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Dominant decay of a SM-like Higgs boson into particles beyond those contained in the minimal
supersymmetric standard model has been identified as a natural scenario to avoid fine-tuning in
electroweak symmetry breaking while satisfying all LEP limits. In the simplest of such an extension,
the next-to-minimal supersymmetric model, the lightest CP-even Higgs boson can decay into two
pseudoscalars. In the scenario with the least fine-tuning the lightest CP-even Higgs boson has a mass
of order 100 GeV. In order to escape LEP limits it must decay to a pair of the lightest CP-odd Higgs
bosons with Br�h! aa�> :7 and ma < 2mb (so that a! ���� or light quarks and gluons). The mass of
the lightest CP-odd Higgs boson is controlled by the soft-trilinear couplings, A��mZ� and A��mZ�. We
identify the region of parameter space where this situation occurs and discuss how natural this scenario is.
It turns out that in order to achieve ma < 2mb with A��mZ�, A��mZ� of order the typical radiative
corrections, the required tuning of trilinear couplings needs not be larger than 5%–10%. Further, the
necessity for this tuning can be eliminated in specific SUSY-breaking scenarios. Quite interestingly,
Br�h! aa� is typically above 70% in this region of parameter space and thus an appropriately large value
requires no additional tuning.
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I. INTRODUCTION

The minimal supersymmetric standard model (MSSM)
is a widely studied possibility for physics beyond the
standard model (SM). Its content in the matter and gauge
sectors is fixed by all known particles and assumed super-
partners. However, the choice of a two-doublet Higgs
sector is made purely on the basis of minimality argu-
ments. It is exactly the Higgs sector, namely, the non-
observation of the Higgs boson, that casts a shadow on
the whole MSSM. It is becoming obvious that if the MSSM
is the correct description of nature then the supersymmetric
(SUSY) spectrum has to be quite unusual: heavy enough
that sparticles escape direct detection, but not so heavy that
electroweak symmetry breaking (EWSB) becomes unnatu-
ral. And, if the sparticles are not particularly heavy, the
MSSM parameters must be special enough that the Higgs
boson mass is pushed (through radiative corrections) above
the experimental bound.1 Another possibility, which does
not require any special assumptions about the SUSY spec-
trum and parameters, is to abandon the minimal Higgs
sector, for which there was never any deep reason anyway
and which gives rise to the famous� problem. In this case,
the expectations for Higgs phenomenology are modified

and the tension from not having observed the Higgs boson
at LEP can be eliminated [3].

A particularly appealing extension of the SM or MSSM
is the introduction of a completely new sector of particles
which are singlets under the SM gauge symmetry. As such,
this extra (E) sector would not spoil any of the virtues of
the MSSM, including the possibility of gauge coupling
unification and matter particles fitting into complete grand
unified theory (GUT) multiplets. In addition, E-sector
particles would have easily escaped direct detection. Of
course, if this E-sector is completely decoupled from the
SM then it plays no role in particle physics phenomenology
at accelerators. However, it is possible that this sector
couples to the MSSM through the Higgs fields. For ex-
ample, the superpotential can contain a term in which the
two Higgs doublets are combined in a SM-singlet form.
Without additional Higgs fields, the coefficient of this form
must have dimensions of mass, and the resulting super-
potential component is the so-called � term. In contrast,
the E-sector can couple to this SM-singlet form in many
ways, including at the renormalizable (dimensionless cou-
pling) level. Such couplings would have a negligible effect
on the phenomenology involving SM matter fields,
whereas they can dramatically alter Higgs physics. For
example, they would allow the lightest CP-even Higgs
boson h to decay into two of these E-fields if the E-fields
are light enough. In that case, the usual Higgs decay mode,
h! b �b, might no longer be dominant and, since the hb �b
coupling is small, Br�h! b �b� can be suppressed by a large
factor. The strategy for Higgs discovery would then depend
on the way the E-fields appearing in the decays of the h
themselves decay. They might decay predominantly into
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1Scenarios that lead to such a special SUSY spectrum were

