated
expansion (see Ref. [26] for a pioneering work in the
context of inflation). However, it was quickly realized
that local gravity constraints would make these models
nonviable [27] (see also Ref. [28]). Indeed, it was shown
that f�R� models are formally equivalent to scalar-tensor
models with a vanishing Brans-Dicke parameter !BD � 0.
Clearly such models do not pass local gravity (solar sys-
tem) constraints; in particular, the post Newtonian parame-
ter �PPN satisfies �PPN � 1=2 instead of being very close to
1 as required by observations.

However, the question of whether local gravity con-
straints rule out f�R� models or not does not seem to be
completely settled in the literature [29]. Several papers
pointed out that local gravity constraints cannot yet rule
out all possible forms of f�R� theories. For instance, a
model containing a particular combination of 1=R and R2

terms was suggested in [30] and claimed by those authors
to pass successfully the solar system constraints, due to a
large (infinite) effective mass needed to satisfy solar sys-
tem constraints, and also to produce a late-time accelerated
expansion (though this latter property does not seem to
have been demonstrated in a satisfactory way). Another
original approach with negative and positive power terms

was suggested recently where the positive power term
would dominate on small scales while the negative power
term dominates on large cosmic scales, thereby producing
the accelerated expansion [31] (see, however, [32]). See
Refs. [33] for a list of recent research in f�R� dark energy
models. If f�R� models are not ruled out by local gravity
constraints, it is important to understand their cosmologi-
cal properties.

Recently three of the present authors [34] have shown
that the large redshift behavior of f�R� � R� �R�n mod-
els with n > 0 generically leads to the ‘‘wrong’’ expansion
law: indeed, the usual matter era preceding the late-time
accelerated stage does not have the usual a / t2=3 behavior
but rather a / t1=2 which would obviously make these
models cosmologically unacceptable. This intriguing and
quite unexpected property of these f�R� models was over-
looked in the literature. The absence of the standard matter
epoch is associated with the fact that in the Einstein frame
nonrelativistic matter is strongly coupled to gravity except
for the f�R� theories which have a linear dependence of R
[including the �CDM model: f�R� � R��] [34].

In the Einstein frame the power-law models f�R� / R�n

(n � �1) correspond to a coupled quintessence scenario
with an exponential potential of a dynamical scalar field. In
this case the standard matter era is replaced by a ‘‘�
matter-dominated epoch’’ (�MDE) in which the scale
factor in the Einstein frame evolves as aE / t

3=5
E [34].

Transforming back to the Jordan frame (JF), this corre-
sponds to a nonstandard evolution a / t1=2. We wish to
stress here that cosmological dynamics obtained in the
Jordan frame exhibits no difference from the one which
is transformed to the Einstein frame and transformed back
to the original frame. Hence in this paper we shall focus on
the analysis in the Jordan frame without referring to the
Einstein frame.

This paper is devoted to explaining in detail our previous
result and, more importantly, extending it to all well-
behaved f�R� Lagrangians. Despite almost 30 years of
work on the cosmology of f�R� models, there are in fact
no general criteria in the literature to gauge their validity as
alternative cosmological models (see Ref. [35] for one of
the earliest attempts in this direction). We find the general
conditions for an f�R� theory to contain a standard matter
era followed by an accelerated attractor in a spatially flat,
homogeneous and isotropic background. The only condi-
tions we assume throughout this paper, besides obviously a
well-behaved function f�R� continuous with all its deriva-
tives, is that df=dR> 0, to maintain a positive effective
gravitational constant in the limit of vanishing higher-order
term. In some cases, however, we consider f�R� models
which violate this condition in some range of R, but not on
the actual cosmological trajectories. The main result of this
paper is that we are able to show analytically and numeri-
cally that all f�R� models with an accelerated global
attractor belong to one of four classes:
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Class I: Models of this class possess a peculiar scale
factor behavior (a / t1=2) just before the accel-
eration.
Class II: Models of this class have a matter epoch
and are asymptotically equivalent to (and hardly
distinguishable from) the �CDM model (weff �
�1).
Class III: Models of this class can possess an ap-
proximate matter era but this is a transient state
which is rapidly followed by the final attractor.
Technically, the eigenvalues of the matter saddle
point diverge and it is very difficult to find initial
conditions that display the approximated matter
epoch.
Class IV: Models of this class behave in an accept-
able way. They possess an approximate standard
matter epoch followed by a nonphantom accelera-
tion (weff >�1).

We can then summarize our findings by saying that f�R�
dark energy models are either wrong (Class I), or asymp-
totically de Sitter (Class II), or strongly phantom (Class III)
or, finally, standard DE (Class IV). The second and fourth
classes have some chance of being cosmologically accept-
able, but even for these cases it is not an easy task to
identify the basin of attraction of the acceptable trajecto-
ries. We fully specify the conditions under which any given
f�R�model belongs to one of the classes above and discuss
analytically and numerically several examples belonging
to all classes.

An important clarification is in order here. It is clear that
f�R� gravity models can be perfectly viable in different
contexts. The most famous example is provided by
Starobinsky’s model, f�R� � R� �R2 [36], which has
been the first internally consistent inflationary model. In
this model, the R2 term produces an accelerated stage in
the early universe preceding the usual radiation and matter
stages. A late-time acceleration in this model (after the
matter-dominated stage) requires a positive cosmological
constant (or some other form of dark energy), in which
case the R2 term is no longer responsible for the late-time
acceleration.

Our paper is organized in the following way. Section II
contains the basic equations in the Jordan frame and in-
troduces autonomous equations which are applicable to
any form of f�R�. In Sec. III we derive fixed points together
with their stabilities and present the conditions for viable
f�R� DE models. In Sec. IV we classify f�R� DE models
into four classes depending upon the cosmological evolu-
tion which gives the late-time acceleration. In Sec. V we
shall analytically show the cosmological viability for some
of the f�R� models by using the conditions found in
Sec. III. Section VI is devoted to a numerical analysis for
a number of f�R� models to confirm the analytical results
presented in the previous section. Finally we summarize
our results in Sec. VII.

II. f�R� DARK ENERGY MODELS

A. Definitions and equations

In this section we derive all basic equations in the JF, the
frame in which observations are performed. We will further
define all fundamental quantities characterizing our sys-
tem, in particular, the equation of state of our system.
Actually, as we will see below this is a subtle issue and
we have to define what is meant by the DE equation of
state.

We concentrate on spatially flat Friedmann-Lemaı̂tre-
Robertson-Walker (FLRW) universes with a time-
dependent scale factor a�t� and a metric

 d s2 � �dt2 � a2�t�dx2: (1)

For this metric the Ricci scalar R is given by

 R � 6�2H2 � _H�; (2)

where H � _a=a is the Hubble rate and a dot stands for a
derivative with respect to t.

We start with the following action in the JF,

 S �
Z

d4x
�������
�g
p

�
1

2�2 f�R� �Lrad �Lm

�
; (3)

where �2 � 8�G while G is a bare gravitational constant,
f�R� is some arbitrary function of the Ricci scalar R, and
Lm and Lrad are the Lagrangian densities of dustlike
matter and radiation, respectively. Note that G is typically
not Newton’s gravitational constant measured in the attrac-
tion between two test masses in Cavendish-type experi-
ments (see e.g. [20]). Then the following equations are
obtained [37]:

 3FH2 � �2��m � �rad� �
1
2�FR� f� � 3H _F; (4)

 � 2F _H � �2��m �
4
3�rad� � �F�H _F; (5)

where

 F �
df
dR

: (6)

In standard Einstein gravity (f � R) one has F � 1. In
what follows we shall consider the positive-definite forms
of F to avoid a singularity at F � 0. The densities �m and
�rad satisfy the usual conservation equations,

 _� m � 3H�m � 0; (7)

 _� rad � 4H�rad � 0: (8)

We note that Eqs. (4) and (5) are similar to those
obtained for scalar-tensor gravity [21] with a vanishing
Brans-Dicke parameter !BD � 0 and a specific potential
U � �FR� f�=2. Note that in scalar-tensor gravity we
have FR � L so that this term vanishes, while Eq. (5) is
similar except for the fact that a kinetic term of the scalar
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field is absent. Hence we can define the DE equation of
state in a way similar to that in scalar-tensor theories of
gravity (see, e.g., [22,38]). With a straightforward redefi-
nition of the quantities, we rewrite Eqs. (4) and (5) as
follows:

 3F0H2 � �2��DE � �m � �rad�; (9)

 � 2F0
_H � �2��m �

4
3�rad � �DE � pDE�: (10)

We then have the following equalities:

 �2�DE �
1
2�FR� f� � 3H _F� 3H2�F0 � F�; (11)

 

�2pDE � �F� 2H _F� 1
2�FR� f� � �2

_H � 3H2��F0 � F�:

(12)

The energy density �DE and the pressure density pDE of DE
defined in this way satisfy the usual conservation equation

 _� DE � �3H��DE � pDE�: (13)

Hence the equation of state parameter wDE, defined
through

 wDE �
pDE

�DE
� �1�

2 �F� 2H _F� 4 _H�F0 � F�

�FR� f� � 6H _F� 6H2�F0 � F�
;

(14)

acquires its usual physical meaning; in particular, the time
evolution of the DE sector is given by

 

�DE�z�
�DE;0

� exp
�

3
Z z

0
dz0

1� wDE�z0�
1� z0

�
; (15)

where z � a0=a� 1. Note that the subscript ‘‘0’’ stands
for present values. It is �DE, as defined in Eq. (11), which is
the quantity extracted from the observations and wDE the
corresponding DE equation of state parameter for which
specific parametrizations are used.

