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We modified the modal expansion, which is the traditional method used to calculate thermal noise. This
advanced modal expansion provides physical insight about the discrepancy between the actual thermal
noise caused by inhomogeneously distributed loss and the traditional modal expansion. This discrepancy
comes from correlations between the thermal fluctuations of the resonant modes. The thermal-noise
spectra estimated by the advanced modal expansion are consistent with the results of measurements of
thermal fluctuations caused by inhomogeneous losses.
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I. INTRODUCTION

Thermal fluctuation is one of the fundamental noise
sources in precise measurements. For example, the sensi-
tivity of interferometric gravitational-wave detectors [1–4]
is limited by the thermal noise of the mechanical compo-
nents. The calculated thermal fluctuations of rigid cavities
have coincided with the highest laser frequency stabiliza-
tion results ever obtained [5,6]. It is important to evaluate
the thermal motion when studying the noise property. The
(traditional) modal expansion [7] has been commonly used
to calculate the thermal noise of elastic systems. However,
recent experiments [8–13] have revealed that modal ex-
pansion is not correct when the mechanical dissipation is
distributed inhomogeneously. In some theoretical studies
[14–17], calculation methods that are completely different
from modal expansion have been developed. These meth-
ods are supported by the experimental results of inhomo-
geneous loss [9,11–13]. However, even when these method
were used, the physics of the discrepancy between the
actual thermal noise and the traditional modal expansion
was not fully understood.

In this paper, another method to calculate the thermal
noise is introduced [17]. This method, advanced modal
expansion, is a modification of the traditional modal ex-
pansion (this improvement is a general extension of a
discussion in Ref. [18]). The thermal-noise spectra esti-
mated by this method are consistent with the results of
experiments concerning inhomogeneous loss [8,12]. It
provides information about the disagreement between the
thermal noise and the traditional modal expansion. We
present the details of these topics in the following
sections.

II. OUTLINE OF ADVANCED MODAL EXPANSION

A. Review of the traditional modal expansion

The thermal fluctuation of the observed coordinate, X, of
a linear mechanical system is derived from the fluctuation-
dissipation theorem [19–21],

 GX�f� � �
4kBT
!

Im�HX�!��; (1)

 HX�!� �
~X�!�
~F�!�

; (2)

 

~X�!� �
1

2�

Z 1
�1

X�t� exp��i!t�dt; (3)

where f ( � !=2�), t, kB, and T, are the frequency, time,
Boltzmann constant and temperature, respectively. The
functions (GX, HX, and F) are the (single-sided) power
spectrum density of the thermal fluctuation of X, the trans-
fer function, and the generalized force, which corresponds
to X. In the traditional modal expansion [7], in order to
evaluate this transfer function, the equation of motion of
the mechanical system without any loss is decomposed into
those of the resonant modes. The details are as follows.

The definition of the observed coordinate, X, is de-
scribed as

 X�t� �
Z
u�r; t� � P�r�dS; (4)

where u is the displacement of the system and P is a
weighting function that describes where the displacement
is measured. For example, when mirror motion is observed
using a Michelson interferometer, as in Fig. 1, X and u
represent the interferometer output and the displacement of
the mirror surface, respectively. The vector P is parallel to
the beam axis. Its norm is the beam-intensity profile [14].
The equation of motion of the mechanical system without
dissipation is expressed as
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 �
@2u

@t2
�L�u� � F�t�P�r�; (5)

where � is the density and L is a linear operator. The first
and second terms on the left-hand side of Eq. (5) represent
the inertia and the restoring force of the small elements in
the mechanical oscillator, respectively. The solution of
Eq. (5) is the superposition of the basis functions

 u �r; t� �
X
n

wn�r�qn�t�: (6)

The functions wn and qn represent the displacement and
time development of the n-th resonant mode, respectively.
The basis functions wn are solutions of the eigenvalue
problem, written as

 L �wn�r�� � ��!n
2wn�r�; (7)

where !n is the angular resonant frequency of the n-th
mode. The displacement, wn, is the component of an
orthogonal complete system, and is normalized to satisfy
the condition

 

Z
wn�r� � P�r�dS � 1: (8)

The formula of the orthonormality is described as

 

Z
�wn�r� � wk�r�dV � mn�nk: (9)

The parameter mn is called the effective mass of the mode
[8,22–24]. The tensor �nk is the Kronecker’s � symbol.

