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The B-mode polarization lensing signal is a useful probe of the neutrino mass and to a lesser extent the
dark energy equation of state as the signal depends on the integrated mass power spectrum between us and
the last scattering surface. This lensing B-mode signal, however, is non-Gaussian and the resulting non-
Gaussian covariance to the power spectrum could impact cosmological parameter measurements, as
correlations between B-mode bins are at a level of 0.1. On the other hand, for temperature and E-mode
polarization power spectra, the non-Gaussian covariance is not significant, where we find correlations at
the 107> level even for adjacent bins. When the power spectrum is estimated with roughly 5 uniformly
spaced bins from / = 5 to / = 100 and 13 logarithmic uniformly spaced bins from / = 100 to [ = 2000,
the resulting degradation on neutrino mass and dark energy equation of state is about a factor of 2 to 3
when compared to the case where statistics are simply considered to be Gaussian. If we increase the total
number of bins between [ = 5 and / = 2000 to be about 100, we find that the non-Gaussianities only make
a minor difference with less than a few percent correction to uncertainties of most cosmological
parameters determined from the data. For Planck, the resulting constraints on the sum of the neutrino
masses is 05, ~ 0.2 eV and on the dark energy equation of state parameter we find that o, ~ 0.5. A

post-Planck experiment can improve the neutrino mass measurement by a factor of 3 to 4.
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I. INTRODUCTION

The applications of cosmic microwave background
(CMB) anisotropy measurements are well known [1]; its
ability to constrain most, or certain combinations of, pa-
rameters that define the currently favorable cold dark
matter cosmologies with a cosmological constant is well
demonstrated with anisotropy data from Wilkinson
Microwave Anisotropy Probe [2]. Furthermore the advent
of high sensitivity CMB polarization experiments with
increasing sensitivity [3] suggests that we will soon detect
the small amplitude B-mode polarization signal. While at
degree scales one expects a unique B-mode polarization
signal due to primordial gravitational waves [4], at arcmi-
nute angular scales the dominant signal will be related to
cosmic shear conversion of £ modes to B modes by the
large-scale structure during the photon propagation from
the last scattering surface to the observer today [5].

This weak lensing of cosmic microwave background
(CMB) polarization by intervening mass fluctuations is
now well studied in the literature [6,7], with a significant
effort spent on improving the accuracy of analytical and
numerical calculations (see a recent review in Ref. [8]). As
discussed in recent literature [9], the lensing B-mode signal
carries important cosmological information on the neutrino
mass and possibly the dark energy, such as its equation of
state [9], as the lensing signal depends on the integrated
mass power spectrum between us and the last scattering
surface, weighted by the lensing kernel. The dark energy
dependence involves the angular diameter distance projec-
tions while the effects related to a nonzero neutrino mass
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come from suppression of small scale power below the
free-streaming scale.

Since the CMB lensing effect is inherently a nonlinear
process, the lensing corrections to CMB temperature and
polarization are expected to be highly non-Gaussian. This
non-Gaussianity at the four-point and higher levels are
exploited when reconstructing the integrated mass field
via a lensing analysis of CMB temperature and polariza-
tion [10]. The four-point correlations are of special interest
since they also quantify the sample variance and covari-
ance of two point correlation or power spectrum measure-
ments [11]. A discussion of lensing covariance of the
temperature anisotropy power spectrum is available in
Ref. [12]. In the case of CMB polarization, the existence
of a large sample variance for B modes of polarization is
already known [13], though the effect on cosmological
parameter measurements is yet to be quantified. Various
estimates on parameter measurements in the literature
ignore the effect of non-Gaussianities and could have over-
estimated the use of CMB B modes to tightly constrain
parameters such as a neutrino mass or the dark energy
equation of state. To properly understand the extent to
which future polarization measurements can constrain
these parameters, a proper understanding of non-
Gaussian covariance is needed.