Looking at Eq. (9), one could introduce the cosmologi-
cal parameters ~�X � �2�X=�3F0H

2� [22,38]. However,
here it turns out to be more convenient to work with the
density parameters

 �X �
�2�X
3FH2 ; (16)

where X � m, rad or DE. The quantity wDE can further be
obtained directly from the observations,

 wDE �
�1� z�dh2=dz� 3h2 ��rad;0�1� z�

4

3
h2 ��m;0�1� z�
3 ��rad;0�1� z�

4�
; (17)

where h � H=H0. In the low-redshift region where the
contribution of the radiation is negligible, we have

 wDE �
�1� z�dh2=dz� 3h2

3
h2 ��m;0�1� z�3�
; z� zeq; (18)

where zeq is the redshift at which dust and radiation have
equal energy densities. Equation (17) can be extended for
spatially nonflat universes [39] but we restrict ourselves to
spatially flat universes. We also define the effective equa-
tion of state

 weff � �1�
2 _H

3H2 : (19)

Note that the following equality holds,

 weff �
~�DEwDE �

1
3

~�rad; (20)

if we define ~�X � �2�X=�3F0H2�.

B. Autonomous equations

For a general f�R� model it will be convenient to in-
troduce the following (dimensionless) variables:

 x1 � �
_F

HF
; (21)

 x2 � �
f

6FH2 ; (22)

 x3 �
R

6H2 �
_H

H2 � 2; (23)

 x4 �
�2�rad

3FH2 : (24)

From Eq. (4) we have the algebraic identity

 �m �
�2�m

3FH2 � 1� x1 � x2 � x3 � x4: (25)

It is then straightforward to obtain the following equations
of motion:

 

dx1

dN
� �1� x3 � 3x2 � x

2
1 � x1x3 � x4; (26)

 

dx2

dN
�
x1x3

m
� x2�2x3 � 4� x1�; (27)

 

dx3

dN
� �

x1x3

m
� 2x3�x3 � 2�; (28)

 

dx4

dN
� �2x3x4 � x1x4; (29)

where N stands for lna and

 m �
d logF
d logR

�
Rf;RR
f;R

; (30)

 r � �
d logf
d logR

� �
Rf;R
f
�
x3

x2
; (31)

where f;R � df=dR and f;RR � d2f=dR2. Deriving R as a

AMENDOLA, GANNOUJI, POLARSKI, AND TSUJIKAWA PHYSICAL REVIEW D 75, 083504 (2007)

083504-4



function of x3=x2 from Eq. (31), one can express m as a
function of x3=x2 and obtain the function m�r�. For the
power-law model with f�R� � �R�n, the variable m is a
constant (m � �n� 1) with r � n � x3=x2. In this case
the system reduces to a three-dimensional one with varia-
bles x1, x2, and x4. However, for general f�R� gravity
models the variable m depends upon r.

We also make use of these expressions:

 weff � �
1
3�2x3 � 1�; (32)

 wDE �
1

3

1� x4y� 2x3

1� y�1� x1 � x2 � x3�
; (33)

where y � F=F0.

III. COSMOLOGICAL DYNAMICS OF f�R�
GRAVITY MODELS

In this section we derive the analytical properties of the
phase space. In the absence of radiation (x4 � 0) the
critical points for the system (26)–(28) for any m�r� are

 P1: �x1; x2; x3� � �0;�1;2�; �m � 0; weff ��1;

(34)

 P2: �x1; x2; x3� � ��1;0;0�; �m � 2; weff � 1=3;

(35)

 P3: �x1; x2; x3� � �1; 0; 0�; �m � 0; weff � 1=3;

(36)

 P4: �x1; x2; x3� � ��4;5;0�; �m � 0; weff � 1=3;

(37)

 

P5: �x1; x2; x3� �

�
3m

1�m
;�

1� 4m

2�1�m�2
;

1� 4m
2�1�m�

�
;

�m � 1�
m�7� 10m�

2�1�m�2
; weff � �

m
1�m

; (38)

 P6: �x1; x2; x3� �

�
2�1�m�
1� 2m

;
1� 4m

m�1� 2m�
;�
�1� 4m��1�m�
m�1� 2m�

�
; �m � 0; weff �

2� 5m� 6m2

3m�1� 2m�
; (39)

where here �m � 1� x1 � x2 � x3.
The points P5 and P6 satisfy the equation x3 �

��m�r� � 1�x2, i.e.,

 m�r� � �r� 1: (40)

When m�r� is not a constant, one must solve this equation.
For each root ri one gets a point of type P5 or P6 withm �
m�ri�. For instance, the f�R� � R� �R�n model corre-
sponds to m�r� � �n�1� r�=r as we will see later, which
then gives r1;2 � �1, n and m1;2 � 0, �1� n. If we
assume thatm � constant, then the condition x3 � ��m�
1�x2 must hold from Eqs. (30) and (31). Hence for m �
constant the points P2;3;5;6 always exist, while P1 and P4

are present for m � 1 and m � �1, respectively. The
solutions which give the exact equation of state of a matter
era (weff � 0, i.e., a / t2=3 or x3 � 1=2) exist only form �
0 (P5) or for m � ��5	

������
73
p
�=12 (P6) [40]. However, the

latter case corresponds to �m � 0, so this does not give a
standard matter era dominated by a nonrelativistic fluid
[41].

If m�r� is not constant then there can be any number of
distinct solutions, although only P1 and those originating
from P5;6 can be accelerated and only P2 and P5 might give
rise to matter eras. However, P2 corresponds to weff � 1=3
and therefore is ruled out as a correct matter era: this is in
fact the a / t1=2 behavior discussed in Ref. [34] (and
denoted as �MDE since it is in fact a field-matter-
dominated epoch in the Einstein frame). On the contrary,
P5 resembles a standard matter era, but only for m close to

0. Hence a ‘‘good’’ cosmology would be given by any
trajectory passing near P5 with m close to 0 and landing
on an accelerated attractor. Any other behavior would not
be consistent with observations.

It is important to realize that the surface x2, x3 for which
m�r� � �r� 1 is a subspace of the system (26)–(29) and
therefore it cannot be crossed. This can be seen by using
the definition of r and m to derive the following equation
for r:

 

dr
dN
� r�1�m� r�

_R
HR

; (41)

which shows explicitly thatm � �r� 1 implies dr=dN �
0 as long as _R=HR does not diverge. This means that the
evolution of the system along the m�r� line stops at the
roots of the equation m � �r� 1 so that every cosmo-
logical trajectory is trapped between successive roots.

In what follows we shall consider the properties of each
fixed point in turn. We define mi � m�Pi� and will always
assume a general m � m�r�.

(1) P1: de Sitter point
Since weff � �1 the point P1 corresponds to de Sitter
solutions ( _H � 0) and has eigenvalues

 � 3; �
3

2
	

�������������������������
25� 16=m1

p
2

; (42)

where m1 � m�r � �2�. Hence P1 is stable when 0<
m1 � 1 and a saddle point otherwise. Then the condition
for the stability of the de Sitter point is given by
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 0<m�r � �2� � 1: (43)

(2) P2: �MDE
Point P2 is characterized by a ‘‘kinetic’’ epoch in which matter and field coexist with constant energy fractions. We denote
it as a �-matter-dominated epoch (�MDE) following Ref. [13]. The eigenvalues are given by

 � 2;
1

2

�
7�

1

m2
�
m02
m2

2

r�1� r� 	

��������������������������������������������������������������������������������������������������������������������
7�

1

m2
�
m02
m2

2

r�1� r�
�

2
� 4

�
12�

3

m2
�
m02
m2

2

r�3� 4r�
�s �
; (44)

where a prime represents a derivative with respect to r.
Hence P2 is either a saddle or a stable node. If m�r� is a
constant, the eigenvalues reduce to �2, 3, 4� 1=m2, in
which case P2 is a saddle point. Note that it is stable on the
subspace x3 � rx2 for �1=4<m< 0. However, from
Eqs. (27) and (28), one must ensure that the term x3=m2

vanishes. Then the necessary and sufficient condition for
the existence of the point P2 is expressed simply by

 lim
x2;3!0

x3

m2
� 0; (45)

which amounts to

 

f;R
H2f;RR

! 0; (46)

for R=H2 ! 0 and f=f;RH2 ! 0. This applies immedi-
ately to several models, like, e.g., f � logR, Rn, R�
�Rn and, in general, for any well-behaved f�R�, i.e., for
all the functions that satisfy the condition of application of
de l’Hopital rule. This shows that the wrong matter era is
indeed generic to the f�R� models.

(3) P3: Purely kinetic point
This also corresponds to a kinetic epoch, but it is different
from the point P2 in the sense that the energy fraction of
the matter vanishes. Point P3 can be regarded as the special
case of the point P6 by setting m � 1=4. The eigenvalues
are given by

 2;
1

2

�
9�

1

m3
�
m03
m2

3

r�1� r� 	

��������������������������������������������������������������������������������������������������������������������
9�

1

m3
�
m03
m2

3

r�1� r�
�

2
� 4

�
20�

5

m3
�
m03
m2

3

r�5� 4r�
�s �
; (47)

which means that P3 is either a saddle or an unstable node.
If m�r� is a constant the eigenvalues reduce to 2, 5, 4�
1=m3. In this case P3 is unstable form3 < 0 andm3 > 1=4,
and a saddle otherwise.

(4) P4

This point has a similar property to P3 because both �m

and weff are the same as those of P3. It is regarded as the
special case of the point P6 by setting m � �1. Point P4

has eigenvalues

 � 5; �3; 4�1� 1=m4�: (48)

Hence it is stable for�1<m4 < 0 and a saddle otherwise.
Neither P3 nor P4 can be used for the matter-dominated
epoch nor for the accelerated epoch.