Putting Eq. (6) into Eq. (4), we obtain a relationship
between X and qn using Eq. (8):

 X�t� �
X
n

qn�t�: (10)

In short, coordinate X is a superposition of those of the
modes qn. In order to decompose the equation of motion,
Equation (5), Eq. (6) is substituted for u in Eq. (5).
Equation (5) is multiplied by wn and then integrated over
all of the volume using Eqs. (7)–(9). The result is that the
equation of motion of the n-th mode, qn, is the same as that
of a harmonic oscillator on which force F�t� is applied.
After modal decomposition, the dissipation term is added
to the equation of each mode. The equation of the n-th
mode is written as

 �mn!
2 ~qn �mn!n

2�1� i�n�!��~qn � ~F; (11)

in the frequency domain. The function �n is the loss angle,
which represents the dissipation of the n-th mode [7]. The
transfer function, HX, derived from Eqs. (2), (10), and (11)
is the summation of those of the modes Hn,

 HX�!� �
~X
~F
�
X
n

~qn
~F

�
�
X
n

Hn

�

�
X
n

1

�mn!2 �mn!n
2�1� i�n�!��

: (12)

According to Eqs. (1) and (12), the power spectrum density
GX is the summation of the power spectrum Gqn of qn

 GX�f� �
X
n

Gqn �
X
n

4kBT
mn!

!n
2�n�!�

�!2 �!n
2�2 �!n

4�n
2�!�

:

(13)

B. Equation of motion in an advanced modal expansion

In the traditional modal expansion, the dissipation term
is introduced after decomposition of the equation of mo-
tion without any loss. On the contrary, in an advanced
modal expansion, the equation with the loss is decomposed
[17,25]. If the loss is sufficiently small, the expansion
process is similar to that in the perturbation theory of
quantum mechanics [26]. The equation of qn is expressed
as
 

�mn!2 ~qn �mn!n
2�1� i�n�!��~qn �

X
k�n

i�nk�!�~qk � ~F;

(14)

 �n�!� �
�nn
mn!n

2 : (15)

The third term in Eq. (14) is the difference between the
advanced, Eq. (14), and traditional, Eq. (11), modal ex-
pansions. Since this term is a linear combination of the
motions of the other modes, it represents the couplings
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FIG. 1. Example of the definition of the observed coordinate,
X, in Eq. (4). The mirror motion is observed using a Michelson
interferometer. The coordinate X is the output of the interfer-
ometer. The vector u represents the displacement of the mirror
surface. The field P is parallel to the beam axis. Its norm is the
beam-intensity profile [14].
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between the modes. The magnitude of the coupling �nk
depends on the property and the distribution of the loss
(described below).

C. Details of coupling

Let us consider the formulae of the couplings caused by
the typical inhomogeneous losses, the origins of which
exist outside and inside the material (viscous damping
and structure damping, respectively) [17]. Regarding
most of the external losses, for example, the eddy-current
damping and residual gas damping are of the viscous type
[7]. The friction force of this damping is proportional to the
velocity. Inhomogeneous viscous damping introduces a
friction force i!���r�~u�r� into the left-hand side of the
equation of motion, Eq. (5), in the frequency domain. The
function ��	 0� represents the strength of the damping.
The equation of motion with the dissipation term,
i!���r�~u�r�, is decomposed. Since the loss is small, the
basis functions of the equation without loss are available
[26]. Equation (6) is put into the equation of motion along
with the inhomogeneous viscous damping. This equation
multiplied by wn is integrated. The coupling of this dis-
sipation is written in the form

 �nk � !
Z
���r�wn�r� � wk�r�dV � �kn: (16)

In most cases, the internal loss in the material is ex-
pressed using the phase lag, ��	 0�, between the strain
and the stress [7]. The magnitude of the dissipation is
proportional to this lag. The phase lag is almost constant
against the frequency [7] in many kinds of materials
(structure damping). In the frequency domain, the relation-
ship between the strain and the stress (the generalized
Hooke’s law) in an isotropic elastic body is written as
[7,14,17,27]

 ~� ij �
E0�1� i��r��

1� �

�
~uij �

�
1� 2�

X
l

~ull�ij

�

� �1� i��r��~�0ij; (17)

 uij �
1

2

�
@ui
@xj
�
@uj
@xi

�
; (18)

where E0 is Young’s modulus and � is the Poisson ratio;
�ij and uij are the stress and strain tensors, respectively.
The tensor ~�0ij is the real part of the stress ~�ij. It represents
the stress when the structure damping vanishes. The value,
ui, is the i-th component of u. The equation of motion of an
elastic body [27] in the frequency domain is expressed as