recently found; see, for example, mixed anomaly-modulus me-
diation [1] or gauge mediation with gauge messengers [2]. Both
scenarios generate large mixing in the stop sector which max-
imizes the Higgs mass, allowing all experimental limits to be
satisfied with a fairly light SUSY spectrum.
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other stable E-fields, in which case the MSSM-like h
decays mainly invisibly. If such decays are kinematically
impossible or suppressed, then, given that couplings be-
tween the MSSM and E-sector Higgs fields are generically
present and imply that the mass eigenstates are mixed, the
mostly E-field light Higgses will decay into b �b, ���� or
other quarks or leptons depending on the model. Although
E-particles would have small direct production cross sec-
tions and it would be difficult to detect them directly, their
presence would be manifest through the dominant Higgs
decay modes being h! 4f, where 4f symbolically means
four SM fields, e.g. b �bb �b, b �b����, ��������, 4�, and so
on.2 This would imply a very complicated Higgs phenome-
nology. Nevertheless, such a scenario is a simple conse-
quence of having an extra sector which couples to the SM
or MSSM through mixing of the Higgs sectors with one of
the extra Higgs mass eigenstates being light enough that
the SM-like Higgs can decay into a pair them.

The situation described in the previous paragraph al-
ready occurs in the simplest extension of the MSSM, the
next-to-minimal supersymmetric model (NMSSM) which
adds only one singlet chiral superfield, Ŝ. The very attrac-
tive nature of the NMSSM extension of the MSSM on
general grounds has been discussed for many years [4];
in particular, it avoids the need for the � parameter of the
MSSM superpotential term �ĤuĤd. The NMSSM particle
content differs from the MSSM by the addition of one
CP-even and one CP-odd state in the neutral Higgs sector
(assuming CP conservation), and one additional neutra-
lino. We will follow the conventions of [5]. Apart from the
usual quark and lepton Yukawa couplings, the scale invari-
ant superpotential is

 �ŜĤuĤd �
�
3
Ŝ3 (1)

depending on two dimensionless couplings �, � beyond the
MSSM. [Hatted (unhatted) capital letters denote super-
fields (scalar superfield components).] An effective �
term arises from the first term of Eq. (1) when the scalar
component of Ŝ acquires a vacuum expectation value, s �
hŜi, yielding

 �eff � �s: (2)

The trilinear soft terms associated with the superpotential
terms in Eq. (1) are

 �A�SHuHd �
�
3
A�S3: (3)

The final input parameter is

 tan� � hu=hd; (4)

where hu � hHui, hd � hHdi. The vacuum expectation
values hu, hd, and s, along with mZ, can be viewed as
determining the three SUSY-breaking masses squared for
Hu, Hd, and S (denoted m2

Hu
, m2

Hd
, and m2

S) through the
three minimization equations of the scalar potential. Thus,
as compared to the three independent parameters needed in
the MSSM context (often chosen as �, tan�, and MA), the
Higgs sector of the NMSSM is described by the six pa-
rameters

 �; �; A�; A�; tan�; �eff : (5)

(We employ a convention in which all parameters are
evaluated at scale mZ unless otherwise stated.) We will
choose sign conventions for the fields such that � and tan�
are positive, while �, A�, A�, and�eff should be allowed to
have either sign. In addition, values must be input for the
gaugino masses (M1;2;3) and for the soft terms related to the
(third generation) squarks and sleptons (m2

Q, m2
U, m2

D, m2
L,

m2
E, At, Ab, and A�) that contribute to the radiative correc-

tions in the Higgs sector and to the Higgs decay widths. For
moderate tan�, the soft parameters which play the most
prominent role are m2

Q, m2
U, m2

D, and At.
Of all the possible new phenomena, the additional

Higgses in the NMSSM can lead to, perhaps the most
intriguing one is the possibility of the lightest CP-even
Higgs decaying into a pair of the two lightest CP-odd
Higgses, h1 ! a1a1, where the latter are mostly singlets
[3,6–9]. Not only would h1 ! a1a1 decays complicate
Higgs searches, but also it is found that precisely this
scenario can essentially eliminate the fine-tuning of
EWSB in the NMSSM for mh1

� 100 GeV [3,7,8]. If
Br�h1 ! a1a1�> 0:7 and ma1

< 2mb, the usual (LEP)
limit on the Higgs boson mass does not apply and the
SUSY spectrum can be arbitrarily light, perhaps just above
the experimental bounds, i.e. certainly light enough for
natural EWSB [3,7,8].

