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We point out a general problem with the procedures commonly used to obtain improved actions from
Monte Carlo Renormalization Group (MCRG) decimated configurations. Straightforward measurement of
the couplings from the decimated configurations, by one of the known methods, can result into actions that
do not correctly reproduce the physics on the undecimated lattice. This is because the decimated
configurations are generally not representative of the equilibrium configurations of the assumed form
of the effective action at the measured couplings. Curing this involves fine-tuning of the chosen MCRG
decimation procedure, which is also dependent on the form assumed for the effective action. We illustrate
this in decimation studies of the SU�2� lattice gauge theory using Swendsen and ‘‘double smeared
blocking’’ decimation procedures. A single-plaquette improved action involving five group representa-
tions and nearly free of this pathology is given.
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I. INTRODUCTION

The construction of ‘‘improved actions’’ which reduce
discretization errors and allow computation on coarser
lattices has been a long-standing area of interest among
lattice field theory workers. Ideally, one searches for the
‘‘perfect action’’ ([1] and references within), for which,
under successive blocking transformations, the flow is
along the Wilsonian ‘‘renormalized trajectory,’’ and lattice
artifacts disappear. Explicit construction, however, has
proved rather cumbersome.

A more modest but more readily implementable ap-
proach is based on the Monte Carlo renormalization group
(MCRG) which considers block spinning transformations
on configurations obtained by MC simulations. The basic
assumption here is that the block-spinned configurations
are distributed according to the Boltzmann weight of some
effective action that resulted from the blocking to the
coarser lattice. One, however, does not know at the outset
what this block effective action is. Now, under RG evolu-
tion any starting action generally develops a variety of
additional couplings. An adequate model of the resulting
effective action must, therefore, include a choice of several
such couplings. By practical necessity, any ansatz for such
a model is restricted to some subclass of possible interac-
tions. In the past effective models have been studied with
actions consisting of one or more loops beyond the single
plaquette in the fundamental representation [2], or a mixed
fundamental-adjoint single-plaquette action [3,4]. After a
block spinning is performed starting from a simple (e.g.
Wilson) action, one needs to measure the set of couplings
retained in one’s model of the effective action. This may be
achieved by the use of demon [5] or Schwinger-Dyson
methods [6].

There is a variety of issues that come up in the actual
implementation of such a program. Any numerical deci-

mation procedure entails some mutilation and possible loss
of information encoded in the original undecimated con-
figurations. The first thing to be checked then is that the
adopted decimation prescription correctly reproduces
physics at least at intermediate and long-distance scales.

Assuming this is the case, some effective action must
next be assumed. It should be noted that the issue of the
choice of an effective action model is not divorced from the
choice of the decimation procedure. Indeed, in any exact
RG transformation, the particular specification, in terms of
the original variables, of the blocking procedure and block
variables will affect the form of the action which results
after integration over the original variables. Thus different
decimation procedures, or even different regimes of the
parameters entering the specification of one particular
decimation procedure, may be fitted better by different
effective action models.

Having adopted some class of effective actions, errors
due to the truncation of the phase space inherent in any
such choice may, of course, be significant, and prevent the
model from adequately approaching the renormalized tra-
jectory [7]. This is something that one can in principle
check by measurement of appropriate observables probing
the scale regime(s) of interest, and may result in the need
for the addition of further effective couplings.

There is, however, a more subtle pitfall lurking in a
straightforward application of such methods. A straightfor-
ward ‘‘measurement’’ of the effective action couplings
from the decimated configurations, by any one of the
available methods, can actually lead to quite erroneous
results. This is because the decimated configurations will
generally not be representative of the equilibrium configu-
rations of the effective action at the measured couplings.
As a result simulations on the coarser lattice with the
effective action at these values of the couplings will not,
in general, correctly reproduce the physics encoded in the
decimated configurations obtained from the original the-
ory. As we will see in this paper, this problem can be
related to the question of the self-consistent application
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of the MCRG method, and not merely to truncation effects
[8]. As far as we know, this does not appear to have been
realized in previous MCRG gauge theory studies. In this
paper we find that this problem is actually generally
present and has to be dealt with. We use the demon method
which provides a clear demonstration of the problem as it
allows comparison between the original decimated and
microcanonically evolved decimated configurations in re-
lation to equilibrium configurations of the assumed effec-
tive action.

