
Self-induced decoherence in dense neutrino gases

Georg G. Raffelt1 and Günter Sigl2
1Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München, Germany
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Dense neutrino gases exhibit collective oscillations where ‘‘self-maintained coherence’’ is a character-
istic feature, i.e., neutrinos of different energies oscillate with the same frequency. In a nonisotropic gas,
however, the flux term of the neutrino-neutrino interaction has the opposite effect of causing kinematical
decoherence of neutrinos propagating in different directions, an effect that is at the origin of the
‘‘multiangle behavior’’ of neutrinos streaming off a supernova core. We cast the equations of motion
in a form where the role of the flux term is manifest. We study in detail the symmetric case of equal
neutrino and antineutrino densities where the evolution consists of collective pair conversions (‘‘bipolar
oscillations’’). A gas of this sort is unstable in that an infinitesimal anisotropy is enough to trigger a
runaway towards flavor equipartition. The ‘‘self-maintained coherence’’ of a perfectly isotropic gas gives
way to ‘‘self-induced decoherence.’’
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I. INTRODUCTION

Neutrino oscillations between two flavors in vacuum are
governed by the frequency

 ! �
�m2

2E
; (1)

where E is the energy of a given mode. Therefore, if the
energy spectrum is broad, the energy dependence of the
oscillation frequency quickly leads to kinematical deco-
herence, i.e., along a neutrino beam the overall flavor
content quickly approaches an average value.

The situation changes radically when neutrinos them-
selves provide a significant refractive effect, leading to
collective oscillation modes [1–12] that can be of practical
interest in the early universe [13–16] or in core-collapse
supernovae [17–26]. Defining the parameter

 � �
���
2
p
GFn�; (2)

the neutrino gas is ‘‘dense’’ when ! & �, i.e., when a
typical neutrino-neutrino interaction energy exceeds the
energy corresponding to the vacuum oscillation frequency.
When this condition is satisfied, collective effects are
important, even if the ordinary matter effect is much larger
than that from the neutrino-neutrino interaction [23,26].
One characteristic feature of collective oscillations is the
phenomenon of ‘‘self-maintained coherence’’ [6], meaning
that all modes oscillate with the same frequency even
though the energy spectrum may be broad.

It was recently stressed, however, that this is not the
complete story [11,24]. Perhaps the most interesting case
for collective effects is provided by neutrinos streaming off
a supernova core, a situation that is far from isotropic. The

current-current nature of the weak-interaction Hamiltonian
implies that the interaction energy between particles of
momenta p and q is proportional to �1� vp � vq� where
vp � p=E is the velocity. If the medium is isotropic, the
vp � vq term averages to zero, but if there is a net current,
test particles moving in different directions experience
different refractive effects. Therefore, neutrinos moving
in a background with a net current will decohere between
different directions of motion, even if the energy spectrum
is monochromatic.

To avoid confusion about terminology we stress that we
always mean ‘‘kinematical decoherence’’ when we say
‘‘decoherence.’’ Different modes oscillate differently, lead-
ing to ‘‘dephasing’’ and thus to the depolarization of the
overall ensemble. If we use the common language of
polarization vectors Pp for each mode p, then the length
of each Pp is conserved, whereas the length of the overall
polarization vector P �

P
Pp shrinks (kinematical deco-

herence) or is conserved (kinematical coherence). The
effect of dynamical decoherence, caused by collisions
among the neutrinos or with a thermal background me-
dium, is that each individual polarization vector Pp shrinks,
i.e., neutrinos in individual modes cannot be represented as
pure states. This effect, relevant for open quantum systems,
does not occur in our case where oscillations are the only
form of evolution.

Of course, in the most general case the evolution of a
neutrino gas involves flavor oscillation effects as well as
nonforward collisions. In this case both kinematical and
dynamical decoherence effects would be relevant. We note,
however, that in the supernova context that has motivated
our study, the ‘‘bipolar oscillation region’’ is located sev-
eral 10 km above the neutrino sphere and thus in a region
where neutrinos stream freely. In the region near the neu-
trino sphere where collisions are important, neutrinos os-
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cillate in the synchronized mode that is not the topic of our
study. Therefore, it is well motivated to study the evolution
of a dense neutrino gas where the role of interactions is
limited to forward scattering.

The multiangle decoherence effect becomes nontrivial
in the most interesting case when the ‘‘background cur-
rent’’ consists of the neutrinos themselves as for neutrinos
streaming off a supernova core. Numerical examples reveal
significant decoherence effects, but on the other hand they
also show collective modes very similar to the isotropic
(‘‘single-angle’’) case [24]. The overall behavior is deter-
mined by a complicated interplay between the collective
evolution and decoherence.

Rather than trying to understand the supernova case in
its full complexity, we here take the opposite approach and
study the simplest example that shows decoherence caused
by the neutrino-neutrino multiangle effect. Therefore, we
consider a dense neutrino gas that is monochromatic,
symmetric (equal � and �� densities) and homogeneous,
but not isotropic. Even this simple model has a rich phe-
nomenology that helps one to develop a better understand-
ing of the full problem. On the other hand, it is simple
enough that the most puzzling aspects of its behavior are
analytically tractable.

While our work represents a case study that has been
reduced to the minimal ingredients that generate nontrivial
multiangle effects, even in this form it could be of direct
relevance to certain realistic astrophysical environments. A
massive star collapsing to a black hole produces a neutrino
flux that consists primarily of �e and ��e whereas the
emission of the other flavors is strongly suppressed [27].
Moreover, the luminosities and number fluxes of �e and ��e
are very similar, much more so than in a core-collapse
supernova that emits a significant net flux of electron-
lepton number and thus shows a significant asymmetry
between the �e and ��e number fluxes.

A symmetric � �� gas oscillates in the ‘‘bipolar mode’’
where pairs of neutrinos of a given flavor coherently os-
cillate into the other flavor and back with the ‘‘bipolar
frequency’’ [6,8,23,26]

 � �
�����������
2!�

p
: (3)

As an example we consider a dense neutrino gas initially
consisting of �e ��e and assume that the mixing angle �
with another flavor is small, a situation that could represent
13 oscillations. We characterize the overall flavor content
of the ensemble in the usual way by a polarization vector
where the positive z direction corresponds to the �e flavor
whereas the mass direction is defined by a unit vector that
we call B. It is tilted against the z direction by 2� and we
always choose it to lie in the x–z plane with Bz < 0 for the
normal hierarchy and Bz > 0 for the inverted hierarchy.

In vacuum, the polarization vectors precess around B
with frequency !. In a dense neutrino gas with �� 1,
their motion is largely confined to the x–z plane where they

perform pendular motions with frequency � and where�B
is the ‘‘force direction.’’ The maximum excursion is 2�,
indicated by the dotted lines in Fig. 1 where we show the
trajectory in the x–z plane. For the normal hierarchy, the
pendulum swings between the dotted lines. For the inverted
hierarchy (bottom), it performs almost full-circle oscilla-
tions as indicated by the diamonds.

If the gas is not isotropic, the picture changes com-
pletely. Taking the ‘‘half-isotropic’’ case as a generic ex-
ample where only one half-space of momentum modes is
occupied (neutrinos streaming off a plane surface), we
show in Fig. 1 the trajectory of the average polarization
vector. For both hierarchies, its length shrinks to zero so
that the final state of the ensemble is an equal mixture of
both flavors. In other words, the ensemble quickly deco-
heres, independently of the mass hierarchy. This behavior
is perhaps intuitive because we have assumed a large
neutrino current.

