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The finite-temperature behavior of gluon and Faddeev-Popov-ghost propagators is investigated for pure
SU�2� Yang-Mills theory in Landau gauge. We present nonperturbative results, obtained using lattice
simulations and Dyson-Schwinger equations. Possible limitations of these two approaches, such as finite-
volume effects and truncation artifacts, are extensively discussed. Both methods suggest a very different
temperature dependence for the magnetic sector when compared to the electric one. In particular, a clear
thermodynamic transition seems to affect only the electric sector. These results imply, in particular, the
confinement of transverse gluons at all temperatures and they can be understood inside the framework of
the so-called Gribov-Zwanziger scenario of confinement.
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I. INTRODUCTION

Thermodynamic observables, such as the free energy,
show a thermodynamic transition in Yang-Mills theory at a
finite temperature Tc [1,2]. This phase transition separates
a low-temperature phase—which is expected to be highly
nonperturbative and characterized by quark and gluon
confinement—from a (in principle) perturbative high-
temperature phase, where color charges should be decon-
fined. Indeed, due to asymptotic freedom, the running
coupling constant g�T� vanishes with increasing tempera-
ture [3] and the quark-gluon plasma can be viewed as a
weakly coupled system. At the same time, across the phase
transition, the long-distance potential between fundamen-
tal test charges changes from a linearly rising confining
potential to an essentially flat one [4], i.e. the (temporal)
string tension is zero at high temperature.

On the other hand, nonperturbative phenomena have to
be expected even for an arbitrarily small coupling at the
renormalization scale [5]. In particular, several studies
have already pointed out that nonperturbative effects
should be present in Yang-Mills theory at any temperature,
i.e. the high-temperature phase should also be highly non-
trivial. For example, it is well known that the magnetic
sector is affected by strong nonperturbative infrared (IR)
problems [6,7]. Moreover, at finite temperature, the spatial
string tension is nonvanishing [8]. Finally, the formal
infinite-temperature limit of the theory, i.e. the three-
dimensional reduced theory [7,9], is still a confining theory
[7,10–13]. Thus, a clear description of Yang-Mills theory
as a function of the temperature T is still lacking and the
fate of confinement at large T is still an open question. In
particular, one should reconcile the confining properties of

the dimensionally reduced theory with the vanishing of the
conventional string tension at large temperature.

In order to make contact with the continuum formulation
of SU�Nc� Yang-Mills theory, it is necessary to consider
quantities living either in the su�Nc� algebra or in the
continuum gauge group SU�Nc�=ZN [14]. This clearly
limits the usefulness of center observables such as the
Polyakov line, often employed in lattice simulations and
in effective theories. On the other hand, propagators of the
elementary degrees of freedom of the theory, such as gluon
and ghost fields, fulfill the above condition and provide
access to nonperturbative aspects of the theory [15,16].

In Landau gauge, at zero temperature, the framework of
the Gribov-Zwanziger [11,17] and of the Kugo-Ojima [18]
scenarios provides a basis for understanding the confine-
ment mechanism in Yang-Mills theory. In particular, these
scenarios predict that the ghost propagator should be IR
enhanced, compared to the propagator of a massless parti-
cle. At the same time, the gluon propagator should vanish
in the IR limit. These predictions are supported by results
obtained using different methods [11,15,16,19–30]. In
addition, several calculations indicate that the predictions
are also (at least partially) valid in the high-temperature
phase [7,31–33] and in the infinite-temperature limit
[7,11–13,25,29,31,34–36].

Here we evaluate gluon and ghost propagators for the
SU�2� case using Landau gauge, extending earlier numeri-
cal studies that focused on the high-temperature phase [31]
and on the infinite-temperature limit [31,34–36]. We
present nonperturbative results, obtained using lattice
simulations and Dyson-Schwinger equations (DSEs). In
Sec. II we present a short review of the Lorentz structure
for the Landau-gauge gluon and Faddeev-Popov-ghost
propagators at finite temperature. Results using lattice
gauge theory for these two propagators at various tempera-
tures, both below and above the thermodynamic transition,
will be reported in Sec. III. In that section we also discuss
the influence of finite-volume effects on the numerical
results. In Sec. IV the same propagators are studied in
continuum space-time using DSEs, which allows us to

*Electronic address: attilio@ifsc.usp.br
†Present address: Department of Complex Physical Systems,

Institute of Physics, Slovak Academy of Sciences, Dúbravská
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consider the limit of vanishing momentum p! 0. Let us
recall [11] that imposing the minimal Landau-gauge con-
dition, i.e. restricting to the Gribov region, does not modify
the DSEs, even though it provides supplementary condi-
tions for their solution. We believe that the simultaneous
use of these two nonperturbative methods—lattice simu-
lations and DSEs—allows a better understanding of our
results and of their physical implications. A possible inter-
pretation of the results from lattice and from DSEs is
presented in Sec. V. The main components of this inter-
pretation are a spatial/magnetic sector, which is essentially
unaffected by temperature and by the thermodynamic tran-
sition, and a temporal/electric sector, which does show a
sensitivity to the transition. Let us stress that the results
from DSEs suggest that the difference between the two
sectors occurs for any nonzero temperature and not only
above the phase transition. In particular, the Gribov-
Zwanziger and Kugo-Ojima confinement mechanisms re-
main qualitatively unaltered in the magnetic sector when
the temperature is turned on. Finally, we present our con-
clusions in Sec. VI. Some observations about the use of
asymmetric lattices in numerical simulations are reported
in Appendix A. Analytic and numerical details of the DSE
analysis, presented in Sec. IV, are collected in
Appendixes B, C, and D.

Preliminary results have been presented in [37].

II. PROPAGATORS AT FINITE TEMPERATURE

At finite temperature, the Euclidean symmetry is man-
ifestly broken by the thermal heat bath. As a consequence,
the propagator of the gluon, which is a vector particle, can
no longer be described by a single tensor structure. Instead,
one can consider the decomposition [38]

 Dab
���p� � PT���p�Dab

T �p� � P
L
��Dab

L �p�; (1)

where the two tensor structures PT���p� and PL���p� are,
respectively, transverse and longitudinal in the (three-
dimensional) spatial subspace. Of course, in the full 4d
space, both tensors must be transverse, due to the Landau-
gauge condition. In terms of the momentum components
p� we can write (with no summation over repeated indi-
ces) [38]

 PT���p� � �1� ��0��1� ��0�

�
��� �

p�p�
~p2

�
; (2)

 PL���p� � P���p� � PT���p�: (3)

Clearly, the tensor PT���p� is the transverse projector in the
three-dimensional spatial subspace, while PL���p� is the
complement of PT���p� to the four-dimensional Euclidean-
invariant transverse projector P���p� � ��� � p�p�=p

2.
At the same time, the decomposition (1) defines the two
independent scalar propagators Dab

T �p� and Dab
L �p�, which

are, respectively, the coefficients of the 3d-transverse and

of the 3d-longitudinal projectors. Since one expects a
different IR behavior for these two functions, it is not
useful to contract the gluon propagator with the usual 4d-
transverse projector P���p�, i.e. to consider a linear com-
bination of the two scalar functionsDab

T �p� andDab
L �p�. By

contracting the propagator Dab
���p� with PT���p� or with

PL���p�, inserting a unit matrix in color space and using the
relation

 p0Aa0 � �
X3

��1

p�Aa�; (4)

valid in Landau gauge, we find (for nonzero three-
momentum ~p) the relations1

 DT�p� �
1

�d� 2�Ng

�X3

��1

Aa��p�Aa���p�

�
p2

0

~p2 A
a
0�p�A

a
0��p�

�
; (5)

 DL�p� �
1

Ng

�
1�

p2
0

~p2

�
hAa0�p�A

a
0��p�i: (6)

Here, d � 4 is the space-time dimension, Ng � 3 is the
number of gluons [i.e. Ng � N2

c � 1 in the SU�Nc� case],
and the summation over color indices is implied. Clearly,
for p0 � 0 the 3d-transverse propagator DT�p� coincides
with the 3d-gluon propagator, while the 3d-longitudinal
propagator DL�p� can be identified with the propagator of
the would-be Higgs field in the three-dimensionally re-
duced theory. Thus, we can associate the 3d-transverse
gluon propagator to the so-called magnetic sector and the
3d-longitudinal propagator to the electric sector. Of course,
at zero temperature the two scalar propagators coincide,
i.e. DT�p� � DL�p� � D�p�.

As for the ghost propagator DG�p�, since it is a scalar
function, no additional tensor structures arise in this case.

A second consequence of considering a theory at finite
temperature is that the propagators depend separately on
the energy p0 and on the spatial three-momentum j ~pj.
Moreover, the energy is always discrete, i.e. p0 � 2�Tn
with n integer. Of course, in studying the IR properties of
the theory, we are mainly interested in the zero (or soft)
modes p0 � 0. The other (hard) modes (p0 � 0) have an
effective thermal mass of 2�Tn and seem to behave like
massive particles [7,33,38,39].

Let us stress that these observations apply both to the
lattice and to the continuum formulations of Yang-Mills
theory. In the lattice case one also has to consider the
definition of the gluon field

 A��x� �
1

2i
�U��x� �Uy��x��traceless (7)

1Similar considerations apply also to the gluon propagator
when studied using asymmetric lattices. In Appendix A we
present results for the gluon tensor structures on a strongly
asymmetric lattice.
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as a function of the link variables U��x�, which is based on
the expansion U��x� � 1� ig0aA��x�. Hence, in the
high-temperature (symmetry-broken) phase, one should
consider only configurations for which the trace of the
Polyakov loop has a positive value when averaged over
the lattice [31,40].

