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We develop a nonperturbative method that yields analytical expressions for the deflection angle of light
in a general static and spherically symmetric metric. The method works by introducing into the problem
an artificial parameter, called �, and by performing an expansion in this parameter to a given order. The
results obtained are analytical and nonperturbative because they do not correspond to a polynomial
expression in the physical parameters. Already to first order in � the analytical formulas obtained using
our method provide at the same time accurate approximations both at large distances (weak deflection
limit) and at distances close to the photon sphere (strong deflection limit). We have applied our technique
to different metrics and verified that the error is at most 0.5% for all regimes. We have also proposed an
alternative approach which provides simpler formulas, although with larger errors.
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I. INTRODUCTION

The theory of general relativity (GR) predicts that mas-
sive bodies deform the spacetime around them; even mass-
less particles, like photons, will therefore feel the
gravitational force and their trajectories will necessarily
depart from a straight line. Such effect is particularly
strong in the proximity of black holes, which are very
massive and compact objects: in fact at a certain distance
from the black hole (the photon sphere) the deflection
angle of the photon becomes infinite. This regime is known
as strong deflection limit (SDL), whereas the regime cor-
responding to deflection at large distances is known as
weak deflection limit (WDL).

The WDL has been studied in a series of articles for
different metrics: for example, the lensing from a Kerr met-
ric has been considered in [1–3] whereas the lensing from a
Reissner-Nordstrom metric has been considered in [4,5].

In recent times there has also been great interest in
studying the effects of strong deflection limit, i.e. lensing
due to light passing very close to a compact and massive
body. For example SDL in a Schwarzschild black hole has
been considered by Frittelli, Kling and Newman [6] and by
Virbhadra and Ellis [7]; Virbhadra and collaborators have
also treated the SDL by naked singularities [8] and in the
presence of a scalar field [9]; Eiroa, Romero and Torres
[10] have described Reissner-Nordström black hole lens-
ing, while Bhadra has considered the gravitational lensing

due to the GMGHS charged black hole [11]; Bozza has
studied the gravitational lensing by a spinning black hole
[12]; Whisker [13] and Eiroa [14] have considered SDL by
a braneworld black hole; still Eiroa [15] has recently
considered the gravitational lensing by an Einstein-Born-
Infeld black hole; Sarkar and Bhadra have studied the SDL
in the Brans-Dicke theory [16]; Konoplya has studied the
corrections to the deflection angle and time delay for a
black hole immersed in a uniform magnetic field [17];
Gyulchev and Yazadjiev have studied the SDL for a
Kerr-Sen dilaton axion black hole [18]; finally Perlick
[19] has obtained an exact gravitational lens equation in
a spherically symmetric and static spacetime and used it to
study lensing by a Barriola-Vilenkin monopole and by an
Ellis wormhole. Notice that Bozza and Sereno [20] have
also investigated the SDL of gravitational lensing by a
Schwarzschild black hole embedded in an external gravi-
tational field.

We can distinguish between two different approaches
that have been developed to obtain analytical expressions
for the deflection angle in the strong regime: one which
looks for improvements of the weak lensing expressions,
whose range of validity is therefore extended to distances
closer to the photon sphere, without however taking into
account the divergence of the deflection angle on the
photon sphere, and one which treats exactly the singularity
of the photon sphere and whose precision rapidly drops at
larger distances1. In the first category falls the work of
Mutka and Mähönen [22] and of Belorobodov [23] who
worked out improved formulas for the deflection angle in a
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1For a detailed discussion on the photon surface the reader can
refer to Ref. [21]
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Schwarzschild metric, and the more systematic approach
of Keeton and Petters [5] who have developed a formalism
for computing corrections to lensing observables in a static
and spherically symmetric metric beyond the WDL. In the
second category falls the work of Bozza, who has intro-
duced an analytical method based on a careful description
of the logarithmic divergence of the deflection angle which
allows one to discriminate among different types of black
holes [24]. Recently, Iyer and Petters [25] have also devel-
oped an analytic perturbation framework for calculating
the bending angle of light rays traversing the field of a
Schwarzchild black hole, obtaining accurate expressions
even in proximity of the photon sphere.

In a different category falls a method developed by
Amore and collaborators [26,27]. This method enables
one to convert the integral for the deflection angle in a
static and spherically symmetric metric into a series in an
artificial parameter �. Such series has an exponential con-
vergence rate and its terms can be calculated analytically.
The method is nonperturbative in the sense that it provides
nonpolynomial expressions in terms of the chosen physical
parameter and yields sufficiently accurate results even at
first order. In our previous works we have tested our
formalism on a variety of different metrics, always obtain-
ing very encouraging results.