However, this effect is self-accelerating in that it is
triggered even by the smallest nonzero anisotropy.

 

FIG. 1. Trajectory of the overall polarization vector in the
‘‘half-isotropic case’’ for the normal hierarchy (top) and inverted
hierarchy (bottom) with sin2� � 0:1. The arrow is the B direc-
tion. In the isotropic case (no decoherence), the dotted lines
represent the largest pendulum excursion of 2� on either side of
B. The diamonds in the lower panel represent the pendular
motion in time intervals of 0:01�2�=��.
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Whereas for perfect isotropy the neutrino-neutrino inter-
action provides for self-maintained coherence between
modes of different energy, even an infinitesimal anisotropy
has the opposite effect of causing self-induced decoher-
ence between modes with different propagation directions.
The average flavor content of the ensemble always ap-
proaches an equal mixture of both flavors. This instability
is a nonlinear effect caused by the neutrino-neutrino inter-
action. In other words, the pendular motion of the isotropic
ensemble is an unstable limit cycle, whereas the equal
flavor mixture is a stable fixed point.

Our goal is to explain this behavior. As a first step we
formulate in Sec. II the equations of motion for the multi-
angle system in terms of the multipole components of the
neutrino angular distribution. The special role of the flux
(the dipole term of the angular distribution) becomes
manifest. We begin with the full N-flavor problem and
then consider two flavors in terms of polarization vectors.
In Sec. III we study the role of a large anisotropy in causing
decoherence. Our main result is developed in Sec. IV
where we show that a � �� gas is unstable in flavor space
and always decoheres if there is an infinitesimally small
initial anisotropy. We conclude in Sec. V with a summary
and outlook.

II. MULTIANGLE EQUATIONS OF MOTION

A. General equations of motion

A statistical ensemble of unmixed neutrinos is repre-
sented by the occupation numbers fp � ha

y
papi for each

momentum mode p, where ayp and ap are the relevant
creation and annihilation operators and h. . .i is the expec-
tation value. The corresponding expression for antineutri-
nos is �fp � h �a

y
p �api, where here and henceforth overbarred

quantities refer to antiparticles.
For several flavors, the occupation numbers are gener-

alized to ‘‘matrices of densities’’ in flavor space [28–31]

 �%p�ij � ha
y
j aiip and � �%p�ij � h �a

y
i �ajip (4)

that really are matrices of occupation numbers. The re-
versed order of the flavor indices i and j in the right-hand
side for antineutrinos ensures that under a flavor trans-
formation, %p ! U%pUy, antineutrinos transform in the
same way, �%p ! U �%pUy. Sums and differences of %p and
�%p then transform consistently. For the seemingly intuitive
equal order of flavor indices that is almost universally used
in the literature, %p, �%p, %�p, and �%�p all appear in the
equations instead of %p and �%p alone.

Analogous matrices �‘p�ij can be defined for the charged
leptons.

We assume that the neutrino ensemble is completely
described by these one-particle occupation number matri-
ces, i.e., that genuine many-body effects play no role [32–
34]. In this case flavor oscillations of an ensemble of
neutrinos and antineutrinos are described by an equation
of motion for each mode [28–31]

 

i@t%p � �	�p; %p
 �
���
2
p
GF

�Z d3q
�2��3

�‘q � �‘q � %q � �%q��1� vq � vp�; %p

�
;

i@t �%p � �	�p; �%p
 �
���
2
p
GF

�Z d3q
�2��3

�‘q � �‘q � %q � �%q��1� vq � vp�; �%p

�
;

(5)

where 	�; �
 is a commutator and GF is the Fermi constant. For ultrarelativistic neutrinos, the matrix of vacuum oscillation
frequencies, expressed in the mass basis, is �p � diag�m2

1; m
2
2; m

2
3�=2pwith p � jpj. Further, vp � p=Ep is the velocity of

a particle (neutrino or charged lepton) with momentum p.
The total conserved energy of the neutrino ensemble is an important quantity for understanding its evolution [23,26]. We

find for the energy density

 

" � Tr
�Z d3p
�2��3

�p�%p � �%p� �
���
2
p
GF

Z d3p
�2��3

Z d3q
�2��3

�‘q � �‘q��%p � �%p��1� vq � vp�

�

���
2
p
GF

2

�Z d3p
�2��3

�%p � �%p�

�
2
�

���
2
p
GF

2

�Z d3p
�2��3

�%p � �%p�vp

�
2
�
: (6)

This quantity actually represents the energy shift caused by
the neutrino masses and by neutrino interactions. It is
straightforward to show that indeed _" � 0 by taking the
time derivative on the right-hand side of Eq. (6), inserting
the equations of motion Eq. (5), and using cyclic permu-
tations of matrices under the trace.

For completeness we mention that one can also define
the entropy density [30]

 s � �
Z d3p
�2��3

Tr	%p ln�%p� � �1� %p� ln�1� %p�

� �%p ln� �%p� � �1� �%p� ln�1� �%p�
: (7)
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This expression is well defined because %p and 1� %p are
positive semidefinite matrices. In our case where the equa-
tion of motion for each %p is of the form i@t%p � 	H;%p
,
the entropy density is conserved. Oscillations alone do not
lead to a loss of information. Kinematical decoherence
does not lead to an increase of entropy.

B. Axial symmetry

Since we wish to study the simplest example that shows
nontrivial multiangle effects, we now restrict the neutrino
energy distribution to be monochromatic and the geometry
to axial symmetry. We then integrate the matrices of den-
sities over all variables except u � cos�p where the angle
is relative to the direction of symmetry. Therefore, we
consider the matrices

 %u �
1

n�

Z dpp2d’

�2��3
%p; (8)

implying the normalization

 %0 �
1

n�

Z d3p
�2��3

%p �
Z �1

�1
du%u: (9)

For convenience we have arbitrarily normalized the %u
matrices to the neutrino density.

We further define the matrix representing the particle
flux along the direction of symmetry,

 %1 �
Z �1

�1
du%uvu; (10)

where vu is the velocity along the symmetry direction. For
relativistic particles vu � cos�u � u.

For charged leptons we proceed in the same way, except
that we normalize to the electron density ne.

We denote with � the matrix of vacuum oscillation
frequencies for our fixed neutrino energy E. The equations
of motion then simplify to

 

i _%u � 	�; %u
 � 	��‘� �‘�0 ���%� �%�0; %u


� 	��‘� �‘�1 ���%� �%�1; u%u
; (11)

where � �
���
2
p
GFne. The same equation applies for ��u

except for a sign change of the vacuum oscillation term.
Evidently the isotropic part of the medium (index 0)

affects all modes in the same way and is ultimately respon-
sible for the phenomenon of self-maintained coherence.
On the other hand, the flux term (index 1) involves a factor
u � cos� for every mode u. Even in the absence of a
neutrino-neutrino term, a charged-lepton flux alone causes
a trivial multiangle decoherence effect.

The conserved energy of the axially symmetric neutrino
ensemble is
 

E � Tr	��%0 � �%0�
 � �Tr	�‘� �‘�0�%� �%�0

� �‘� �‘�1�%� �%�1
 �
�
2

Tr	�%� �%�20 � �%� �%�21
:

(12)

Because of our normalization of the %u matrices the quan-
tity E � "=n� is the energy per �.