III. LATTICE RESULTS

The propagators of the gluon and of the Faddeev-Popov
ghost have been numerically evaluated using the methods
described in Refs. [24,35,36,41]. Details can also be found
in Table I. Finite temperature has been introduced accord-
ing to the standard procedure of reducing the extent of the
time direction compared to the spatial ones [43]. We con-
sider Nt lattice sites along the temporal direction and Ns
sites along the spatial direction withNs 	 Nt. After taking
the infinite-spatial-volume limit Vs � N3

s ! 1, the con-
tinuum limit is given by Nt ! 1 and a! 0, keeping the
product aNt fixed. This yields a temperature

 T �
1

aNt
: (8)

In the following, we first consider the symmetric three-
dimensional case, discussing finite-volume effects in de-

tail. We then move on to the four-dimensional case and
discuss the effects of finite temperature.

A. Finite-volume effects

Before considering the finite-temperature dependence of
the propagators, it is worthwhile to discuss the effects of
finite volume on their IR behavior. Clearly, a finite-volume
V affects all processes with a correlation length � of the
order of (or larger than) V1=d. (In the finite-temperature
case one can expect finite-volume effects when � *

V1=�d�1�
s , where Vs is the spatial volume.) Since confine-

ment is induced by an infinite correlation length [15],
finite-volume effects are likely to be observed in the nu-
merical evaluation of gluon and ghost propagators.2 These

TABLE I. Data of the configurations considered in our numerical simulations. The three-dimensional case will be discussed in
Sec. III A. The ‘‘Setup’’ column will be used in the text to refer to the various numerical setups. The value of the lattice spacing a has
been taken from [35] for the three-dimensional case and from [42] for the four-dimensional case. ‘‘Sweeps’’ indicates the number of
sweeps between two consecutive gauge-fixed measurements. The temperature has been evaluated using Eq. (8). In the column
‘‘Method’’ we indicate a reference where numerical details (including error determination, etc.) are discussed for that particular set of
data. With the symbols � and 
 we indicate that (respectively) only the gluon or only the ghost propagator has been considered. Note
that only the results corresponding to the Setups 16, 17, 19, and 20 have already been published. Finally, in Setup 6 we found one
‘‘exceptional’’ configuration that induced very large statistical fluctuations on the results. Thus, in this case, we needed a much larger
statistics in order to acquire the same level of accuracy obtained in the other cases.

Setup N4, Nt � N3
s or N3 � a�1 (GeV) Configurations Sweeps T (MeV) V1=3

s (fm) Method

1 124 2.3 1.193 426 40 0 1.98 [36] �
2 164 2.3 1.193 424 45 0 2.64 [36] �
3 204 2.3 1.193 405 50 0 3.30 [36] �
4 324 2.3 1.193 30 320 0 5.28 [24] 

5 10� 143 2.3 1.193 401 40 119 2.31 [36]
6 10� 203 2.3 1.193 1426 45 119 3.30 [36]
7 10� 263 2.3 1.193 405 50 119 4.29 [36]
8 4� 203 2.3 1.193 444 40 298 3.30 [36]
9 4� 263 2.3 1.193 405 45 298 4.29 [36]
10 4� 343 2.3 1.193 405 50 298 5.61 [36]
11 3� 283 2.4 1.651 429 50 550 3.34 [36]
12 4� 403 2.5 2.309 360 50 577 3.41 [36]
13 2� 203 2.3 1.193 437 40 597 3.30 [36]
14 2� 323 2.3 1.193 410 45 597 5.28 [36]
15 2� 423 2.3 1.193 400 50 597 6.93 [36]
16 203 4.2 1.136 6161 40 0 3.47 [36]
17 303 4.2 1.136 10229 45 0 5.20 [36]
18 403 4.2 1.136 3306 50 0 6.94 [36]
19 803 4.2 1.136 200 200 0 13.9 [35] �, [41] 

20 1403 4.2 1.136 30 250 0 24.3 [35] �

2One should recall that finite-size effects are more or less
pronounced depending on the quantity considered. In particular,
one does not expect such effects for quantities with an intrinsic
mass scale m, such as quarks or hadrons, since in these cases the
relevant correlation length is of the order of 1=m. This has an
important consequence in studies using functional methods: the
specific behavior in the deep IR region of the gluons is nearly
irrelevant for hadronic observables [15,16,44] and results are
sensitive only to the behavior at intermediate momenta (about
0.5–1 GeV).
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effects should be considered when comparing the numeri-
cal data to the predictions of the Gribov-Zwanziger and of
the Kugo-Ojima confinement scenarios. Let us recall that
several calculations in the continuum, e.g. using DSEs
[11,15,16,19] or the renormalization group [22], are in
favor of these scenarios and confirm their predictions. In
addition, using DSEs one can also study (in the continuum)
the consequences of a finite volume on these propagators.
In particular, it has been found [45] that in a finite volume
the gluon propagator is suppressed at small momenta and
finite at zero momentum, while the ghost propagator is IR
enhanced. These results are in qualitative agreement with
the findings using lattice calculations [24,27,30,46].
Moreover, using DSEs it can be argued [45] that an IR-
finite gluon propagator is indeed an artifact of the finite
volume and that one obtains a null propagator at p � 0
when the infinite-volume limit is considered. On the lattice
the situation is clearly more complicated. Even in the case
of a power dependence of the type D�0� / 1=Vb, it can be
very difficult [35] to perform simulations with sufficiently
large values of the physical lattice volume V so that one
can really control the extrapolation to infinite volume. This
is in fact the case, and up to now there is not yet any
convincing result on a (symmetric) four-dimensional lat-
tice showing an IR-vanishing gluon propagator D�p�. The
situation is actually even worse than this. Indeed, in order
to see an IR-suppressed propagator one should obtain that
D�p� has a maximum for some value of p � 0. Up to now
this has not been obtained in the Landau 4d case (using
symmetric lattices), even when considering very large
lattices (see Fig. 10 in [29] and Fig. 3 in [30]). There are,
however, evidences of a suppressed gluon propagator when
considering 4d asymmetric lattices [46], even though in
this case it is difficult to extract quantitative information
from the data [27,41]. Also, a suppressed gluon propagator
at small momenta can be obtained in the 4d case when
simulations are done in the strong-coupling regime [47].
Finally, a suppressed gluon propagator has recently been
obtained (using symmetric lattices and � values in the
scaling region) for a Landau-like gauge condition [48],
confirming that the difficulties in finding a similar IR-
suppressed gluon propagator in Landau gauge are probably
related to finite-size effects.

Numerically, it is clearly easier to consider first the
three-dimensional case, since one can then use much larger
lattice sides. Moreover, the Gribov-Zwanziger scenario
can be applied to three dimensions [49]—as also sup-
ported by numerical studies [31,34–36] and by calcula-
tions using DSEs [11,13]—and the IR suppression of the
gluon propagator is expected to be stronger than in the 4d
case (i.e. the IR exponent is larger in the 3d case). Finally,
since the theory is finite, renormalization issues do not
obscure the interpretation of the results. Let us recall that
various lattice calculations have been performed in the 3d
case, both for the propagators [31,34–36] and for the 3-

point vertices [36]. These results support the assumptions
usually made in DSE calculations [13].

We now consider symmetric lattices in the 3d case (see
run parameters at the bottom of Table I). These can be
interpreted as lattices at T � 0 in 3d or as lattices at T �
1, simulating the dimensionally reduced theory (without
the Higgs field). We compare the numerical data to Dyson-
Schwinger calculations [13]. In Fig. 1 we present results in
the 3d case for the gluon propagator using lattice simula-
tions and DSE calculations. Considering the lattice data on
the larger lattices, there is a clear maximum at pmax �
400 MeV. Moreover, as the lattice volume increases, the
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FIG. 1. The gluon propagator D�p� (top panel) and dressing
function p2D�p� (bottom panel) as a function of the momentum
p for various volumes in three dimensions. Open circles, open
squares, open triangles, full circles, and full triangles correspond
to Setups 16 (V � 203), 17 (V � 303), 18 (V � 403), 19 (V �
803), and 20 (V � 1403), respectively. The solid line is the result
from Dyson-Schwinger calculations [13], yielding a gluon
propagator suppressed as p0:59 in the IR limit.
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IR suppression becomes stronger. However, even using
very large volumes (i.e. V � 1403 [35]), only a few mo-
menta are available in the interval �0; pmax�. The compari-
son to the DSE solution (for infinite volume) shows
qualitative agreement. Concerning the gluon dressing
function p2D�p�, it is found that lattice results exhibit a
power-law behavior for momenta below 400–500 MeV.
The result is very similar to the DSE solution, albeit differ-
ing by a constant factor. Of course, when considering the
dressing function p2D�p�, the factor p2 is dominant in the
IR limit and the agreement between lattice and DSE results
looks better. Also note that the prefactor of the power law
obtained in DSE studies is sensitive to the approximations
performed [13].

Results for the ghost propagator DG�p� and the dressing
function p2DG�p� are reported in Fig. 2. In this case there
are no evident finite-volume effects in the lattice data for
DG�p�, even though such effects are visible at small mo-
menta when considering the dressing function p2DG�p�. In
particular, the dressing function shows a reduced IR diver-
gence for the largest lattice at small momenta p. On the
other hand, one should recall that, for a relatively small
statistics, the so-called ‘‘exceptional configurations’’ are
probably not adequately sampled and that they contribute
significantly to the IR enhancement of DG�p�, i.e. this IR
enhancement could be underestimated [28,36]. When con-
sidering the comparison to DSE results, we see that agree-
ment is again at the qualitative level (see, in particular, the
dressing function in the bottom figure). Indeed, the lattice
data show a weaker divergence than the one obtained using
DSE calculations. As said above, this could be related to an
insufficient statistics for the ghost propagator when large
lattice volumes are used.