Here, we discuss the temperature and polarization co-
variances due to gravitational lensing. Initial calculations
on this topic are available in Refs. [13,14], while detailed
calculations on the CMB lensing trispectra are in Ref. [15].
Here, we focus mainly on the covariance and calculate
them under the exact all-sky formulation; for flat-sky ex-
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pressions of the trispectrum, we refer the reader to
Ref. [10]. We extend those calculations and also discuss
the impact on cosmological parameter estimates. This
paper is organized as follows: In Sec. II, we introduce
the basic ingredients for the present calculation and present
covariances of temperature and polarization spectra. We
discuss our results in Sec. III and conclude with a summary
in Sec. IV.

II. CALCULATIONAL METHOD

The lensing of the CMB is a remapping of temperature
and polarization anisotropies by gravitational angular de-
flections during the propagation. Since lensing leads to a
redistribution of photons, the resulting effect appears only
at second order [8]. In weak gravitational lensing, the
deflection angle on the sky is given by the angular gradient
of the lensing potential, (i) = V¢ (fi), which is itself a
projection of the gravitational potential ®:

_ _ To dA(ro - r)
m) 2];) drdA(”)dA(’”o)

where r(z) is the comoving distance along the line of sight,
ro 1s the comoving distance to the surface of last scattering,
and d,(r) is the angular diameter distance. Taking the
multipole moments, the power spectrum of lensing poten-
tials is now given through

(&% Dim) = 8118 CY )

|

O(r,Mrr), (1)
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as
ct = % f K2 dkP(R) 1 (k)1 (k), @)
where
If" (k) = f " dr Wik 1)),
du(rg — ) @
Wien k, ~-30 F L,
(k, r) = ( ) (r )dA(r)dA(”o)
where F(r) = G(r)/a(r) and G(r) is the growth factor,

which describes the growth of large-scale density pertur-

bations. In our calculations we will generate C 7’ based on a
nonlinear description of the matter power spectrum P(k).
In the next three subsections we briefly outline the power
spectrum covariances under gravitational lensing for tem-
perature and polarization E and B modes. In the numerical
calculations described later, we take a fiducial flat-ACDM
cosmological model with ), = 0.0418, 1, = 0.24, h =
0.73, 7=10.092, n,=0.958, A(ky =0.05Mpc™!) =
23X 107% m, = 0.05 eV, and w = —1. This model is
consistent with recent measurements from WMAP [2].

A. Temperature anisotropy covariance

The trispectrum for the unlensed temperature can be
written in terms of the multipole moments of the tempera-
ture 7T, as [15]

CTTCTT( 1)m]+m45ml my 5”12 my 4 C;‘Tc?"T(_l)m1+m3 5'”1 my g3 =iy
1 3

hils

Ll Ly

11 C?;T(_l)ml+m25m1 m45’;21;3 mz’ (5)

where &'} " denotes the Kronecker delta symbol which
is nonzero only when [, = [, and m; = —m,. It is straight
forward to derive the following expression for the multi-
pole moment of lensed 7 field as a perturbative equation
related to the deflection angle [7]:

= _ mmym,
Tlm - Tlm + Z ¢llm1lem21[[]12

Lymlymy

1 .
+ 2 Z b1,m, Tiym, ¢z3m31ﬁ’7;lr;2m3, (6)
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where the mode-coupling integrals between the tempera-
ture field and the deflection field, I Z’]";;mz and J l"l"?zllmzm‘, are
defined in Ref. [15,16].

As for the covariance of the temperature anisotropy
power spectrum, we write

1 1 .
2L+ 12 +1 2 Tum Tl Trone T

myniy

Covyrrr =

- cirerr
= @ + T + (Q + R)(Sl]lz, (7)

[
where the individual terms are

2
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L, +1
R = 72(;5211 ) S CHCTTPLL + DEL + 1), (8)
1

and the last two terms, which are related to the Gaussian
variance, can be written in terms of the lensed temperature
anisotropy power spectrum as

Q +R= (CIM)?, 9)

2
20 + 1

where
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We note that Eqgs. (10) are readily derivable when consid-
ering the lensing effect on the temperature anisotropy
spectrum as in Ref. [7].