C. Expansion in Legendre polynomials

The structure of these equations becomes more trans-
parent if we expand the angular dependence of the matrices
in Legendre polynomials. (Had we not assumed axial
symmetry, spherical harmonics would be the appropriate
basis.) The first few Legendre polynomials are

 L0�u� � 1; L1�u� � u; L2�u� �
1
2�3u

2 � 1�:

(13)

We thus define

 %n �
Z �1

�1
du%uLn�u�: (14)

The normalization

 

Z �1

�1
duLm�u�Ln�u� �

2

2n� 1
�mn (15)

implies that the original function is

 %u �
X1
n�0

�
n�

1

2

�
%nLn�u�: (16)

The previously defined overall density %0 and the flux %1

are but the zeroth and first case of Eq. (14).
Multiplying both sides of Eq. (11) with Ln�u� and in-

tegrating over du leads to the equation of motion
 

i _%n � 	�; %n
 ��	�%� �%�0; %n


��	�%� �%�1;
Z �1

�1
duu%uLn�u�
: (17)

Here and henceforth we no longer show the ordinary
matter term. Its structure is similar to the neutrino-neutrino
term so that it is easily reinstated.

With the expansion Eq. (16) the remaining integral is
 Z �1

�1
duu%uLn�u� �

X1
m�0

�
m�

1

2

�
%m

Z �1

�1
duuLm�u�Ln�u�:

(18)

We use the ‘‘dipole matrix element’’ of the Legendre
polynomials

GEORG G. RAFFELT AND GÜNTER SIGL PHYSICAL REVIEW D 75, 083002 (2007)

083002-4



 

Z �1

�1
duuLm�u�Ln�u� �

2�m� 1�

�2m� 1��2m� 3�
�m�1;n

�
2m

�2m� 1��2m� 1�
�m�1;n:

(19)

With this result the equations of motion are
 

i _%n � 	�; %n
 ��	�%� �%�0; %n


�
�
2
	�%� �%�1; �an%n�1 � bn%n�1�
; (20)

where

 an �
2n

2n� 1
� 1�

1

2n� 1
;

bn �
2�n� 1�

2n� 1
� 1�

1

2n� 1
:

(21)

Note that the equation for %0 is consistent even though the
quantity %�1 is not defined because the coefficient an �
n=�2n� 1� � 0 for n � 0.

The equations of motion Eq. (20) together with the
corresponding equations for �%n (sign change for the vac-
uum term) form a closed set of equations. If we also
include the ordinary matter term they are equivalent to
Eq. (11) for the momentum-space matrices %u.

One important difference is that Tr�%2
u� is conserved,

reflecting the absence of decoherence for individual mo-
mentum modes, whereas Tr�%2

n� is not in general con-
served, reflecting the effect of kinematical decoherence.
We note that in general @t Tr�A2� � 0 when the equation of
motion is of the form i@tA � 	A;H
. This is the case for %u,
but not for the multipole matrices %n.

Of course, in a numerical implementation the series %n
has to be truncated at some value nmax, leading to limited
angular resolution. This is analogous to the coarse graining
of phase space required for the �u where one needs to use
discrete angular bins of nonzero width.

The equations of motion for the flux terms are special in
that they involve one power of %1 or �%1 in each term of the
equation. Therefore, if initially there is no flux term (%1 �
�%1 � 0), none will develop. In this case the equations for
%0 and �%0 form a closed set, describing the dynamics of the
‘‘flavor pendulum’’ studied in Ref. [26]. In addition, the
higher multipoles %n with n � 2, if initially nonzero, will
simply oscillate under the action of the vacuum term and of
the density term �%� �%�0.

D. Diffusion equation in multipole space

The interpretation of the equations of motion in multi-
pole space becomes clearer if we observe that for some
function f�x� one has to second order

 f�x� �x� � f�x� � f0�x��x� 1
2f
00�x��x2;

f�x� �x� � f�x� � f0�x��x� 1
2f
00�x��x2:

(22)

Taking the sum and difference of these equations provides

 f�x� �x� � f�x��x� � 2f�x� � f00�x��x2;

f�x��x� � f�x� �x� � 2f0�x��x:
(23)

With Eq. (21) we may write

 an%n�1 � bn%n�1 � 2%n �
2

2n� 1
%0n�n� %00n�n2;

(24)

where we interpret a prime as a derivative with respect to n
that is now viewed as a continuous variable. If we further
observe that in the discrete equation �n � 1 we may write
Eq. (20) in the continuous form

 

i _%n � 	�; %n
 ��	�%� �%�0 � �%� �%�1; %n


��
�
�%� �%�1;

�
%0n

2n� 1
�
%00n
2

��
: (25)

Therefore, the lowest multipole (monopole) is equivalent
to the pendulum in flavor space [26], the high multipoles
are akin to a continuous medium carrying flavor waves.
Equation (25) is a diffusion equation. The periodic excita-
tion caused by the flavor pendulum then diffuses to higher
multipoles (smaller scales). The flavor waves as a function
of neutrino direction visible in numerical simulations [25]
are the result of this process.

E. Particle vs lepton number

In the equations of motion the difference of the particle
and antiparticle densities, %p � �%p, plays a special role in
that it is this matrix of net lepton number densities that
plays the role of a potential for the other neutrino modes.
As noted by several authors, it is sometimes useful to write
the equations of motion in terms of the sum and difference
of %p and �%p instead of these matrices themselves. We
therefore define the matrix of particle densities (sum S)
and the matrix of lepton number densities (difference D) by
virtue of

 S p � %p � �%p; Dp � %p � �%p: (26)

Analogous definitions apply to the case of axial symmetry,
Su and Du, and their multipole expansion Sn and Dn.

The equations of motion for the particle and lepton
number matrices are found by adding and subtracting the
two lines of Eq. (5) and the equivalent equations for axial
symmetry or the multipoles. We find explicitly for the
multipoles
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 i _Sn � 	�;Dn
 ��	D0;Sn


��
�
D1;

anSn�1 � bnSn�1

2

�
;

i _Dn � 	�;Sn
 ��	D0;Dn


��
�
D1;

anDn�1 � bnDn�1

2

�
:

(27)

One can restore easily the ordinary matter term because it
has the same structure as the neutrino-neutrino term with
the substitution�! � and D0;1 ! L0;1, the latter being the
charged-lepton matrix of net lepton number densities and
the corresponding flux, respectively.

The commutator structure of the right-hand side of
Eq. (27) implies that its trace vanishes. Therefore, the
particle and lepton numbers for all multipoles, Tr�Sn�
and Tr�Dn�, are conserved.

With the expressions Eq. (21) for an and bn the lowest-
order multipole equation is
 

i _S0 � 	�;D0
 ��	D0;S0
 ��	D1;S1
;

i _D0 � 	�;S0
: (28)

One immediate consequence of the second equation is

 @t Tr��D0� � 0; (29)

i.e., in the mass basis a certain combination of flavor-lepton
numbers is conserved.