Specifically, we explore these issues in numerical deci-
mations in SU�2� lattice gauge theory (LGT). A prelimi-
nary report on some of our findings was previously given in
[9]. The present paper is organized as follows. In Sec. II we
introduce different decimation schemes, as well as the
numerical methods we use to implement them. We check
that the decimation procedures correctly reproduce long-
distance physics. We then adopt a single-plaquette effec-
tive action which includes several (typically five to eight)
successive group representations. There are special moti-
vations for such actions originating in exact analytical
results. In Sec. III we present the results of our numerical
study. We examine the relation between the configurations
obtained by decimation from the original action and the
thermalized configurations of the effective action. We ex-
plore how this affects the determination of the effective
couplings and the tuning of the free parameters (such as the
relative weight of staples) entering in the specification of
the decimation scheme. We then examine how physics is
reproduced by measuring observables such as Wilson
loops of various sizes. The behavior under repeated deci-
mation is also examined. In Sec. IV we extract from our
results our improved action. Our conclusions and outlook
are summarized in Sec. V.

II. DECIMATION PROCEDURES

In our study we choose to start with the standard Wilson
action with coupling � on the original undecimated lattice.
Throughout this paper we use blocking a! ba with scale
factor b � 2 in all lattice directions. We employ two well-
known numerical blocking procedures. In terms of the
usual lattice gauge field bond variables U��n�, these are:

(i) Swendsen decimation [10]
 

Q��n� �U��n�U��n� �̂� � c
X
���

U��n�U��n� �̂�

�U��n� �̂� �̂�U���n� �̂� 2�̂�; (1)

(ii) Double smeared blocking (DSB) [11]
 

U��n� � �1� 6c�U��n� � c
X
���

U��n�U��n� �̂�

�Uy� �n� �̂� � 2 times;

Q��n� � U��n�U��n� �̂�: (2)

Here c is a parameter which controls the relative weight of
staples [12]. For Swendsen decimation the values c � 0:5
and 1 [2,10], whereas for double smeared blocking the
classical limit value c � 0:077 [13] have previously been
used. Fixing the parameter c on a rational rather than ad
hoc basis will be one of our concerns below.

As a typical check on how such decimations preserve the
information in the original undecimated configurations, at
least at long distances, we look at the quark potential. In
order to measure Polyakov loop correlations over large
distances fairly efficiently, we used configurations in the
confined phase at a relatively high temperature, i.e. 323 �
12 lattice at � � 2:5. The original lattice potential was
computed with high accuracy (20 independent runs each
consisting of 300 measurements) using the Lüscher-Weisz
procedure [14], while the decimated potentials were com-
puted in the straightforward ‘‘naive’’ way, which affects
their accuracy, but suffices for a check (from 80 to 160
independent runs each of 3000 measurements). The result
of the comparison for Swendsen decimation is given in
Table I, with average goodness of fit Q� 0:6.

One can note that for a wide range of c starting from
value �0:2 all the decimations produce correct values of
string tension �. The Coulomb term coefficient �, how-
ever, which is representative of short-distance physics,
does show distortion due to the decimation procedure.
Such short distance distortions are typical of numerical
decimation procedures. One is interested in extracting an
effective action that is good at intermediate and long
scales.

After blocking, we need to assume some model of the
effective action. We take a single-plaquette action

 S �
XNr
j�1=2

�j

�
1�

1

dj
�j�Up�

�
; (3)

truncated at some high representation Nr as our general
form of the effective action. (As usual, in (3) Up denotes
the product of the bond variables along the boundary of the
plaquette p.)