Finally, one can consider the effective coupling3 defined
to be proportional to p5D2

G�p�D�p�, for which DSEs pre-
dict a constant limit at zero momentum. The comparison of
lattice data and DSE results is made in Fig. 3. It is clear that
the asymptotic (constant) regime is reached in the Dyson-
Schwinger result only for momenta of the order of
200 MeV. For the lattice data, when V � 303, we do not
have any point in the range [0, 200] MeV and it is difficult
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FIG. 2. The ghost propagator DG�p� (top panel) and the dress-
ing function p2DG�p� (bottom panel) as a function of the
momentum p for two different volumes in three dimensions.
Full triangles and open circles correspond to Setups 17 (V �
303) and 19 (V � 803), respectively. The solid line is the result
from Dyson-Schwinger calculations [13], yielding a ghost
propagator enhanced as p�2:8 in the IR limit.
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FIG. 3. The effective coupling p5D2
G�p�D�p� as a function of

the momentum p for Setups 17 (open squares, V � 303) and 19
(full triangles, V � 803). The solid line is the result from the
same Dyson-Schwinger calculations [13] reported in Figs. 1 and
2.

3Since the 3d theory is (ultraviolet) finite this quantity is of
course not a running coupling in the sense of the renormalization
group as in the 4d case [15,16]. Nevertheless, using DSE
calculations, one can make a prediction for its IR behavior
also in the 3d case.
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to say what one could find in the p � 0 limit. On the other
hand, in the case of the larger lattice (V � 803), one sees a
coupling decreasing when p is smaller than about pmax �
400 MeV. It thus seems that the two approaches differ
qualitatively in the deep IR limit. Nevertheless, it is inter-
esting to note that the maximum of the data for the larger
lattice is obtained for the momentum p � pmax �
400 MeV, where the gluon propagator also reaches its
maximum value. Thus, a possible interpretation [29,45]
is that finite-size effects are different for the two propaga-
tors and one might see an IR-finite effective coupling only
in the infinite-volume limit. In other words, since the

prediction from DSE studies is based on the relation4 aD �
2aG � �4� d�=2 [11,23], one can imagine that the true
values for the exponents aD and aG are obtained only in the
infinite-volume limit and that at finite volume the above
relation does not need to be satisfied.5

Let us note that Dyson-Schwinger studies find that the
expected power-law behaviors for the propagators (in 3d as
well as in 4d) start to appear only for momenta smaller than
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FIG. 4. The volume dependence of the gluon propagators in the low-temperature phase. The top panels show the 3d-longitudinal
propagator while in the bottom panels we report results for the 3d-transverse propagator. The left panels show the results at zero
temperature (Ns � Nt) and the right panels at T � 119 MeV (Nt � 10), well inside the low-temperature phase. We always compare
results obtained using three different physical volumes. The smallest volumes (Setups 1 and 5) are indicated with full circles, the
middle-size volumes (Setups 2 and 6) are represented by open triangles, and the largest volumes (Setups 3 and 7) are indicated by full
triangles. Momenta are aligned along the x axis.

4Here we define the IR exponents aD and aG using the
relations D�p� � p2aD�2 and DG�p� � p

�2aG�2.
5For a different interpretation, see [50].
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some energy scale �I & 200 MeV [45]. Also, one should
consider with caution lattice results at the smallest nonzero
momentum 2=a sin��=N� � 2�=�aN�, i.e. when the quan-
tities considered may ‘‘feel’’ the boundaries. Thus, one
should try to extract the IR behavior of the propagators
only using data in the range

 

2

a
sin
�
�
N

�

 p & �I: (9)

With a lattice spacing a of order of 1 GeV�1, one con-
sequently needs N 	 50. Present simulations have access

to this region only in the three-dimensional case. In the
four-dimensional case the situation is more complicated
and, in particular, since the IR suppression of the 4d gluon
propagator is predicted to be weaker than in three dimen-
sions (p0:38 instead of p0:59) [11,23], one probably needs
even larger lattice sides than in the 3d case, making these
computational studies very demanding. Looking at the
results obtained in the 3d case and considering the data
obtained with the largest 4d lattices available [29,30], one
can argue that volumes larger by a factor of 10 (i.e. about a
factor of 2 in lattice side) are probably necessary in order to
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FIG. 5. The volume dependence of the gluon propagators in the high-temperature phase. The top panels show the 3d-longitudinal
propagator while in the bottom panels we report results for the 3d-transverse propagator. The left panels show the results at T �
298 MeV (Nt � 4), slightly above the thermodynamic transition, and the right panels at T � 597 MeV (Nt � 2), well inside the high-
temperature phase. We always compare results obtained using three different physical volumes. The smallest volumes (Setups 8 and
13) are indicated with full circles, the middle-size volumes (Setups 9 and 14) are represented by open triangles, and the largest volumes
(Setups 10 and 15) are indicated by full triangles. Momenta are aligned along the x axis.
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see a decreasing gluon propagator also in the 4d case. On
the other hand, for the ghost propagator and with the
available lattice sides, the IR enhancement is clearly ob-
served [24,27,30,46], even though the value obtained nu-
merically for the IR exponent aG is usually smaller than the
DSE result [11,23].

B. Finite temperature

Here we present our calculations for gluon and ghost
propagators in 4d at finite temperature. We consider four
different temperatures, two of them below the thermody-

namic transition (i.e. at zero temperature and at T �
119 MeV) and two above it (i.e. one at T � 298 MeV
and the other at T � 597 MeV). Our runs are summarized
in Table I. Note that, for a time extension Nt � 4, the
critical coupling is � � 2:299 [42], corresponding to Tc �
295 MeV. Here the calculations for this time extension
have been done at � � 2:3. Thus, the temperature T �
298 MeV is just above the thermodynamic transition,
while the highest temperature (T � 597 MeV) corre-
sponds to about twice the critical temperature Tc. This
allows us to make contact with previous studies [31] of
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along the x axis; larger momenta are along the 3d-spatial diagonal.
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the high-temperature phase, which investigated the gluon
propagator for T * 2Tc. In order to clarify possible finite-
volume effects, we considered for each temperature three
different spatial volumes. Because of memory limitations,
the spatial sizes are chosen to depend on the temperature,
the largest ones being at the highest temperatures, for
whichNt is smallest. We find that, in the ghost case, neither
the propagator nor the dressing function show any visible
volume or discretization effects within the statistical errors.

The volume dependence of the gluon propagators for the
two setups below the thermodynamic transition is shown in

Fig. 4. As expected, at zero temperature, DT�p� and DL�p�
coincide. In this case no clear volume dependence is ob-
servable, since the three spatial volumes are rather similar.
At T � 119 MeV, DT�p� and DL�p� are already quite
different (see discussion below for details). On the other
hand, these two functions still do not show any strong
volume dependence. Also note that the consequences of
the violation of rotational symmetry are not stronger than
in the zero-temperature case [24,36].

The situation is different when considering the high-
temperature phase (see Fig. 5). Indeed, at T � 298 MeV,

 

p (Gev)
0 0.5 1 1.5 2 2.5 3 3.5 4

)
-2

(p
) 

(G
eV

T
D

-110

1

10

3d-transverse gluon propagator

p (Gev)
0 0.5 1 1.5 2 2.5 3 3.5 4

(p
)

T
 D2

p

0

0.5

1

1.5

2

2.5

3

3d-transverse gluon dressing function

p (Gev)
0 0.5 1 1.5 2 2.5 3 3.5 4

)
-2

(p
) 

(G
eV

L
D

-110

1

10

3d-longitudinal gluon propagator

p (Gev)
0 0.5 1 1.5 2 2.5 3 3.5 4

(p
)

L
 D2

p

0

0.5

1

1.5

2

2.5

3

3.5

4

3d-longitudinal gluon dressing function

FIG. 7. The 3d-longitudinal and 3d-transverse gluon propagators and dressing functions as a function of the temperature for the same
spatial volume Vs of approximately �3:3 fm�3. We report data for the 3d-longitudinal propagator in the top-left panel and for the 3d-
longitudinal dressing function in the top-right panel. Results for the 3d-transverse propagator are shown in the bottom-left panel and
for the 3d-transverse dressing function in the bottom-right panel. Full circles, full triangles, open circles, and open triangles correspond
to Setups 3 (T � 0 MeV), 6 (T � 119 MeV), 8 (T � 298 MeV), and 13 (T � 597 MeV), respectively. Momenta, respectively, below
and above 2.4 GeV are measured along the x axis and along the spatial diagonal. The break at 2.4 GeV is due to violation of rotational
invariance.
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the two propagators show a clear, even though different,
volume dependence. In particular, the 3d-longitudinal
gluon propagator is enhanced at small momenta with in-
creasing volume, while the 3d-transverse propagator be-
comes weaker in the IR with increasing volume. Finally, at
T � 597 MeV, the volume dependence of the two propa-
gators is similar, i.e. they both become smaller (in the IR
region) as the volume increases. Moreover, the 3d-
transverse propagator shows a distinct maximum at p �
500 MeV for the two largest volumes, while the 3d-
longitudinal propagator seems to go to a constant at small
p. These IR behaviors at T � 2Tc are in agreement with
previous studies [31]. Note that the apparently stronger
finite-size effects seen at T * Tc compared to the low-

temperature cases are likely due to the larger spatial vol-
umes (computationally) accessible in the high-temperature
phase. Also note that a maximum in the 3d-transverse
propagator in the high-temperature phase is observed al-
ready for a (spatial) lattice volume of 323. At T � 0, in the
4d case, one sees a clear maximum for V & 324 only when
simulations are done in the strong-coupling regime [47].
Thus, finite-size effects for the transverse propagator seem
to be smaller in the high-temperature phase, in agreement
with previous results.

In Fig. 6 we check for discretization effects by com-
paring results for three different � values for setups
that have, within a few percent, the same temperature
(i.e. T � 575 MeV) and the same physical spatial volume
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FIG. 8. Same as Fig. 7, but considering for each temperature T the largest spatial volume available. Full circles, full triangles, open
circles, and open triangles correspond to Setups 3 (T � 0 MeV), 7 (T � 119 MeV), 10 (T � 298 MeV), and 15 (T � 597 MeV),
respectively.