The explicit equation for the flux term is
 

i _S1 � 	�;D1
 ��	D0;S1
 �
�
3
	S0 � 2S2;D1
;

i _D1 � 	�;S1
 �
2�
3
	D0 � D2;D1
:

(30)

As stated earlier, these equations are special in that they
involve one power of S1 or D1 in each term. Therefore, S1

and D1 vanish at all times if they vanish initially.
In this case, the monopole terms (overall densities) form

a closed set of equations. Defining

 Q � S0 �
�

�
; D � D0; (31)

the equations of motion take on the simple form

 i _Q � �	D;Q
; i _D � 	�;Q
: (32)

Conserved quantities are Tr�Q2�, Tr�DQ�, Tr�D��, and
Tr��Q��D2=2�. Up to a constant, the last quantity is
the energy per neutrino. For two flavors, these simplifica-
tions are at the origin of the pendulum analogy [26] where
Tr�Q2� corresponds to its length, Tr�DQ� its spin, and
Tr�D�� to the orbital angular momentum around the force
direction (the mass direction in flavor space).

Returning to the general case with arbitrary initial con-
ditions, the energy per neutrino is

 E � Tr
�

�S0 �
�
2
�D2

0 � D2
1�

�
: (33)

Energy conservation @tE � 0 is easily verified by using the
equations of motion for S0, D0, and D1.

F. Two-flavor case

In the two-flavor case where the %p are Hermitian 2 2
matrices, a representation in terms of polarization vectors
is useful. A Hermitian 2 2 matrix A is represented as

 A �
Tr�A� �A � �

2
; (34)

where � is the vector of Pauli matrices and A the polar-
ization vector.

The commutation relations of the Pauli matrices imply
that an equation of motion of the form

 i @tA � 	B;C
 (35)

is represented by

 @t Tr�A� � 0 and @tA � BC: (36)

Moreover,

 Tr �AB� �
Tr�A�Tr�B� �A �B

2
(37)

for any two matrices A and B.
As usual, we denote with Pp and �Pp the polarization

vectors representing %p and �%p, respectively, and analo-
gous expressions for %u ! Pu and %n ! Pn. The particle
and lepton number matrices are represented by S! S and
D! D, in each case with the subscripts p, u, or n for the
different variables. Finally, we represent the matrix of
oscillation frequencies in the form

 � �
Tr��� �!B � �

2
; (38)

where

 Tr ��� �
m2

1 �m
2
2

2E
and ! �

��������m
2
1 �m

2
2

2E

��������: (39)

We have defined the oscillation frequency ! as a positive
number. The ‘‘magnetic field’’ is a unit vector that in the
interaction basis is explicitly B � �sin2�; 0; cos2��
where � is the vacuum mixing angle. We have arbitrarily
chosen its y component to vanish, corresponding to a
choice of overall phase of the mixing matrix. In the follow-
ing, when we say that ‘‘the mixing angle is small,’’ we
mean that j sin2�j � 1. The sign of Bx is physically
irrelevant whereas Bz < 0 represents the normal, Bz > 0
the inverted hierarchy.
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The equations of motion for the particle- and lepton-number polarization vectors are explicitly
 

_Sn � !BDn ��D0  Sn �
�
2

D1  �anSn�1 � bnSn�1�;

_Dn � !B Sn ��D0 Dn �
�
2

D1  �anDn�1 � bnDn�1�:
(40)

The two lowest-order equations are explicitly
 

_S0 � !BD0 ��D0  S0 ��D1  S1;

_D0 � !B S0;
(41)

and
 

_S1 � !BD1 ��D0  S1 �
1
3��S0 � 2S2� D1;

_D1 � !B S1 �
2
3��D0 �D2� D1: (42)

The conserved energy Eq. (33) becomes, with the help
of Eq. (37),
 

E �
1

2

�
Tr���Tr�S0� �!B � S0

�
�
2
	Tr�D0�

2 � Tr�D1�
2 �D2

0 �D2
1


�
: (43)

We have noted already that the individual traces Tr�S0�,
Tr�D0�, and Tr�D1� are conserved so that1

 E �
1

2

�
!B � S0 �

�
2
�D2

0 �D2
1�

�
(44)

is the conserved energy per neutrino, up to an irrelevant
constant. We use the notation

 E! �
!
2
�jS0j �B � S0� (45)

for what is the ‘‘potential energy’’ in the pendulum anal-
ogy. Its minimum is chosen at zero. The ‘‘kinetic energy’’
(neutrino-neutrino interaction energy) is denoted by

 E� � E0 � E1 �
�
4
�D2

0 �D2
1�; (46)

where we have introduced

 E0 � �
�
4

D2
0; E1 � �

�
4

D2
1 (47)

for the monopole and dipole contributions.

III. ROLE OF ANISOTROPY

A. Isotropic case

In order to study the impact of kinematical decoherence
in the simplest nontrivial case we study a homogeneous
ensemble consisting of equal numbers of neutrinos and
antineutrinos that are all initially in the electron flavor.

Before turning to issues of decoherence, we briefly recall
the evolution of the isotropic case. To this end we show in
Fig. 2 in the upper panels the z component of the overall
polarization vector S0 � P0 � �P0 for the inverted and
normal hierarchy. The �e or ��e survival probability is

 prob ��e ! �e� � prob� ��e ! ��e� �
Sz0 � 2

4
; (48)

because in our normalization jS0j � 2. In the lower panels
we show the corresponding energy components.

For the normal hierarchy (left) the motion is a small-
excursion harmonic oscillation with the bipolar frequency
�. We show one full cycle of oscillation. The potential
energy E! (solid line in the lower panel) is measured
against the mass direction so that it is back at its maximum
after a half period as behooves an ordinary pendulum. The
dashed line shows the ‘‘kinetic pendulum energy’’ E�. The
isotropy of the ensemble implies E1 � 0 and thus E� �
E0.

For the inverted hierarchy (right) the motion is that of an
inverted oscillator. We show approximately one full cycle
that for the chosen mixing angle lasts approximately 3
times the bipolar period 2�=�. The polarization vector
starts in the positive z direction, swings almost one full
circle and almost arrives back at the vertical direction
(maximum in the middle of the plot), then swings back,

 

FIG. 2. Evolution of a homogeneous and isotropic ensemble of
equal numbers of neutrinos and antineutrinos, initially in the
electron flavor, with a vacuum mixing angle sin2� � 0:1. Top:
polarization vector Sz0. Bottom: energy components E! (solid
line) and E� (dashed line). Left: normal hierarchy. Right: in-
verted hierarchy.

1The overall factor 1=2 is missing in the equivalent expression
in our previous paper [26].
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reaching its original vertical position, and then starts over
again. The maximum potential energy is 2! because the
energy is normalized to the total energy per � and because
there are equal numbers of neutrinos and antineutrinos, i.e.,
two particles per �.

Reducing the mixing angle has the effect of reducing the
oscillation amplitude for the normal hierarchy, whereas it
increases logarithmically the duration of the ‘‘plateau
phases’’ for the inverted hierarchy. For quantitative dis-
cussions of the isotropic case in terms of the pendulum
analogy see Ref. [26].