B. E-mode polarization covariance

Similar to the case with temperature, the trispectrum for
an unlensed E field can be written in terms of the multipole
moments of the £ mode E,,,:

<Ellm1E12n12E13n13El4m4>

— CEECEE( )m1+m45m1 ms 6”12 ny
I Lly

+ CEECEE( l)ml+m;5ml m25m3 my
I I3 I3l

+ CfEC}E;E(—1)”“”’28;”}4 m“BZ’i ", (11)
To complete the calculation, besides the trispectrum of the
unlensed E field in Eq. (11), we also require the expression
for the trispectrum of the lensing potentials. Under the
Gaussian hypothesis for the primordial £ modes and ignor-
ing non-Gaussian corrections to the ¢ field, the lensing
trispectra is given by

<¢llm1 d)lzmz ¢Z3m3 ¢l4m4>

— C¢C¢(_1)m1+m43m1 ms 5;'34 my

+ C¢C¢( 1)m1+mg5;’l}2 mzézi my

+ CPCh(—1ymtmal e (12)
For simplicity, we assume that there is no primordial B
field such as due to a gravitational wave background and
find the following expression for the lensed E field:
. 1
Elm = Elm + 5 Z ¢l,m|Elzm2+21ﬁmlmz(1 + (_1)l+ll+lz)
Lymylymy

1
+- Z ¢llm1Elzm2

Lymylymylymy

X ¢73M3 +2J;;L]r?2]lzn2m3(1 + (_1)I+ZI+ZZ+I3), (13)

where the expressions for the mode-coupling integrals
ol ™ and ,Jp" "™ are described in Refs. [15,16].

As for the covariance of E-mode power spectrum, we
write
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Covgggg = m m Z (Epym, l]mlElzm2E72m7>
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The last two terms can be written in terms of the lensed
power spectrum of E-mode anisotropies as

J + XK= (CEE 2 (16)

2
20, +1
where

ClE=[1-(+1- 4)R]c;?E
GF
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Note that CFE is the power spectrum of the lensed E
modes.

C. B-mode polarization covariance

The calculation related to B-mode power spectrum po-
larization is similar to the case of the E modes except that
we assume that the B-mode polarization is generated solely
the lensing of the £-mode polarization. Based on previous
work (cf. Ref. [7]), we write the multipole moments of the
lensed B modes as
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Here, we will only calculate the B-mode trispectrum with

- 1
iB, == E Immlmz 1—(—1 I+ +1 ) ) ) ) )
fm Z Ptim Bty 207, (1 = (1) ) terms involving C 7’ since we will make the assumption that

Lymilhm
11 e corrections to B modes from the bispectrum and higher-
+ - Z S1,m Eim, order non-Gaussianities of the lensing ¢ field are subdo-
Lymy ymalymy minant. Thus, using the first term of the expansion, we
write
X ¢I3m3 Zjﬁnzzllznzm}(] _ (_1)l+11+lz+l3)‘ (18)
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where
— m l ll 12
2Lty tymy = 2F,,(=1) (—m my  m, ) (20)

The covariance of the B-mode angular power spectrum can be now defined as

_ 1 1 ~ # ~BB /BB
CovV pppp = 2117+1 20, + lm%fBllml llmlBlzszlqm ) — CmCL. (21)

After some straightforward but tedious algebra, we obtain

COVBBBB =A+B+C+ 511129, (22)

where the terms are given by
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Unlike the calculation for the covariances of the lensed
temperature and polarization £ mode, the numerical cal-
culation related to covariance of the B modes is compli-
cated due to the term C, which involves a Wigner-6j
symbol. These symbols can be generated using the recur-
sion relation outlines in Appendix of Ref. [15], though we
found that such recursions are subject to numerical insta-
bilities when one of the [ values is largely different from
the others and the [/ values are large. In these cases, we
found that values accurate to better than a 10% of the exact
result can be obtained through semiclassical formulae [17].
In any case, we found that C is no more than 1% of A, B,
and these terms are in turn no more than 10% of D. The
same situation happens to those expressions in flat-sky
approach [18].