(5) P5: Scaling solutions
Point P5 corresponds to scaling solutions which give the
constant ratio �m=�DE. In the limit m5 ! 0, it actually
represents a standard matter era with a / t2=3 and �m � 1.
Hence the necessary condition for P5 to exist as an exact
standard matter era is given by

 m�r � �1� � 0: (49)

The eigenvalues of P5 are given by

 3�1�m05�;
�3m5	

����������������������������������������������������������������������
m5�256m3

5� 160m2
5� 31m5� 16�

q
4m5�m5� 1�

:

(50)

In the limit jm5j � 1 the eigenvalues approximately re-
duce to

 3�1�m05�; �
3

4
	

�����������
�

1

m5

s
: (51)

The models with m5 � Rf;RR=f;R < 0 exhibit the diver-
gence of the eigenvalues as m5 ! �0, in which case the
system cannot remain around the point P5 for a long time.
For example, the models f�R� � R� �=Rn with n > 0
and �> 0 [24,25] fall into this category. An approximate
matter era exists also if insteadm5 is negative and nonzero,
but then the eigenvalues are large and it is difficult to find
initial conditions that remain close to them for a long time.
We shall present such an example in a later section.
Therefore, generally speaking, models with m5 < 0 are
not acceptable, except at most for a very narrow range of
initial conditions. On the other hand, if 0<m5 < 0:327 the

AMENDOLA, GANNOUJI, POLARSKI, AND TSUJIKAWA PHYSICAL REVIEW D 75, 083504 (2007)

083504-6



latter two eigenvalues in Eq. (50) are complex with nega-
tive real parts. Then, provided that m05 >�1, the point P5

can be a saddle point with a damped oscillation. Hence, in
principle, the universe can evolve toward the point P5 and
then leave for the late-time acceleration. Note that the point
P2 is also generally a saddle point except for some specific
cases in which it is stable. Which trajectory (P2 or P5) is
chosen depends upon initial conditions, so a numerical
analysis is necessary.
Note that from the relation (40) the condition m�r�> 0 is
equivalent to r <�1. Hence the criterion for the existence
of a saddle matter epoch with a damped oscillation is given
by

 m�r � �1�> 0; m0�r � �1�>�1: (52)

Note that we also require the condition (49). In order to
realize an accelerated stage after the matter era, additional
conditions are necessary as we will discuss below. Finally,
we remark that a special case occurs if m � const. This
corresponds to f�R� � ��� �R�n. In this case the sys-
tem contains a two-dimensional subspace x3 �
��m� 1�x2 � nx2, and on this subspace the stability of
the latter two eigenvalues in Eq. (50) is sufficient to ensure
the stability. Working with the �x1; x2; x3� phase space, the
trajectories that start with x3 � nx2, which implies � � 0,
remain on the subspace. Then the point is stable in the
range 0<m5 < 0:327. For � � 0, the trajectories start off
the subspace and follow the same criteria of stability as for
the m � const case. So there exists a standard saddle
matter era for f�R� � ��� �R1�� with � small and
positive.

(6) P6: Curvature-dominated point
This corresponds to the curvature-dominated point whose
effective equation of state depends upon the value m. It
satisfies the condition for acceleration (weff <�1=3) when
m6 <��1�

���
3
p
�=2, �1=2<m6 < 0, and m6 > �

���
3
p
�

1�=2. In Fig. 1 we show the behavior of weff as a function
of m. The eigenvalues are given by

 � 4�
1

m6
;

2� 3m6� 8m2
6

m6�1� 2m6�
; �

2�m2
6� 1��1�m06�
m6�1� 2m6�

:

(53)

Hence the stability ofP6 depends on bothm6 andm06. In the
limit m6 ! 	1 we have P6 ! ��1; 0; 2� with a de Sitter
equation of state (weff ! �1). This point is stable provided
that m06 >�1. P6 is also a de Sitter point for m6 � 1,
which coincides with P1 and is marginally stable. Since
r � �2 in this case, this point is characterized by

 m�r � �2� ! 1: (54)

It is instructive to see this property in the Einstein frame,

i.e. performing a conformal transformation of the system
[34]. Then one obtains a scalar field with a potential V �
�FR� f�=jFj2. This shows that the condition m�r �
�2� � 1 corresponds to V;R � 0, i.e., the condition for
the existence of a potential minimum.
The point P6 is both stable and accelerated in four distinct
ranges.

(I) m06 >�1
When m06 >�1, P6 is stable and accelerated in the
following three regions:
(A) m6 <��1�

���
3
p
�=2: P6 is accelerated but not a

phantom, i.e., weff >�1. One has weff ! �1 in the
limit m6 ! �1.
(B) �1=2<m6 < 0: P6 is strongly phantom with
weff <�7:6.
(C) m6  1: P6 is slightly phantom with �1:07<
weff � �1. One has weff ! �1 in the limit m6 !
�1 and m6 ! 1.

(II) m06 <�1
When m06 <�1, the point P6 is stable and accel-
erated in the following region:
(D) �

���
3
p
� 1�=2<m6 < 1: here P6 is a nonphan-

tom, weff >�1.

Therefore, from this we derive the first general conclusion
concerning f�R� models: the asymptotic acceleration can-
not have an equation of state in the range �7:6<weff <
�1:07.

If one considers radiation in addition to x1;2;3, then all the
points P1–6 remain the same (with x4 � 0) and one obtains
two additional points:

 

-3 -2 -1 0 1 2 3
m

-8

-6

-4

-2

0

w
ef

f

P6

A DB C

FIG. 1 (color online). The effective equation of state weff for
P6 as a function of m. The point is stable and accelerated in the
grayed regions. In region (A) m<��

���
3
p
� 1�=2 the point is

always a nonphantom (weff >�1); in region (B)�1=2<m< 0
it is strongly a phantom (weff <�7:6); in region (C) m  1 it is
slightly phantom (� 1:07<weff � �1); and in region (D) it is a
nonphantom (weff >�1). In all the other regions P6 is either
decelerated or unstable. Notice the gap between weff � �1:07
and �7:6.
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�7� P7: �x1; x2; x3; x4� � �0; 0; 0; 1�; �m � 0; weff � 1=3; (55)

 

�8� P8: �x1; x2; x3; x4� �

�
4m

1�m
;�

2m

�1�m�2
;

2m
1�m

;
1� 2m� 5m2

�1�m�2

�
; �m � 0; weff �

1� 3m
3� 3m

: (56)

We see that P7 is a standard radiation point. When m�r�
is a constant, the eigenvalues of P7 are given by 1, 4, 4,�1,
which means that P7 is a saddle in this case. The point P8 is
a new radiation era (we call it a ‘‘�-radiation-dominated
epoch’’) which contains nonzero dark energy. Since the
effective equation of state is constrained by nucleosynthe-
sis to be close to 1=3, P8 is acceptable as a radiation epoch
only for m8 close to 0.

The eigenvalues of P8 are given by

 1; 4�1�m08�;
m8 � 1	

����������������������������������������
81m2

8 � 30m8 � 15
q
2�m8 � 1�

: (57)

In the limit m8 ! 0 the last two are complex with negative
real parts, which then shows that P8 is a saddle around the
radiation point. Hence the solutions eventually repel away
from the radiation era and are followed by one of the fixed
points given above. Unlike the matter point P5, there are no
singularities for the eigenvalues of P8 in the limit m8 ! 0.
We also note that P8 is on the line m � �r� 1 as in the
case of the matter point P5. If the condition for the exis-
tence of the matter point P5 is satisfied (i.e.,m � 0 and r �
�1), there exists a radiation point P8 in the same region.
Then a viable cosmological trajectory starts around the
radiation point P8 with m � 0 and then connects to the
matter point P5 with m � 0. Finally, the solutions ap-
proach either of the accelerated points mentioned above.

IV. FOUR CLASSES OF MODELS

For a cosmological model to work, it has to possess a
matter-dominated epoch followed by an accelerated ex-
pansion. In our scenarios this would be a stable accelera-
tion (late-time attractor). We require that the matter era is
long enough to allow for structure formation and that an
effective equation of state is close to weff � 0 in order to
match the observations of the diameter distance of acoustic
peaks of CMB anisotropies; i.e., it has to expand as a�
t2=3. Now we study the conditions under which these
requirements are met.

Let us recall again that P2 exists as a saddle or a stable
node. Then the �MDE is always present provided that the
condition (45) is satisfied, and only by a choice of initial
conditions can one escape it. Hence below we examine the
cases in which initial conditions exist such that the stan-
dard matter era P5 for jmj � 1 is also a saddle. When this
is possible, a numerical analysis is necessary to ascertain
the basin of attraction of P2 and P5. In particular, it is

necessary to see whether initial conditions that allow for a
radiation epoch lead to P2 or P5. Then, if P5 exists and is a
saddle, we examine the conditions for a late-time acceler-
ated attractor.

A. Transition from the matter point P5 to an
accelerated point P6 or P1

The only point which allows for a standard matter era is
P5 when m��1� ! 0, so this is the first condition for a
theory to be acceptable. If m��1� is nonvanishing, the
matter epoch can be characterized by a� t2�1�m�=3, which
is still acceptable if jmj � 1. So from now on when we
write m��1� ! 0 we always mean jm��1�j � 1. The
corresponding point P5 with jm5j � 1 will be denoted as
P�0�5 . In the general case, Eq. (40) has several roots ra;b...

and therefore ma;b::, and correspondingly there will be
several points P5�a;b;...�, P6�a;b;...�. Let us call the line m �
�r� 1 on the �r;m� plane the critical line, since the points
P5 and P6 lie on this line. From the matter epoch P�0�5 at
�r;m� � ��1; 0�, the trajectories can reach an acceleration
point at either P1 or one of the points P5 (besides P�0�5 ) or
P6, the only points that can be accelerated. The point P1 is
stable and accelerated only for 0<m1 � 1. The point P5

corresponds to an accelerated solution for m5 > 1=2 and
m5 <�1; however, it can be shown that it is not stable
(saddle or unstable node) in both regions. Therefore we
only need to study the transition from the matter point P�0�5

to the accelerated point P6. Generally speaking, an f�R�
model is cosmologically viable if one of the transitions
P�0�5 ! P6 or P�0�5 ! P1 is possible.

The point P�0�5 : �r;m� � ��1; 0� can be approached from
the positive m side or from the negative one. In the first
case, two eigenvalues are complex while the real part of the
eigenvalues remains finite and negative. Then the trajec-
tory exhibits a damped oscillation around the matter point,
before leaving for the acceleration. In the second case, the
eigenvalues are real and diverge for m! �0. Then the
matter era is very short and it is very difficult to find initial
conditions that lead to a successful cosmology. The pure
power-law model f�R� � �R�n is a special case because
then P�0�5 is actually stable for m � �1� n small and
positive, so it is not possible to reach the acceleration at
P6 [note that in this case the system is two dimensional
with the latter two eigenvalues in Eq. (51)]. For the model
f�R� � ��� �R1�� with � small and positive, the tran-
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sition from P�0�5 to P6 is instead possible and these models
are cosmologically acceptable. This shows that a �CDM
cosmology is recovered for this model in the limit �! �0
but not �! �0.