In this paper, we identify the region of parameter space
where this situation occurs and discuss how natural this
scenario is. The mass of the lightest CP-odd Higgs boson is
controlled by the soft-trilinear couplings A� and A� and
vanishes in the R-symmetry limit, A�, A� ! 0. However,
both A� and A� receive radiative corrections from gaugino
masses and so arbitrarily small values of trilinear couplings
would require cancellation between the bare values and the
radiative corrections. It turns out that in order to achieve
ma1

< 2mb with A�, A� of order the typical radiative
corrections, a tuning of trilinear couplings at the level of
5%–10% might be required, but that even less fine-tuning
is possible in the context of various types of models. Quite
interestingly, Br�h1 ! a1a1�> 70% is automatic in this
region of parameter space, implying no need for additional

2The situation can be even more complicated if the E-field
decays into other E-fields before the latter finally decay to SM
fields. In such a case, the SM-like Higgs would effectively decay
into 8f. Even more complicated variations can also be
constructed.
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tuning in order to achieve Br�h1 ! b �b� small enough to
escape LEP limits.3

It is important to note that to a large extent the tuning in
A� and A� required for Br�h1 ! a1a1�> 0:7 and ma1

<
2mb can be separated from fine-tuning/naturalness for
proper EWSB. The value of mZ, as obtained from the
renormalization group equations after evolving from the
GUT-scale, MU, down to mZ, is primarily sensitive to
M3�MU�, m2

Hu
�MU�, m2

Hd
�MU�, m2

S�MU�, m2
Q�MU�,

m2
U�MU�, m2

D�MU�, and At�MU� [and Ab�MU� if tan� is
large]. In some cases, M2�MU� can contribute significantly
to the standard measure of EWSB fine-tuning with respect
to the GUT-scale parameters. In contrast, M1�MU�,
A��MU�, and A��MU� have to take very large values in
order to contribute significantly to fine-tuning. The scenar-
ios that have small fine-tuning that we focus on are ones in
which these parameters are small enough that they do not
affect the measure of the fine-tuning associated with
EWSB. In a companion paper [8], we discuss EWSB
fine-tuning in detail, expanding upon the earlier discus-
sions in Refs. [3,7].

Recently various scenarios, similar in spirit, which im-
prove on the naturalness of EWSB by modifying Higgs
decays or which, in general, suggest the possibility of an
extra sector near the EW scale have been discussed; see
e.g. [11–14]. Phenomenological consequences and pos-
sible collider signatures for the NMSSM and, more spe-
cifically, for some of these scenarios have also been
discussed in Refs. [15–18].

The paper is organized as follows. In the next section,
we discuss the NMSSM close to the R-symmetry limit.
Numerical results are presented in Sec. III and we conclude
in Sec. IV.

II. NMSSM CLOSE TO THE R-SYMMETRY LIMIT

In the NMSSM, one of the CP-odd Higgses is massless
in the Peccei-Quinn symmetry limit, �! 0, or in the
R-symmetry limit, A�, A� ! 0 [9]. We focus here on the
second case because it was identified as the easiest way to
achieve EWSB without large fine-tuning in soft SUSY-
breaking terms [3]. This scenario requires that the lightest
CP-even Higgs boson, h1, decays to a pair of the lightest
CP-odd Higgs bosons with Br�h1 ! a1a1� large enough

that the h1 ! b �b signal is highly reduced (compared to the
SM signal). Furthermore, it was found that this scenario
with reduced Br�h1 ! b �b� is consistent with the observed
excess of events atmh ’ 100 GeV in Zh production at LEP
[7].