 � �!2 ~ui �
X
j

@~�ij
@xj
� ~FPi�r�; (19)

where Pi is the i-th component of P. From Eqs. (17) and
(19), an inhomogeneous structure damping term is ob-

tained, �i
P
j@��r�~�

0
ij=@xj. The equation of motion with

the inhomogeneous structure damping is decomposed in
the same manner as that of the inhomogeneous viscous
damping. The coupling is calculated using integration by
parts and Gauss’ theorem [27]
 

�nk��
Z X

i;j

wn;i
@��r��k;ij

@xj
dV

��
Z X

i;j

@wn;i��r��k;ij
@xj

dV�
Z X

i;j

@wn;i
@xj

��r��k;ijdV

��
Z X

i;j

wn;i��r��k;ijnjdS�
Z X

i;j

@wn;i
@xj

��r��k;ijdV

�
Z E0��r�

1��

�X
i;j

@wn;i
@xj

�
wk;ij�

�
1�2�

X
l

wk;ll�ij

��
dV

�
Z E0��r�

1��

�X
i;j

wn;ijwk;ij�
�

1�2�

X
l

wn;ll
X
l

wk;ll

�
dV

��kn; (20)

where wn;i and ni are the i-th components of wn and the
normal unit vector on the surface. The tensors, wn;ij and
�n;ij, are the strain and stress tensors of the n-th mode,
respectively. In order to calculate these tensors, wn;i is
substituted for ui in Eqs. (17) and (18) with � � 0.
Equation (20) is valid when the integral of the function,P
i;jwn;i��k;ijnj, on the surface of the elastic body van-

ishes. For example, the surface is fixed (wn;i � 0) or free
(
P
j�k;ijnj � 0) [27].
The equation of motion in the advanced modal expan-

sion coincides with that in the traditional modal expansion
when all of the couplings vanish. A comparison between
Eqs. (9) and (16) shows that in viscous damping all �nk
(n � k) are zero when the dissipation strength, ��r�, does
not depend on the position, r. In the case of structure
damping, from Eqs. (5)–(7) and (19), the stress, �0ij, with-
out dissipation satisfies

 

X
j

@~�0ij
@xj
� �

X
n

�!n
2wn;i~qn: (21)

According to Eq. (9), Eq. (21) is decomposed without any
couplings. From Eq. (21) and the structure damping term,
�i
P
j@��r�~�

0
ij=@xj, the conclusion is derived; all of the

couplings in the structure damping vanish when the loss
amplitude, �, is homogeneous. In summary, the inhomo-
geneous viscous and structure dampings produce mode
couplings and destroy the traditional modal expansion.

The reason why the inhomogeneity of the loss causes the
couplings is as follows. Let us consider the decay motion
after only one resonant mode is excited. If the loss is
uniform, the shape of the displacement of the system
does not change while the resonant motion decays. On
the other hand, if the dissipation is inhomogeneous, the
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motion near the concentrated loss decays more rapidly than
the other parts. The shape of the displacement becomes
different from that of the original resonant mode. This
implies that the other modes are excited, i.e. the energy
of the original mode is leaked to the other modes. This
energy leakage represents the couplings in the equation of
motion.

It must be noticed that some kinds of ‘‘homogeneous’’
loss cause the couplings. For example, in thermoelastic
damping [28–31], which is a kind of internal loss, the
energy components of the shear strains wn;ij (i � j) are
not dissipated. The couplings �nk do not have any terms
that consist of the shear strain tensors. The coupling for-
mula of the homogeneous thermoelastic damping is differ-

ent from Eq. (20) with the constant �. The couplings are
not generally zero, even if the thermoelastic damping is
uniform. The advanced, not traditional, modal expansion
provides a correct evaluation of the homogeneous thermo-
elastic damping. In this paper, however, only coupling
caused by inhomogeneous loss is discussed.