The purpose of this paper is to improve our method in
order to provide an accurate treatment close to the photon
sphere, even at first order, but without the customary
deterioration of the results at larger distances.

The paper is organized as follows: in Sec. II we illustrate
the application of our method by means of the
Schwarzschild metric and later we show how to treat a
general case. In Sec. III we extend our analysis to a general
static and spherically symmetric metric. In Sec. IV we
compare our approximations with exact results and other
approaches available in the literature. Finally, in the last
section we briefly summarize and discuss our results and
consider further developments.

II. FORMALISM

Let us first review the method of Amore and collabo-
rators [26,27]. We are interested in the general static and
spherically symmetric metric which corresponds to the line
element (in the following we set the velocity of light c� 1)

 ds2 � B�r�dt2�A�r�dr2�D�r�r2�d�2� sin2�d�2� (1)

and which contains the Schwarzschild metric as a special
case. We also assume that the flat spacetime is recovered at
infinity, i.e. that limr!1f�r� � 1, where f�r� � �A�r�;
B�r�; D�r��.2

The angle of deflection of light propagating in this
metric can be expressed by means of the integral [9]
 

�� � 2
Z 1
r0

���������������������
A�r�=D�r�

p ����������������������������������������������������������
r
r0

�
2 D�r�
D�r0�

B�r0�

B�r�
� 1

�
�1

s
dr
r

� �; (2)

where r0 is the distance of closest approach of the light to
the center of the gravitational attraction.

By introducing the variable z � r0=r one can rewrite the
equation for the deflection angle as

 �� � 2
Z 1

0

dz�������������������������
V�1� � V�z�

p � �; (3)

where

 V�z� � z2 D�r0=z�
A�r0=z�

�
D2�r0=z�B�r0�

A�r0=z�B�r0=z�D�r0�
�
B�r0�

D�r0�
(4)

is a sort of ‘‘potential’’ built out of the metric. Notice that
the integral in Eq. (3) can be solved analytically only in a
limited number of cases, such as for the Schwarzschild
metric [29] and for the Reissner-Nordtröm metric [10],
where it can be expressed in terms of elliptic integrals.
No analytical formula can can be obtained in the case of a
general static and spherically symmetric metric.

Since an explicit calculation of the integral is not pos-
sible, we interpolate the actual potential V�z� with a sim-
pler potential V0�z�, which should be chosen in such a way
that the integral (3) can be performed explicitly when V�z�
is replaced with V0�z�. Then we write

 V��z� � V0�z� � ��V�z� � V0�z��; (5)

where � is a dummy parameter. In general V0�z� may
depend upon one or more arbitrary parameters; for the
time being we simply choose V0�z� � �z2. We can rewrite
the expression for the deflection angle as

 ��� � 2
Z 1

0

dz�����������������������������
V0�1� � V0�z�

p 1����������������������
1� ���z�

p � �; (6)

where

 ��z� �
V�1� � V�z�
V0�1� � V0�z�

� 1: (7)

Notice that Eq. (6) reduces to Eq. (3) for � � 1 and there-
fore is not an approximation. The expansion of Eq. (6) in
powers of � converges at � � 1 provided that j��z�j< 1
for 0 � z � 1. As discussed in earlier papers [26,28,30]
this condition requires that � be greater than a critical value
�C. In that case one obtains a parameter-dependent series
that converges towards the exact result which is however
independent of �. The artificial dependence on � observed
in the partial sums ���N�, N � 1; 2; . . . , is minimized by
means of the Principle of Minimal Sensitivity (PMS) [31],
which corresponds to imposing the condition

2This is a sufficient but not necessary condition since it
warrants that f�r� is analytic around r � 1;, for example, in
[28] we have applied the method to the Weyl metric which is not
asymptotically flat.
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@
@�

���N� � 0: (8)

A proof of convergence of the series and an estimate of its
rate of convergence are given elsewhere [26].

One might be tempted at this point to question our
definition of the method as being nonperturbative: after
all, the method works by performing a perturbative expan-
sion in �. However, one should understand that the solution
of Eq. (8) is in general a function of the parameters in the
problem and when substituted back in the series it provides
nonpolynomial expressions in the physical parameters
[26,27], whereas the dependence upon � disappears be-
cause it is set to one at the end of the calculation.