B. Half-isotropic case

Next we consider the same example, but assume a large
degree of anisotropy where only one half space of momen-
tum modes is occupied. In Fig. 3 we show, in the upper
panels, the evolution of Sz0. Moreover, we show the length
of the overall polarization vector, jS0j, as a thin dashed
line. Both in the normal hierarchy (left) and the inverted
hierarchy (right), an equal mixture of the two flavors is
quickly achieved. In the isotropic case the length of P0 and
�P0 is conserved and that of S0 is approximately conserved,
up to corrections of order !=�� 1. Here, the lengths of
P0, �P0, and S0 shrink to zero, reflecting kinematical deco-
herence. Of course, Sz0 can become small or zero without
its length shrinking as during the first swing in the inverted-
hierarchy case. It is the length of the polarization
vector, not its z component, that is a measure of decoher-
ence. Of course, in the normal hierarchy, S0 performs
only small-excursion oscillations so that a significant
change of its z component can be achieved only by a
change of its length. In this case jS0j and Sz0 are almost
identical.

The evolution of S0 was also illustrated in Fig. 1 where
we showed its trajectory in the x–z plane. For our chosen
geometry where B is in the x–z plane, Sy0 � 0 at all times.
For the inverted hierarchy (bottom) we indicate the
isotropic-gas trajectory with diamonds at time intervals
of 0.01 (2�=�) where the motion starts in the vertical
position. In the half-isotropic case, the particle number
polarization vector S0 spirals in to a position close to the
origin. The final offset is very small and depends on the
magnitude of !=� for which we have chosen 10�5. In the
normal hierarchy (top), the isotropic-case motion is a
small-excursion harmonic oscillation between the dotted
lines. In the half-isotropic case, the evolution begins from
the vertical position. A full oscillation back to the vertical
position is performed before the shrinking of S0 becomes
noticeable.

In the lower panels of Fig. 3 we show the evolution of the
different energy components. The simpler case is the in-
verted hierarchy (right) where the ‘‘potential’’ and ‘‘ki-
netic’’ energies begin to oscillate as in the isotropic case of
Fig. 2. On the time scale of a few bipolar oscillation
periods, the two components essentially equipartition,
although asymptotically a small offset remains that de-
pends on !=�. Moreover, the neutrino-neutrino energy
(‘‘kinetic energy’’) now develops a nonvanishing flux
term E1 � ��D2

1=4 that inevitably is negative.
The normal hierarchy (left) is initially similar in that E!

and E� oscillate as for a pendulum, even though this
motion is not visible on the scale of the plot. As decoher-
ence sets in, a qualitatively different mode of behavior
obtains in that the neutrino-neutrino energy E� is domi-
nated almost entirely by the negative E1 whereas E0 now is
subdominant. All individual polarization vectors of all
modes start aligned with the z direction, i.e., almost aligned
with the force direction since the mixing angle is small.
Therefore, the initial E! is near its minimum. If the overall
polarization vector S0 is supposed to shrink, the individual
polarization vectors must develop significant deviations
from each other and thus the potential energy must in-
crease. Energy conservation then dictates that E� becomes
negative.

One important conclusion is that the angular dependence
of the neutrino-neutrino interaction alone is not enough to
cause kinematical decoherence, but its absolute sign is also
crucial. IfE1 were not negative, energy conservation would
prevent significant decoherence for the normal hierarchy.
Changing this sign in a numerical example indeed reveals
the absence of decoherence for the normal hierarchy, but
no significant change of behavior for the inverted case. In
the real world there is no choice about this sign. It derives
from the negative sign of the spatial part in the neutrino
current-current interaction, i.e., it is the negative sign in-
herent in the Lorentz metric. From the equations of motion
in the form Eq. (40) one would have never guessed that the
absolute sign of the term proportional to D1 plays a crucial
role.

 

FIG. 3. Same as Fig. 2, now for a half-isotropic neutrino gas.
Top: polarization vector Sz0 (solid line) and the length jS0j

(dashed line). Bottom: energy components E! (solid line), E� �
E0 � E1 (dashed line), E0 (thin dotted line) and E1 (thin dotted-
dashed line).
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C. Evolution of multipoles

It is also instructive to study the evolution of the higher
multipole components Sn. We consider the same example
as in the previous section. For a half-isotropic gas the
initial relative length of the multipole components is

 

S1

S0
�

1

2
;

S2m

S0
� 0;

S2m�1

S0
�

1

2�m� 1�

Ym
k�1

�
1

2k
� 1

�

�
��1�m

2�m� 1�

��m� 1
2�

��12���m� 1�
;

(49)

where Sn � jSnj and all of them are initially oriented in the
z direction. Here, m is an integer, i.e., the even multipoles
vanish initially except for S0.

Instead of using these initial values, we calculate the
evolution for a case where all multipoles vanish initially
except for S0 � 2 and S1 � 1, i.e., we use the same density
and flux terms as in the half-isotropic case. The evolution is
very similar. We show the evolution of the first 21 multi-
poles in Fig. 4 for the inverted hierarchy; the picture is
similar for the normal hierarchy. The initial horizontal part
of the curves corresponds to their zero initial value so that
the offset by 0.1 vertical units between the curves is
directly apparent.

Initially, S0 and S1 are large, but quickly decay away by
decoherence, whereas the higher multipoles vanish ini-
tially and get excited one after another, but then decrease
again. The length of each multipole sports ‘‘wiggles,’’ i.e.,
the evolution is not monotonic. Moreover, they have large
relative angles in the x–z plane (not shown here), i.e., the
spread of the initial excitation to larger and larger multi-
poles is far from simple in detail, but the overall process is
as expected. In Fig. 5 we show jSnj and Szn as a function of
n at t � 12 for the example of Fig. 4. At t � 12, multipoles

n * 60 are not yet excited. The nearly linear increase of
the phases between individual polarization vectors corre-
sponds here to a diffusion of the ‘‘multipole wave’’ to
larger n with approximately constant speed, n ’ �t.

Qualitatively, this can be understood as follows. The
second line in Eq. (40) together with the analogue of
Eq. (24) implies that

 

_Dn ’ !B Sn ��D1 

�
D0n

2n� 1
�

D00n
2

�

���D0 �D1� Dn: (50)

The last term does not contribute to the growth of jDnj and
can be ignored. Approximate equipartition between poten-
tial and kinetic energies in Eq. (44) implies jD0j � jD1j �

2�!=��1=2, as indeed was observed in Fig. 3. The second
term in Eq. (50) then represents a combination of a drift in
n space with velocity ��=�

���
2
p
n� and diffusion with diffu-

sion coefficient ��=
���
2
p

. Up to a factor t�1=2 this gives rise
to an exponential factor � exp	�n2=�2

���
2
p
�t�
. On the

other hand, since jSnj � ��=!�1=2jDnj for n � 2, the first
term in Eq. (50) can give rise to exponential growth when-
ever �B Sn� � Dn > 0. This growth will be nonmono-
tonic but can roughly be estimated as / exp��t=2� before
Dn saturates. Using perturbation theory, we will find a
similar growth rate for D1 at early times in Sec. IV B.
Combining these two factors, one sees that at time t the
wave front of Dn, and thus also of Sn, should be located at
n ’ �t, which, according to Figs. 4 and 5 indeed it is within
about 20%. The slow decrease of Sn and Dn at late times
can be interpreted as due to the t�1=2 factor in the diffusive
behavior.

D. A simple model of decoherence

The overall behavior of the inverted-hierarchy case is
qualitatively easy to understand. To this end we consider an
ensemble of polarization vectors Pu, initially oriented in
the z direction, that rotate around the y axis, each with a
frequency u, so that

 

FIG. 4. Evolution of jSnj for the first 21 multipoles in the
quasi-half-isotropic example with inverted hierarchy. The curves
are offset from each other by 0.1 vertical units.