TABLE I. String tension � and Coulomb term coefficient �
computed on the original and decimated lattices. Swendsen
decimation, � � 2:5.

c � �

Orig. 0.308(4) 0.0313(2)
0.1 0.67(13) 0.020(4)
0.12 0.71(12) 0.019(4)
0.2 0.33(7) 0.031(2)
0.26 0.39(4) 0.029(1)
0.3 0.39(2) 0.0292(7)
0.5 0.36(2) 0.0301(9)
1.0 0.33(2) 0.0314(6)
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The choice (3) is motivated by some exact analytical
results [15]. There are decimation transformations of the
‘‘potential moving’’ type characterized by one or more free
parameters which, after each blocking step, preserve a
single-plaquette action of the type (3) albeit with the full
(infinite) set of representations. By an appropriate choice
of the decimation transformation parameter(s), the parti-
tion function obtained after a blocking step can be made to
be either an upper or a lower bound on the original partition
function. It is then possible to introduce a single parameter
which, at each decimation step, interpolates between the
upper and lower bound, and hence has a value that keeps
the partition function constant, i.e. exact under each suc-
cessive decimation step. The same result can be obtained
for the ‘‘twisted’’ partition function (partition functions in
the presence of external fluxes) and some other related
long-distance quantities. This means that the action (3)
can in principle reproduce the exact partition function
and other judiciously chosen quantities under successive
blockings.

To compare the effective action model to the decimated
original theory, we need an efficient way to simulate a
gauge theory with action (3). We use a procedure due to
Hasenbusch and Necco [4]. The fundamental representa-
tion part of the action with specially tuned coupling is used
to generate trial matrices for the metropolis updating. This
procedure typically achieves 80% acceptance rate for the
metropolis algorithm at the used couplings. Alternatively
one could use a newly developed biased metropolis algo-
rithm [16]. Simple heatbath updating is used only in the
case of the action restricted to only the fundamental
representation.

To measure couplings we use the microcanonical evo-
lution method [5]. For the microcanonical updating and
demon measurements we implement an improved algo-
rithm given in [17], which amounts to keeping the demon
energy between changes of configurations. The demons
energies are restricted to [� Emax, Emax], thus preventing
demons from ‘‘running away’’ with all the energy. We take
Emax � 5. The couplings �j of the effective action can be
obtained as solutions of the equation

 hEdj i � 1=�j � Emax= tanh��jEmax	; (4)

where Edj denotes the corresponding demon energy. In
Table II we demonstrate the ability of the canonical demon
method in measuring the couplings on 84 lattice. An en-
semble of 3000 configurations with couplings listed in the

first row of the table is used. Demon is allowed 1 sweep for
reaching equilibrium, then 10 sweeps for measurements.
The measured couplings are listed on the second row of the
table and are in good agreement with the initial values.

III. DECIMATION STUDY

We fix the effective action to have 8 consecutive repre-
sentations, starting from the fundamental. For consecutive
Monte Carlo updating of the effective action we truncated
the number of couplings to the first five. A 324 lattice at
� � 2:5 is decimated once, using Swendsen type decima-
tion with various staple weights c. In Fig. 1 we show the
fundamental representation demon energy flow, starting
from c � 0:1 Swendsen decimated configurations. For
the demon energy flow measurements we typically use
from 20 to 100 replicas (identical runs with different initial
random number generator seeds). Each demon is prepared
for 100 sweeps on a configuration which is then discarded.
These demons are then used for measurements [18].

The obvious main feature in this plot is that there is a
significant demon energy change during microcanonical
evolution. The change for different replicas is always in the
same direction. There is a noticeable trend for flow stabi-
lization at �100 sweeps.