As we have seen in the previous section, the point P6 is
stable and accelerated in four distinct regions: (A) m6 <
��1�

���
3
p
�=2, (B) �1=2<m6 < 0, (C) m6  1 (all these

are stable if m06 >�1), and finally, if m06 <�1,
(D) �

���
3
p
� 1�=2<m6 < 1. In the regions (A) and (D),

the point P6 leads to a nonphantom acceleration with
weff >�1, whereas the region (B) corresponds to a
strongly phantom (weff <�7:6) and the region (C) to a
slightly phantom (� 1:07<weff � �1) acceleration. In
what follows we shall discuss each case separately.

1. From P5 (m05 >�1; m > 0) to P1 or to P6 (m06 >�1) in
the regions (A), (B), (C)

In the positive m region the matter point P�0�5 is a saddle
for m05 >�1. We require the condition m06 >�1 for the
stability of the point P6 in the regions (A), (B), and (C). Let
us then assume that besides the root at m � �0 there are
three roots which exist in the regions (A), (B), (C), i.e.m6a,
m6b, m6c, respectively. A good cosmology goes from a
saddle P�0�5 to a stable acceleration, either P6a, P6b, P6c, or
P1. Now P�0�5 is a saddle if m05 >�1, while P6 is stable if
m06 >�1. This shows that the curve m�r� must intersect
the critical point linem � �r� 1 with a derivativem05;6 >
�1. If the intersection occurs with a derivative m05;6 <�1,
the cosmological model is unacceptable, either because the
matter era is stable or because the accelerated epoch is not
stable.

We can therefore draw on the �r;m� plane the ‘‘forbid-
den direction regions’’ around the critical points, i.e. the
direction for a curve m�r� intersecting the line m � �r�
1 that must not be realized [see Fig. 2 where we plot several
possible values of m�r� that belong to four general classes
as detailed below]. So, for any given m�r� model, one has
simply to look at the intersections of m�r� with m � �r�
1 to decide if that model passes the conditions for a
standard matter-acceleration sequence. Generally speak-
ing, if the m�r� line connects the standard matter era
�r;m� � ��1; 0� with an accelerated point P6 or P1 with-
out entering the forbidden direction region, then that model
is cosmologically viable. Otherwise, either because there is
no connection at all or because the connection has the
wrong direction, the model is to be rejected.

In general, of course, anym�r� line is possible. However,
assuming F > 0, one sees that r�R� is a monotonic func-
tion, and therefore m�r� is single valued and nonsingular
(remember we are assuming a regular f with all its deriva-
tives). This simple property is what we need to demonstrate
our claims. In fact, it is then simple to realize by an
inspection of Fig. 2 that indeed it is impossible to connect
points near m � �0 with points in (A), (B), or (C). To do

so it would require, in fact, either entering the forbidden
direction regions or a turnaround ofm�r�, i.e. a multivalued
function, or a singularity of m at finite r, or finally a
crossing of the critical line. This simple argument shows
that the matter era with m � �0 cannot connect to P6 in
the region (A), (B), or (C). Hence the only accelerated
point left is P1 [which is stable only for 0<m�r � �2� �
1]. Notice that this argument applies for any number of
roots in (A), (B), or (C).

A connection to P6 is, however, possible at r! 	1,
with slope m06 � �1, i.e. when the curve m�r� is asymp-
totically convergent on the m � �r� 1 line. Even in
this case, the final acceleration is de Sitter, although with
�x1; x2; x3� � ��1; 0; 2� instead of P1: �x1; x2; x3� �
�0;�1; 2�. To complete this demonstration we need to
also ensure that, although the m�r� line can have any
number of intersections with the critical line, no cosmo-
logical trajectory can actually cross it. This property is
indeed guaranteed by Eq. (41): trajectories stop at the
intersections of m�r� with the critical line and remain
trapped between successive roots.

2. From P5 (m< 0) to P6 (m06 >�1) in the region (B)

There is then a further option: P�0�5 in the (B) region, i.e.
m5 < 0. When m is close to �0, one of the last two
eigenvalues in Eq. (51) is positive whereas another is
negative. This shows that in this case the point P�0�5 is a
saddle independent of m05. Note that the accelerated point
P6 in the region (B) is stable for m06 >�1.

Let us first consider the case m05 >�1. Then the same
argument applies for the positive m case discussed above.
The m�r� curves cannot satisfy both the conditions m05 >
�1 and m06 >�1 required for the existence of the stable
accelerated point P6 in the regions (A), (B), and (C).
However, there is one exception. If the matter root m is
small and strictly negative and m05 >�1, then P6 for the
same root lies in the (B) region and is a valid acceleration
point. In other words, P5 and P6 coincide in the �r;m�
plane and are both acceptable since m05;6 >�1. The sim-
plest possibility is m � const 2 ��1=2; 0�. For instance,
for the power-law models f�R� � �R0:9 (i.e. m � �0:1),
the transition from an approximately matter epoch P�0�5 to
an accelerated era P6 is possible. However, the matter
period is short because of real eigenvalues which diverge
in the limit m! �0. Another possibility is m � a� br,
i.e. a straight line intersecting the critical line at some point
with abscissa �a� b�=�1� b� 2 ��1=2; 0� and a slope
b >�1.

When m05 <�1, it is possible to reach the stable accel-
erated point P6 in any of the regions (A), (B), (C) with
m06 >�1. However, the matter epoch does not last long in
this case either because we have seen an eigenvalue is very
large. Moreover, by construction there will always be the
final attractor P6 in the region (B) for the same m, whose
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effective equation of state corresponds to a strongly phan-
tom (weff <�7:6).

Thus if the matter point P�0�5 exists in the region m< 0,
the models are hardly compatible with observations be-
cause the matter era is practically absent and because most
trajectories will fall in an unacceptable strongly phantom
era.

3. From P5 (m05 >�1; m > 0) to P6 (m06 <�1) in the
region (D)

We come to the fourth range, i.e. the region (D). Now the
situation is different for the point P6, since m06 has to be

less than �1 in order to be stable. Then it is possible to
leave the matter epoch P�0�5 (which satisfiesm05 >�1,m>
0) and to enter the accelerated epoch P6 (m06 <�1) as we
illustrate in Fig. 2 (Class IV panel). Therefore these models
are compatible with standard cosmology: they have a
matter era followed by a nonphantom acceleration with
weff >�1. Note that the saddle matter epoch needs to be
sufficiently long for structure formation to occur. Later we
shall provide an example of such models.

Finally, we must mention an exception to this general
argument. If them�r� line has a derivative exactlym0 � �1
at the critical point, then that point is marginally stable and

 

FIG. 2 (color online). The �r; m� plane for the four classes of f�R� models. In all panels, the straight diagonal line is the critical line
m � �r� 1. In the dotted ranges P6 is not accelerated or is unstable, if we assume m06 >�1. In the thick ranges labeled by A, B, and
C, P6 is accelerated and stable, again assuming m06 >�1 (we omit region D for clarity except for the Class IV panel). The gray
triangles represent the forbidden directions near the critical points. The dashed green lines are hypothetical m�r� curves, intersecting
the critical line in the critical points P5 and P6. The intersection at �r;m� � ��1; 0� (light gray triangles) corresponds to the standard
matter epoch P�0�5 . In Class I models, the m�r� curve does not intersect �r; m� � ��1; 0� and therefore there is no standard matter era. In
Class II models, the point �r;m� � ��1; 0� is connected to the P1 de Sitter point (along the segment 0<m � 1 at r � �2) and
therefore represents a viable cosmological solution. The two additional critical points in the regions A and C are unstable since the
curve enters the forbidden triangles and are therefore not acceptable as final accelerated stages. In Class III models the m�r� line with a
slope m0 >�1 intersects the critical line at a negative m in the strongly phantom range (B). Note that the curves with m05 <�1 which
are attracted by P6 in the regions (A), (B), (C) are possible, but such cases are not viable because of the absence of a prolonged matter
era for m< 0. In Class IV models, the m�r� curve connects the matter era with m05 >�1 to the region (D) with a derivative m06 <�1
and therefore represents a viable cosmology with a matter era followed by a stable acceleration (weff >�1). No single trajectory can
cross the critical line m � �r� 1: each solution is trapped between two successive roots on the critical line.
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our linearized analysis breaks down. In this case, one has to
go to a second-order analysis or to a numerical study. We
will encounter such a situation for the model f�R� �
R log��R�q we study later. The same applies if m0 !
	1, i.e. for trajectories that lie on the borders of the
forbidden regions.

B. Classification of f�R� models

These discussions show that we can classify the f�R�
models into four classes, as anticipated in the Introduction.
The classification can be based entirely upon the geomet-
rical properties of the m�r� curve and applies to all the
cases in which an accelerated attractor exists (see Fig. 2).