 

FIG. 5. jSnj (solid line) and Szn (dotted line) as a function of n
at t � 12 for the example of Fig. 4.
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 Pzu � cos�ut�; Pxu � sin�ut�: (51)

Both u and t are normalized to be dimensionless.
If the frequencies are spread over 1 � u � 1��u, then

the overall polarization vector evolves as

 

Pz0 �
Z 1��u

1
du cos�ut� �

sin	�1� �u�t
 � sin�t�
t

;

Px0 �
Z 1��u

1
du sin�ut� �

cos�t� � cos	�1� �u�t

t

;

jP0j � 	�P
x
0�

2 � �Pz0�
2
1=2 �

2j sin��ut=2�j

t
: (52)

For �u � 1 we show in Fig. 6 the evolution of Pz0 (solid
line) and the length jP0j (dashed line). In Fig. 7 we show
the trajectory of P0 in the x–z plane.

Unsurprisingly, this simple model represents qualita-
tively the features of the inverted-hierarchy case. In par-
ticular, the trajectory in the x–z plane is not a true spiral,
but there are many crossings of the origin as the length of
the overall polarization vector shrinks. Its length does not
shrink monotonically. Its envelope decreases as a power
law t�1, not exponentially.

This example also shows that it is not trivial to define a
useful measure of kinematical decoherence. The z compo-
nent of the polarization vector is not useful because P0 can
tilt so that its z component vanishes, i.e., both flavors are
present with the same probability, yet the flavor content of
the ensemble is perfectly coherent. The length of P0 is a
much better measure in analogy to dynamical decoherence
of a single mode where the length of Pp is a measure of
dynamical decoherence; unit length would correspond to a
pure state. In our case, the length of the individual Pp is
conserved, whereas the length of the total P0 shrinks, but
not monotonically.

It is not evident if there is an ‘‘entropy’’ measure that
evolves monotonically as a consequence of kinematical
decoherence. We note, however, that the origin of kine-
matical decoherence is the differential evolution between
neighboring polarization vectors. In our toy example, the
angle between neighboring polarization vectors grows lin-
early as �ut and thus is a measure of decoherence.

Motivated by this observation we can define the ‘‘wind-
ing number’’

 N �
1

2�

Z �1

�1
du
jdPu=duj
jPuj

: (53)

In the symmetric case where the evolution of the polariza-
tion vectors is essentially restricted to the x–z plane, this
quantity tells us the number of windings around the y
direction of the full ensemble of polarization vectors. In
Fig. 8 we show the evolution of this quantity for the normal
and inverted-hierarchy examples of Fig. 3. N counts how
often the length of S0 shrinks to zero.

E. Recurrence effects

Closely related to kinematical decoherence are recur-
rence effects that arise when one uses a limited number of
polarization vectors, i.e., when the full ensemble is repre-
sented by a coarse-grained (binned) ensemble of polariza-
tion vectors or, in multipole space, when the series is
truncated at some multipole nmax. Binning or truncation

 

FIG. 7. Trajectory of P0 in the x–z plane for our toy model of
decoherence with �u � 1.

 

FIG. 8. Evolution of the ‘‘winding number’’ as defined in
Eq. (53) for the half-isotropic case of Fig. 3. Normal hierarchy
(solid line) and inverted hierarchy (dashed line).

 

FIG. 6. Evolution of Pz0 (solid line) and jP0j (dashed line) of
our toy model with �u � 1.
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are unavoidable in numerical treatments and represent
equivalent approximations.2

If the phase differences evolve linearly between differ-
ent polarization vectors as in the toy example of the pre-
vious section, then the initial state will recur when each
polarization vector has turned around the y axis by 2�
relative to its neighbors. Put another way, if we use npol

bins to represent the polarization vectors, we expect recur-
rence to begin when N � �npol � 1�=2. We demonstrate
this effect in Fig. 9 for the same example as in Fig. 3,
normal hierarchy, using npol � 51. Indeed, the winding
number increases until approximately N � 25 and then
decreases back to almost zero, and so forth. This system
is almost periodic on the recurrence time scale, reflecting
that nonlinear effects play a subleading role here. Since a
large flux term is present from the start, kinematical deco-
herence is very similar to the linear toy example of the
previous section where recurrence would be exact and the
system would be periodic with a frequency proportional to
�npol � 1��1 times the individual polarization vector’s os-
cillation frequency.

Using the multipoles as the primary variables, the same
recurrence effects occur due to the truncation nmax of the
multipole series. The ‘‘multipole wave’’ of Fig. 5 can only

propagate up to nmax, is then reflected, and eventually
returns back to n � 0. This is the moment of maximum
recurrence of the overall polarization vector.

For a more complicated example such as a realistic
simulation of the supernova case, recurrence effects may
not be so obvious as here. Therefore, in a numerical treat-
ment one must make sure that the largest relative angle
developed between any two neighboring polarization vec-
tors never grows to order unity, i.e., one should monitor the
largest relative angle between neighboring polarization
vectors as a measure of accuracy of the calculation. In
other words, kinematical decoherence is a property of the
entire ensemble, but it also can be a property of individual
bins if they are too coarse. One must make sure that within
all individual bins kinematical decoherence remains
negligible.

IV. SMALL INITIAL ANISOTROPY

A. Numerical example

We next turn to a symmetric system that is perfectly
isotropic except for an arbitrarily small but nonzero initial
anisotropy. We work in the multipole picture and assume
that initially Dn � 0 for all n, Sn � 0 for n � 2, Sz0 � 2
and Sz1 � 	� 1. Note that 	 � 1 corresponds to a flux
term equivalent to the half-isotropic case.

As a first example we show in Fig. 10 the evolution of
the overall polarization vector S0 (top) for the normal
hierarchy (left) and the inverted hierarchy (right). The
initial anisotropy is 	 � 10�4 and sin2� � 0:1. For both
hierarchies, kinematical decoherence eventually obtains.

 

FIG. 10. Evolution of a homogeneous and near-isotropic en-
semble of equal � and �� densities with sin2� � 0:1 as in Figs. 2
and 3. The initial anisotropy is 	 � 10�4. Top: polarization
vector Sz0 (solid line) and the length jS0j (dotted line). Bottom:
neutrino-neutrino flux energy �E1 (solid line) and potential
energy E! (dotted line). Left: normal hierarchy. Right: inverted
hierarchy.

 

FIG. 9. Evolution of jP0j and the winding number for the
normal-hierarchy case of Fig. 3 with 51 polarization vectors.

2In Ref. [11] a multipole expansion (‘‘partial wave expan-
sion’’) was proposed and dismissed with the argument that the
necessary truncation would introduce uncontrolled numerical
effects whereas coarse bins in angle space would provide limited
resolution, yet a correct solution of the nonlinear equations of
motion. We disagree with this assessment. The same unphysical
recurrence effects occur both if the number of angular bins or the
multipole order of truncation is too small.
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In the bottom panels we show the evolution of �E1 �
��=4�D2

1 (solid line) as a proxy for D1 which is the primary
quantity that causes decoherence. For the symmetric neu-
trino gas only the component Dy

1 is nonzero, but it can be
negative and can change sign so that it is difficult to display
on a logarithmic scale. We also show the evolution of the
‘‘potential energy’’ E! (dotted line).