Next, taking c � 0:2, we let the demon reach equilib-
rium (> 100 sweeps) and then measure the couplings of
the effective action (3). We then simulate the effective
action at these couplings and generate thermalized con-
figurations for it. We then compare the demon evolution on
these thermalized configurations with the demon evolution
on the c � 0:2 Swendsen decimated configurations
(Fig. 2). There is now a striking difference. We see that
in the case of the thermalized configurations of the effec-
tive action there is no change in the demon energy, which
indicates a very fast demon equilibration. Whereas in the
case of the decimated configurations there is a pronounced

TABLE II. Measurements of couplings by canonical demon
method.

�1=2 �1 �3=2 �2 �5=2

In 2.2578 �0:2201 0.0898 �0:0333 0.0125
Demon 2.2580(4) �0:2206�4� 0.0903(5) �0:0336�5� 0.0127(4)
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FIG. 1 (color online). Demon fundamental representation en-
ergy flow for c � 0:1 Swendsen decimated configurations. The
average over replicas and a single demon run.
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energy change (as we also saw with the c � 0:1 Swendsen
decimated configurations). This pronounced energy
change is clearly due to configuration equilibration during
microcanonical evolution. This evolution eventually brings
the original decimated configurations towards equilibrium
configurations of the effective model.

There is an important finite size effect in play here.
Small systems disguise the equilibration process. One
needs larger lattices to reveal the demon flow effect.

The implication of this is obvious. Suppose one mea-
sures the couplings for the effective model from the deci-
mated configurations after one or a few demon sweeps (i.e.
on the configurations as obtained right after the decima-
tion). These couplings are given in the first entry of the first
column of Table III below. Suppose one generates ther-
malized configurations of the effective action at these
couplings. Then the decimated configurations are not rep-
resentative of these effective action equilibrium configura-
tions. As we saw the decimated configurations will evolve
under microcanonical evolution towards equilibration at a
set of different values for the couplings of the effective
action. But by then they no longer are the true original
decimated configurations obtained from the underlying
finer lattice.

This clearly would appear to present a potentially seri-
ous problem. It means that MC simulations using the
effective action with coupling measured on the decimated
configurations will not in general reproduce results from

measurements obtained from the decimated configura-
tions. Sufficient microcanonical evolution has to occur on
the decimated configurations in order to ‘‘project’’ them
into the equilibrium configurations of the effective model
at some (other) set of couplings. It is an interesting question
to what extent these evolved decimated configurations still
retain any useful information concerning the starting action
on the finer lattice. We come back to this point in
subsection III A below.

The obvious next question is whether one can address
this problem by fine-tuning the decimation procedure.
Ideally, one would like to have for the measurement of
couplings on the decimated configurations the same situ-
ation as that seen in the measurement of couplings on the
undecimated configurations (cf. Table II above), i.e. very
fast demon thermalization indicating that the configura-
tions are equilibrium configurations of the action for which
the couplings are being measured.

The only freedom in the specification of the decimations
(1) and (2) is the staple weight parameter c. We then vary c
and observe the demon energy flow. In Fig. 3 we exhibit the
fundamental demon energy evolution for c � 0:2; . . . ; 1:0
Swendsen decimations. We observe that there is a special
c 
 0:26 value, when right from the start there is little
demon energy change. These particular decimation con-
figurations are then very close to the equilibrium configu-
ration of the action (3). In Fig. 4 we show the fundamental
demon energy flow for DSB decimations with c �
0:050; . . . ; 0:1. Again, there is a special value in the vicinity

 

-4.57

-4.565

-4.56

-4.555

-4.55

-4.545

-4.54

-4.535

-4.53

 0  10  20  30  40  50  60  70  80  90  100

E
de

m

t

SW c=0.2
generated (SW c=0.2)

FIG. 2 (color online). Demon fundamental representation en-
ergy flow for c � 0:2 Swendsen decimated configurations and
for configurations generated with an effective action.