ATTILIO CUCCHIERI, AXEL MAAS, AND TEREZA MENDES PHYSICAL REVIEW D 75, 076003 (2007)

076003-10



Vs � �3:35 fm�3. The two gluon propagators show a differ-
ent behavior. Indeed, the 3d-transverse propagator is only
weakly affected by the � value at the smallest momenta,
the effect being of the order of about 20% at most. On the
other hand, for the 3d-longitudinal propagator, the effects
in the IR are more pronounced, with variations of up to a
factor of almost 2. This indicates that the scaling limit has
not been reached yet for these setups in the IR region.
Thus, results for the 3d-longitudinal gluon propagator at
momenta below 1.5 GeV should be taken with caution.
Considering also the finite-volume effects discussed above,
one probably needs to consider larger and finer lattices
especially in the case of the 3d-longitudinal gluon
propagator.

We can now compare the gluon propagators at different
temperatures T. In particular, in Fig. 7 we consider setups
with the same physical spatial volume, while in Fig. 8 we
show data using always the largest spatial volume available
for a certain temperature. The results are similar in the two
cases, and in the following we will mainly refer to Fig. 8.
One clearly sees that at sufficiently large momenta the
propagators at T > 0 coincide with the ones at zero tem-
perature. This is expected since for p	 T zero-
temperature perturbation theory should reemerge. At
smaller momenta, the 3d-transverse gluon propagator de-
creases monotonically as the temperature increases. Also,
there is no sign of sensitivity to the thermodynamic tran-
sition. The situation is different for the 3d-longitudinal
propagator. Indeed, in the IR region, it increases with T
when T & Tc, while it strongly decreases when going from
T � Tc to T � 2Tc. From these results it is tempting to
assume that the 3d-longitudinal gluon propagator is largest
at the thermodynamic transition. However, due to the
strong finite-volume and discretization effects discussed
above, a confirmation of this conjecture requires more
systematic studies on larger and finer lattices. Note that,
due to renormalization effects, all dressing functions
should vanish logarithmically for sufficiently large mo-
menta. Clearly this ultraviolet-asymptotic regime is not
reached yet with our range of momenta.

Finally, from Fig. 9 we see that the Faddeev-Popov-
ghost propagator does not show any visible temperature
dependence for all temperatures T considered here, in
qualitative agreement with previous exploratory studies
[51]. We have also studied the spectrum of the Faddeev-
Popov operator (FPO) M as a function of the temperature
T. In particular, we checked if and at what rate the lowest
eigenvalue !s of M vanishes in the infinite-volume limit
[11]. We recall that, in the 3d case, this eigenvalue vanishes
faster than the lowest eigenvalue of the Laplacian [36]. The
behavior of !s as a function of the spatial length Nsa �
Ls � �Vs�1=3 is shown in Fig. 10. We fitted our data using a
power-law function cx�b. Results of these fits are reported
in Table II. We see that the exponent b varies little with T
and is greater than or equal to 2, i.e. the eigenvalue goes to

zero at least as fast as the lowest eigenvalue of the
Laplacian. The magnitude c is also essentially unaffected
by the temperature. This implies that, for the lattice vol-
umes and the lattice spacings considered here, the eigen-
value !s (as a function of 1=Ls) is already in the scaling
region. By fitting all data we get an exponent b � 2:3�1�
(see bottom of Fig. 10), to be compared with the exponent
of approximately 2.6 in the 3d case [36].

Summarizing our results for the propagators, we find
that (1) the ghost propagator does not have any noticeable
temperature dependence, (2) the 3d-transverse propagator
depends on the temperature, but it has the same (IR-
suppressed) behavior below and above the thermodynamic
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tion of temperature. The top panel shows the ghost propagator
and the bottom panel the corresponding dressing function. Full
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to Setups 4 (T � 0 MeV), 7 (T � 119 MeV), 10 (T �
298 MeV), and 15 (T � 597 MeV), respectively.
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transition, and (3) the 3d-longitudinal gluon propagator
does show a dependence on the temperature, with a differ-
ent behavior above and below the phase transition and an
apparent IR divergence at Tc. Moreover, at large T, the 3d-
transverse propagator is suppressed in the IR limit, while
the 3d-longitudinal one seems to behave as a massive
particle, approaching a plateau for small p. Indeed, for
all temperatures, volumes, and discretizations, the 3d-
longitudinal gluon dressing function vanishes in the IR.
This implies that the 3d-longitudinal propagator is always
less divergent than that of a massless particle. However, in
order to check if the behavior is indeed that of a massive
particle, one needs much larger physical volumes. Let us
stress that the results obtained here at the highest tempera-
ture (i.e. T � 2Tc) agree qualitatively with those found in
the dimensionally reduced theory [34–36] and with pre-
vious studies of gluon propagators at high temperature
[31].

A possible explanation of the above results will be
discussed in Sec. V.

IV. DYSON-SCHWINGER EQUATIONS

Because of the strong finite-volume effects observed in
the numerical data, it is important to complement the
previous results with ones from the continuum and in the
infinite volume, e.g. using DSEs. Let us recall that studies
at finite T using DSEs have already been presented in
[33,52]. However, in both cases, in addition to the trunca-
tions usually employed at zero temperature [19], various
approximations have also been performed in the solutions
of the DSEs. Here, these additional approximations will be
removed. In this section we discuss the (analytic) asymp-
totic IR solutions of the DSEs at any finite temperature,
always assuming that external momenta k obey k

�QCD. A (numerical) solution for all momenta, using the
same truncation scheme as in [33,52], is presented in
Appendix D. Let us stress that the analysis presented
here and in Appendixes B, C, and D applies to any semi-
simple gauge group without any qualitative change.

The setup for the system of DSEs at finite T has already
been extensively discussed elsewhere [33,52,53]. Let us
recall that, in the far infrared, one can use the so-called
ghost-loop-only truncation [53], which keeps only the
leading infrared term arising in the derivation of the
DSEs from the Faddeev-Popov-ghost term in the gauge-
fixed Lagrangian. In the Gribov-Zwanziger scenario, this
term dominates the action at low momenta.

Then, the equations for the zero (soft, k0 � 0) modes are
given by [53]
 

1

G�0; ~k�
� ~Z3 �

g2TCA
�2��3

X
q0

Z
dqd��AT�0; q0; ~k; ~q�

�G�q0; ~q�Z�q0; ~q� ~k�

� AL�0; q0; ~k; ~q�G�q0; ~q�H�q0; ~q� ~k��; (10)
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FIG. 10. The dependence of the lowest eigenvalue !s of the
FPO on the spatial extension Ls. The lines are fits of the type
cx�b. In the top figure, we show fits for each temperature
separately. The fit parameters can be found in Table II. Solid
lines and circles are at T � 0 MeV, dashed lines and squares are
at T � 119 MeV, dotted lines and triangles are at T �
298 MeV, while dashed-dotted lines and upside-down triangles
are at T � 597 MeV. In addition to the setups listed in Table I
we obtained some of the data using lattice volumes 4� 183 and
2� 223 at � � 2:3. In the bottom figure we consider data for all
the temperatures.

TABLE II. Parameters for the fits in Fig. 10. Fits have been
done with GNUPLOT.

T (MeV) c (GeV2) b

0 0.13(2) 2.3(2)
119 0.119(1) 2.00(1)
298 0.15(1) 2.31(6)
597 0.11(1) 2.19(5)
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1

Z�0; ~k�
� Z3T �

g2TCA
�2��3

X
q0

Z
dqd�R�0; q0; ~k; ~q�

�G�q0; ~q�G�q0; ~q� ~k�; (11)
 

1

H�0; ~k�
� Z3L �

g2TCA
�2��3

X
q0

Z
dqd�P�0; q0; ~k; ~q�

�G�q0; ~q�G�q0; ~q� ~k�: (12)

Here, we use the definitions G�k2� � k2DG�k2�, Z�k2� �
k2DT�k2�, H�k2� � k2DL�k2�, where DG�k2�, DT�k2�, and
DL�k

2� are, respectively, the ghost propagator and the
transverse and longitudinal gluon propagators. The integral
kernels AT , AL, R, P and the angle � are defined in
Appendix B. Also, T is the temperature, g is the bare
coupling constant, and CA indicates the adjoint Casimir
of the gauge group [for SU�2�, CA � 2]. The graphical
representation of this system of equations is given in
Fig. 11. Note that Eqs. (11) and (12) have been obtained
from the tensor equation for the gluon propagator by con-
traction with generalizations of the projectors defined in
Eqs. (2) and (3). These tensors are parametrized by the
variables � and � [33], which appear explicitly only in the
integration kernels R and P (see Appendix B). Variations
of these parameters can be used to investigate truncation
artifacts and, in particular, the appearance of spurious
divergences.6 Let us also note that the equations above
reduce to the corresponding equations of a three-
dimensional Yang-Mills-Higgs system when the hard
modes (q0 � 0) inside loops are neglected [13]. Then,
due to the ghost-loop-only approximation, the Higgs field
H�0; ~k� decouples7 and G�0; ~k� and Z�0; ~k� become the
dressing function of a pure 3d Yang-Mills theory [13]. In
Appendix C we show that the solutions of Eqs. (10)–(12) at
zero temperature coincide with the well-known solutions
presented in Refs. [19]. Finally, we remark that one can
find different wave-function renormalization constants
(Z3T and Z3L) in the gluon equations due to possible finite
contributions arising at nonzero temperature.