Class I: This class of models covers all cases
for which the curve m�r� does not connect the accel-
erated attractor with the standard matter point
�r;m� � ��1; 0�, either because m�r� does not pass
near the matter point, i.e. m�r! �1� � 0, or be-
cause the branch of m�r� that accelerates is not
connected to �r;m� � ��1; 0�. Instead of having a
standard matter phase, the solutions reach the
�MDE fixed point P2 with a wrong evolution of
the scale factor (a / t1=2) or bypass it altogether by
falling on the final attractor without a matter epoch
at all. The final accelerated fixed points, if they exist,
can be in any of the three ranges of P6.
Class II: For these models the m�r� curve connects
the upper vicinity of the point �r;m� � ��1; 0� (with
m> 0 and m05 >�1) to the point P1 located on the
segment 0<m � 1 at r � �2, or asymptotically to
P6�r! 	1�. Since the approach to P5 is on the
positive side of m, the trajectory exhibits a damped
oscillation around the matter point [see Eq. (51)],
which is followed by the de Sitter point P1 or
P6�r! 	1�. Models of Class II are observationally
acceptable and the final acceleration corresponds to
a de Sitter expansion.
Class III: For these models the m�r� curve intersects
the critical line at �1=2<m< 0 (i.e. region B). In
all these cases the approximated matter era is a very
fast transient and only a narrow range of initial
conditions may allow it. Generically, the matter era
is followed by a strongly phantom acceleration,
although one could design models with the other
ranges of the critical line. The closer to a standard
matter epoch, the more phantom the final accelera-
tion is (weff ! �1 as m! �0). Since the matter
era is practically unstable and the highest effective
equation of state is �weff � 7:6 (which implies
wDE ’ weff;0=�DE;0 even smaller), these models are
generally ruled out by observations (although a more
careful numerical analysis is required).
Class IV: For these models the m�r� curve connects
the upper vicinity of the point �r;m� � ��1; 0� (with
m05 >�1, m> 0) to the region (D) located on the

critical line m � �r� 1 (with m06 <�1). These
models are observationally acceptable and the final
acceleration corresponds to a nonphantom effective
equation of state (weff >�1).

In Fig. 3 we show a gallery of m�r� curves for various f�R�
models. The above discussions clarify the conditions for
which f�R� dark energy models are acceptable. Only the
Class II or Class IV models are, in principle, cosmologi-
cally viable. However, we need to keep in mind that what
we have discussed so far corresponds to the behavior only
around critical points. One cannot exclude the possibility
that single trajectories with some special initial conditions
happen to reproduce an acceptable cosmology. It is there-
fore necessary to confirm our general analysis with a
thorough numerical check; by its nature, this check can
only be done on a case-by-case basis, and we turn our
attention to this in the next sections.

V. SPECIFIC MODELS: ANALYTICAL RESULTS

In this section we shall consider a number of f�R�
models in which m can be explicitly written in terms of
the function of r and we study the possibility to realize the
matter era followed by a late-time acceleration. Most of the
relevant properties of these models can be understood by
looking at the m�r� curves of Fig. 3.

A. f�R� � �R�n

This power-law model gives a constant m from Eq. (30),
namely

 m � �n� 1; (58)

where r � n. The curve m�r� degenerates, therefore, to a
single point and this case reduces to a two-dimensional
system in the absence of radiation because of the relation
x3 � nx2. Hence the condition m�r � �1� � 0 is satisfied
only for n � �1, i.e. Einstein gravity. Since the initial
conditions around the end of the radiation era are given
for positive R, the positivity of the term f;R � �n�R�n�1

requires that �< 0 for n > 0 and �> 0 for n < 0. From
Eq. (58) one hasm> 0 for n <�1 andm< 0 for n >�1.
Since the eigenvalues of P5 for this model are given by the
latter two in Eq. (50) [41], the matter point P5 is a stable
spiral for n <�1 (aroundm! �0). Then the solutions do
not leave the matter era for the late-time acceleration.

On the other hand, P5 is a saddle point for �1< n<
�0:713 while the �MDE point P2 is stable in the over-
lapping range �1< n<�3=4. However, one of the ei-
genvalues of P5 exhibits a positive divergence in the limit
m! �0, which means that the matter point becomes
repulsive if m is very close to �0. As we anticipated, in
the region around m � �0 the effective equation of state
for P6 corresponds to the strongly phantom type (weff <
�7:6), i.e., to our Class III models [41]. The above dis-
cussion shows that the saddle point P5 is connected to
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either the �MDE point P2 or the strongly phantom point
P6. The more one tries to get a standard matter era for n!
�1, the more phantom the final acceleration becomes, and

the more divergent the eigenvalues become. Moreover, if
we take into account radiation, the solutions tend to stay
away from the point P5.

 

FIG. 3 (color online). This figure illustrates several possible m�r� curves (thick dashed line). Only the f � R logR and the f �
R exp�1=R� models show an acceptable connection between the matter point �r;m� � ��1; 0� and the de Sitter point P1 along the
dashed segment at r � �2. In all other cases, there is either no intersection of the m�r� curves with the critical line m � �r� 1 near
�r; m� � ��1; 0� or the m�r� curve enters the forbidden direction regions (the gray triangles). In all panels we show the forbidden
regions for three points in the (A), (B), (C) ranges of P6, even when there are no critical points in one of those regions. For clarity we
omit the range (D).
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So the models of this type are always in Class I except
for (i) �1< n<�0:713 (Class III) and for
(ii) �1:327< n<�1 (they are asymptotically not accel-
erated). Similar conclusions were found in Ref. [42].

The pure power-law models correspond to points �r �
�n;m � �1� n� in the �r;m� plane. We can notice that
the �CDM model f � R�� corresponds to the horizon-
tal line m � 0, which connects the matter era at �r;m� �
��1; 0� with the de Sitter acceleration P1 at �r;m� �
��2; 0� and is therefore a valid Class II model. A possible
generalization of �CDM is given by the models

 f�R� � �Rb ���c; (59)

which generate a tilted straight line m�r� � r�1� c�=c�
b� 1. If the intersection m � �1� bc with the critical
line is at 0<m� 1 and the slope is given by �1< �1�
c�=c < 0, then the matter era is connected with P1 and the
model is acceptable (Class II).

B. f�R� � R� �R�n

This model was proposed in Refs. [24,25] to give rise to
a late-time acceleration. From Eqs. (30) and (31) we obtain

 m�r� � �
n�1� r�

r
: (60)

Notice that m�r� is independent of �. Since m�r � �1� �
0 the models satisfy the necessary condition for the exis-
tence of the matter point P5.

Let us analytically study the attractor behavior of the
model in more detail. Substituting Eq. (40) for Eq. (60), we
find the solution ma � 0 or mb � ��n� 1�, which holds
for the points P5 and P6. In this case the points P5 and P6

are characterized by

 P5a:
�
0;�

1

2
;
1

2

�
; �m � 1; weff � 0; (61)

 P5b:
�
�

3�n� 1�

n
;
4n� 3

2n2 ;
4n� 3

2n

�
;

�m � �
8n2 � 13n� 3

2n2 ; weff � �1�
1

n
;

(62)

 

P6b:
�
�

2�n� 2�

2n� 1
;

4n� 5

�n� 1��2n� 1�
;

n�4n� 5�

�n� 1��2n� 1�

�
;

�m � 0; weff � �
6n2 � 7n� 1

3�n� 1��2n� 1�
: (63)

Note that, for ma � 0, P6a goes to infinity. We are inter-
ested in the case where a (quasi)matter era is realized
around m5 � 0.

This family of models splits into three cases:
(1) n <�1, (2) �1< n< 0, and (3) n > 0. The inter-
mediate cases n � 0, 1 are of course trivial.

Case 1 (n <�1)

Since m0 � n=r2, we see that m0��1�<�1 and therefore
the matter epoch around m � �0 is stable and no accel-
eration is found asymptotically (P1 is stable as well for
�2< n< 0). The case n � �2 corresponds to
Starobinsky’s inflation model and the accelerated phase
exists in the asymptotic past rather than in the future.
This case does not belong to one of our main classes since
there is no future acceleration.

Case 2 (� 1< n< 0)
Then the condition at r � �1 is fulfilled for R! 1, and
we see that m � n�n� 1��R�n�1=�1� n�R�n�1� ap-
proaches zero from the positive side if �< 0. In this
case, there are damped oscillations around the standard
matter era and the final stable de Sitter point P1 can be
reached (P6 is unstable): this is the Class II model. Notice
that F < 0 for small R, but F > 0 along the cosmologically
acceptable trajectory. When �> 0, two of the eigenvalues
diverge as m! �0 and the matter era becomes unstable.

Case 3 (n > 0)
In this case the stable accelerated point P6 exists in the
nonphantom region (A) because of the condition m �
�n� 1<�1. If �> 0, m approaches zero from the
positive side. Then there are oscillations around the matter
era but the accelerated point P1 is unstable (since m1 �
�n=2< 0). Since m05 � n > 0, the matter era corresponds
to a saddle. However, P5 with m05 >�1 cannot be con-
nected to P6 in the region (A), as we showed in the
previous section. Hence we do not have a stable acceler-
ated attractor after the matter epoch. When �< 0, m
approaches zero on the negative side and here again the
matter point becomes effectively unstable since one of the
eigenvalues exhibits a positive divergence. Then this case
does not possess a prolonged matter epoch and belongs to
Class I. The first panel of Fig. 3 shows graphically why
models like f�R� � R� �=R cannot work as a viable
cosmological model: the accelerated point is disconnected
from the matter point.
In the next section we shall numerically confirm that the
matter phase is in fact absent prior to the accelerated
expansion except for models f�R� � R� �R�n with �<
0 and �1< n< 0. In any case, all these power-law cases
are cosmologically unacceptable. These results fully con-
firm the conclusions of Ref. [34] reached by studying the
Einstein frame. The single exception pointed out above for
�1< n< 0 was not part of the cases considered in
Ref. [34], since F < 0 for small R.

C. f�R� � Rp exp�qR�

In this model m is given by

 m�r� � �r�
p
r
: (64)

Notice that for the pure exponential case (p � 0) we have
m � �r and x3=m! x2 ! 0 so that P2 exists while P5

does not. Otherwise the functionm vanishes for r! 	
����
p
p

,
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which means that the condition (49) for the existence of the
matter era holds only for p � 1. However, since in this
case m0�r � �1� � �2<�1, the point P5 is a stable
spiral for m> 0. So the entire family of models is in fact
ruled out.

In the limitm! �0, P6 cannot be used for the late-time
acceleration in addition to the fact that P5 is stable.
Moreover, since m�r � �2� � 3=2 for p � 1, the
de Sitter point P1 is not stable. We note that Eqs. (40)
and (64) are satisfied in the limit m! �1 and r! �1;
see Fig. 3. Since the eigenvalues in Eq. (53) are �4, �4, 0
in this case, the point P6: �x1; x2; x3� � ��1; 0; 2� with
m! �1 is marginally stable with an effective equation
of state weff ! �1. In fact, when m> 0, we have numeri-
cally checked that the final attractor is either the matter
point P5 or P6: �x1; x2; x3� � ��1; 0; 2� (but then without a
preceding matter phase), depending upon initial
conditions.