TABLE III. Demon-measured couplings after c � 0:2 Swendsen decimation, and the difference of various size Wilson loops
measured on decimated versus effective-action-generated configurations. Measurements performed right after the decimation
(measurement: 1 sweep) and after 100 sweeps (measurements: 20 sweeps).

sws=m �1=2; �1; �3=2; . . . �W1�1=W
dec
1�1 �W2�2=W

dec
2�2 �W3�3=W

dec
3�3

0=1 2.1391(5), �0:1628�9�, 0.0637(11), �0:0250�1�, 0.0098(15) �0:0642�1� �0:2832�5� �0:7196�9�
100=20 2.2963(4), �0:2351�5�, 0.0955(7), �0:0357�9�, 0.0131(11), �0:0050�12� �0:0045�1� �0:0296�10� �0:3912�20�
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FIG. 3 (color online). Demon fundamental representation en-
ergy flow for Swendsen decimation at various c values.
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c� 0:067 for which there is no significant flow from the
outset.

In Figs. 5 and 6 we look at the adjoint demon energy
flows for Swendsen and DSB decimations, respectively.
For Swendsen decimations we notice that now there is a
small change for c � 0:26, while no appreciable flow for
c � 0:3. For DSB decimations there appears to be no
discernible shift in the vicinity of the optimal c value.

This is the first indication that DSB decimation is better
suited for the effective action (3).

A. Observables

We next compare some medium scale physical observ-
ables measured on the decimated configurations (right after
decimation) and on configurations obtained from the ef-
fective action as described below.

First, for c � 0:2 Swendsen decimation, we take the
effective action with couplings obtained by demon mea-
surements immediately after the decimation. We then com-

puteN � N Wilson loops measured in two ways: (a) on the
decimated configuration immediately after the decimation,
denoted Wdec

N�N; and (b) on configurations generated with
this effective action, denoted Wgen

N�N . The difference

 

�WN�N

Wdec
N�N

�
Wgen
N�N �W

dec
N�N

Wdec
N�N

(5)

is displayed in the first row of Table III. The second row
displays this difference when the effective action is now
taken with couplings obtained by demon measurements
after 100 sweeps, i.e. at the end of the microcanonical
evolution shown in Fig. 2.

The table nicely illustrates the discussion above. One
sees that measurements performed with the effective action
having couplings obtained from the decimated configura-
tions deviate from the values measured on the decimated
configurations themselves (first row). Furthermore, the
discrepancy grows substantially with increasing length
scale, becoming large for the intermediate scale 3� 3
loop. This is in fact the worst possible outcome—it is at
intermediate and long scales that the decimated configura-
tions preserve the information on the undecimated lattice.
But it is not unexpected since the decimated configurations
are not equilibrium configurations of the effective action.
There is noticeable improvement, though still not near
agreement, when couplings are obtained from microca-
nonically evolved decimated configurations, which are
then equilibrium configurations of the resulting effective
action (second row). This seems to imply that the micro-
canonically evolved decimated configurations, at least for
these observables, retain some of information encoded in
the original decimated configurations.

We next compute the difference (5) for a range of c
values. In these computations we use 30 independent runs
of 30 measurements each for the �measurements, and 20–
30 independent runs each of 400 measurements for the
effective action simulations. The effective action couplings
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FIG. 6 (color online). Demon adjoint representation energy
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are obtained after 100 demon sweeps when thermalization
is reached (cf. Figs. 1 and 2) [19]. The results for Swendsen
decimations and for DSB are presented in Table IV and
Table V, respectively.

Clearly, the c values that give the best results, giving a
difference (5) that goes to zero at intermediate size Wilson
loops, are precisely those in the vicinity of the values that
produce decimated configurations which are closest to
equilibrium configurations of the effective action. These
are around c� 0:26 for Swendsen decimations. For DSB
decimations the optimal value is between c > 0:065 and
c < 0:067. This then provides a method of fixing c in (1)
and (2). It is interesting to note, in particular, that the
classical c value of DSB produces results which are inca-
pable of reproducing the physics at these scales correctly.