Equations (10)–(12) can also be written as

 

1

G�0; ~k�
� ~Z3 ��G�0; ~k� �

X
q0�0

�G�q0; ~k�; (13)

 

1

Z�0; ~k�
� Z3T ��Z�0; ~k� �

X
q0�0

�Z�q0; ~k�; (14)

 

1

H�0; ~k�
� Z3L �

X
q0�0

�H�q0; ~k�; (15)

where we indicate with �i the various self-energies. Note

that, in the 3d-longitudinal equation, the zero component
q0 � 0 explicitly vanishes, since P�0; 0; ~k; ~q� � 0. This is a
direct consequence of the tensor structure of the ghost-
gluon vertex. Thus, the behavior of the longitudinal mode
H�0; ~k� is entirely determined by the hard modes and
depends only implicitly on the soft ones.

The treatment of the full system, given in Appendix D,
justifies a posteriori this ghost-loop-only truncation for
momenta k in the far IR limit. The same truncation is
also sensible at zero temperature [54]. Furthermore, the
ghost-gluon vertex is taken equal to the bare one. This
approximation is supported by various calculations at zero
[25–27,37] and at infinite temperature [25,36]. Of course,
when considering the far IR limit at nonzero temperature
one needs to ensure the condition j ~kj 
 T for the external
momenta. In this limit one obtains [33] that the hard-mode
dressing functions Z�k0; ~k�, H�k0; ~k�, G�k0; ~k� become con-
stant in the infrared, i.e. they have the behavior of the
dressing function of massive particles. Thus, for ~k! 0,
the dressing functions of the hard modes for the 3d-
transverse gluon, the 3d-longitudinal gluon, and the ghost,
are, respectively, given by Az�k0�, Ah�k0�, and Ag�k0�,
which depend only on the Matsubara mode k0. In order
to find a solution to the system of equations (10)–(12), we
need these IR constants to be bounded.

Finally, for the zero modes (k0 � 0) we consider the
power-law ansätze

 G�0; ~k� � Bgk
2	; (16)

 Z�0; ~k� � Bzk
2t; (17)

 H�0; ~k� � Bhk
2l; (18)

which depend on the IR exponents 	, t, and l, and on the
constant coefficients Bg, Bz, and Bh. Then, for all values of

 

− 1

=
− 1

− −
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−

FIG. 11. The DSEs in the ghost-loop-only approximation at
finite temperature. Dotted lines represent ghosts, curly lines are
used for the 3d-transverse gluons, and dashed lines represent 3d-
longitudinal gluons. Lines with a dot indicate a full propagator
instead of a bare one. Vertices with a small dot are bare ones,
while those with a large, empty dot represent full vertices.
However, in our calculations these vertices are also taken to be
bare.

6See e.g. [13,33,53] for a detailed discussion of this topic at
finite temperature.

7Indeed, it is easy to check that for k0 � q0 � 0 one finds
AL � P � 0.
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	 and t, the self-energies �G�0; ~k� and �Z�0; ~k� take exactly the same form as in three dimensions [13], i.e.

 

�G�0; ~k� � �BgBzg2TCA
21�4	��2� 2	�

	�3� 4��2� 	�	���2	� 3
2�
yt�	��1=2�; (19)

 �Z�0; ~k� � B2
gg2TCA

2�4�1�	���2� � � 2	�� � 1����2� 2	� sec�2�	� sin��	�2

	2�1� 	���2	� 3
2�

y2	��1=2�; (20)

where y � k2 � ~k2. Clearly, if these contributions are not
exactly canceled (or dominated) by the remaining
Matsubara sums, they will give the leading IR behavior
of G�0; ~k� and of Z�0; ~k�. In this case one finds a 3d-type
behavior for all nonzero temperatures T. To show that this
is indeed the case, we observe that—by setting the hard-
mode dressing functions equal to the constants Ag�k0�,
Az�k0�, and Ah�k0�—the self-energies in the ghost equation
(13) can be rewritten as
 

�G�q0 � 0; ~k� � g2TCA

�
�

�
Az�q0�

12�
�
Ah�q0�

96

�
1

jq0j

�

�
Az�q0�

80�
�
Ah�q0�

1920

� ~k2

jq0j
3�

~k3��q0; ~k�
�
:

(21)

Here, the first term is logarithmically divergent and it can
be absorbed in the renormalization constant. At the same
time, the second term is subdominant when compared to
the 3d term, for values of 	 and t permitted by integral
convergence [13], and is finite after summation over q0.
Finally, the function �� ~k� vanishes identically as ~k! 0.
Thus, the leading part of the ghost equation is the same as
in the 3d case, i.e. it is given by �G�0; ~k�, provided that the
quantities Az�q0� and Ah�q0� do not rise strongly as q0 goes
to infinity. Actually, due to asymptotic freedom, these
quantities vanish logarithmically in the ultraviolet limit.

Finally, we should check that a 3d-type behavior is
obtained for all nonzero temperatures T also when consid-
ering the gluon equations (11) and (12). To this end, we
first discard spurious divergences in these two equations.
These are quadratic divergences, vanishing for � � 3 in the
3d-transverse equation (11) and similarly in the longitudi-
nal equation (12). One can show that they are artifacts of
the truncation scheme considered [19,33,53]. After sub-
traction of these divergences, one can write the contribu-
tions of the hard modes in the self-energies [see Eqs. (14)
and (15)] as

 �S
Z�q0; ~k� �

�Z�q0; ~k�
k

; �S
H�q0; ~k� �

�H�q0; ~k�
k

:

(22)

In both cases the function �i vanishes as ~k! 0, separately
for each Matsubara term. Thus, the subtracted part cannot
contribute to the IR behavior in the 3d-transverse equation.

This is the case8 also after summing over q0. On the other
hand, the IR contributions from the unsubtracted self-
energies cannot, in general, be neglected, as done when
considering only the contributions (22). This requires, of
course, a regularization [19] of the spurious divergences.9

To achieve this, one can replace the approximately con-
stant dressing functions of the hard modes by Ag�q0��

� ~q2 � q2
0�
�
, which are clearly suppressed when 
 > 0.

This is the prescription commonly used for regularizing
the divergences at zero temperature with 
 � �	
[11,15,16,19]. Then, the integrals can be performed, and
in the limit ~k! 0 one finds
 

�D
Z �q0; ~k! 0� � �

g2TCA
k2

�� � 3���
� 1
2�

32�3=2��2� 2
�

� �2�T�1�4

X
n�0

Ag�n�
2jnj1�4
; (23)

 

�D
H�q0; ~k! 0� �

g2TCA
k2

��2
� 1
2�

8�3=2��2� 2
�

� �2�T�1�4

X
n�0

Ag�n�2jnj1�4
; (24)

where n � q0=2�T. These sums diverge for 
 � 1=2, due
to the term q1�4


0 . For 
 � 1=2, this exponent becomes
equal to �1, i.e. the sums are logarithmically divergent.
Finally, for 
 > 1=2, the sums are finite and they can (in
principle) be resummed analytically. For example, for
Ag�n� � �2�T�2
 one finds that the sum in n is equal to
2�2�T�4
�R�4
� 1�, where �R is the Riemann-� function.
One should also note that the terms in (23) and (24) behave
like 1=k2, i.e. like a mass term in the IR limit. In the 3d-
transverse case—but not in the 3d-longitudinal case
[33]—this term may not be renormalized, as this is not
allowed by gauge invariance. If one does not allow either a
divergence stronger than logarithmic (even though this
cannot be excluded by the perturbative renormalization
theorems) or different exponents 
 to the 3d-transverse
and to the 3d-longitudinal case, then the only possibility
is to have 
 > 1=2. For all such values of 
, the contribu-

8Note that this also applies to the remaining gluon loops,
which are not treated explicitly here.

9Note that, in the 3d-transverse case, divergences appear for
each hard mode, while in the 3d-longitudinal case only the sum
over the hard modes is affected by spurious divergences.
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tion (23) is subleading in the 3d-transverse equation (14).
At the same time, the screening mass in the 3d-longitudinal
equation would then be solely due to the regularized con-
tribution (24). This result is a consequence of the trunca-
tion scheme. In fact, due to the decoupling of the soft
modes in the 3d-longitudinal equation [see Eq. (15)], the
result is dominated by the hard modes, which are very
sensitive to truncation artifacts, since they live on a scale
that is effectively midmomentum. Thus, the present trun-
cation scheme is not able to yield a consistent description
of the electric screening mass and a determination of its
value is not possible. Nonetheless, the 3d-longitudinal
gluon propagator seems to exhibit a screening mass, and
thus likely gives a qualitatively correct description of the
physics involved. This screening mass would not allow the
3d-longitudinal gluon propagator to modify the IR behav-
ior of either the 3d-transverse gluon propagator or of the
ghost propagator. Therefore, as shown above, these two
propagators should behave at all nonzero temperatures
exactly as in the three-dimensional case when one consid-
ers momenta much smaller than the temperature T and than
�QCD. It is then plausible that for momenta in the range
T 
 p
 �QCD the gluon and the ghost propagators
would still exhibit a behavior similar to that found in the
four-dimensional case. This is also found in DSE studies in
a finite volume [45].

The behaviors described in this section are in agreement
with calculations using renormalization-group techniques
in a background-field gauge [55]. Indeed, when going from
T � 0 to T > 0, in that case one also finds a discontinuous
change in the behavior of the running coupling, i.e. in the
IR region the running coupling switches from a four-
dimensional to an effectively three-dimensional behavior.
Let us also note that previous studies using DSEs [52] had
assumed that the zero-temperature behavior persists up to
the thermodynamic transition. Here we have relaxed this
hypothesis and eliminated some of the approximations of
the numerical method employed in [52], showing that the
high-temperature results also apply to nonzero tempera-
tures below the critical temperature Tc, a phenomenon
previously interpreted as supercooling [33].

V. SUMMARY

Let us summarize here the results obtained above for the
4d finite-temperature case. From our lattice calculations
we have that:

(i) The 3d-transverse gluon propagator decreases as the
temperature increases. It also seems to have smaller
finite-volume effects (in the IR limit) and stronger IR
suppression at high temperature than at zero
temperature.