Thus models of this type do not have the sequence of
matter and acceleration for p � 1, whereas the models
with p � 1 belong to Class I.

D. f�R� � Rp�log�R�q

In this model we obtain the relation

 m�r� �
p2 � 2pr� r�q� r� qr�

qr
: (65)

Since m�r � �1� � ��p� 1�2=q, the matter epoch exists
only for p � 1. When p � 1 one has m�r � �2� � 1�
1=�2q�, which means that P1 is stable for q > 0 whereas it
is not for q < 0. The derivative term m0�r� is given by

 m0�r� � �1�
r2 � 1

qr2 : (66)

Since m0�r � �1� � �1 the point P5 is marginally stable.
However, we have to caution that m does not exactly
become zero. In fact, when r <�1 we have m0�r�>�1
and m�r�> 0 for q > 0, which means that the quasimatter
era with positive m is a saddle point. Similarly the accel-
erated point P6 in the region (C) is stable for q > 0 whereas
it is not for q < 0. Hence both P1 and P6 are stable for
positive q. However, one can show that the function m�r�
given in Eq. (65) satisfiesm�r�<�r� 1 in the region r <
�1 for p � 1 and q > 0. Hence the curve (65) does not
cross the point P6 in the region (C). Then the only possi-
bility is the case in which the trajectories move from the
quasimatter era P5 to the de Sitter point P1. In the next
section we shall numerically show that the sequence from
P5 to P1 is in fact realized.

Thus when p � 1 and q > 0, the above model corre-
sponds to Class II, whereas the models with p � 1 are
categorized as Class I.

E. f�R� � Rp exp�q=R�

This model gives the relation

 m�r� � �
p� r�2� r�

r
; (67)

which is independent of q. Here we have m�r � �1� �
p� 1, so a matter era exists for p � 1. In this case one has
m�r� � ��r� 1�2=r > 0 for r < 0. Since m�r � �2� �
1=2 for p � 1, the point P1 is a stable spiral. The derivative
term m0�r� is given by m0�r� � �1� 1=r2, which then
implies m0�r � �1� � 0 and m0�r <�1�>�1. This
shows that P5 is a saddle whereas P6 in the region (C) is
stable. The curve (67) satisfies the relation m�r�<�r� 1
in the region r <�1 for p � 1 and also has an asymptotic
behavior m�r� ! �r in the limit r! �1. Then, in prin-
ciple, it is possible to have the sequence P5 ! P6�r!
�1�, but the trajectory from the point P5 is trapped by
the stable de Sitter point P1 which exists at �r;m� �
��2; 1=2�. We note that one of the eigenvalues for the
point P5 is large [3�1�m05� � 3] compared to the model
f�R� � R�log�R�q whose eigenvalue is close to 0 (but
positive) around m � 0. In such a case the system does
not stay around the matter point P5 for a long time as we
will see later.

Thus the model with p � 1 belongs to Class II, whereas
the models with p � 1 correspond to Class I.

F. f�R� � R� �R2 ��

In this case the function m�r� is given by

 m�r� �
�1� r� A�r�

1� A�r�
; (68)

where

 A�r� �
����������������������������������������������
�1� r�2 � 4 ~�r�2� r�

q
; ~� � ��: (69)

Here we assume that �, �> 0. The equation, m�r� �
�1� r, gives three solutions,

 r1;2 � �
1� 4 ~�	 2B

1� 4 ~�
; r3 � �2; (70)

where B �
����������������������
~��1� 4 ~��

p
. Then we obtain three points P5

and three P6. For P5 we have

 P5a;b: �x1; x2; x3� �

�
6 ~�

2 ~�	 B
;�

B�B	 8 ~��

2�B	 2 ~��2
;

8 ~�	 B
4 ~�	 2B

�
;

(71)

 P5;c: �x1; x2; x3� �

�
3

2
;�

5

8
;
5

4

�
: (72)
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The point P5;c is unphysical since �m < 0. The points
P5a;b reduce to a matter point in the limit ~�� 1. At the
lowest order, one has weff � �4

����
~�
p

=3. This shows that a
standard matter era can exist either for �! 0, i.e., for the
�CDM model, or for �! 0, i.e., for Starobinsky’s model
f�R� � R� �R2. In the limit ~�! 0 the only accelerated
point is the de Sitter point P1. Since the condition
m��2� � 1 is satisfied for any ~�, we see that this f�R�
model is always attracted by the de Sitter acceleration.

Models of this type belong to Class II.

G. f�R� � R��4
1=R��

�2
2 R

2

This model was proposed in Ref. [30]. In this case
Eq. (40) reads

 R3 2� r

�2
2

� R2�1� r� ��4
1�1� r� � 0; (73)

where R needs to be real solutions. Since the solutions for
this equation are quite complicated, we will not write them
down here. The necessary condition for the existence of the
matter phase is, as usual, m��1� � 0. We have here

 m��1� �
6

3� �2�2=�1�
4=3
: (74)

Hence we see that m��1� tends to zero for �1 ! 0 but,
since it stays on the negative side, the matter era is unstable
(one of the eigenvalues exhibits a positive divergence). So
we can draw from Eq. (74) an important conclusion that the
matter phase can only be obtained for �1 � 0, i.e.,
Starobinsky’s (inflation) model previously discussed.

In order to satisfy solar system constraints, a particular
version of this model was suggested with [30]

 �2 � 33=4�1 and R �
���
3
p
�2

1: (75)

In that case, (74) yields m��1� � 3:40; hence this case
does not have a standard matter phase either.

The model has two accelerated attractors:

 

�P6: �x1; x2; x3� � ��2; 3=2; 3=2�; weff � �2=3;

P1: �x1; x2; x3� � �0;�1; 2�; weff � �1:

(76)

Thus, depending upon the initial conditions, the trajecto-
ries lie in the basin of attraction of either of these two
points.

This model corresponds to Class I.

H. m�r� � �0:2�1� r��3:2� 0:8r� r2�

This model has been designed by hand to meet the
condition for Class IV. Note that this corresponds to the
m�r� curve in the Class IV case shown in Fig. 2. The
corresponding f�R� Lagrangians are the solutions of the
differential equation

 

Rf;RR
f;R

� m
�
�
Rf;R
f

�
; (77)

which can be obtained numerically. This model obeys the
conditions m��1� � 0 and m05 >�1 required for a saddle
matter era P5, as well as the conditions �

���
3
p
� 1�=2<

m6 � 0:8< 1 and m06 <�1 required for a stable acceler-
ated point P6 in the region (D). The final accelerated
attractor corresponds to the effective equation of state
weff � �0:935.

A model with similar properties but an analytical
Lagrangian is f�R� � Rp=�p�1��R� C�1=�1�p� (C � 0, p �

1) for which m�r� � �p�r� 1�2=r, whose P6 intersection
lies in the region (D) for 2< p< 3:73 with weff �
1�9p�2p2

3�1�p� . Here, however, the matter era has large eigen-
values so is in fact of very little duration and hardly
realistic. A generalization to m�r� � �p�r� r0�

2=r with
r0 slightly less than 1 works much better but then the
Lagrangian is very complicated.

I. Summary

In Table I we summarize the classification of most f�R�
dark energy models presented in this section. No model
belongs to Class IVexcept for the purposely designed cases

TABLE I. Classification of f�R� dark energy models.

f�R� models m�r� Class I Class II Class III

�R�n �1� n n >�0:713 � � � �1< n<�0:713
R� �R�n �n �1�r�r n > 0 �1< n< 0, �< 0 � � �

Rp�log�R�q p2�2pr�r�q�r�qr�
qr p � 1 p � 1, q > 0 � � �

Rp expqR �r� p
r p � 1 � � � � � �

Rp exp�q=R� � p�r�2�r�
r p � 1 p � 1 � � �

R� �R2 �� Equation (68) � � � ��� 1 � � �

R��2
1=R� R

2=�2
2 Equation (73) Always � � � � � �
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given in the previous subsection, so we omit the Class IV
column. The models which are classified in Class II at least
satisfy the conditions to have a saddle matter era followed
by a de Sitter attractor. This includes models of type f �
R� �R�n (� 1< n< 0, �< 0), f � R�log�R�q (q >
0), and f � R� �R2 ��. However, this does not neces-
sarily mean that these models are cosmologically viable,
since it can happen that the matter era is too short or too
long to be compatible with observations. In the next section
we shall numerically study the cosmological viability of
the above models.

VI. SPECIFIC CASES: NUMERICAL RESULTS

We will now use the equations derived in Sec. II in order
to recover the cosmic history of given f�R� DE models and
confirm and extend our analytical results. In all cases, we
include radiation and give initial conditions at an epoch
deep into the radiation epoch. As our aim is to check their
cosmological viability, we tune the initial conditions in
order to produce observationally acceptable values, namely

 �m;0 � 0:3; �rad;0 � 10�4: (78)

In some cases we plot a two-dimensional projection of the
three-dimensional phase space �x1; x2; x3� (no radiation) in
Poincaré coordinates, obtained by the transformation

x�P�i � xi=�1� d� where d �
���������������������������
x2

1 � x
2
2 � x

3
3

q
.

A. f�R� � �R�n

Since m � �n� 1 in this case, the matter era is pos-
sible only when n is close to �1. So let us consider the
cosmological evolution around n � �1. As we already
showed, the matter point P5 is stable for n <�1. When
n >�1, P5 is a saddle and both P2 and P6 are stable. In
Fig. 4 we show a two-dimensional phase space plot for the
model n � �0:9 in the absence of radiation. In fact, the
final attractors are either the �MDE point P2 with weff �
1=3 or the phantom point P6 with weff � �10:17. The
point P5 with weff � 1=9 is in fact a saddle point.
However, if we start from realistic initial conditions around
�x1; x2; x3; x4� � �0; 0; 0; 1� with the inclusion of radiation,
we have numerically found that the trajectories directly
approach final attractors (P2 or P6) without reaching the
vicinity of P5. Moreover, as we choose the values of n
closer to �1, the point P5 becomes repulsive because of
the positive divergence of an eigenvalue. These results
show that the power-law models with n >�1 do not
provide a prolonged matter era sandwiched by radiation
and accelerated epochs in spite of the fact that the point P5

can be a saddle.