B. Other �’s

So far we have been working at � � 2:5 (Wilson action)
on the undecimated lattice. In Table VI we list the optimal
c values that result in no demon energy flow also for some
other � values. As expected, the optimal value depends on
�.

Determination of one optimal c appears somewhat less
sharp for Swendsen decimations than for DSB decima-
tions. The latter appear better behaved and exhibit more
consistency between higher representation demon energy
flow and the fundamental energy. Overall, DSB is the
better suited decimation procedure for the effective action
(3).

C. Double decimation

In Figs. 7 and 8 we show the fundamental representation
demon energy flow after two successive Swendsen and
DSB decimations, respectively, at various c values at � �
2:5. As seen in these plots, the general trend of demon

TABLE IV. Swendsen decimations. Demon-measured couplings at different c values, and the difference of various size Wilson loops
measured on decimated versus effective-action-generated configurations. Thermalization: 100 sweeps, measurements: 20 sweeps.

c �1=2; �1; �3=2; . . . �W2�2=W
dec
2�2 �W3�3=W

dec
3�3

0.0 1.1340(2), �0:1974�2�, 0.0531(3), �0:0162�4�, 0.0054(3), �0:0020�4� �0:8141�4� �0:9876�39�
0.1 1.9912(3), �0:3085�4�, 0.0990(4), �0:0362�6�, 0.0139(7), �0:0045�8� �0:4160�6� �0:8899�11�
0.2 2.2963(4), �0:2351�5�, 0.0955(7), �0:0357�9�, 0.0131(11), �0:0050�12� �0:0296�10� �0:3912�20�
0.26 2.3351(7), �0:1449�10�, 0.0766(12), �0:0279�13�, 0.0084(17) 0.1502(11) 0.0926(29)
0.3 2.3447(8), �0:0869�12�, 0.0628(14), �0:0236�15�, 0.0075(20) 0.2545(12) 0.4559(41)
0.4 2.3555(9), 0.0229(14), 0.0301(18), �0:0101�22�, 0.0016(22) 0.4191(14) 1.1763(64)
0.5 2.3618(9), 0.0866(13), 0.0070(17), �0:0027�20�, �0:0013�22� 0.4780(14) 1.5029(69)
1.0 2.4033(9), 0.1150(14), �0:0274�18�, 0.0071(22), �0:0041�29� 0.4456(14) 1.4845(75)

TABLE V. Same as Table IV for DSB decimations.

c �1=2; �1; �3=2; . . . �W2�2=W
dec
2�2 �W3�3=W

dec
3�3 �W4�4=W

dec
4�4

0.050 2.3536(5), �0:4208�9� 0.1430(11), �0:0558�13� 0.0238(13), �0:0094�15� �0:1817�6� �0:637�1�
0.060 2.4660(7), �0:3635�11� 0.1242(17), �0:0475�21� 0.0195(25), �0:0070�24� 0.0105(7) �0:239�2�
0.063 2.4891(7), �0:3331�11� 0.1140(14), �0:0436�19� 0.0180(25), �0:0070�25� 0.0800(9) �0:049�3�
0.065 2.5023(7), �0:3098�12� 0.1057(16), �0:0397�16� 0.0145(14), �0:0029�15� 0.1305(9) 0.106(3) �0:034�14�
0.067 2.5125(7), �0:2832�16� 0.0964(25), �0:0367�29� 0.0139(29) 0.1774(9) 0.266(3) 0.290(19)
0.077 2.5463(11), �0:1167�17�, 0.0320(23), �0:0055�28� 0.4149(14) 1.270(7)
0.1 2.4762(20), 0.4191(37) �0:1231�40�, 0.0504(39) �0:0191�53�, 0.0063(54) 0.6558(9) 2.627(6)

TABLE VI. The c parameter for no demon energy flow in
fundamental (1=2) and adjoint (1) representations for Swendsen
(left part) and DSB (right part) decimations at different �’s.