The masslessness of a1 in the limit A�, A� ! 0 can be
understood as a consequence of a global U�1�R symmetry
of the superpotential under which the charge of S is half of
the charge of HuHd. In the limit A�, A� ! 0 it is also a
symmetry of the scalar potential. This symmetry is sponta-
neously broken by the vacuum expectation values of Hu,
Hd, and S, resulting in a Nambu-Goldstone boson in the
spectrum. Soft-trilinear couplings explicitly break U�1�R
and thus lift the mass of the a1. For small trilinear cou-
plings, the mass of the lightest CP-odd Higgs boson is
approximately given as

 m2
a1
’ 3s

�
3�A�cos2�A

2 sin2�
� �A�sin2�A

�
; (6)

where cos�A measures the doublet component of the light-
est CP-odd Higgs mass eigenstate,

 a1 � cos�AAMSSM � sin�AAS: (7)

In the limit of large tan� or jsj � v, cos�A can be ap-
proximated by

 cos�A ’
v sin2�

s
: (8)

In this limit, the a1 mass eigenstate is mostly singlet and

 m2
a1
� 3s

�
3�A�v2 sin2�

2s2 � �A�

�
: (9)

Naively, an arbitrarily small mass for the a1 is achiev-
able provided small values of A� and A� are generated by a
SUSY-breaking scenario. Indeed, there are SUSY-breaking
scenarios, e.g. gauge mediation or gaugino mediation,
which have zero soft-trilinear couplings in the leading
order. However, even if zero values of A� and A� are
generated at the SUSY-breaking scale, the corresponding
electroweak (EW) scale values will be shifted due to
radiative corrections from gaugino masses. The typical
EW scale values can be estimated from the one-loop
renormalization group equations for A� and A�,

 

dA�
dt
�

1

16�2

�
6At�

2
t � 8�2A� � 4�2A� � 6g2

2M2

�

�
6

5

�
g2

1M1

�
; (10)

 

dA�
dt
�

12

16�2 ��
2A� � �2A��; (11)

where t � log�Q=mZ�, At is the top soft-trilinear coupling
and M2 and M1 are the masses of the SU(2) and U(1)
gauginos, and we have neglected terms proportional to Ab
and A�. Starting with A� � 0 at the GUT scale, we find that

3Some aspects of EWSB and the possibility of having a light
CP-odd Higgs boson in the NMSSM in the R-symmetry limit
were also recently discussed in Ref. [10]. Results and conclu-
sions presented in Ref. [10] are based on studying a region of
parameter space very near the R-symmetry limit with soft-
trilinear couplings much below the typical size of radiative
corrections. The conclusions of this reference do not necessarily
apply to the scenario discussed above that assumes soft-trilinear
couplings A� and A� of order the typical radiative corrections
(they could, however, originate from an exact symmetry limit at
some high scale). We refer to our scenario as NMSSM close to
the R-symmetry limit.
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A��mZ� �M2 because the log�MU=mZ� coming from the
integration approximately cancels the �6g2

2�=�16�2� loop
factor. On the other hand, A� receives contributions from
gaugino masses only at the two-loop level implying that
A��mZ� is expected to be much smaller than A��mZ�.
Assuming gaugino masses of order 100 GeV, we should
naturally expect A��mZ� ’ 100 GeV and A��mZ� �
few GeV. Much smaller values would require cancella-
tions between the values of A�, A� coming from a particu-
lar SUSY-breaking scenario and the contributions from the
radiative corrections.