For the normal hierarchy,Dy
1 grows exponentially after a

short initial transient. While Dy
1 is small, the potential

energy E! performs the usual oscillations of a harmonic
oscillator, complemented by the opposite oscillations of
the kinetic energy E� � E0 � E1 (not shown) that is en-
tirely dominated by E0. As Dy

1 grows, it eventually domi-
nates the kinetic energy and the end state is approximately
E! � �! and E� � �!, with E1 dominating E�. In
other words, the end state is exactly as in the previous
case with a large initial anisotropy. The crucial novel
feature is that the flux term grows exponentially from a
small value. This is a purely nonlinear effect caused by
neutrino-neutrino interactions. For smaller mixing angles
and/or other values of 	, the behavior is analogous. The
rising part of the E1 curve is the same, except that it shifts
vertically in direct proportion to 	 and sin2�.

For the inverted hierarchy, the evolution is far more
complicated. While Dy

1 grows in an average sense, this
evolution is overlaid with oscillations and in fact Dy

1

changes sign at each spike in the E1 curve. Moreover, the
evolution of the envelope of the E1 curve is not monotonic.
It can perform complicated motions, with growing, declin-
ing, and nearly flat phases, until finally decoherence
obtains.

From these numerical observations we tentatively con-
clude that an isotropic neutrino ensemble of equal densities
of neutrinos and antineutrinos is not stable. A small flux
term triggers a runaway evolution towards kinematical
decoherence.

B. Analytic treatment

1. Simplified equations of motion

As a starting point for an analytic understanding of this
instability we use the equations of motion Eq. (40) for the
vectors Sn and Dn. Initially only S0 is of order one, jS1j �
	� 1, and all others vanish. As long as D1 is sufficiently
small, none of the higher multipoles can grow large so that
we can limit our attention to the equations for n � 0 and
n � 1, i.e., to Eqs. (41) and (42).

We further observe that the n � 0 equations are coupled
to the higher multipoles only by the term ��D1  S1,
consisting of a product of two small quantities, i.e., it is at
least of order 	2. Therefore, the evolution of the near-
isotropic ensemble is identical with that of the isotropic
case until D1 has grown sufficiently large. In other words,
up to second order in 	 the n � 0 equation is that of the
isotropic case.

Therefore, what remains to be solved is the n � 1 equa-
tion. After neglecting terms involving n � 2 all we need to
study is
 

_S1 �

�
!B�

�
3

S0

�
D1 ��D0  S1;

_D1 � !B S1 �
2�
3

D0 D1;
(54)

where S0�t� and D0�t� are the solutions of the unperturbed
pendulum equations.

The equations simplify further in our case of equal � and
�� densities where symmetry dictates that all polarization
vectors Pp and �Pp evolve as each other’s mirror images
relative to the x–z plane, the latter being singled out by our
choice that B lies in that plane. In this case all Dn vectors
are parallel to the y axis, whereas all Sn vectors are con-
fined to the x–z plane.

As a consequence, the D0 D1 term drops out. The
second equation then implies �D1 � !B _S1, and with
the first equation yields
 

�D1 � !B
��
!B�

�
3

S0

�
D1

�
�!�B �D0  S1�:

(55)

Expanding the triple product, observing that in our case B �
Dn � 0, and using B2 � 1 this is

 

�D 1 � �

�
!2 �

!�
3

B � S0

�
D1 �!��B � S1�D0: (56)

We repeat that all Dn are here parallel to each other and to
the y axis. In the absence of neutrino-neutrino interactions
(� � 0), D1 obeys a harmonic-oscillator equation.

In a dense neutrino gas,�� !, we may ignore the term
proportional to !2. Since during the growth phase, jD1j &

jD0j and jS1j � jS0j, the last term in Eq. (56) also can be
neglected. A possible exponential growth is then accounted
for by the term

 

�D 1 � �
�2

3

B � S0

2
D1; (57)

where we have used the bipolar oscillation frequency �2 �
2!� and we note that initially jS0j � 2 and that its length
remains nearly constant if j sin2�j � 1 unless there is
kinematical decoherence.

2. Normal hierarchy

If the mixing angle is small, the ‘‘normal hierarchy’’ is
defined by neutrinos being essentially in the lower mass
eigenstate or B � S0=2 � �1 up to corrections of order
sin22�. Therefore, the critical part of the equation of
motion for the flux term is approximately

 

�D 1 � �
�2

3
D1: (58)
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The solution includes growing modes of the form

 D 1 / exp
�
�

2����
3
p 


�
; (59)

where 
 � �t=2� is the dimensionless time variable used
in all of our plots, i.e., time in units of the bipolar oscil-
lation period. This behavior is numerically verified in the
lower-left panel of Fig. 10 if we recall that the plotted
quantity is �E1 / D2

1 / exp	�4�=
���
3
p
�

.

Once more we note that the crucial absolute sign in
Eq. (58) is traced back to the negative sign in the term �1�
vq � vp� in Eq. (5). Therefore, the instability of the near-
isotropic neutrino gas, for the normal hierarchy, is not just
caused by different angular modes experiencing different
neutrino-neutrino effects. This would also be the case for a
hypothetical term �1� vq � vp� that naı̈vely looks very
similar, but causes a completely different overall behavior.
In more complicated numerical situations, e.g., for a full
supernova simulation, it is easy to change this sign in order
to diagnose the relevance of the term Eq. (57) for the
overall behavior of the system.

Initially D1 � 0 so that the exponential growth term
alone is not enough. The initial evolution is dominated
by the second line of Eq. (54) that is initially

 

_D 1 �

�
!
�

�
1=2 ����

2
p 	 sin2�; (60)

where D1 � jD1j and we have used jBj � 1 and S1�0� �
�0; 0; 	�. Here the absolute sign is not critical because it
does not matter if D1 grows in the positive or negative y
direction. The first factor �!=��1=2 sets the overall scale
for D1. From the expression for the energy we note that S
and D appear in the combinations !jS0j and �D2

0 or �D2
1.

The quantities Sn are of order unity, whereas the natural
scale for Dn is �!=��1=2. The initial evolution is

 

�
�
!

�
1=2 D1

	 sin2�
�

2����
2
p 
; (61)

where, again, 
 � ��=2��t is our usual measure of time.
This linear growth is shown in Fig. 11 as a dotted line and
agrees with the numerical examples.

Besides a transient caused by the other terms in the
equation, the exponential growth takes over after a time
of order 2�=�. We conclude that the initial value of
��=!�1=2D1 for its exponential growth is of order
	 sin�2�� so that it grows to order unity within a time scale
of order ��2�=�� ln�	 sin2��.

3. Inverted hierarchy

For the inverted hierarchy, the initial growth of D1 is the
same (dashed line in Fig. 11). After that, however, the
situation is entirely different because initially B � S0=2 �
�1. This corresponds to the pendulum starting in a nearly
upright position from where it starts almost full-circle
oscillations. For our usual assumption j sin2�j � 1 the
term B � S0 is almost identical with Sz0 shown in the
upper-right panel of Fig. 10. This term changes sign during
every swing of the pendulum. During the phases when B �
S0 > 0, D1 oscillates whereas during the phases B � S0 < 0
exponential growth obtains. These are the relatively short
phases when the pendulum is oriented downward, whereas
it stays upright for long periods if the mixing angle is
small.