D. Other full sky covariances

PHYSICAL REVIEW D 75, 083501 (2007)

in cross correlation power spectra such as TE. Here, we list
expressions for these covariances as we will use them for
the Fisher matrix analysis described later. To simplify the
expression, we make use of the following notation with

1, = Finn,
R | + (—1)h+h+h
eF1,, = 2@@5(#)’ (25)
A | — (—=1)h+hth
and pF,,, = 25@&(#)’

denoting mode coupling in temperature and polarization
modes. Below X, Y, Z, W € {T, E}, and

N — N N N
Covixyzw = CoViyyzwi T Covyyzw, + Covyyzws

N N N
+ Coviyyzwa + Covyyzy s + Coviyyzwe

In addition to covariances of temperature, £ and B (26)
modes, we also consider covariances of the cross power
spectra. This is due to the fact that information is contained =~ where
|
1 R R
N - b (CXZ YW XW ~YZ
COVXYZW,] - (2[1 4 1)(212 + 1) ;CL(CIZ Clz + Clz Clz )XFllleyFllle’
CovV — 1 C¢>(CXZCYW + CXWCYZ) I Ia
OVxyzw,2 L + )2, + 1)2 L\& 74y o Y )zt Leywt L
1 . .
N — b YZ XW
Covyyzws = L + )2 + 1) Z:CL Cl] sz xFi,01,2F 1,11,
(27
1 . R
N — b AYZ AXW
Covyyzwa = L + )L + 1) gCL C12 Czl vEuo,wFoii,
1 . .
N — b YW ~XZ
Covyyzws = L + )2hL + 1) ZCL GG xF L uwF L
1

Cov¥ =
VXrZwe T (01 )20, + 1)
In the case of cross terms involving B modes, the cova-
riances of bandpower XY with BB take a simple form with

2
QL + )2, +

N — b ~XEYE F a2
Covyyps = I)ZCL Cl, Cl2 BF1,8F L,L1,-
L

(28)

Finally, the full covariances also include the Gaussian
pieces which can be represented by

1 U JONI
G — XZ FYW XW ~YZ
Cov ¥y w = T I(CZI C"+ o). (29)
Because of parity considerations with CF# = CT# = 0 and
one can ignore covariances between these terms and tem-

perature and polarization modes.

b ~AYW ~XZ f 7
ZCL C12 Czl YFllLIZZFlzLII'
L

[
II1. RESULTS AND DISCUSSION

We begin our discussion on the parameter uncertainties
in the presence of non-Gaussian covariance by first estab-
lishing that one cannot ignore them for the B-mode power
spectrum. In Fig. 1 we show the correlation matrix, which
is defined as

_ Covyyzw(i, j)
VCOVyxyzw (i, )CoVyxyzw(j, J)

but considering only terms involving XYZW = TTTT,
EEEE, and BBBB. This correlation normalizes the diago-
nal to unity and displays the off diagonal terms as a value
between 0 and 1. This facilitates an easy comparison on the
importance of non-Gaussianities between temperature, E,
and B modes of polarization. As shown in Fig. 1, the off
diagonal entries of temperature and E modes are roughly at

(30)

r,-j
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FIG. 1 (color online). The correlation matrix [Eq. (30)] for temperature (left), E -mode (middle), and B-mode (right) power spectra
between different / values. The color axis is on a log scale and each scale is different for each panel. As is clear from this figure, the off
diagonal correlation is weak for both 7- and E-mode power spectra, but is more than 0.1 for most entries for the B-mode power
spectrum. This clearly shows that the non-Gaussianities are most pronounced for the B-mode signal and will impact the information
extraction from the angular power spectrum of B modes than under the Gaussian variance alone. The B-mode covariance shown in the
right panel agrees with Figure 5 of Ref. [14].

the level of 107> suggesting that non-Gaussian covariance
is not a concern for these observations out to multipoles of
2000 [12], while for B modes the correlations are at the
level above 0.1 and are significant.