For sizable A��mZ�, Eq. (9) is no longer a good approxi-
mation for the mass of the lightest CP-odd Higgs. In order
to understand the numerical results presented later, we
have developed a more accurate formula. The 2	 2 mass
matrix squared for the CP-odd Higgs bosons, in the basis
�AMSSM; AS�, has the following matrix elements [5]:

 M2
11 �

2�s
sin2�

�A� � �s�; (12)

 M2
12 � �v�A� � 2�s�; (13)

 M2
22 � 2��v2 sin2�� �A�

v2 sin2�
2s

� 3�A�s: (14)

The eigenstate masses are

 m2
a1
a2

�
1

2

M2

11 �M
2
22 �

���������������������������������������������������
�M2

11 �M
2
22�

2 � 4�M2
12�

2
q

�:

(15)

The mixing angle for the diagonalization process is ob-
tained from

 sin2�A � �
2M2

12���������������������������������������������������
�M2

11 �M
2
22�

2 � 4�M2
12�

2
q ; (16)

 cos2�A � �
M2

11 �M
2
22���������������������������������������������������

�M2
11 �M

2
22�

2 � 4�M2
12�

2
q ; (17)

where we are using the convention defined in Eq. (7).
Obviously, the value of �A is only determined mod���. In
our numerical work, we employ the program NMHDECAY

[5] which adopts the convention 0  �A  �. If M2
11 is

much larger in magnitude than the other entries, then it
must be positive and the mass squared of the lightest
CP-odd Higgs boson is then given by

 m2
a1
’
M2

11M
2
22 � �M

2
12�

2

M2
11 �M

2
22

: (18)

For typical values of trilinear couplings, jA�j � jA�j �
v� jsj, and tan� * few we find:

 m2
a1
’ 3s

�
3��2A�v2

2�s
sin2� �A� � �s� � 3�A�s

� �A�

�
; (19)

which reduces to Eq. (9) if we neglect A� and A� compared
to s. Similarly, the mixing angle is determined by

 cos2�A � 2cos2�A � 1 ’
2�M2

12�
2

�M2
11 �M

2
22�

2 � 1; (20)

 sin2�A � 2 sin�A cos�A ’ �
2M2

12

M2
11 �M

2
22

; (21)

from which we obtain (using the conventions defined ear-
lier) sin�A � 1 and the doublet component of a1 is given by

 cos�A ’ �
M2

12

M2
11 �M

2
22

’ �
�v�A� � 2�s� sin2�

2�s�A� � �s� � 3�A�s sin2�
: (22)

This reduces to Eq. (8) for very small A� and A�.
Both Eqs. (9) and (19) indicate that sizable A� could

give a large contribution to the mass of the lightest CP-odd
Higgs. However, this term is highly suppressed if the light-
est CP-odd Higgs is mostly singlet. In this case, both terms
in Eq. (9) or Eq. (19) are comparable and then it depends
on their relative sign as to whether they contribute con-
structively or destructively. One measure of the tuning in
A��mZ� and A��mZ� necessary to achieve ma1

< 2mb is

 Fmax � maxfjFA� j; jFA� jg; (23)

where

 FA� �
A��mZ�

m2
a1

dm2
a1

dA��mZ�
; FA� �

A��mZ�

m2
a1

dm2
a1

dA��mZ�

(24)

are evaluated for given choices of A��mZ� and A��mZ� that
yield a given ma1

. This definition, which reflects the fact
that ma1

is determined by these parameters for fixed �, �,
�eff , tan�, will prove useful below for discussing the
sensitivity of ma1

to GUT-scale parameters. We argue
below that Fmax is typically an upper bound on the magni-
tude of fine-tuning with respect to GUT-scale parameters.
Thus, Fmax provides a useful first measure for determining
a ‘‘preferred’’ region of parameter space where a small
mass for the lightest CP-odd Higgs boson is achieved with
the least tension. However, we will also find that in large
classes of models Fmax greatly overestimates the fine-
tuning.