We are now ready to generalize this method. The first
step is to write the integral as
 

�� � 2
Z �

0

dz�������������������������
V�1� � V�z�

p � 2
Z 1

�

dz�������������������������
V�1� � V�z�

p � �

� ��a � ��b � �; (9)

where � 2 �0; 1� is an arbitrary point in the region of
integration. The two integrals in this equation will now
be approximated following two different strategies.
Clearly, the particular case � � 1 corresponds to the
method just outlined [26,27].

For clarity, we confine ourselves, for the moment being,
to the case of the Schwarzschild metric and later we
generalize our results to arbitrary metrics. The
Schwarzschild metric is given by

 B�r� � A�1�r� �
�
1�

2GM
r

�
; D�r� � 1; (10)

and the potential V�z� reads

 V�z� � z2 �
2

3�
z3; (11)

where � � r0=3GM � 1. Figure 1 shows the potential
V�z� with � � 3=2. The dashed and dotted lines corre-
spond to the quadratic Taylor polynomials around z � 0
and z � �. Viewed from the perspective of a classical
mechanics problem, the points z � 0 and z � � corre-
spond to a stable and an unstable point of equilibrium,
respectively; the nonlinear pendulum, for example, is a
simple physical system that displays this behavior. Since
the integral that we want to calculate is restricted to z � 1,
the unstable point of equilibrium will not be reached unless
� � 1. In such a case the integral will diverge and it will
correspond to the photon sphere.3

One expects� 	 1 to be a reasonable choice when�

1, since it has given accurate results earlier [26,27]. On the
other hand, as �! 1� the second integral will become

increasingly more important and one expects the optimal
value of � to move to the center of the integration region.
We will see that this is the case later on when we discuss a
systematic way of partitioning the integral.

Our strategy is simple and consists of treating the inte-
gral in each region differently. In the first region we follow
essentially the earlier procedure [26,27] with the interpo-
lating potential Va�z� � �z2, � > 0. In the second region,
on the other hand, we will interpolate the potential with the
inverted parabola Vb�z� � V��� � ��z���2, where � >
0 is another arbitrary parameter. Notice therefore that we
are working with three arbitrary parameters, � and �which
enter in the definition of the interpolating potentials, and �
which defines the border between the two regions.

In the first region we write

 ��a � 2
Z �

0

dz�����������������������������
Va�1� � Va�z�

p 1������������������������
1� ��a�z�

p ; (12)

where

 �a�z� �
V�1� � V�z�
Va�1� � Va�z�

� 1

� �
3��� 1���z� 1� � 2�z2 � z� 1�

3���z� 1�
: (13)

After expanding to first order in � we obtain

 ���1�a �
2����
�
p

Z �

0

dz��������������
1� z2

p �
1�

�a�z�
2

�
: (14)

Straightforward integration yields
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FIG. 1 (color online). The potential V�z� in Eq. (11) with � �
3=2 (solid line). The dashed and dotted lines correspond to
quadratic Taylor expansions around z � 0 and z � �, respec-
tively.

3Notice that � � 1 yields the well-known result r0 � 3GM.
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 ���1�a �
�2��

���������������
1� �2
p

� 2� � 3�3�� 1����� 1� arcsin��� � 4
���������������
1� �2
p

� 4

3�3=2���� 1�
: (15)

The PMS (see Eq. (8)) gives us the optimal value of �

 �PMS �
2��

���������������
1� �2
p

� 2� � 4�
���������������
1� �2
p

� 1� � 3���� 1� arcsin���
3���� 1� arcsin���

(16)

and

 ���1�a �
2 arcsin����������������������������������������������������

2����2�
���������
1��2
p

�2���1��
3����1� arcsin��� � 1

r : (17)

In the second region we have

 ��b � 2
Z 1

�

dz�����������������������������
Vb�1� � Vb�z�

p 1������������������������
1� ��b�z�

p ; (18)

where

 �b�z� �
V�1� � V�z�
Vb�1� � Vb�z�

� 1

�
�6��2 � 3��� 1��z� 1��� 2�z2 � z� 1�

3���2�� z� 1�
:

(19)

After expanding to first order and integrating we obtain

 ���1�b �
2�	2 ������ �� 1� � 3��3�� 1�	 ln� 1��

�����	�

3��3=2	
; (20)

where we have defined

 	 �
��������������������������������������������
�2 � 2��� 2�� 1

q
: (21)

It is worth noticing that this simple first-order approxima-
tion exhibits the correct logarithmic singularity at � � 1.