Below when we calculate the signal-to-noise ratio and
Fisher matrices, we use the bandpowers as observables

A — 47Ta Z(zl +1 CBB EETT, TE (32)

while the full covariance matrix is

A2 _ A2\(A2 2\\ — oG N
with logrithmic bins in the multipole space. Our band- (A7 = AD)(A] — A7 )> Siidij + Sij (33)
power estimator for two quantities of X and Y fields
involving temperature and polarization maps is with the Gaussian part
L=lp
A | e L . SG=—5— N @1 + DRCPPEETITE 4N, 2,
Advi=—> > 4__leYlm’ €2)) ! (477) &; IIZII 1 1
=== A
Nl — ( p ) l(l+1)€FWHM/81n2’ (34)
Tcme
where a; = [, — I;; is an overall normalization factor
given by the bin width. The angular power spectra are and the non-Gaussian part is
|T| T IIIII|T| T IIIII|T'_r II T IIIIIIII T IIIIIIII T |T| T IIIInTI T |||||n'|_|'
1000 0 =4 F == B — 1000
§ ok el3 1F 7 100
10 & =R, 9F H 10
Ej 1 IIIII|.|J 1 IIIII|.|]_E :II 1 IIIIIIII 1 IIIIIIII I: Ej 1 ||||||_|] 1 ||||||_|J_E
10 100 1000 10 100 1000 10 100 1000
l l l

FIG. 2. Here we show the cumulative signal-to-noise ratio for a detection of the power spectrum [Eq. (36)] for temperature (left),
E-mode (middle), and B-mode (right) polarization power spectra. The solid line is the case with a Gaussian covariance whereas the
dashed line is with a non-Gaussian covariance. We can see that for the case of the temperature and E-mode polarization there is little
difference between the Gaussian and non-Gaussian covariance, but for the B-mode polarization there is a difference of a factor of ~10
at large [ values.
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S;‘j/ = (477)2 Z(le D@L, + DI (Coviyzw),

@i
(35)

where Covy, ., are the corresponding non-Gaussian con-
tributions to the covariance.

To further quantify the importance of non-Gaussianities
for B modes, in Fig. 2, we plot the cumulative signal-to-
noise ratio for the detection of the power spectra as a
function of the bandpowers. These are calculated as

(SN)xy = D CX/Covyyyy(Ai ANCY,  (36)

AjA;

by ignoring the instrumental noise contribution to the
covariance and only taking terms involving TT, EE, and
BB. The result for other nonzero power spectrum involving
the cross correlation between temperature and £ modes is
similar to the case of either temperature or £ modes. As
shown, there is no difference in the signal-to-noise ratio for
the temperature and E-mode power spectra measurement
due to non-Gaussian covariances, while there is a sharp
reduction in the cumulative signal-to-noise ratio for a
detection of the B modes. This reduction is significant
and can be explained through the effective reduction in
the number of independent modes at each multipole from
which clustering measurements can be made. In the case of
Gaussian statistics, at each multipole /, there are 2/ + 1
modes to make the power spectrum measurements. In the
case of non-Gaussian statistics with a covariance, this
number is reduced further by the correlations between
different modes. If N is the number of independent modes
available under Gaussian statistics, a simple calculation
shows that the effective number of modes are reduced by
[1 + (N — 1)r*] when the modes are correlated by an
equally distributed correlation coefficient r among all
modes. With N = 2/ + 1 and substituting a typical corre-
lation coefficient r of 0.15, we find that the cumulative
signal-to-noise ratio should be reduced by a factor of 7 to 8
when compared to the case where only Gaussian statistics
are assumed. This is consistent with the signal-to-noise
ratio estimates shown in Fig. 2 based on an exact calcu-
lation using the full covariance matrix that suggests a
slightly larger reduction due to the fact that some of the
modes are more strongly correlated than the assumed
average value.

To calculate the overall impact on cosmological parame-
ter measurements using temperature and polarization spec-
tra, we make use of the Fisher information matrix given for
tow parameters w and v as

a(AXY)2 ( ZW)Z

Fuv = Z Zagl(covxyzw)—’
XY.ZW=BBEETT,TE ] Pu Py

(37

where the summation is over all bins and the covariance

PHYSICAL REVIEW D 75, 083501 (2007)

matrices are worked out in Sec. II. While this is the full
Fisher information matrix, we will divide our results to
with and without non-Gaussian covariance as well as to
information on parameters present within temperature, and
E and B modes of polarization. In this Fisher matrix
calculation, terms involving EB and T B cross correlations
are not included as the power spectra are exactly zero.
Thus, covariance matrices related to these terms are not
necessary for the calculation.