B. f�R� � R� �R�n

When n > 0 one has m � �n� 1<�1 and m0�r� �
n=r2 > 0 for P5 and P6. In this case P6 is a stable attractor
whereas P5 is a saddle. In the previous section we showed

that the matter point P5 is disconnected to the accelerated
point P6 since P6 exists in the region (A). According to the
results in Ref. [34] we have only the following two cases:
either (i) the matter era is replaced by the �MDE fixed
point P2 which is followed by the accelerated attractor P6,
or (ii) there is a rapid transition from the radiation era to the
accelerated attractor P6 without the �MDE. Which trajec-
tories are chosen depends upon the model parameters and
initial conditions. In Fig. 5 we depict a two-dimensional
phase space plot for the model n � 1. This shows that the
final attractor is in fact P6 and that whether the solutions
temporally approach the saddle point P2 or not depends on
initial conditions.

In order to understand the evolution after the radiation
era, let us consider the model n � 1 without radiation.
From Eqs. (4) and (5) we find that the evolution of the
scale factor during the �MDE is given by

 a�t� � �t=ti�
1=2 � ��t��t=ti�

9=4; (79)

where the subscript ‘‘i’’ represents the value at the begin-
ning of the �MDE. At first order in ��t�, we have

 

FIG. 4 (color online). Phase space in the plane �x1; x2� in
Poincaré coordinates for the model f�R� � �R0:9 in the absence
of radiation. Here and in the following plot, the dotted lines
correspond to trajectories at the early stage, the continuous lines
to those at the final stage. The circles represent critical points.
The solutions approach either the �MDE point P2 or the
phantom point P6. The point P5 is a saddle, but the trajectories
do not approach this point if we take into account radiation. The
point P3 is an unstable node.
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 ��t� �
�2

144H2
i

1����������������������������������������������
��i�m =3H2

i � �H=Hi�
1=2

q : (80)

Notice that � is of order H0 to realize the present accel-
eration. Since H0 � Hi, the parameter ��t� is in fact much
smaller than unity. The scale factor evolves as a / t1=2

during the �MDE, but this epoch ends when the second
term in Eq. (79) gets larger than the zeroth order term.
Hence the end of the �MDE is characterized by

 t �
�
144H2

i

�2

���������
��i�m
3H2

i

vuut �
4=7
ti: (81)

After that, the solutions approach the accelerated attractor
P5. Equation (81) shows that the duration of the �MDE

depends on � together with the initial conditions ��i�m and
Hi. A similar argument can be applied for any n <�1,
n >�3=4 with a correction growing as t5=2�1=2�n�1�. In
Fig. 6 we plot the evolution of various quantities for n � 2.
In this case the radiation era is followed by the �MDE
saddle point P2 with �m � 2 and weff � 1=3. The final
attractor is the accelerated point P6 with �DE � 1 and
weff � �0:82. As is clearly seen in the right panel of
Fig. 6, we do not have a standard matter era with weff � 0.

Let us consider the case in which n is close to�1. When
n <�1 the point P5 is a stable spiral, so the matter era is
not followed by an accelerated expansion as is similar to
the power-law models. If n >�1, the de Sitter point P1 is
stable whereas the phantom point P6 is not. In Fig. 7 we
show the phase space plot in a two-dimensional plane for
n � �0:9. When �> 0, although the point P5 is a saddle,
the solutions approach the attractor P1 without staying the
region around the point P5 for a long time because m is
negative. This tendency is more significant if n is chosen to
be closer to �1, i.e. m! �0. Hence one cannot have a
prolonged matter era in these cases as well. On the other
hand, for �< 0, we have m! �0 and there are oscilla-
tions around the matter era followed again by the attractor
P1. Then this latter case, belonging to Class II, can be
cosmologically viable.

C. f�R� � R�log�R�q

When q > 0, we showed that the point P5 is a saddle for
m�r <�1�> 0 whereas both P1 and P6 are stable. In the

 

FIG. 6 (color online). The cosmic evolution of various quan-
tities is shown for the model f�R� � R� �=R2 with � � ��6,
�=H0 � 11:04. The standard matter era is replaced by the
�MDE which corresponds to a / t1=2, weff � 1=3 and �m �
2. The redshift za at which acceleration starts is za � 0:4 and we
have asymptotically in the future �DE � 1 and weff � wDE �
�0:82 [see Eq. (63)].

 

FIG. 5 (color online). Phase space projected on the plane
�x1; x2� in Poincaré coordinates for the model f�R� �
R� �=R in the absence of radiation. For the initial conditions
x2 > 0 there are two solutions: either (i) the solutions directly
approach the accelerated attractor P6 or (ii) they first approach
the saddle �MDE point P2 and then reach the attractor P6.
When x2 < 0 initially, the trajectories move toward x2 ! �1.
Note that the point P3 is unstable.
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previous section we showed that the only possibility is the
trajectory from P5 to P1. Hence the solutions starting from
the radiation era reach the saddle matter point P5 first,
which is followed by the de Sitter point P1.

In order to obtain a prolonged matter period, the varia-
bles m and r need to be close to �0 and r � �1, respec-
tively, at the end of the radiation era. If we integrate the
autonomous equations with initial conditions r � x3=x2 ’
�1 (and smaller than �1) and x4 ’ 1, we find that the
matter era is too long to be compatible with observations.
In Fig. 8 we plot one example of such cosmological
evolution for q � 1. This shows that a prolonged (quasi)-
matter era certainly exists prior to the late-time accelera-
tion. The final attractor is the de Sitter point P1 with
weff � �1. However, in this case the beginning of the
matter epoch corresponds to the redshift z � 1:1� 1017,
which is much larger compared to the standard value z�
103. The present value of the radiation energy fraction is
�rad;0 � 2:8� 10�15 and is much smaller than the value
given in Eq. (78).

 

FIG. 8 (color online). The cosmic evolution of various quan-
tities for the model f�R� � R log�R with initial conditions x1 �
10�5, x2 � �10�10, x3 � 1:01� 10�10, and x4 � 0:999 at the
redshift z � 1:1� 1017, corresponding to r � �1:01. In this
case the matter era is too long relative to the standard cosmology.
In fact, the energy fraction of the radiation at the present epoch is
�rad;0 � 2:8� 10�15, which is much smaller than the standard
value �rad;0 � 10�4.

 

FIG. 7 (color online). Projected phase space in Poincaré coor-
dinates for the model f�R� � R� �R0:9 in the absence of
radiation. The final attractor is the de Sitter point
P1: �x1; x2; x3� � �0;�1; 2�. Note that neither P2 nor P6 is stable
unlike the model f�R� � �R0:9. In the left panel, �> 0: here P5

corresponds to m< 0 with a large eigenvalue and therefore is
unstable. In the right panel, �< 0: now the point P5 is a saddle
with positive m, so it is possible to have a sequence of an
oscillating matter phase followed by the late-time acceleration.
We plot a single curve for clarity.
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This unusually long period of the matter era is associated
with the fact that the point P5 is a saddle in the region r <
�1 but it is marginally stable in the limit r! �1 (i.e.m!
�0). Hence as we choose the initial values of r closer to
�1, the duration of the matter period gets longer. In order
to recover the present value of �rad given in Eq. (78), we
have to make the matter period shorter by appropriately
choosing initial conditions at the end of the radiation era.
In Fig. 9 we plot the cosmological evolution in the case
where the end of the radiation era corresponds to z� 103

with present values �m;0 � 0:3 and �rad;0 � 10�4. The
energy fraction of the matter is not large enough to domi-
nate the universe after the radiation epoch. Hence this case
is not compatible with observations.

D. f�R� � R exp�q=R�

In this case the matter point P5 is a saddle, but one of the
eigenvalues is 3 rather than close to 0. Numerically, we find
that the solutions do not reach the matter-dominated epoch,
unlike the f�R� � R�log�R�q model with q > 0. In Fig. 10
we plot the cosmological evolution for this model corre-

sponding to the present values �m;0 � 0:3, �rad;0 � 10�4.
In this case the matter epoch is replaced by the�MDE. It is
possible to find a situation in which there exists a short
period of the matter era, but we find that this case does not
satisfy the conditions given by (78). Thus this model is not
cosmologically viable in spite of the fact that it belongs to
Class II.

E. m�r� � �0:2�1� r��3:2� 0:8r� r2�

This model belongs to Class IV, so the cosmological
trajectories can be acceptable. In Fig. 11 we find that the
matter epoch is in fact followed by a stable acceleration
with weff � �0:935. The transition between the various
eras is not very sharp compared to the �CDM model, so it
is of interest to investigate in more detail whether this
model can really be compatible with observations.
However, this is beyond the scope of this paper.

VII. CONCLUSIONS

The f�R� dark energy models are interesting and quite
popular attempts to explain the late-time acceleration.
However, it was recently found that the popular model

 

FIG. 10 (color online). The cosmic evolution of various quan-
tities for the model f�R� � R exp�q=R� with initial conditions
x1 � 0, x2 � 2:13� 10�20, x3 � 5:33� 10�21, and x4 � 0:99
at the redshift z � 3� 105. We see that the matter era is absent
and is replaced by the �MDE.

 

FIG. 9 (color online). The cosmic evolution of various quan-
tities for the model f�R� � R log�R with initial conditions x1 �
10�10, x2 � �10�7, x3 � 1:019� 10�7, and x4 � 0:999 at the
redshift z � 3:15� 106, corresponding to r � �1:019. In this
case we have �m;0 � 0:3 and �rad;0 � 10�4 at the present
epoch, but the matter era is practically absent.
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f�R� � R� �R�n with n > 0 is unable to produce a mat-
ter era prior to the accelerated epoch [34]. In this paper we
have attempted to clarify the conditions under which f�R�
dark energy models are cosmologically viable. We first
derived the autonomous equations (26)–(29) which are
applicable to general f�R� models. In Sec. III all fixed
points are derived in such an autonomous system. By
considering linear perturbations about the fixed points,
we have studied their stabilities to understand the cosmo-
logical evolution in f�R� dark energy models.