D. Thermal-noise formula of advanced modal
expansion

In the advanced modal expansion, the transfer function,
HX, is derived from Eqs. (2), (10), and (14) (since the
dissipation is small, only the first-order of �nk is consid-
ered [32]),

 HX�!� �
X
n

1

�mn!2 �mn!n
2�1� i�n�

�
X
k�n

i�nk
��mn!2 �mn!n

2�1� i�n����mk!2 �mk!k
2�1� i�k��

: (22)

Putting Eq. (22) into Eq. (1), the formula for the thermal
noise is obtained. In the off-resonance region, where
j �!2 �!n

2j 
 !n
2�n�!� for all n, this formula ap-

proximates the expression
 

GX�f� �
X
n

4kBT
mn!

!n
2�n�!�

�!2 �!n
2�2

�
X
k�n

4kBT
mnmk!

�nk
�!2 �!n

2��!2 �!k
2�
: (23)

The first term is the same as the formula of the traditional
modal expansion, Eq. (13).

The interpretation of Eq. (23) is as follows. The power
spectrum density of the thermal-fluctuation force of the
n-th mode, GFn , and the cross-spectrum density between
Fn and Fk, GFnFk , are evaluated from Eq. (14) and the
fluctuation-dissipation theorem [20,21]

 GFn�f� � 4kBT
mn!n

2�n�!�
!

; (24)

 GFnFk�f� � 4kBT
�nk�!�
!

: (25)

The power spectrum densityGFn is independent of �nk. On
the other hand, GFnFk depends on �nk. Having the corre-
lations between the fluctuation forces of the modes, corre-
lations between the motion of the modes must also exist.
The power spectrum density of the fluctuation of qn, Gqn ,
and the cross-spectrum density between the fluctuations of
qn and qk, Gqnqk , are described as [20,21]

 Gqn�f� �
4kBT
mn!

!n
2�n�!�

�!2 �!n
2�2
; (26)

 Gqnqk�f� �
4kBT
mnmk!

�nk
�!2 �!n

2��!2 �!k
2�
; (27)

under the same approximation of Eq. (23). The first and
second terms in Eq. (23) are summations of the fluctuation
motion of each mode, Eq. (26), and the correlations,
Eq. (27), respectively. In conclusion, inhomogeneous me-
chanical dissipation causes mode couplings and correla-
tions of the thermal motion between the modes.

In order to check whether the formula of the thermal
motion in the advanced modal expansion is consistent with
the equipartition principle, the mean square of the thermal
fluctuation X2, which is an integral of the power spectrum
density over the whole frequency region, is evaluated. This
mean square is derived from Eq. (1) using the Kramers-
Kronig relation [21,33]

 Re �HX�!�� � �
1

�

Z 1
�1

Im�HX����
��!

d�: (28)

The calculation used to evaluate the mean square is written
as [21]

 X2 �
Z 1

0
GX�f�df �

1

4�

Z 1
�1

GX�!�d!

� �
kBT
�

Z 1
�1

Im�HX�!��
!

d! � kBT Re�HX�0��:

(29)

Since the transfer function, HX, is the ratio of the Fourier
components of the real functions, the value HX�0� is a real
number. The functions�n and �nk, which cause the imagi-
nary part of HX, must vanish when ! is zero [21]. The
correlations do not affect the mean square of the thermal
fluctuation. Equation (29) is rewritten using Eq. (22) as
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 X2 �
X
n

kBT

mn!n
2 : (30)

Equation (30) is equivalent to the prediction of the equi-
partition principle.

The calculation of the formula of the advanced modal
expansion, Eq. (23), is more troublesome than that of the
other methods [14–17], which are completely different
from the modal expansion, when many modes contribute
to the thermal motion. However, the advanced modal ex-
pansion gives clear physical insight about the discrepancy
between the thermal motion and the traditional modal
expansion, as shown in Sec. IV. It is difficult to find this
insight using other methods.

III. EXPERIMENTAL CHECK

In order to test the advanced modal expansion experi-
mentally, our previous experimental results concerning
oscillators with inhomogeneous losses [8,12] are compared
with an evaluation of the advanced modal expansion [17].
In an experiment involving a drum (a hollow cylinder made
from aluminum alloy as the prototype of the mirror in the
interferometer) with inhomogeneous eddy-current damp-
ing by magnets [12], the measured values agreed with the
formula of the direct approach [14], Eq. (6) in Ref. [12].
This expression is the same as that of the advanced modal
expansion [17].