Since B modes have been generally described as a probe
of neutrino mass and the dark energy equation of state, in
Fig. 3, we show dC;/dm, and dC;/9dw to show the extent
to which information on these two quantities are present in
the spectra. Here, the calculation is done by keeping seven
other cosmological parameters fixed at the fiducial values,
when the parameter of interest in Fig. 3 is varied (See

20 _l T IIIIIII T T IIIIIII T T IIIIIII T _I
L —— [’ 1/d(a,h?) ]
T — — din[CF ]/d(,h?) N
10 | - dIn[CP 1/d(0,h?) " -
0 .
~10 [ -
_20 :_ ............ ""‘v\v_ _:
C_1 1 IIIIIII 1 1 IIIIIII 1 1 IIIIIII 1 |

10 100 1000

l

0.4 -I T IIIIII| T T IIIIIII T T IIIIIII T -I
I —— din[C? ]/dw " e
- — — din[CF //aw Lo .
o2l RIS

i N ||II|||

L ||||| |:

O -
02|

_0.4 -I 1 IIIIII| 1 1 IIIIII| 1 1 IIIIII| 1 -I

10 100 1000

l

FIG. 3. The derivatives of the temperature (7'), E-mode, and
B-mode power spectra with respect to the sum of the neutrino
masses ( % Q,h2, top panel) and the dark energy equation of
state, w (bottom panel). It is clear that in the case of the sum of
the neutrino masses the addition of the B-mode polarization
greatly increases sensitivity. In both cases we find that large [
information also increases sensitivity. We note that the derivative
of the temperature power spectrum with respect to neutrino mass
agrees with that shown in Fig. 3 of Ref. [19].
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Sec. II B). We do, however, assume a flat cosmology, and
thus, parameters which are not independent are varied as
appropriate to conserve the flatness. The derivatives are
taken following the calculation in Ref. [19] and we have
verified that we reproduce their results such as the deriva-
tives with respect to neutrino mass. We use those deriva-
tives in forecasting errors from upcoming CMB
experiments, such as Planck and a post-Planck mission.
As shown in Fig. 3, it is clear that B modes are a strong
probe of neutrino mass given that the sensitivity of tem-
perature and £ modes are smaller compared to the frac-
tional difference in the B modes. Furthermore, B modes
also have some sensitivity to the dark energy equation of
state, but fractionally, this sensitivity is smaller compared
to the information related to the neutrino mass.

In Fig. 4, we summarize parameter constraints on these
two parameters as a function of the instrumental noise for
different values of resolution with and without non-
Gaussian covariance. In calculating the non-Gaussian co-

A, (uKVsec)

A, (uKVsec)
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variance, to simplify the calculation, we consider coarsely
binned power spectrum estimates where we binned the
power spectrum to 5 uniformly spaced bins from / = 5 to
[ =100 and 13 logarithmic uniformly spaced bins from
[ = 100 to [ = 2000. Later, we will also show results with
a fine binning scheme where we divide the multipole range
to 100 equal bins. Even with the large bins, the difference
between Gaussian and non-Gaussian extraction is marginal
low resolution experiments. Non-Gaussianities become
more important for high resolution experiments where
one probes B modes down to large multipoles. In this
case, the parameters extraction is degraded by up to a
factor of more than 2.5 for both the neutrino mass and
the dark energy equation of state. We have not attempted to
calculate the parameter errors for experiments with reso-
lution better than 5 arcminutes. This is due to the fact that
such experiments will probe multipoles higher than 2000.
Furthermore, we also do not think any of the upcoming
B-mode polarization experiments with high sensitivity,