The PMS gives us again the optimal value of �,

 �PMS � 1�
2��3�� �� 2�	

3��2�� �� 1� ln� 1��
�����	�

; (22)

and

 ���1�b �
2
���
3
p

ln� 1��
�����	�����������������������������������������������

2��3����2�	
��2����1� ln� 1��

�����	�
� 3

r : (23)

By adding the two expressions we obtain

 ���1�PMS �
2
���
3
p ��������������������

���� 1�
p

arcsin3=2��������������������������������������������������������������������������������������������������������������������������������
2��

���������������
1� �2
p

� 2� � 4�
���������������
1� �2
p

� 1� � 3���� 1� arcsin���
q �

2
���
3
p

ln� 1��
�����	�����������������������������������������������

2��3����2�	
��2����1� ln� 1��

�����	�
� 3

r � �; (24)

which still depends on the arbitrary parameter �.
Figures 2 and 3 show the approximate deflection angle given by Eq. (24) and its percent error � � 100 j����1�PMS �

��exact�=��exactj for two values of�. We appreciate that the arbitrary parameter � can also be determined by the PMS. In
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FIG. 2 (color online). Left panel: approximate deflection angle for the Schwarzschild metric (Eq. (25)) with � � 10 as a function of
�. The horizontal dotted line represents the exact value. Right panel: percent error of the approach as a function of �.
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Fig. 2, � � 10 and the optimal value of � is close to 1, as
expected. On the other hand, if we take � � 1:001, i.e.
close to the photon sphere, the optimal value of � drops to
about 1=2. It is quite remarkable that in both cases the error
made by choosing the optimal value for � is smaller than
1%. Another important observation is that the maximum of
�� is quite flat and, consequently, a slightly imprecise
estimation of �PMS will not affect the precision of the
approximation drastically.

For this reason we do not pretend to obtain � directly by
solving the PMS condition, @���1�=@� � 0 (which is
equivalent to finding the maximum of the curve in the
left panels of Figs. 2 and 3), since that would certainly
be a difficult task and lead to quite involved expressions,
but we rather use a simple analytical approximation, which
correctly describes the limits �! 1 and �! 1�. As
noticed above, since the maximum is quite flat for �!
1� one expects only a modest loss in precision, while
providing much simpler expressions.

In Fig. 4 we have plotted the exact value of � obtained
solving numerically the PMS condition and the reasonable
analytical approximation �PMS 	 1� 1=2�. Thus we ob-
tain
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1/µ
0.5

0.6

0.7

0.8

0.9

1

σ

σ = 1 - 1/(2µ)
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FIG. 4 (color online). �PMS obtained numerically solving the
PMS condition (broken line) as a function of 1=� and the linear
approximation � � 1� 1=2� (solid line).
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FIG. 3 (color online). Same as in Fig. 2 for � � 1:001.
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FIG. 5. Percent error of Eq. (25) as a function of � for the deflection angle in the case of the Schwarzschild metric. Left panel: range
1 � � � 2; Right panel: range 1 � � � 1000.
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 ���1�PMS �
2
���
6
p
��arcsin�1� 1

2���
3=2�����������������������������������������������������������������������

6 arcsin�1� 1
2���

2 � 8�� 2�6��1�����������
4��1
p

r

�
2
���
6
p
�ln3=2� ���1���������������������������������������������������������������

6 ln� ���1��
2 � 6�� 1

2��1� 3
q � �; (25)

which provides an accuracy better than 1% for all values of
�, even arbitrarily close to the photon sphere, as shown in
Fig. 5. Later on we will derive an even simpler analytical
formula for the deflection angle from Eq. (25).

III. GENERAL METRIC

We will now attack the problem of obtaining a first-order
formula for a general static and spherically symmetric
metric, in analogy with what has been done in
Refs. [26,27]. For a given metric, once the functions
A�r�, B�r� and D�r� are given (see Eq. (1)), one obtains a
potential V�z�, as previously explained. We assume that the
potential admits two different expansions, one at z � 0,
and one around z � �, which is a local maximum

 V�z� �
X1
n�1

vnzn �
X1
n�0

~vn�z���n: (26)

Notice that the first series runs from n � 1, since z � 0
is not necessarily a local minimum of V�z�, although this
was the case for the Schwarzschild metric. Clearly, in
particular cases, such as the one previously examined,
the series coefficients vanish after a certain value of n,
thus yielding polynomial potentials.