We illustrate this behavior in Fig. 12 where we show the
evolution ofD1 overlaid with that of Sz0. We have chosen an
extremely small mixing angle, sin2� � 10�7, to obtain
long plateaus for Sz0 where the pendulum stands almost still
in an almost upright position. During these phases we have
B � S0=2 � �1 so that Eq. (57) implies harmonic oscilla-
tions of D1 with the frequency �=

���
3
p

as borne out by the
example in Fig. 12.

The frequency �=
���
3
p

is not matched to the pendulum’s
oscillation period because the duration of the ‘‘plateaus’’
depend logarithmically on sin2�. Therefore, the short
exponential growth phases when Sz0 < 0 occur at erratic
instances relative to the harmonic D1 oscillation. This
interplay explains the erratic behavior of the D1 evolution

 

FIG. 11. Initial evolution of D1 as discussed in the text for the
normal hierarchy (solid line) and the inverted hierarchy (dashed
line). The dotted line is the linear relationship of Eq. (61).

 

FIG. 12. Initial evolution of D1 (solid line, arbitrary units) and
Sz0 (dotted line) for the inverted hierarchy with 	 � 10�4 and
sin2� � 10�7.

SELF-INDUCED DECOHERENCE IN DENSE NEUTRINO GASES PHYSICAL REVIEW D 75, 083002 (2007)

083002-13



that is apparent in Fig. 10 and that obtains in all numerical
examples. This interplay also explains why small changes
of parameters such as sin2� can completely change the
overall D1 evolution.

Therefore, we cannot prove if there is some specific
combination of parameters where kinematical decoherence
will not occur, although this would have to be isolated
parameter points that presumably have measure zero in
parameter space if they exist at all.

Except for this caveat we conclude that both for the
normal and inverted-hierarchy kinematical decoherence
there is an unavoidable consequence of the nonlinear
neutrino-neutrino interaction terms. An infinitesimally
small, but nonzero, deviation from isotropy is enough to
trigger an exponential evolution towards flavor equilib-
rium. Therefore, the pendulum solution that describes the
behavior of a perfectly isotropic gas is merely an unstable
limit cycle of this nonlinear system.

V. CONCLUSIONS AND OUTLOOK

We have investigated multiangle kinematical decoher-
ence effects in a dense neutrino gas consisting of equal �
and �� densities. The current-current nature of the weak-
interaction Hamiltonian implies that a current of the back-
ground medium causes kinematical decoherence between
neutrinos propagating in different directions. This simple
effect becomes entirely nontrivial in the most interesting
case when the ‘‘background current’’ is caused by the
neutrinos themselves.

We have shown that a neutrino gas of this sort is not
stable in flavor space. If one prepares the ensemble in a
given flavor state, even a small deviation from isotropy is
enough to trigger an exponential evolution towards flavor
equipartition, even when the mixing angle is small. Up to
logarithmic corrections, the time scale is determined by the
bipolar oscillation period. We thus have to do with a self-
induced macroscopic pair conversion process that proceeds
much faster than ordinary pair processes that occur at order
G2

F.
With hindsight this is probably the same ‘‘speed-up

effect’’ discussed in Ref. [11]. However, the fast speed � ������������
2!�
p

is not introduced by the multiangle effect as is
perhaps suggested in Ref. [11]. Rather, � is the bipolar
oscillation frequency that is inherent even in the isotropic
system. For the normal hierarchy ‘‘nothing’’ seems to
happen in the isotropic case, although this would be a
misperception because the system moves with the speed
�, but the amplitude is small if sin2�� 1. In any event,
we agree with the importance of multiangle effects and
with the end result conjectured in Ref. [11] that complete
flavor equipartition obtains on a time scale ��1. However,
we have found no indication that an even faster time scale
��1 plays any role, in contrast to what was conjectured in
Ref. [11].

Of course, flavor equipartition obtains only in a macro-
scopic sense with some degree of coarse graining in phase
space. It is the nature of kinematical decoherence that
information is not lost and the entropy does not increase.
On the other hand, kinematical and dynamical decoherence
are not always operationally distinguishable. It is not nec-
essarily possible to distinguish between a neutrino gas in
true chemical equilibrium and one where neighboring
modes are simply ‘‘dephased’’ relative to each other.

Either way, the ‘‘self-maintained coherence’’ of a dense
neutrino gas represents only an unstable limiting form of
behavior of the perfectly isotropic case. Since no gas can
be perfectly isotropic, self-induced decoherence is the
generic behavior of a symmetric � �� gas.

We have only analyzed the two-flavor case. It remains to
be studied how our results carry over to a genuine three-
flavor situation.

Contrary to a naı̈ve expectation, the fact that neutrinos
propagating in different directions experience different
weak potentials is necessary, but not sufficient, to cause
multiangle decoherence. The negative sign in the Lorentz
metric plays a crucial role because it determines that the
flux term grows exponentially rather than oscillating. The
occurrence of kinematical decoherence is a subtle feature
of the nonlinear equations.

We have studied the simplest possible case where deco-
herence effects obtain. A more realistic case is provided by
neutrinos streaming off a supernova core. In this case the
fluxes of neutrinos and antineutrinos are different and
geometry implies that the neutrino-neutrino interaction
strength declines with the fourth power of radius. The
evolution of an asymmetric system is far more compli-
cated, even in the isotropic case, where the simple pendular
motion turns into one of a spinning top that can precess,
nutate, or simply swing, depending on the � �� asymmetry.
In the supernova context, transitions between these modes
occur as � declines as a function of radius. Multiangle
decoherence cannot occur, for example, in regions where
synchronized oscillations prevail.

Numerical simulations suggest that for neutrinos
streaming off a supernova core, the collective behavior
characteristic of an isotropic gas prevails in many situ-
ations, i.e., kinematical decoherence occurs but is not the
dominating feature of the system, contrary to what we have
found here for the symmetric � �� gas. Evidently it is not
straightforward to apply the insights gained from our
present study to the supernova case.

We imagine, however, that the methods developed here
may take us one step further to understand the supernova
problem. We have formulated the equations of motion in a
novel form adapted to the problem of multiangle propaga-
tion, i.e., we have used a multipole expansion rather than
the usual momentum modes, and we have used the particle
number and lepton number polarization vectors (or density
matrices) as the fundamental variables. In this way, the
crucial exponentially growing quantity, our D1, could be
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isolated as the primary cause of kinematical decoherence.
This approach may prove useful for understanding the
supernova problem as well.

For numerical three-flavor studies we have provided an
expression for the conserved energy of the system in terms
of the density matrices. The conserved energy and its three
components E!, E0, and E1 provide a useful diagnostic
tool for the behavior of the system.

Even simple nonlinear systems can exhibit a surpris-
ingly rich phenomenology. It is fascinating that the neu-

trinos streaming off a supernova core provide an intriguing
case in point where many aspects of its behavior remain to
be understood.

ACKNOWLEDGMENTS

This work was partly supported by the Deutsche
Forschungsgemeinschaft under Grants No. SFB-375 and
No. TR-27 and by the European Union under the ILIAS
project, Contract No. RII3-CT-2004-506222.

[1] J. Pantaleone, Phys. Lett. B 287, 128 (1992).
[2] S. Samuel, Phys. Rev. D 48, 1462 (1993).
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