A, (uKVsec)
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FIG. 4. The expected error on the sum of the neutrino masses (top three panels) and the dark energy equation of state, w (bottom
three panels) as a function of experimental noise for three different values of the beam width, Tgwn. The solid line considers Gaussian
covariance with just temperature information, the dotted line considers non-Gaussian covariance with just temperature information, the
dashed line considers Gaussian covariance with both temperature and polarization (E and B mode), and the dashed-dotted line
considers non-Gaussian covariance with both temperature and polarization. It is clear that as the beam width is decreased the estimated
error on the sum of the neutrino masses and w is increasingly overly optimistic when just the Gaussian covariance is used in the Fisher
matrix calculation.
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which will be either space-based or balloon-borne, will
have large apertures to probe multipoles above 2000.

The value of 2000 where we stop our calculations is also
consistent with Planck. Since Planck HFI experiment will
have a total focal plane polarization noise of about
25 wK./sec, based on Fig. 4, we find that it will constrain
the neutrino mass to be below 0.22 eV and the dark energy
equation of state will be determined to an accuracy of 0.5.
Note that the combination of Planck noise and resolution is
such that one does not find a large difference between
Gaussian and non-Gaussian statistics, but on the other
hand, experiments that improve the polarization noise
well beyond Planck must account for non-Gaussian noise
properly. In future, there are plans for a Inflation Probe or a
CMBpol mission that will make high sensitive observa-
tions in search for a gravitational wave background. If such
an experiment reach an effective noise level of 1 uK./sec
and has the same resolution as Planck, the combined
polarization observations can constrain the neutrino mass
to be about 0.18 while the dark energy equation of state will
be known to an accuracy of 0.44. This is well above the
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suggested constraint from Gaussian noise level. This sug-
gests that while high sensitive B-mode measurements are
desirable for studies involving the gravitational wave back-
ground, they are unlikely to be helpful for increasingly
better constraints on the cosmological parameters.

From Fig. 4 we see that as we decrease A, the measure-
ment errors on the parameters asymptote to a constant
value. We can understand this in the following way. As
we see from Eq. (34), the noise blows up exponentially at
large | and therefore sets an effective cutoff /;. Only the
band powers which are smaller than [, contribute to pa-
rameter estimates. Therefore, if we decrease A p» WE in-
crease the number of band powers we can observe and
hence obtain better sensitivity with negligible instrumental
noise for [ =< [;. Therefore, the curves in Fig. 4 become
flatter as we decrease A,. The same situation applies to
Fig. 5. Figure 4 also shows that as we decrease the beam
width, Trwv, We see the Gaussian covariance becomes
more significant. This is a result of the fact that the

Gaussian covariance grows in significance with increasing
L.
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FIG. 5. The error ellipses from our Fisher matrix calculation. We have varied eight parameters, and show the error ellipses for each
parameter with %m,,. The solid ellipse is the expected error from Planck with just a Gaussian covariance, the dashed-dotted ellipse is
same but with a non-Gaussian covariance. The short-dashed ellipse is for an experiment with the same beam width as Planck (T ~ 5')
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but with a non-Gaussian covariance.
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In Fig. 5, to highlight the impact on cosmological pa-
rameters beyond the neutrino mass and dark energy equa-
tion of state, we also show constraints from the Fisher
matrix calculation. We show error ellipses calculated
with and without the non-Gaussian lensing covariance for
two different experiments: Planck, with Trwiy = 5’ and
A, =25 uK./sec and “super-Planck” with Ty = 5’
and A, = 1 uK./sec. This comparison shows that while
parameters such as m, and w are affected, parameters such
as 7, ,,h?* are not affected by non-Gaussian information.
This is due to the fact that the cosmological information on
these parameters come from temperature and E modes
rather than B modes. This highlights the fact that the issues
discussed here are primarily a concern for the B-mode
measurements and extraction of parameters, especially
the parameters that have been recognized to be mostly
constrained by the B-mode measurements, and not for
temperature and £ modes.