Figure 2 presents the measured spectra of an aluminum
alloy leaf spring with inhomogeneous eddy-current damp-
ing [8]. The position of the magnets for the eddy-current
damping and the observation point are indicated above
each graph. In the figures above each graph, the left side
of the leaf spring is fixed. The right side is free. The open
circles in the graphs represent the power spectra of the
thermal motion derived from the measured transfer func-
tions using the fluctuation-dissipation theorem. These val-
ues coincide with the directly measured thermal-motion
spectra [8]. The solid lines are estimations using the ad-
vanced modal expansion (the correlations derived from
Eqs. (16) and (27) are almost perfect [17]). As a reference,
an evaluation of the traditional modal expansion is also
given (dashed lines). The results of a leaf-spring experi-
ment are consistent with the advanced modal expansion.
Therefore, our two experiments support the advanced mo-
dal expansion.

IV. PHYSICAL INSIGHT GIVEN BY THE
ADVANCED MODAL EXPANSION

The advanced modal expansion provides physical in-
sight about the disagreement between the real thermal
motion and the traditional modal expansion. Here, let us
discuss the three factors that affect this discrepancy: the
number of the modes, the absolute value and the sign of the
correlation.

A. Number of modes

Since the difference between the advanced and tradi-
tional modal expansions is the correlations between the
multiple modes, the number of the modes affects the
magnitude of the discrepancy. If the thermal fluctuation
is dominated by the contribution of only one mode, this
difference is negligible, even when there are strong corre-
lations. On the other hand, if the thermal motion consists of
many modes, the difference is larger when the correlations
are stronger.

Examples of the one-mode oscillator are given in Fig. 2.
The measured thermal-motion spectra of the leaf spring
with inhomogeneous losses below 100 Hz were the same as
the estimated values of the ‘‘traditional’’ modal expansion.
This is because these fluctuations were dominated by only
the first mode (about 60 Hz). As another example, let us
consider a single-stage suspension for a mirror in an inter-
ferometric gravitational-wave detector. The sensitivity of
the interferometer is limited by the thermal noise of the
suspensions between 10 Hz and 100 Hz. Since, in this
frequency region, this thermal noise is dominated by only
the pendulum mode [7], the thermal noise generated by the
inhomogeneous loss agrees with the traditional modal
expansion. It must be noticed that the above discussion is
valid only when the other suspension modes are negligible.
For example, when the laser beam spot on the mirror
surface is shifted, the two modes (pendulum mode and
mirror rotation mode) must be taken into account. In
such cases, the inhomogeneous loss causes a disagreement
between the real thermal noise of the single-stage suspen-
sion and the traditional modal expansion [34].

The discrepancy between the actual thermal motion and
the traditional modal expansion in the elastic modes of the
mirror [24] is larger than that of the drum, the prototype of
the real mirror in our previous experiment [12]. One of the
reasons is that the thermal motion of the mirror (rigid
cylinder) consists of many modes [22,23]. The drum (hol-
low cylinder) had only two modes [12]. Since the number
of modes that contribute to the thermal noise of the mirror
in the interferometer increases when the laser beam radius
becomes smaller [22,23], the discrepancy is larger with a
narrower beam. This consideration is consistent with our
previous calculation [24].

B. Absolute value of the correlation

In Eq. (27), the absolute value of the cross-spectrum
density, Gqnqk , is proportional to that of the coupling, �nk.
Eqs. (16) and (20) show that the coupling depends on the
scale of the dissipation distribution. A simple example of
viscous damping is shown in Fig. 3. Let us consider the
absolute value of �nk when the viscous damping is con-
centrated (at around rvis) in a smaller volume (�V) than the
wavelengths of the n-th and k-th modes. An example of
this case is (A) in Fig. 3. It is assumed that the vector
wn�rvis� is nearly parallel to wk�rvis�. The absolute value of
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the coupling is derived from Eqs. (15) and (16) as

 

j�nkj � j!���rvis�wn�rvis� � wk�rvis��Vj �
������������������������������������������������
!���rvis�jwn�rvis�j

2�V
q ������������������������������������������������

!���rvis�jwk�rvis�j
2�V

q

�
���������������
�nn�kk
p

�
����������������������������������������
mn!n

2�nmk!k
2�k

q
: (31)

 