Following the discussion of the preceding section we
split the integral as in Eq. (9) and proceed to the calculation
of each part.

A. Region I (0 � z � �)

In this region we expand V�z� around z � 0 and use the
interpolating potential Va�z� � �z2. After expanding to
first order we obtain Eq. (14) with

 �a�z� �
X1
n�1

vn
�

Xn�1

k�0

zk

1� z
� 1: (27)

The deflection angle can now be written as

 ���1�a �
3����
�
p arcsin��� �

1

�3=2

X1
n�1

vn
Xn�1

k�0

Ik���; (28)

where we have defined the integrals

 Ik��� �
Z arcsin�

0

sink�
1� sin�

d� (29)

which can be calculated exactly; for example,

 

I0��� � 1�

�������������
1� �
p�������������

1� �
p (30a)

I1��� � arcsin��� �

�������������
1� �
p�������������

1� �
p � 1 (30b)

I2��� � � arcsin��� �
���������������
1� �2

p
�

�������������
1� �
p�������������

1� �
p � 2 (30c)

I3��� �
3

2
arcsin��� � 2�

1

2
���2 � �� 4�

����������������������
2

�� 1
� 1

s

(30d)

I4��� � �
3

2
arcsin��� �

8

3

�
1

6

�������������
1� �
�� 1

s
��2�3 � �2 � 7�� 16�: (30e)

The PMS yields

 �PMS �

P
1
n�1 vn

Pn�1
k�0 Ik���

arcsin���
; (31)

so that

 ���1�a �
2arcsin3=2������������������������������������������P
1
n�1 vn

Pn�1
k�0 Ik���

q : (32)

Taking into account the form of the integrals in Eq. (30) we
can express the deflection angle as

 ���1�a �
arcsin3=2��������������������������������������������

F1��� � F2 arcsin�
p : (33)

B. Region II (� � z � 1)

We now come to the second region where the potential is
expressed in terms of a series around the local maximum at
�. After expanding to first order, and using the same
interpolating potential as in the case of the Schwarzchild
metric Vb�z� � V��� � ��z���2, we obtain

 ���1�b �
2����
�
p

Z 1

�

dz�������������������������������������������
�z���2 � �1���2

p �
1�

�b�z�
2

�
;

(34)

where

 �b�z� �
V�1� � V�z�
Vb�1� � Vb�z�

� 1 �
X1
n�2

~vn�an � bn�

���a2 � b2�
� 1;

(35)

and

 a � 1��; b � z��: (36)

Since

 an � bn � �a� b�
Xn�1

k�0

akbn�1�k (37)
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we have

 �b�z� �
V�1� � V�z�
Vb�1� � Vb�z�

� 1 �
X1
n�2

~vn
Pn�1
k�0 a

kbn�1�k

���a� b�
� 1:

(38)

In terms of the new variable u � b=a one obtains

 ���1�b �
2����
�
p

Z u�

u�

du��������������
u2 � 1
p

�
1�

�b�z�u��
2

�
; (39)

where u� � ��� ��=��� 1� and u� � 1.
Notice that

 

akbn�1�k

�a� b�
�
un�1�k

1� u
�1���n�2: (40)

Therefore we get

 ���1�b �
2����
�
p

Z u�

u�

du��������������
u2 � 1
p

�
3

2
�

1

2

X1
n�2

~vn
���1� u�


Xn�1

k�0

un�1�k�1���n�2

�
; (41)

where we have defined

 Jk��� �
Z u�

u�

uk��������������
u2 � 1
p

�u� 1�
du: (42)

The first integrals are
 

J0��� � �

� 1


� 1
(43a)

J1��� �

� 1


� 1
� ln�
� (43b)

J2��� � �

� 1

�
� 1�2

�1� 4
� 
2� � ln�
� (43c)

J3��� �

� 1

8
2�1� 
�
��
4 � 2
3 � 14
2 � 2
� 1�

�
3

2
ln�
� (43d)

J4��� �

� 1

24
3�
� 1�
��
6 � 
5 � 17
4 � 62
3

� 17
2 � 
� 1� �
3

2
ln�
�; (43e)

where

 
 �
�� ��

��������������������������������������������
�2 � 2��� 2�� 1

p
�� 1

: (44)

The PMS yields

 �PMS �
1

ln


X1
n�2

~vn�1���n�2
Xn�1

k�0

Jk��� (45)

and we obtain

 ���1�b �
2ln3=2
�����������������������������������������������������������������P

1
n�2 ~vn�1���

n�2 Pn�1
k�0 Jk���

q : (46)

Once again, looking at the structure of the integrals (43) we
write

 ���1�b �
ln3=2
���������������������������������

G1��� �G2 ln

p : (47)

Notice that the explicit expression of the coefficients
F1;2 and G1;2 will depend on the metric.