(ii) The 3d-longitudinal gluon propagator at small mo-
menta increases as the temperature goes from 0 to
Tc, seems to diverge at Tc and then drops as T
becomes larger, apparently reaching a plateau for

small p. Also, in the IR limit, it is less divergent
than the propagator of a massless particle, with a
possible exception near the phase transition.

(iii) The ghost propagator is nearly temperature
independent.

(iv) The smallest eigenvalue of the Faddeev-Popov op-
erator, considered as a function of the spatial lattice
side Ls, goes to zero faster than 1=L2

s as Ls goes to
infinity, for all temperatures.

From the DSEs we see that:
(i) The IR behavior of the gluon and ghost propagators

changes abruptly from zero to any nonzero
temperature.

(ii) For momenta p
 �T;�QCD�, the ghost and the 3d-
transverse gluon propagators show the same behav-
ior obtained in the dimensionally reduced theory
[13,33], and the IR behavior in the spatial sector is
in accordance with the prediction of the Gribov-
Zwanziger scenario [11,17].

(iii) The 3d-longitudinal gluon is likely to have a dynami-
cal mass at any nonzero temperature.

(iv) These results can be connected continuously to per-
turbation theory at large p (see Appendix D) and to
the solution at zero temperature (see Appendix C).

As explained in Sec. IV above, the main assumption for
these DSE results is that the electric screening mass is
nonzero at all temperatures. Indeed, in the case of a null
screening mass, one can find different solutions for the
DSEs. In particular, the ghost propagator may or may not
be IR divergent, while the 3d-transverse gluon propagator
would still be IR suppressed [53]. Note that the analytic
asymptotic results from the DSE calculations are valid for
momenta p
 min�T;�QCD�. As already stressed in
Sec. III A, this range of momenta is not accessible with
the lattice volumes used here. At intermediate momenta,
DSE results agree qualitatively with the lattice results for
all temperatures considered.

We can try to interpret these results by considering the
Gribov-Zwanziger scenario applied to the 4d T � 0 case
and to the dimensionally reduced theory. As explained in
Sec. III A, this scenario is supported by lattice
[28,29,35,36,46,56] and by DSE calculations [11,13,19].
Then, at T > 0, due to the compactification of the time
direction, the configuration space near the Gribov horizon
should be essentially reduced to that of a three (space-
time)-dimensional system and, in the infinite-volume limit,
the configurations should lie on the Gribov horizon [17] for
all temperatures and the Gribov-Zwanziger confinement
scenario would apply to the so-called magnetic sector.10 As

10This is the case not only in the Landau gauge but also in
Coulomb gauge [57,58]. Note that this is in line with the fact
that, in the spatial subspace, the interactions are qualitatively
unaltered when the temperature is switched on and all purely
spatial observables, such as the spatial string tension [8], are not
modified by the transition.
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a consequence, one can remove the so-called IR problem
[6,7,32,39] since an infrared suppressed 3d-transverse
gluon propagator cancels the perturbative infrared
divergences.

Based on the above considerations, our results may be
organized into the following scenario:

(i) At nonzero temperature, the timelike momenta are
no longer continuous, but discrete. Because of this
gap, the properties of configurations near the Gribov
horizon are changed. This modifies (probably only
quantitatively) the spectrum of the Faddeev-Popov
operator. Thus, the enhancement for small eigenval-
ues observed at T � 0 [59] should still be present
and the IR enhancement of the ghost propagator
might be reduced but not eliminated. This is verified
by our lattice data.

(ii) The consequences for the 3d-transverse gluon and
the 3d-longitudinal gluon are different, due to the
vector character of the ghost-gluon interaction. In
particular, in the 3d-transverse case, the coupling is
not modified in the DSEs and this propagator is still
IR suppressed. Moreover, this suppression is actually
stronger due to the structure of the 3d-transverse
gluon-ghost interaction. This is also suggested
from our lattice data.

(iii) On the other hand, the coupling of the ghost to the
3d-longitudinal gluon becomes gapped. Thus, the
solution of the DSEs is consistent with these gluons
acquiring a real (dynamical) mass, no longer being
IR suppressed. This 3d-longitudinal screening mass
is generated solely by the hard modes, likely leading
to a mass of the order of the temperature, which is the
characteristic scale of the hard modes. In addition,
this is observed in lattice calculations at very high
temperatures [31]. At the same time, this screening
mass should, similarly to the hard modes, be sensi-
tive to the phase transition. This is partially seen
from our lattice data, since the longitudinal propa-
gator is sensitive to the phase transition and seems to
reach a plateau at small p for T > Tc.

(iv) Finally, it should be noted that the presence of an
electric screening mass does not imply that the 3d-
longitudinal gluon is deconfined or an observable
particle. Indeed, a massive particle does not neces-
sarily have a positive-definite spectral function
[13,33,53]. Moreover, the A0 field is (at the pertur-
bative level) a member of a BRST quartet at any
finite temperature [60]. These considerations would
imply that no gluon is part of the physical spectrum
also at any T > 0.11

A number of predictions follow from the scenario pre-
sented above, which could, in principle, be further tested
using lattice calculations at sufficiently large volumes and
with sufficiently fine discretization. The main predictions
are as follows:

(i) For all temperatures, the 3d-transverse gluon propa-
gator is IR suppressed, while the ghost propagator is
IR enhanced.

(ii) When p
 �T;�QCD� the IR behavior of the 3d-
transverse gluon propagator and of the ghost propa-
gator is quantitatively different from the behavior
observed for T 
 p
 �QCD, the latter one being
similar to the behaviors observed at zero temperature
with momenta p
 �QCD.

(iii) The 3d-longitudinal gluon propagator is null at zero
momentum only at T � 0, while it goes to a finite
(nonzero) value at p � 0 for all temperatures T > 0.
This propagator is sensitive to the phase transition.

Of course, it would be interesting to compare our nu-
merical results to a similar study for the SU�3� group, for
which a different kind of thermodynamic transition is
expected [1]. Note that first investigations, with and with-
out dynamical quarks, have been performed in [63].

VI. CONCLUSIONS

We have presented an analysis of gluon and ghost
propagators at finite temperature, using lattice gauge the-
ory and DSEs. Results using these two approaches seem to
be (at least at the qualitative level) consistent with each
other. In particular, when the temperature is turned on, one
finds different effects for (1) the temporal sector, which
includes the soft 3d-longitudinal gluon, (2) the spatial
sector, containing the soft ghost and the soft 3d-transverse
gluon, and (3) the hard sector with the (essentially pertur-
bative) hard modes. In the spatial subsector, the IR behav-
ior is similar to that of a three-dimensional theory and the
correlation functions agree with those expected from the
Gribov-Zwanziger confinement scenario. Also, their de-
pendence on the temperature is smooth. On the contrary,
the temporal sector is sensitive to the thermodynamic
transition, being screened and decoupling at the scale of
the temperature. Nevertheless, our results are consistent
with the possibility that all gluons are confined at all
temperatures. Note that this does not alter the bulk thermo-
dynamic properties, which still have a Stefan-Boltzmann-
like behavior [13,33,57,64]. These results can be under-
stood by considering the Gribov-Zwanziger confinement
scenario at T � 0. As a consequence, gluon confinement is
not affected by the thermodynamic transition. This would
explain the presence of nonperturbative effects in the high-
temperature phase and the confining properties of the
dimensionally reduced theory in the infinite-temperature
limit.

One should, however, recall that these results are af-
fected by various (technical) limitations. Indeed, much

11Let us note that this would be in line with the violation of the
Oehme-Zimmermann superconvergence relation [61] for the
gluons, which is a pure ultraviolet effect [62] and thus occurs
also at nonzero temperature.
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larger and finer lattices and more sophisticated DSE
schemes are needed in order to obtain a complete under-
standing of the effect of the temperature in the gluonic
sector of Yang-Mills theory.

Finally, let us note that the introduction of dynamical
quarks should not modify the Gribov-Zwanziger scenario
and, as a consequence, the scenario described above. At the
same time, the chiral transition should not be affected
either by the IR arguments considered here, as the relevant
dynamics occurs at the scale of �QCD (see e.g. [16]).
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APPENDIX A: ASYMMETRIC LATTICES

When using asymmetric lattices at T � 0 (e.g. if the
time extension of the lattice is larger than the spatial ones)
it is convenient to consider the two scalar gluon propaga-
tors given by D?�p� � Dii�p�=�d� 1� and Dk�p� �
D00�p�, where in the first case we sum over the spatial
indices i only. In Fig. 12 we report the results obtained for
these two different tensor components of the gluon propa-
gator when considering an asymmetric lattice of size 242 �
128 (at � � 4:2). Let us note that the total volume in this
case is roughly the same as for a 403 lattice. In this
symmetric case, one clearly sees a maximum in the propa-

gator for a momentum p � 400 MeV (see Sec. III A and
the top plot in Fig. 1). In the asymmetric case, on the
contrary, it is evident that the two tensor components
show a very different behavior and that the behavior of
the orthogonal propagator D?�p� depends on the type of
momentum considered, i.e. along the short axis of the
lattice (ps) or along the long axis of the lattice (pl).
Also, there is no clear evidence of a maximum, even
when considering D?�pl�. Moreover, as observed already
in [41], the IR suppression obtained using an asymmetric
lattice Nd�1

s Nt with Nt 	 Ns is usually smaller than the
suppression found on a symmetric lattice with volume Nd

t .
This effect clearly reduces the advantages of using asym-
metric lattices.

When considering asymmetric lattices, one might also
use asymmetric couplings in order to have the same physi-
cal extent in all directions. This would probably reduce the
systematic effects observed in [41], while keeping the
numerical costs of the simulations small.