� 1=2 1 1=2 1

2.5 0.26 0.3 0.067 0.068
2.8 0.21 0.22 0.059 0.060
3.0 0.19 0.20 0.056 0.057
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FIG. 7 (color online). Fundamental representation demon en-
ergy flow for double Swendsen decimation at various c values.
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energy flows is the same as after one decimation step. The
optimal values for the staple weight c, however, differ from
those for a single decimation step. For double decimation
at � � 2:5 we have optimal c � 0:39 for Swendsen dec-
imations; and c � 0:078 for DSB decimations. At � �
2:8, the optimal value for DSB decimations is c � 0:066.

IV. IMPROVED ACTION

In this section we extract our improved action from our
data. We have chosen DSB over Swendsen type decima-
tion, since, as remarked above, it produces better overall
results for the action (3).

We look at 8 couplings in the improved action, and
report on the first 5 or 6 of them. The remaining couplings
are normally within 1–2 sigma away from zero and thus
are naturally truncated. Typically we perform 30 indepen-

dent runs each of 100–400 measurements. We present the
result in Table VII. At each successive decimation step,
enumerated by n, we choose the value for the staple weight
which results in the minimal fundamental demon energy
flow (cf. fourth column of Table VI for the n � 1 step).
After each decimation we construct the effective action
from measurements on the decimated lattice. This effective
action is then put on a lattice expanded back to the lattice
volume before the decimation—this resizing is done at
every step with the exception of the first step: we go from
324 to 164, but subsequently from 164 to 84 and back to 164

lattice, and so on. The effective action on the decimated-
expanded lattice is then used to obtain new configurations
for the next consecutive decimation step.

An alternative procedure is to keep decimating starting
from the original decimated configurations. This proce-

TABLE VII. Flow of couplings of the DSB decimated (improved) action. � is the coupling of
the original Wilson action on the original (undecimated) lattice. n enumerates successive
decimations. The first decimation is from 32 to 16 lattice, then all consecutive decimations
are on 16. � means there is in fact virtually no discernible demon flow in reasonable range of c
around the indicated value.

n c �1=2 �1 �3=2 �2 �5=2

� � 2:5
1 0.067 2.5125(7) �0:2832�16� 0.0964(25) �0:0367�29� 0.0139(29)
2 0.078 2.0110(8) �0:1351�7� 0.0385(10) �0:0104�13� 0.0026(13)
3 0.078 � 0.8869(4) �0:0390�4� 0.0067(4) �0:0007�5� 0.0008(10)
4 0.078 � 0.1513(2) 0.0002(4) �0:0003�5� �0:0004�7� 0.0009(7)

� � 2:8
1 0.059 2.9841(23) �0:4649�38� 0.1895(52) �0:0898�62� 0.0432(65)
2 0.066 2.6658(31) �0:3943�49� 0.1446(61) �0:0585�81� 0.0280(96)
3 0.075 2.1773(16) �0:1959�16� 0.0555(14) �0:0164�16� 0.0057(23)

� � 3:0
1 0.056 3.2831(37) �0:5611�53� 0.2397(74) �0:1193�93� 0.05842(96)
2 0.063 2.9920(54) �0:4824�97� 0.181(14) �0:067�18� 0.020(20)
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FIG. 8 (color online). Fundamental representation demon en-
ergy flow for double DSB decimation at various c values.
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dure, however, results in ever decreasing lattice volume,
which leads to typical problems pertaining to small latti-
ces. In the present context, these are not only strong finite
size effects, but, more importantly, also the problem of
automatic fast lattice equilibration. The latter completely
masks the problem of demon energy flow and
c-dependence, which would have been seen for the same
action on a bigger lattice, and hence the need for decima-
tion tuning pointed out in this paper.

In Fig. 9 we plot the RG flow of the first two, i.e.
fundamental and adjoint, couplings from Table VII.