The main result of this paper is that we have identified
four classes of f�R� models, depending on the existence of
a standard or wrong matter era (�MDE) and on the final
acceleration. In practice, we have shown that the cosmol-
ogy of f�R� models can be based on a study of the m�r�
curves in the �r;m� plane and on its intersections with the
critical line m � �r� 1. This provides an extremely sim-
ple method to investigate the cosmological viability of
such models. In particular, we find that the Class I models
correspond to the type of models in which the final accel-
eration is preceded by a so-called �MDE phase charac-

terized by a / t1=2 or in which the matter phase does not
exist at all prior to the accelerated epoch. These models are
clearly ruled out, e.g. by the angular diameter distance of
the CMB acoustic peaks; see Ref. [34]. This is by far the
largest class and only a few special cases belong to the
other three.

The general conditions for a successful f�R� model can
be summarized as follows:

(i) An f�R� model has a standard matter-dominated
epoch only if it satisfies the conditions

 m�r� � �0 and m0�r�>�1 at r � �1;

(82)

where the second condition is required to leave the
matter era for the late-time acceleration.

(ii) The matter epoch is followed by a de Sitter accel-
eration (weff � �1) only if
 

0<m�r� � 1 at r � �2 or

m�r� � �r� 1! 	1 �Class II�:
(83)

(iii) The matter epoch is followed by a nonphantom
accelerated attractor (weff  �1) only if m �
�r� 1 and
 

�
���
3
p
� 1�=2<m�r� � 1 and m0�r�<�1

�Class IV�: (84)

Moreover, the curve m�r�must connect with continuity the
vicinity of the matter point P5: �r;m� � ��1; 0� with one
of the accelerated regions. The Class II and IV models are
characterized by m�r� curves that satisfy these require-
ments and lead therefore to an acceptable cosmology.

In the Class III models the curve m�r� intersects the
critical line at m small and negative. In this case the saddle
eigenvalue takes a very large real value and the matter era
is practically unstable and therefore generically very short.
Moreover, most trajectories will be attracted by the
strongly phantom attractor with weff <�7:6 which is in
contrast with observations.

The cases with m0�r� � �1 or m0�r� ! 	1 at the criti-
cal points are not covered in our linear approach and a
higher-order or numerical analysis is necessary. Also, the
power-law model f�R� � R�n is a rather special case in the
sense that it gives a transition from the quasimatter era to
the strongly phantom epoch with a constant negative m.
However, we showed that this model is not cosmologically
acceptable because of the absence of the prolonged matter
epoch. We have also studied analytically and numerically
models like f�R� � R� �R�n, Rp�log�R�q, Rp exp�qR�,
Rp exp�q=R�, �Ra ���b and others and have confirmed
the conclusions drawn from the m�r� approach. See Table I

 

FIG. 11 (color online). The cosmic evolution of various quan-
tities for the model m�r� � �0:2�1� r��3:2� 0:8r� r2� with
initial conditions x1 � 10�10, x2 � �10�7, x3 � 1:000 007�
10�7, and x4 � 0:999 at the redshift z � 3:5� 106. The model
has an approximate matter-dominated epoch followed by a
nonphantom accelerated universe with weff � �0:935.
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for the summary of the classification of a sample of f�R�
dark energy models.

As we have seen, the variable m � Rf;RR=f;R plays a
central role to determine the cosmological viability of f�R�
dark energy models. The �CDM model, f�R� � R��,
corresponds to m � 0 at all times, which thus satisfies the
condition for the existence of the matter era (m � 0)
followed by the de Sitter point at m�r � �2� � 0. The
difference from the line m � 0 characterizes the deviation
from the �CDM model. If the deviation from m � 0 is
small, it is expected that such models are cosmologically
viable.

We conclude with a comment concerning a possible
signature of f�R� cosmology. The standard matter era can
be realized with m! 	0. As we have seen, in all success-
ful cases we analyzed in this work, the matter era is

realized through damped oscillations with positive m.
This raises the obvious question of whether such oscilla-
tions are observable and whether they could be taken as a
signature of modified gravity. This question is left to future
work. An additional interesting direction to investigate is
the evolution of cosmological perturbations in f�R� dark
energy models in order to confront with the data sets of
CMB and large scale structure along the lines of Refs. [43–
45].

ACKNOWLEDGMENTS

We thank Alexei Starobinsky for useful discussions.
S. T. is supported by JSPS (Grant No. 30318802). L. A.
thanks Elena Magliaro for collaboration in an early stage of
this project.

[1] V. Sahni and A. A. Starobinsky, Int. J. Mod. Phys. D 9, 373
(2000); S. M. Carroll, Living Rev. Relativity 4, 1 (2001);
T. Padmanabhan, Phys. Rep. 380, 235 (2003); P. J. E.
Peebles and B. Ratra, Rev. Mod. Phys. 75, 559 (2003);
V. Sahni, Lect. Notes Phys. 653, 141 (2004).

[2] E. J. Copeland, M. Sami, and S. Tsujikawa, Int. J. Mod.
Phys. D 15, 1753 (2006).

[3] S. Perlmutter et al., Astrophys. J. 517, 565 (1999); A. G.
Riess et al., Astron. J. 116, 1009 (1998); 117, 707 (1999);
J. L. Tonry et al., Astrophys. J. 594, 1 (2003); R. A. Knop
et al., Astrophys. J. 598, 102 (2003).

[4] D. N. Spergel et al., Astrophys. J. Suppl. Ser. 148, 175
(2003); astro-ph/0603449.

[5] M. Tegmark et al., Phys. Rev. D 69, 103501 (2004); U.
Seljak et al., Phys. Rev. D 71, 103515 (2005).

[6] D. J. Eisenstein et al., Astrophys. J. 633, 560 (2005); C.
Blake, D. Parkinson, B. Bassett, K. Glazebrook, M. Kunz,
and R. C. Nichol, Mon. Not. R. Astron. Soc. 365, 255
(2006).

[7] B. Jain and A. Taylor, Phys. Rev. Lett. 91, 141302
(2003).

[8] U. Seljak, A. Slosar, and P. McDonald, J. Cosmol.
Astropart. Phys. 10 (2006) 014.

[9] P. Astier et al., Astron. Astrophys. 447, 31 (2006).
[10] M. Chevallier and D. Polarski, Int. J. Mod. Phys. D 10,

213 (2001).
[11] V. Sahni and A. A. Starobinsky, astro-ph/0610026.
[12] Y. Fujii, Phys. Rev. D 26, 2580 (1982); L. H. Ford, Phys.

Rev. D 35, 2339 (1987); C. Wetterich, Nucl. Phys. B302,
668 (1988); B. Ratra and J. Peebles, Phys. Rev. D 37, 3406
(1988); Y. Fujii and T. Nishioka, Phys. Rev. D 42, 361
(1990); E. J. Copeland, A. R. Liddle, and D. Wands, Ann.
N.Y. Acad. Sci. 688, 647 (1993); C. Wetterich, Astron.
Astrophys. 301, 321 (1995); P. G. Ferreira and M. Joyce,
Phys. Rev. Lett. 79, 4740 (1997); Phys. Rev. D 58, 023503
(1998); R. R. Caldwell, R. Dave, and P. J. Steinhardt, Phys.
Rev. Lett. 80, 1582 (1998); I. Zlatev, L. M. Wang, and P. J.

Steinhardt, Phys. Rev. Lett. 82, 896 (1999); P. J.
Steinhardt, L. M. Wang, and I. Zlatev, Phys. Rev. D 59,
123504 (1999).

[13] L. Amendola, Phys. Rev. D 62, 043511 (2000); L.
Amendola and D. Tocchini-Valentini, Phys. Rev. D 64,
043509 (2001); L. Amendola and C. Quercellini, Phys.
Rev. D 68, 023514 (2003).

[14] L. Amendola, M. Quartin, S. Tsujikawa, and I. Waga,
Phys. Rev. D 74, 023525 (2006).

[15] A. Melchiorri, L. Mersini-Houghton, C. J. Odman, and M.
Trodden, Phys. Rev. D 68, 043509 (2003); U. Alam, V.
Sahni, T. D. Saini, and A. A. Starobinsky, Mon. Not. R.
Astron. Soc. 354, 275 (2004); B. A. Bassett, P. S.
Corasaniti, and M. Kunz, Astrophys. J. 617, L1 (2004).

[16] R. R. Caldwell, Phys. Lett. B 545, 23 (2002); R. R.
Caldwell, M. Kamionkowski, and N. N. Weinberg, Phys.
Rev. Lett. 91, 071301 (2003); S. M. Carroll, M. Hoffman,
and M. Trodden, Phys. Rev. D 68, 023509 (2003); P.
Singh, M. Sami, and N. Dadhich, Phys. Rev. D 68,
023522 (2003).

[17] J. M. Cline, S. Jeon, and G. D. Moore, Phys. Rev. D 70,
043543 (2004); N. Arkani-Hamed, H. C. Cheng, M. A.
Luty, and S. Mukohyama, J. High Energy Phys. 05
(2004) 074; F. Piazza and S. Tsujikawa, J. Cosmol.
Astropart. Phys. 07 (2004) 004.

[18] J. P. Uzan, Phys. Rev. D 59, 123510 (1999); L. Amendola,
Phys. Rev. D 60, 043501 (1999); T. Chiba, Phys. Rev. D
60, 083508 (1999).

[19] Y. Fujii, Phys. Rev. D 62, 044011 (2000); N. Bartolo and
M. Pietroni, Phys. Rev. D 61, 023518 (1999); F. Perrotta,
C. Baccigalupi, and S. Matarrese, Phys. Rev. D 61, 023507
(1999); A. Riazuelo and J.-P. Uzan, Phys. Rev. D 66,
023525 (2002).
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