IV. RESULTS

A. Schwarzschild metric

Our first application is to the Schwarzschild metric,
which corresponds to

 B�r� � A�1�r� �
�
1�

2GM
r

�
; D�r� � 1: (48)

Here M is the Schwarzschild mass. The angle of deflection
of a ray of light reaching a minimal distance r0 from the
black hole can be obtained using Eq. (3). The exact result
can be expressed in terms of incomplete elliptic integrals of
the first kind [29] and reads

 �� � 4

�����
�r0

�

r �
F
�
�
2
; �
�
� F�’; ��

�
; (49)

where �r0 � r0=GM and

 � �

��������������
�r0 � 2

�r0 � 6

s
; � �

������������������������������������
��� �r0 � 6�=2�

q
;

’ �

������������������������������������������
arcsin

�
2��� �r0

6��� �r0

�s
:

(50)

We compare our analytical formulas with the exact one
and with the approximation proposed by Bozza [24]

 ��Bozza � �2 ln� 1
12�2�

���
3
p
���� 1�� � �: (51)

For brevity, we shall refer to the approximation developed
in the previous section as Method I. In the Appendix we
have also derived a simpler analytical expression for the
deflection angle using an alternative method, which we
refer to as being Method II.

In the former approach, the expression of Eq. (25) can be
further simplified maintaining good accuracy by observing
that

 

2
���
6
p
�arcsin3=2�1� 1

2�������������������������������������������������������������������������
6 arcsin�1� 1

2���
2 � 8�� 2�6��1�����������

4��1
p

r

	 ��
12

�3
����������������
4�� 1
p

� 4
(52a)
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and

 

2
���
6
p
�ln3=2� ���1���������������������������������������������������������������

6 ln� ���1��
2 � 6�� 1

2��1� 3
q
	

���������������������
4�� 1=3

q
ln
�

�
�� 1

�
: (52b)

Therefore we get the much simpler expression

 ���1�PMS 	
12

�3
����������������
4�� 1
p

� 4
�

���������������������
4�� 1=3

q
ln
�

�
�� 1

�
:

(53)

In Fig. 6 we compare our approximations, the one of Bozza
[24], and the exact result of Eq. (49). It is clear that—apart
from the region very close to � � 1—our approximations
are more accurate, especially as � increases: the curves in
the left plot corresponding to using our approximations are
hardly distinguishable from the exact one. Indeed, in the
case of Method I, after having reached a maximum error
close to � � 1, the precision keeps improving, as one can
see in Fig. 7. In the case of Method II and of the simplified
expression of Eq. (53) the error does not tend to zero as the
photon sphere is approached but it appears to remain finite.

B. Reissner-Nordström metric

The Reissner-Nordström (RN) metric describes a black
hole with charge and corresponds to

 B�r� � A�1�r� �
�
1�

2GM
r
�
q2

r2

�
; D�r� � 1:

(54)

The corresponding potential is found to be

 V�z� � z2

�
q2

r2
0

z2 � 2
M
r0
z� 1

�

� z2 �
2M
�rPS

z3 �
q2

�2r2
PS

z4; (55)

where rPS � 4q2=�3M�
�����������������������
9M2 � 8q2

p
� is the photon

sphere and � � r0=rPS; q is the charge of the black hole.
Also in this case we have found that � � 1� 1=2� is a
satisfactory analytical approximation to the optimal value
�PMS. Although the exact solution of the PMS condition
would in general depend on the charge q, we have verified
that the general features discussed in the case of the
Schwarzchild metric remain valid and only a quite limited
error is introduced by this choice.
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FIG. 7 (color online). Percent error for the deflection angle in
the Schwarzschild metric calculated with Method I (Eq. (25)),
with the simplified version of Method I (Eq. (53) and with
Method II (Eq. (A8)).
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AMORE, CERVANTES, DE PACE, AND FERNÁNDEZ PHYSICAL REVIEW D 75, 083005 (2007)

083005-8



Using the former we obtain
 

F1 �
�4�3� 6�2� 4�� 2

3���2� 1�2

�
�2�7� 3�6� 6�5� 4�4� 6�3� 8�2� 2�� 1

12���2� 1�2


q2

r2
0

(56a)

F2 �
1

4
�

3q2

8r2
0

; (56b)

where � �
����������������
4�� 1
p

, and
 

G1 �
�3�4 � 6�2 � 1

3��2 � 1���2 � 1�2

�
�21�8 � 12�6 � 110�4 � 28�2 � 23�

96��2 � 1���2 � 1�2
q2

r2
0

(57a)

G2 �
1

4
�
�7�4 � 10�2 � 31�

128

q2

r2
0

; (57b)

where the coefficients F1;2 and G1;2 were previously intro-
duced in the previous section (see Eqs. (33) and (47)).