To study the extent to which our results are sensitive to
the binning scheme, and to compare our results with Smith
et al. [18] that also performed a calculation similar to ours,
but based on the flat-sky expression for lensing covarian-
ces, we repeat the Fisher matrix calculation by making use
of a binning scheme similar to them (100 bins over the

PHYSICAL REVIEW D 75, 083501 (2007)

multipole range). In Smith et al. [18], non-Gaussian cova-
riances at multipoles below 100 were ignored due to the
break down of the flat-sky expression at large angular
scales, while the all-sky expression derived here allow us
to present a complete formalism which is accurate over the
all multipoles of interest. Figure 6 shows the resulting error
ellipses from our Fisher matrix calculation for the super-
Planck experiment with Tpypy =35" and A, =
1 uK./sec. By Comparing Figs. 5 and 6, we see that the
error ellipses with non-Gaussianities included decrease
their sizes. The correlations between different band powers
also decrease as we decrease the bin sizes in calculating the
covariance terms. In Fig. 6 the effect of non-Gaussianity is
hardly discernible for the error ellipses. This result is
consistent with Figure 6 of Ref. [18]. The resulting effect
is that for an experiment like super-Planck mission, the
non-Gaussian effect is almost negligible when discussing
measurement accuracies of the cosmological parameters
and one can reach the original estimates of, for example,
neutrino masses (with a few percent difference) under
Gaussian variances alone.

The non-Gaussianities in the B modes, while providing
information on gravitational lensing, limits accurate pa-
rameter estimates from the power spectrum alone (see
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FIG. 6. The same caption as Fig. 5. Here we redo the analysis of super-Planck case, the corrections to our previous analysis are

discussed in the end of Sec. III.
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Ref. [9] for an analysis beyond the power spectrum). This
is contrary to some of the suggestions in the literature that
have indicated high precision of measurements on parame-
ters such as the neutrino mass and the dark energy equation
of state with CMB B-mode power spectrum by ignoring
issues related to non-Gaussian correlations. An important
issue related to the power spectrum estimated from non-
Gaussian fields is the binning of the clustering spectrum
measurements. While for Gaussian fields it is well known
that the power spectrum analysis is robust to changes in the
binning scheme (as long as the bins are narrow compared
to any features in the power spectrum), for non-Gaussian
fields, this is no longer the case. As we have demonstrated,
the impact of non-Gaussian covariance is negligible when
one is considering narrow bins as can be achieved with
almost all-sky observations.

The non-Gaussian covariance, however, impacts the
power spectrum analysis with ground-based experiments
that are subjected to partial sky coverage. Since these
experiments only probe the power spectrum at some fun-
damental scale A€ corresponding to the sky area, the
statistics are estimated with larger bins than in the case
from space where all-sky observations allow independent
estimates with fine bins. The effects of non-Gaussian co-
variance are increased with wide bins relative to the case
where power spectra are evaluated with fine bins which are
independent of each other. For partial sky coverage, in
addition to non-Gaussian covariance, correlations are
also induced by the survey geometry and will also impact
the power spectrum analysis. Such correlations between
adjacent modes are significantly reduced once the power
spectrum is binned at appropriate binning scale corre-
sponding to the survey size. Even with such binning,
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non-Gaussian covariance from lensing will remain and
will impact the parameter estimates as we have discussed
here.

IV. SUMMARY

The B-mode polarization lensing signal is a useful probe
of certain cosmological parameters such as the neutrino
mass and the dark energy equation of state as the signal
depends on the integrated mass power spectrum between
us and the last scattering surface. This lensing B-mode
signal, however, is non-Gaussian and it could be that the
resulting non-Gaussian covariance to the power spectrum
cannot be ignored when compared to the case of tempera-
ture and polarization E-mode anisotropy covariances.
Depending on how the power spectrum estimates are
binned and used for parameter estimates, we find that the
resulting degradation on neutrino mass and dark energy
equation of state ranges from about a factor of 2 to a few
percent when compared to the case where statistics are
simply considered to be Gaussian. The large bins are
necessary for ground-based experiments due to lack of
whole sky coverage, while for all-sky experiments from
space, fine binning will lead to a situation where degrada-
tion from non-Gaussianities can be safely ignored.
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