APPENDIX B: INTEGRAL KERNELS

Here we define the integral kernels obtained with the
ghost-loop-only truncation [see Eqs. (10)–(12)]. We use
the following notation:
 

y � k2 � k2
0 �

~k2; x � q2 � q2
0 � ~q2; k � j ~kj;

q � j ~qj; u � x� y� 2k0q0 � 2 ~k � ~q;

v � � ~k� ~q�2; z � x� y� 2k0q0 � 2 ~k � ~q;

w � � ~k� ~q�2; � � arccos� ~k � ~q=kq�:

(B1)

Then, the kernels in the ghost self-energy (10) are given by
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FIG. 12. The orthogonal D?�p� and the parallel Dk�p� components of the gluon propagator evaluated using the (three-dimensional)
strongly asymmetric lattice 242 � 128 at � � 4:2. Open symbols correspond to momenta (ps) along one of the short sides of the
lattice, while full symbols correspond to momenta (pl) along the long side of the lattice. Here we considered 420 configurations and
the same settings used for Setup 15. Note that, due to the Landau-gauge condition, one has Dk�pl; 0� � 0 for all momenta pl.

INFRARED PROPERTIES OF PROPAGATORS IN LANDAU- . . . PHYSICAL REVIEW D 75, 076003 (2007)

076003-17



 AT�k0; q0; ~k; ~q� �
q2� ~k � ~q� k2q2� sin�

xyuv
; (B2)

 AL�k0;q0; ~k; ~q� ��
q2�k0q2� k2q0��k0�q0� ~k � ~q�2 sin�

xyvu2 :

(B3)

At the same time, in the 3d-transverse gluon equation (11),
the kernel is equal to

 R�k0;q0; ~k; ~q���
q3��q�k���1�cos��q� cos�2�sin�

2xyz
;

(B4)

while in the 3d-longitudinal equation (12) it is
 

P�k0; q0; ~k; ~q� �
1

y2xz
�q2�q0f�2k2

0�k0� q0���� 1�

� k2�k0� ��k0� q0��g � kqk0fk0��� 1�

� 2q0�2�� 1�gcos�� k2
0q

2� cos�2��

� sin�: (B5)

Note that the 3d-transverse equation (11) has been con-

tracted with a tensor parametrized by a variable � [33].
This variable appears only inside the integration kernel
(B4). The case � � 1 corresponds to the projector given
in Eq. (2). The same has also been done for the 3d-
longitudinal equation (12), with the variable �. Again, it
only appears inside the integration kernel (B5). For the
zero mode (k0 � 0), � factorizes in all terms and can thus
be eliminated from the equation. Hence the equation de-
pends only implicitly on �, due to the hard modes [33].

APPENDIX C: VACUUM SOLUTION

As said in Sec. IV above, a necessary requirement is that
Eqs. (10)–(12) reproduce the well-known vacuum behav-
ior [19] at T � 0. To show this, it is useful to consider
linear combinations of Eqs. (11) and (12). In particular, we
consider a combination with weights given by 2=3 and 1=3.
We also introduce a second combination with weights
equal to 1 and �� � 3�=2. At T � 0 the Matsubara sums
become integrals. After performing these integrals in the
equations obtained by considering both linear combina-
tions, we find

 f�k� �
2

3Z
�

1

3H
� �g2B2

g
4�3�2	�2�1� 	��3� 2	���6� 4	� ��3� 4	�� csc�2�	�

3��1� 	�2��	� 5
2�

2
y2	; (C1)

 l�k� �
1

Z
�
� � 3

2

1

H
� Z3T �

� � 3

2
Z3L �

��k�

k2 ; (C2)

with y � k2. The function ��k� vanishes for k! 0. Hence,
for 	 � 0:5, l�k� is subleading compared to f�k�. This
yields

 Z�k� �
2�� � 4�

3�� � 3�f�k� � 2l�k�
; (C3)

 H�k� �
4� �

3f�k� � 2l�k�
: (C4)

Without considering the trivial case � � 4 and neglecting
the subleading quantity l�k�, these two functions coincide
only in the case � � 1. For other values of � the dressing
functions Z�k� and H�k� will have the same leading IR
behavior, but they will differ by a constant factor. This is
simply an artifact of the non-O�4�-invariant projection
considered. Thus, for the remaining discussion we can
set � equal to 1.

By using the above results and the IR ansatz (16), the
ghost equation gives the relation

 y�	 � �g2B2
gBz

3����2	���2� 	� csc��	�

	2�2� 3	� 	2����	�3��2� 2	�
y	�t:

(C5)

Here and henceforth the subleading terms proportional to
��k� have been dropped. Clearly, this relation can be

satisfied for all values of y (in the infrared limit) only if
the four-dimensional relation [19,20]

 2	� t � 0 (C6)

is satisfied. By dividing Eqs. (C1) and (C5), inserting the
power-law ansätze (16)–(18) and setting Z � H, one finds
a consistency condition for 	, i.e.

 1 �
�2� 	��	� 1�

12�3� 4	�2� 	��
: (C7)

This equation is identical to the T � 0 equation and is
solved by 	 � �0:595 353 [11,23].

APPENDIX D: THE FULL SYSTEM

In this section we consider the system of DSEs truncated
at the one-loop level (see Fig. 13). This truncation has
already been discussed in detail in Refs. [33,53] for the
finite (i.e. nonzero) temperature case.

1. Perturbation theory and truncation artifacts

Many direct experimental verifications of QCD are per-
formed in a regime where perturbation theory is applicable.
Thus, any nonperturbative treatment must make contact
with it. In the case of DSEs (at the presented truncation
level) this implies recovering the resummed leading order
perturbation theory [15,16,19]. Of course, at finite tem-
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perature T, the vacuum perturbation theory is expected to
be recovered only at momenta large compared to T.

In order to show that this is the case, the first step is to
identify and remove the spurious quadratic divergences
[15,16,19]. Since the summation over the Matsubara fre-
quencies extends to infinity, spurious divergences might
depend on the order of integration and summation.
Furthermore, it is possible that a contribution is finite
with respect to integration but not to summation and vice
versa. Of course, only the region corresponding to large n
is relevant for the analysis of spurious divergences. In this
limit, the difference between two consecutive Matsubara
frequencies becomes negligible and the summation be-
comes equivalent to an integration. One can then replace
j ~qj by q sin� and q0 by q cos� (with q2 � q2

0 � ~q2) in the
integral kernels K�q� appearing in DSEs. Since the angular
integration over � yields no divergences, it is sufficient to
replace all integral kernels K�q� by the prescription

 K�q� ! K�q� �
1

q2 lim
q!1

q2K�q�: (D1)

The resulting integrals have no spurious quadratic diver-
gences, but only the usual logarithmic one. One could
absorb the subtracted part in gauge noninvariant counter-
terms, as they originate purely from violation of gauge
invariance. On the other hand, as discussed in Sec. IV
above, this affects the IR behavior of the solutions. To
surpass this problem constructively, the electric screening
mass is here explicitly renormalized to a fixed value mr �
g2T, since this is allowed by gauge invariance [33]. Note
that this prescription is subleading in the ultraviolet and
does not affect perturbation theory. At the same time, the
corresponding terms in the 3d-transverse equation can be
dropped, as they are subleading both in the IR and in the
ultraviolet limit. The only exception is the soft-mode con-
tribution, which is treated as in the infinite-temperature
limit [13]. As for the genuine tadpoles, they could, in
principle, give a finite contribution. However, when remov-
ing the quadratic divergences according to (D1), they
vanish identically. Thus, also at finite temperature, the

tadpoles contribute only a pure divergence, which can be
absorbed in gauge noninvariant counterterms. Also note
that this implies that all spurious divergences are not
affected by a finite temperature.12 This is to some extent
not surprising, as the usual divergences in quantum field
theory may not be affected by a finite temperature [60].

As a second step, we now have to fix the renormalization
prescription for the (physical) logarithmic divergences. In
order to recover the 3d theory in the infinite-temperature
limit, two aspects have to be considered in the renormal-
ization prescription [33]. First, one needs a finite 3d cou-
pling. To this end, one requires the quantity g2T to be fixed
to �QCD for large temperatures [33,53].13 This implicitly
defines a temperature-dependent renormalization scheme
and automatically fixes the renormalization scale � as a
function of T by the running of the coupling constant
g2=�4�� � 
S. At the same time, a smooth zero-
temperature limit is obtained using the prescription

 � � �QCD

�
exp

�
�
���
8
p
��2

�0

�
� 1� exp

�
8�2T
�0�QCD

�	
: (D2)

Here �0 is the first coefficient of the � function. Then,
according to the perturbatively resummed one-loop result,
the largest value attained by 
S is 1, i.e. g2 � 4�.

Second, the wave function must be renormalized such
that the dressing functions become unity at infinite mo-
mentum for T ! 1. This is guaranteed by selecting the
subtraction point

 s � 104�QCD � 2�T: (D3)

Note that the term 104�QCD has been added to renormalize
perturbatively at zero temperature. Clearly, the choice of
temperature-dependent values for s and � entails that the
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FIG. 13. The truncated Dyson-Schwinger equations at finite temperature. The wiggly lines represent transverse gluons, the dashed
lines longitudinal gluons, and the dotted lines denote ghosts. Lines with a full dot represent self-consistent propagators while small
dots indicate bare vertices. The open-circle vertices are full and must be constructed in a given truncation scheme. A bare ghost-gluon
vertex and modified bare gluon vertices have been used here.

12This could be the case, for an inconsistent truncation scheme.
13The precise value of �QCD is irrelevant for the present

purpose but, as for the zero-temperature case [15], it could be
obtained from comparison with the running coupling at suffi-
ciently large (perturbative) momenta.
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renormalization constants will also contain finite-tempera-
ture-dependent contributions.