As a matter of practical expediency, one may want to
consider the effective action truncated to just these two
couplings at the outset. In Table VIII we compare the
results of measurements keeping just the two couplings
to those keeping all five (eight). Comparison of the two
rows of this table indicates the size of systematic error
induced by this truncation of the effective action. The
values of the two couplings for different starting �’s is
given in Table IX to be compared with those in Table VII
(n � 1).

V. SUMMARY AND OUTLOOK

We studied MCRG decimations in SU�2� LGT employ-
ing either DSB or Swendsen decimations followed by a
search for an effective action in the space of multirepre-
sentation single-plaquette actions with up to eight cou-
plings using the demon method. Examination of the
demon microcanonical evolution on the decimated con-
figurations reveals the following general feature. Given the
couplings of the effective action obtained from the deci-
mated configurations, consider the equilibrium configura-
tions of the effective action at these couplings. Then the
decimated configurations are not, in general, representative
of these equilibrium configurations. This means that simu-
lations with the effective action at these couplings will not
reproduce measurements of observables obtained from the

decimated configurations as demonstrated in Sec. III
above.

If sufficient microcanonical evolution of the decimated
configurations is allowed, they will eventually result into
configurations that are indeed equilibrium configurations
of the effective action, that is the effective action at cou-
plings obtained from these evolved decimated configura-
tions. But the evolved decimated configurations are no
longer the original decimated configurations, and cannot
be relied upon to still adequately encode information from
the original undecimated lattice.

Solving this problem means having decimated configu-
rations that are already equilibrium configurations of the
adopted form of the effective action at the couplings ob-
tained from the decimated configurations. This in general
requires fine-tuning of the decimation and/or the effective
action.

In the case of the type of decimations and effective
action adopted in this study, we saw that this fine-tuning
could be achieved by fixing the value of the staple weight
parameter c in the specification of the decimation proce-
dure, and retaining a sufficient number of couplings. Also,
this tuning works somewhat better for DSB decimations
than Swendsen decimations. The result is the improved
action presented in Table VII and Fig. 9. Further improve-
ments and refinements are presumably possible if more
elaborate decimations involving more parameters are
employed.

Clearly, the general state of affairs described here holds
independently of the choice of decimation procedure and/
or effective action. In this study we used the multirepre-
sentation single-plaquette action. Investigations with alter-
native actions, such as a multiloop fundamental
representation action, reveal the same picture as expected
[20].

The use of the demon method for measuring couplings is
also immaterial. The alternative Schwinger-Dyson (SD)
method could be used. With this latter method, however,
one does not have the option of microcanonically evolving
the decimated configurations towards equilibration vis-à-
vis the effective action, which is very informative and a
nice advantage of the demon method. With SD a necessary
test is to compare between: (a) the expectations, computed
from the decimated configurations, of the operators occur-
ring in the SD equation, which are then used in that
equation to obtain the couplings; and (b) the same expec-
tations computed with effective action equilibrium con-
figurations generated at these couplings [21]. We hope to

TABLE VIII. Comparison of measurement of 5(8) couplings with only first 2 couplings effective action. DSB decimation at � �
2:5. The first row is taken from Table V above.

c �1=2; �1; �3=2; . . . �W1�1=W
dec
1�1 �W2�2=W

dec
2�2 �W3�3=W

dec
3�3

0.067 2.5125(7), �0:2832�16� 0.0964(25), �0:0367�29� 0.0139(29) �0:0018�1� 0.1774(9) 0.266(3)
0.067 2.4574(5), �0:1824�4� �0:0012�1� 0.180(1) 0.273(4)

TABLE IX. Couplings of the decimated (improved) action
retaining only first 2 representations for DSB decimation at
different �’s.

� �1=2 �1

2.5 2.4574(5) �0:1824�4�
2.8 2.8366(6) �0:2428�4�
3.0 3.0802(9) �0:2693�6�
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report results employing these alternative choices
elsewhere.

Extension of our study to SU�3� to obtain the analog of
the SU�2� effective action arrived at here would also be
worthwhile.
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