FIG. 2. Comparison between the estimated advanced modal expansion and the experimental results of an aluminum alloy leaf spring
with inhomogeneous eddy-current damping [8]. The position of the magnets for the eddy-current damping and the observation point
are indicated above each graph. In the figures above each graph, the left side of the leaf spring is fixed. The right side is free. The open
circles in the graphs represent the power spectra of the thermal motion derived from the measured transfer functions using the
fluctuation-dissipation theorem. These values coincide with the directly measured thermal-motion spectra [8]. The solid lines are
estimations using the advanced modal expansion. As a reference, an evaluation of the traditional modal expansion is also given (dashed
lines).
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The absolute value of the cross-spectrum is derived from
Eqs. (26), (27), and (31) as

 jGqnqk j �
����������������
GqnGqk

q
: (32)

In short, the correlation is almost perfect [35]. On the other
hand, if the loss is distributed more broadly than the wave-
lengths, the coupling—i.e. the correlation—is about zero

 jGqnqk j � 0: (33)

The dissipation in the case where the size is larger than the
wavelengths is equivalent to the homogeneous loss. An
example of this case is (B) in Fig. 3. Although the above
discussion is for the case of viscous damping, the conclu-
sion is also valid for other kinds of dissipation. When the
loss is localized in a small region, the correlations among
many modes are strong. The loss in a narrower volume
causes a larger discrepancy between the actual thermal
motion and the traditional modal expansion. This conclu-
sion coincides with our previous calculation of a mirror
with inhomogeneous loss [24].

C. Sign of correlation

The sign of the correlation depends on the frequency, the
loss distribution, and the position of the observation area.
The position dependence provides a solution to the inverse
problem: an evaluation of the distribution and frequency
dependence of the loss from measurements of the thermal
motion.

1. Frequency dependence

According to Eq. (27), the sign of the correlation re-
verses at the resonant frequencies. For example, in calcu-
lating the double pendulum [18], experiments involving
the drum [12] and a resonant gravitational-wave detector
with optomechanical readout [10], this change of the sign
was found. In some cases, the thermal-fluctuation spectrum
changes drastically around the resonant frequencies. A
careful evaluation is necessary when the observation
band includes the resonant frequencies. Examples are
when using wide-band resonant gravitational-wave detec-
tors [36–39], and thermal-noise interferometers [11,13].
The reason for the reverse at the resonance is that the sign
of the transfer function of the mode with a small loss
from the force (Fn) to the motion (qn), Hn in Eq. (12)
[ / ��!2 �!n

2��1], below the resonance is opposite to
that above it.

Since the sign of the correlation changes at the resonant
frequencies, the cross-spectrum densities, the second term
of Eq. (23), make no contribution to the integral of the
power spectrum density over the whole frequency region,
i.e. the mean square of the thermal fluctuation �X2, as shown
in Sec. II D. Therefore, the consideration in Sec. II D in-
dicates that a reverse of the sign of the correlation con-
serves the equipartition principle, a fundamental principle
in statistical mechanics.

2. Loss and observation area position dependence

According to Eqs. (16) and (20), and the normalization
condition, Eq. (8) [40], the sign of the coupling, �nk,
depends on the loss distribution and the position of the
observation area. A simple example is shown in Fig. 4.
Owing to this normalization condition, near the observa-
tion area, the basis functions, wn, are similar in most cases.
On the contrary, in a volume far from the observation area,
wn is different from each other in many cases. From
Eqs. (8), (16), (20), and (25), when the loss is concentrated
near to the observation area, most of the couplings (and the
correlations between the fluctuation forces of the modes,
GFnFk) are positive. On the other hand, when the loss is
localized far from the observation area, the numbers of the
negative couplings and GFnFk are about the same as the
positive ones. In such a case, most of the couplings be-
tween the n-th and �n� 1�-th modes (and GFnFn�1

) are
negative. These are because the localized loss tends to
apply to the fluctuation force on all of the modes to the
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Resonant modes of a bar
with both free ends

(A) (B)
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n-th mode

k-th mode

FIG. 3. Example for considering the absolute value of the
coupling. There are the n-th and k-th modes wn and wk of a
bar with both free ends. The vertical axis is the displacement.
The dashed horizontal lines show the bar that does not vibrate.
When only the gray part (A), which is narrower than the wave-
lengths on the left-hand side, has viscous damping, the absolute
value of the coupling, Eq. (16), is large. Because the signs of wn
and wk do not change in this region. If viscous damping exits
only in the hatching part (B), which is wider than the wave-
lengths on the right-hand side, the coupling is about zero,
because, in this wide region, the sign of the integrated function
in Eq. (16), which is proportional to the product of wn and wk,
changes.
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same direction around itself. Equation (27) indicates that
the sign of the correlation, Gqnqk , is the same as that of the
coupling, �nk, below the first resonance. In this frequency
band, the thermal motion is larger and smaller than the
evaluation of the traditional modal expansion if the dis-
sipation is near and far from the observation area, respec-
tively. This conclusion is consistent with the qualitative
discussion of Levin [14], our previous calculation of the
mirror [24], and the drum experiment [12].