The regularization and renormalization are performed as
in Refs. [33,53] by adding explicit counterterms. This
makes multiplicative renormalizability manifest. The re-
normalization conditions are

 G�s� � Z�s� � H�s� � 1: (D4)

They implement the requirement

 G2�s�Z�s� � G2�s�H�s� � 1 (D5)

from Slavnov-Taylor identities (STI) at zero temperature
[19]. Note that this prescription does not allow any free-
dom in the values of the IR prefactors in the ansätze (16)–
(18). This renormalization scheme is explicitly indepen-
dent of any Matsubara frequencies, and thus it suffices to
determine the wave-function renormalization constants in
the soft equations. On the other hand, this renormalization
scheme only works if performed at momenta sufficiently
far in the perturbative regime, since g has only been
included to the leading perturbative order.

In order to recover perturbation theory, the ultraviolet-
asymptotic dressing functions must be given by the
renormalization-group-improved perturbative propagators
[65]

 G�p� � G�s�
�
! log

�
p2

s2

�
� 1

�
�
; (D6)

 Z�p� � H�p� � Z�s�
�
! log

�
p2

s2

�
� 1

�
�
; (D7)

 ! � �
3g2���CA

64�2�
; (D8)

 � � �
1

2
��� 1� � �

9

44
: (D9)

This also implies that the longitudinal and transverse gluon
propagators must coincide at sufficiently large momenta p.
At the same time, any kind of gauge-invariance violation
must vanish, i.e. the propagators should become indepen-
dent of the variables � and �.

It thus remains to test whether the truncation scheme
permits this. At T � 0 it has been found that only a dressed
three-gluon vertex yields the correct perturbative solution
[19]. Thus, we consider the Bose-symmetric ansatz

 ��p; q; k���� � A�q; p; k���p; q; k��tl�����p; q; k� (D10)

 

� aG
�
1

2
�q2 � p2 � k2�

�
aG
Z
�
1

2
�q2 � p2 � k2�

�
aZ

� ��p; q; k��tl�����p; q; k�: (D11)

Here, � and ��tl� are, respectively, the full and the tree-level
vertex and the constants a, aG, and aZ will be chosen such

that the propagators (D6) and (D7) are a solution of the
system. Of course the above ansatz is valid only at high
momenta. The low-momentum case, for which Z � H,
will be discussed below.14

Finally, it is sufficient to inspect the limit p	 p0 in a
given equation, which thus reduces to the corresponding
soft equation. As only the large-momentum behavior is
relevant, the integrals can be treated with a lower cutoff p.
Furthermore, the denominators can then be expanded in
inverse powers of the integration momentum15 up to
O�q�3�. Approximating further internal dressing functions
by G�p� q� � G�q� etc. [19], a simple set of equations is
obtained:

 

1

G�p2�
� ~Z3 �

3g2CA
64�2

Z �2

p2
dy
G�y�Z�y�

y
; (D12)

 

1

Z�p2�
� Z3T �

g2CA�3� � 5�

384�2

Z �2

p2
dy
G�y�2

y

�
g2CA�47� 3��

384�2

Z �2

p2
dy
A�y; y; p2�Z�y�2

y
;

(D13)

 

�

Z�p2�
� �Z3L �

g2CA�

192�2

Z �2

p2
dy
G�y�2

y

�
25g2CA�

192�2

Z �2

p2
dy
A�y; y; p2�Z�y�2

y
: (D14)

(The integral kernels and other details of these equations
can be found in [53].) In these equations, the asymptotic
form (D7) has already been used to replace H by Z and
y � q2 � q2

0 � ~q2. Note that the third equation is the
original 3d-longitudinal equation and the �-dependence
can obviously be removed. The wave-function renormal-
ization constants are chosen to cancel exactly the upper
boundary of the integrals, thus rendering the equations
finite and independent of the regulator �.

One can then check that the ghost equation (D12) is
solved by (D6) and (D7). This yields the relation (D9)
between � and � and the value of ! [see Eq. (D8)]. On
the other hand, the value of � is not fixed. The remaining
task is the choice for A�y; y; p2�. Using the ansatz (D11) in
the 3d-transverse equation (D13), one finds for the parame-
ters aZ and a the conditions

 aZ �
�2� 6�� aG�

1� 2�
; (D15)

14As usual, due to the STI and the results obtained in the
nonperturbative regime [26], the ghost-gluon vertex is kept bare.

15Originally, at T � 0, the angular integrals were solved ex-
actly instead of considering this expansion [19]. However, due to
the non-Euclidean-invariant projection, this is not as simple
anymore.

ATTILIO CUCCHIERI, AXEL MAAS, AND TEREZA MENDES PHYSICAL REVIEW D 75, 076003 (2007)

076003-20



 a �
�18� 41�� 3��

��47� 3��
: (D16)

At the same time, the equation becomes independent of aG.
In the 3d-longitudinal equation (D14) one finds again for
aZ the solution (D15). On the other hand, a is determined
to be given by

 a �
�9� 19�

25�
: (D17)

Incidentally, there is only one value of � that at the same
time removes the �-dependence in the 3d-transverse equa-
tion and yields the same a value in both the 3d-transverse
equation and in the 3d-longitudinal equation. This value is
� � �9=44, which coincides with the result from the
renormalization-group-improved perturbation theory
(D9). For this value, one finds a � 1 in both equations
above. Thus, the condition of gauge invariance uniquely
requires for this truncation scheme the correct value of �.
This is quite convenient, although likely accidental.

Let us note that it is always possible to rewrite a � Z1b
with an arbitrary value for Z1, thus realizing the STI Z1 �
Z3= ~Z3 deliberately by fixing b appropriately.

Finally, as said above, we can consider the low-
momentum form of the three-gluon vertex. To this end,
we replace GaGZaZ in Eq. (D11) with the quantity
GnaGT=3�maGL=3ZnaZ=3HmaH=3. Here, n and m are the num-
ber of 3d-transverse and 3d-longitudinal legs. The expo-
nents aZ and aH are chosen to satisfy (D15) for aG � aGT
and aG � aGL, respectively. A convenient choice for the
remaining parameters aGT and aGL is

 aGT �
2t�1� 3��

t�� 	� 2�	
; (D18)

 aGL �
2l�1� 3��

l�� 	� 2�	
; (D19)

where 	, t, and l are the IR exponents of the dressing
functions (16)–(18). This yields an IR (positive) constant
three-gluon vertex. Although this is not in agreement with
recent results on the IR behavior of this vertex [26,37,66],
this is irrelevant, because the gluon loops are still IR
subleading.

It remains to select for the numerical solution at inter-
mediate momenta the Matsubara frequency for which the
dressing functions should be evaluated in the function A.

The quantity
���������������������������������������������
q2

0 � p
2
0 � �q0 � p0�

2
q

=�4�T� is, apart from
p0 � q0 � 0 (the most relevant case), in general, not an
integer. As there is no obvious possibility, the largest
integer smaller than this expression will be taken as the
Matsubara frequency at which the expression is evaluated.

Note that in the present approach the use of the
Matsubara formalism and of the vacuum perturbation the-
ory in an asymptotically free theory does not contradict the
Narnhofer-Thirring theorem [67]. In fact, solving the set of

DSEs self-consistently is not equivalent to expanding
around a free system and the obtained propagators thus
describe thermal quasiparticles.
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FIG. 14. Numerical results from the Dyson-Schwinger equa-
tions at two temperatures in units of �QCD for the soft mode
p0 � 0 and for the first hard mode p0 � 2�T (4 and 5 modes
have been calculated explicitly in the high- and low-temperature
cases, respectively). We show in the top, middle, and bottom
panels the dressing functions of the ghost, of the 3d-transverse
gluon, and of the 3d-longitudinal gluon, respectively. The differ-
ent ultraviolet behavior for different temperatures is due to the
temperature-dependent choice of the renormalization conditions.
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2. Numerical solution

A full numerical solution of the DSEs (for an explicit
form of the equations see [33]) and the present vertex
construction can be performed using the method described
in [68]. Let us note that, in order to improve the speed of
the algorithm, it is useful to let the damping constants,
introduced in Ref. [68], decrease with the iteration number,
starting from a very large value. In practice, however, only
a (small) finite set of the Matsubara frequencies can be
treated independently, due to limitations in computing
power. For the Matsubara frequencies not determined ex-
plicitly we use the perturbative behavior reported in
Eqs. (D6) and (D7). Thus, at sufficiently large momenta,
perturbation theory becomes dominant and the O�4� in-
variance is restored. We also approximate the summation
as an integration, starting from a given frequency (larger
than the largest one determined independently). This inte-
gration extends to negative and positive infinity, respec-
tively, and can be treated using a normal Gauss-Legendre
integration.

Results for two different temperatures are shown in
Fig. 14 for the SU�3� case, with � � 1 and � � 3 (i.e. 	 �
�1=2) [13]. These results are qualitatively similar to our
findings using lattice calculations (see Sec. III) and to
results reported in Refs. [31]. A further interesting obser-
vation is the temperature dependence of the IR coefficients,

e.g. the one of the ghost propagator (aG) increases with
decreasing temperature.

Note that the temperatures considered here are quite
large. While there is no problem in going to arbitrarily
large temperatures and obtaining the infinite-temperature
limit explicitly, going to smaller temperatures is limited by
two technical problems. One is the sheer computing power
and the necessity to include more Matsubara frequencies.
The other one is a truncation-induced problem. Indeed, the
midmomentum behavior of the three-gluon vertex desta-
bilizes the system, as the only possible solution would have
a sign change in the gluon propagator, which is not allowed
due to Eqs. (5) and (6). In order to reduce this problem, the
numerical calculations have been done using an interpola-
tion between the perturbative and the IR behavior, instead
of considering the full dependence on the dressing func-
tions. Such a change does not induce an error larger than
the one already present due to the truncation scheme. On
the other hand, this artifact can only be cured by an
adequately chosen effective vertex dressing with a stronger
midmomentum suppression. This is actually what is ex-
pected from recent lattice calculations [36,37,66]. The
same problem appears when considering � � 3. Thus,
these results should be taken to be a proof-of-principle
that this system indeed has solutions of the described
type, rather than a quantitative investigation.
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