The fine-tuning measure for m2
a1

relative to GUT-scale
parameters that is completely analogous to that employed
for EWSB is

 Fma1
� max

p
fp; with fp �

d logm2
a1

d logp
; (25)

where p is any GUT-scale parameter,
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 p � Mi�i � 1; 2; 3�; m2
Hu
; m2

Hd
; m2

S; At; A�; A�;m
2
Q;m

2
U;m

2
D

(26)

(to name the most important GUT-scale parameters).
However, for our purposes we can simplify this general
computation because we are only interested in m2

a1
fine-

tuning for cases in which the EWSB fine-tuning is already
known to be small, that is cases in which

 m2
Z � 2

�
��2�mZ�s

2�mZ�

�
m2
Hd
�mZ� � tan2��mZ�m2

Hu
�mZ�

tan2��mZ� � 1

�
(27)

is insensitive to the parameters p. Small fine-tuning for m2
Z

means that v�mZ� (which sets mZ), s�mZ�, tan��mZ�,
m2
Hu
�mZ�, and m2

Hd
�mZ� are not fine-tuned with respect to

the various p listed above. The only additional parameters
upon which m2

a1
depends that could still be sensitive to the

GUT-scale parameters p when mZ is not are A��mZ� and
A��mZ�. For any of the p, we can then approximate

 fp �
p

A��mZ�
FA�

dA��mZ�

dp
�

p
A��mZ�

FA�
dA��mZ�

dp
:

(28)

To understand the implications of this formula, we need to
solve the renormalization-group (RG) equations and ex-
press A��mZ� and A��mZ� in terms of the GUT-scale values
of all the soft SUSY-breaking parameters. (Of course, we
are taking the GUT scale as an example; a similar exercise
can be done for any scale.) The solution depends on �, �
and tan�; we give only a representative example. For � �
0:2, � � �0:2, and tan� � 10 we find

 A��mZ� � �0:03A� � 0:93A� � 0:35At � 0:03M1

� 0:37M2 � 0:66M3; (29)

 A��mZ� � 0:90A� � 0:11A� � 0:02At � 0:003M1

� 0:025M2 � 0:017M3; (30)

where the parameters on the right-hand side of these equa-
tions are the GUT-scale values.

Before discussing the fine-tuning implications of
Eqs. (29) and (30), it is useful to understand a few of their
features. First, we note that while the coefficients in the
A��mZ� expansion do not change much when changing �
and �, the coefficients in the A��mZ� expansion are quite
sensitive to changes of the �, � Yukawa couplings. The
reason is that gaugino masses enter A� through the A� term
in the RG equation, see Eqs. (10) and (11), the strength of
which is controlled by �. The opposite sign of the coeffi-
cient in front of M3 in the expansion of A� as compared to
the coefficients in front ofM1 andM2 is due to the fact that
M3 enters only through At in the RG evolution, while both
M1 and M2 enter directly. Similarly, the opposite sign in

front of the gaugino masses in the A� expansion as com-
pared to the A� expansion is due to the fact that gaugino
masses enter A� through A� in the evolution. The above
expansions provide several ways to achieve A� � A� �
mZ. The easiest way is to assume that a SUSY-breaking
scenario generates negligible trilinear couplings at the
GUT scale.

We now return to a consideration of the fine-tuning
implications of Eqs. (29) and (30). If there is a p� that
dominates A��mZ� and a p� that dominantes A��mZ�, and
these are different, then

 

p�
A��mZ�

dA��mZ�

dp�
�O�1�; and

p�
A��mZ�

dA��mZ�

dp�
�O�1�;

(31)

and roughly Fma1
� Fmax. If the same p dominates both

A��mZ� and A��mZ� then Fma1
� fp � FA� � FA� . This

result also holds if the GUT-scale parameters are corre-
lated. For example, consider the case of universal gaugino
masses and zero trilinear couplings at the GUT scale, for
which A��mZ� � 0:26M1=2 and A��mZ� � 0:01M1=2.
Then,

 

M1=2

A��mZ�

dA��mZ�

dM1=2
�

M1=2

A��mZ�

dA��mZ�

dM1=2
� 1; (32)

and it is quite precisely the case that

 Fma1
� fM1=2

� FA� � FA�: (33)