3. Inverse problem

The above consideration about the sign of the coupling
gives a clue to solving the inverse problem: estimations of
the distribution and frequency dependences of the loss
from the measurement of the thermal motion. Since the
sign of the coupling depends on the position of the obser-
vation area and the loss distribution, a measurement of the
thermal vibrations at multiple points provides information
about the couplings, i.e. the loss distribution. Moreover,
multiple-point measurements reveal the loss frequency

dependence. Even if the loss is uniform, the difference
between the actual thermal motion and the traditional
modal expansion exits when the expected frequency de-
pendence of the loss angles,�n�!�, is not correct [18]. The
measurement at the multiple points shows whether the
observed difference is due to an inhomogeneous loss or
an invalid loss angle. This is because the sign of the
difference is independent of the position of the observation
area if the expected loss angles are not valid.

As an example, our leaf-spring experiment [8] is dis-
cussed. The two graphs on the right (or left) side of Fig. 2
show thermal fluctuations at different positions in the same
mechanical system. The spectrum is smaller than the tradi-
tional modal expansion. The other one is larger. Thus, the
disagreement in the leaf-spring experiment was due to
inhomogeneous loss, not invalid loss angles. When the
power spectrum had a dip between the first (60 Hz) and
second (360 Hz) modes, the sign of the correlation Gq1q2

was negative. According to Eq. (27), the sign of the cou-
pling �12 was positive. The loss was concentrated near to
the observation point when a spectrum dip was found. The
above conclusion agrees with the actual loss shown in
Fig. 2.

V. CONCLUSION

The traditional modal expansion has frequently been
used to evaluate the thermal noise of mechanical systems
[7]. However, recent experimental research [8–13] has
proved that this method is invalid when the mechanical
dissipation is distributed inhomogeneously. In this paper,
we introduced a modification of the modal expansion
[17,18]. According to this method (the advanced modal
expansion), inhomogeneous loss causes correlations be-
tween the thermal fluctuations of the modes. The fault of
the traditional modal expansion is that these correlations
are not taken into account. Our previous experiments
[8,12] concerning the thermal noise of the inhomogeneous
loss support the advanced modal expansion.

The advanced modal expansion gives interesting physi-
cal insight about the difference between the actual thermal
noise and the traditional modal expansion. When the ther-
mal noise consists of the contributions of many modes, the
loss is localized in a narrower area, which makes a larger
difference. When the thermal noise is dominated by only
one mode, this difference is small, even if the loss is
extremely inhomogeneous. The sign of this difference
depends on the frequency, the distribution of the loss,
and the position of the observation area. It is possible to
derive the distribution and frequency dependence of the
loss from measurements of the thermal vibrations at mul-
tiple points.

There were many problems concerning the thermal
noise caused by inhomogeneous loss. Our previous work
[8,12,24] and this research solved almost all of these
problems: a modification of the traditional estimation
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FIG. 4. Example for considering the sign of the coupling.
There are the lowest three modes wn of a bar with both free
ends. The vertical axis is the displacement. The dashed horizon-
tal lines show the bar that does not vibrate. The observation point
is at the right-hand side end. The normalization condition is
Eq. (8) [40]. The sign and shape of the displacement of all the
modes around the observation point are positive and similar,
respectively. On the contrary, at the left-hand side end, the sign
and shape of the n-th mode are different from each other in many
cases. From Eqs. (8), (16), and (20), when the loss is concen-
trated near to the observation area, most of the couplings are
positive. On the other hand, when the loss is localized far from
the observation area, the number of the negative couplings is
about the same as the positive one. In such a case, most of the
couplings between the n-th and �n� 1�-th modes are negative.
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method (in this paper), experimental checks of the new and
traditional estimation methods and a confirmation of the
new methods (Refs. [8,12] and this paper), an evaluation of
the thermal noise of the gravitational-wave detector using
the new method [24], and a consideration of the physical
properties of the discrepancy between the actual thermal
noise and the traditional estimation method (in this paper).
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