Using our expression for the deflection angle we have
obtained the coefficients A and B introduced by Eiroa et al.
in Ref. [10]

 �� 	 �A log�B
� � �; (58)

where 
 � r0 � rps, rps being the distance corresponding
to the photon sphere.

We have found
 

A � � lim
�!1�

���1�PMS

log��� 1�

�
4q=M����������������������������������������������������������������

8q2=M2 � 3
��������������������������
9� 8q2=M2

p
� 9

q (59a)

B �
4

 � 3
exp��0:234� 0:203= 

� 1:096
�������������������������������
 =� � 0:826�

q
�; (59b)

where  �
��������������������������
9� 8q2=M2

p
.

Table I shows that our analytical formulas are in remark-
able agreement with the numerical results of Eiroa et al.

[10]. In particular our expression for the coefficient A
appears to be exact.

Figure 8 displays the percent error of our approach for
different values of� as a function of q=M. Again, the error
is generally below 0.5% and gets smaller as � increases.

Notice that we do not need to discuss the WDL of our
formulas, since in this case one has that �! 1 and the
method of [26,27] is recovered. The reader will find a
detailed comparison of our method with other methods
available in the literature in [26,27].

C. Janis-Newman-Winicour metric

Finally, we consider the spherically symmetric metric
solution to the Einstein massless scalar equations [32],

 A�r� � �1� b=r��; B�r� � �1� b=r�;

D�r� � �1� b=r�1�;
(60)

which reduces to the Schwarzschild metric for  � 1 and
b � GM. For this metric we obtain the potential
 

V�z����1� b
r0
�2�1�1�bz

r0
�2�2�z2�1�bz

r0
���1� b

r0
�2�1;

(61)

that can be expanded around z � 0 to give

TABLE I. Numerical values of the coefficients A and B: AEiroa and BEiroa are taken from
Table 1 of Ref. [10], whereas Aus and Bus are obtained from Eq. (59).

jqj 0 0:1M 0:25M 0:5M 0:75M 1M

AEiroa 2.00000 2.00224 2.01444 2.06586 2.19737 2.82843
Aus 2.00000 2.00224 2.01444 2.06586 2.19737 2.82843
BEiroa 0.207338 0.207979 0.21147 0.225997 0.262085 0.426782
Bus 0.213892 0.214535 0.218032 0.232554 0.268419 0.430856
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V�z� 	 v1z� v2z
2 � v3z

3 � . . .

	 �2�� 1��1� b
r0
�2�1 b

r0
z� �1� �� 1��2� 1�

 �1� b
r0
�2�1�br0

�2�z2 � ��2
3�� 1��2� 1�

 �br0
�3�1� b

r0
�2�1 � b

r0
�z3 �O�z4�: (62)

Notice that the radius of convergence of the series of V�z�
around z � 0 is �z � r0=b. We therefore ask that �z � 1, i.e.
that r0 � b. Clearly the accuracy of the expansion above
will depend upon the location of �z and a larger number of
terms is expected to be needed when �z approaches one.

We then find

 

F1 �
��� 1��1� �2�

8�
v2

�
��� 1����3�5 � 9�3 � 23�� 16� � 13�

64��3 � ��
v3

(63a)

F2 �
v2

4
(63b)

G1 �
�6��� 1��� 1�

8��2�� 1�
v3 (63c)

G2 � �
v2 � 3�v3

4
; (63d)

where, again, � �
����������������
4�� 1
p

and F1;2 and G1;2 have been
introduced in Eqs. (33) and (47). Notice that in the cubic
approximation we can express the coefficient v1 in terms
of the other parameters

 v1 � �2�v2 � 3�2v3: (64)

Figure 9 compares our approximation for the deflection
angle with the exact result. One can see that also for this
metric the accuracy is very good.

V. CONCLUSIONS

We have presented a new method for obtaining analyti-
cal expressions for the deflection angle of light in a static
and spherically symmetric metric, which is accurate in
both the weak and strong regimes. The former correspond-
ing to lensing at arbitrarily large distances from the com-
pact body and the latter to distances arbitrarily close to the
photon sphere. Our first-order analytical formulas exhibit
errors below 1% at all distances from the compact body.
For this reason, although our method can be applied to any
given order, in a way similar to what has been done in
Ref. [27] with the method of Ref. [26], the accuracy of our
first-order expressions is certainly sufficient for most
physical applications.

Moreover, the method that we have presented in this
paper reduces to the previous method discussed in
Refs. [26,27] in the weak deflection limit (WDL), since
the arbitrary parameter � tends to one in this limit. For this
reason, for the comparison with alternative methods devel-
oped to describe the WDL we have relied on the discussion
contained in [26,27].

To the best of our knowledge, our method is the only one
available that allows one to obtain completely analytical
formulas which are valid in both SDL and WDL regimes,
regardless of the particular static and spherically symmet-
ric metric used. The results that we obtain are clearly
nonperturbative, since they do not correspond to a poly-
nomial expression in any of the physical parameters in the
model and provide the correct logarithmic strength of the
singularities. Moreover, our analytical expressions never
involve special functions and are easy to evaluate. Just to
mention one success of our approach, in the case of the
Reissner-Nordstrom metric, we have obtained an analyti-
cal formula for the coefficients A and B which have been
numerically calculated by Eiroa et al. in Ref. [10]: in the
case of the coefficient A our formula reproduces all the
digits given by the numerical calculation. We also wish to
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mention that our method relies on solid mathematical
grounds and could be used to obtain an exact series repre-
sentation for the integrals of the deflection angle. We have
not considered this issue because of the highly precise
results that are obtained already working to order one.

Finally, we have also discussed—showing an applica-
tion to the Schwarzschild metric—an alternative method
that yields larger errors but even simpler expressions and
that can be useful in cases where a somewhat reduced
accuracy can be traded for the possibility of more conve-
nient analytical manipulations.

APPENDIX A: ALTERNATIVE FORMULA
THROUGH LINEAR INTERPOLATION

In this Appendix we present an alternative method to
obtain the deflection angle in a given static and spherically
symmetric metric. This method is a generalization of a
recently published approach to the period of the simple
pendulum [33]. It is our purpose to obtain a simple ana-
lytical approximation to an integral of the form

 I �
Z 1

0

dz����������
Q�z�

p (A1)

where Q�1� � 0. We assume that any other zero of Q�z� is
outside the closed interval [0, 1].

We define a reference function

 Q0�z� � �1� z��z� z0�; (A2)

where z0 < 0, and carry out the change of variables

 z �
1� z0

2
�

1� z0

2
sin�: (A3)

We thus obtain

 I �
Z �=2

�0

d�����������������
F�z����

p ; �0 � arcsin
�
1� z0

z0 � 1

�
;

F�z� �
Q�z�
Q0�z�

:

(A4)

We next substitute a linear function �� �� for
����������������
F�z����

p
such that

����������
F�0�

p
� �� ��0,

����������
F�1�

p
� �� ��=2 and ob-

tain the general approximate expression

 I 	
�� 2�0

4�
����������
F�1�

p
�

����������
F�0�

p
�

ln
�
F�1�
F�0�

�
: (A5)

We have yet to specify the exact location of z0. Notice that

 F�1� � lim
z!1

Q�z�
�1� z��z� z0�

�
Q0�1�
z0 � 1

: (A6)

In the case of the Schwarzschild metric we have �� ��������
6�
p

I � �, where I is given by Eq. (A1), with

 Q�z� � �z� z1��z� z2��z� z3�; z1� 0� z3; z2� 1;

(A7)

and z3 � 1 if � � 1.
We may set the location of z0 to have either the most

accurate analytical expression or the simplest one; in what
follows we choose the latter. If z0 � �1, then �0 � 0 and

 �� 	

�������
3�
p

�
2
�
����������������
3�� 2

p
�

����������������
3�� 3

p
� ln

3�� 2

3�� 3
� �:

(A8)

Notice the logarithmic singularity at � � 1 that comes
from the fact that z3�� � 1� � z2 � 1 and the integral
diverges as �! 1�. This approach is considerably less
accurate than the preceding one, but we have decided to
include it in this paper for two reasons: first, it provides
simple and general expressions; second, its error is quite
uniform.
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