As we shall see in the numerical section of this paper, FA�
and FA� are typically opposite in sign and of similar
magnitude. This can already be seen from the approximate
formula of Eq. (9) where the linearity ofm2

a1
in A��mZ� and

A��mZ� would give [neglecting the mild dependence of
s�mZ�; . . . on M1=2 for the points of interest]

 FA� � FA� � 1; (34)

and fine-tuning with respect to M1=2 would be small. The
more precise (but still approximate) result of Eq. (19) gives
somewhat larger results for FA� � FA� for some parameter
choices, but a subset of choices still gives FA� � FA� �
O�1�. Later, we will present numerical results for FA� and
FA� that confirm that they largely cancel against one an-
other for a significant fraction of parameter choices. The
result of Eq. (33) clearly applies whenever the gaugino
masses are correlated (in any way) and trilinears (at the
GUT scale) are small or correlated with the gaugino
masses. As already noted, this same result also applies
whenever a single term dominates in Eqs. (29) and (30).
Many models fall into one or the other of these categories.

Let us reemphasize that tuning in A��mZ� and A��mZ� is
completely unnecessary to achieve a light CP-odd Higgs
boson in models with specific relations among GUT-scale
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parameters. Any SUSY-breaking scenario that determines
all soft-trilinear couplings and gaugino masses from a
SUSY-breaking scale will automatically give A��mZ� �
c�MSUSY and A��mZ� � c�MSUSY, where c� and c� de-
pend (given the known values of g1 and g2) only on the
couplings �, �, and �t (equivalently, tan�, given the known
value of mW). The mass of the lightest CP-odd Higgs
boson will be given as m2

a1
� f��; �; tan��M2

SUSY and
will either be small or not. This means that, in any
SUSY-breaking scenario that is determined by a SUSY-

breaking scale only, there is no tuning of ma1
with respect

to the SUSY-breaking scale. (Algebraically,
d logm2

a1

d logM2
SUSY
� 1.)

This result holds even if there are large cancellations
among the RG contributions to A��mZ� and A��mZ�.
Whether or not a light CP odd Higgs boson is possible
simply depends on the above couplings.

Let us now turn our attention to Br�h1 ! a1a1�, a com-
pletely general expression for which is the following (ne-
glecting phase space suppression):

 

��h1 ! a1a1� �
m2
W

32�g2
2mh1

�
g2

1 � g
2
2

2
cos2� sin��� 	�cos2�A cos�S � 2�2

�
sin��� 	�sin2�A cos�S �

s
v

cos2�A sin�S

� �cos	sin3�� sin	cos3��cos2�A cos�S

�
� 2��

�
cos��� 	�sin2�A cos�S � sin2�A sin�S �

s
v

sin��

� 	� sin2�A cos�S �
s
v

sin2�cos2�A sin�S

�
�
�A�
v
�sin��� 	� sin2�A cos�S � sin2�cos2�A sin�S�

�

�
4�2s
v
�

2�A�
v

�
sin2�A sin�S

�
2
: (35)

This is to be contrasted with the dominant SM decay
channel, h1 ! b �b, the width for which is (neglecting phase
space suppression)

 ��h1 ! b �b� �
3g2

2

32�m2
W

�
cos	
cos�

�
2
mh1

m2
bcos2�S: (36)

Our conventions are those of NMHDECAY in which the WW
coupling relative to SM strength is given by sin��� 	�	
cos�S and v2 � 2m2

W=g
2
2; mb is to be evaluated at scale

mh1
. In Eq. (7), cos�A gives the MSSM doublet component

of the a1 and sin�S is the coefficient of the singlet compo-
nent of the h1; both are small numbers in our scenario.
Detailed numerical results and discussion for the h1 !
a1a1 width will be given in the next section. However, it
is important to understand the limit in which A�, A� ! 0.
This is nicely illustrated in the case of v=s� 1. In this
limit we have 	! �� �=2 [more precisely, sin���
	� ! sin2��O�v2=s2�]; cos�A ! �v=s� sin2��
O�v3=s3� [see Eq. (8)]; sin�A ! 1�O�v2=s2�; sin�S !
��v=s���2=�2�2���1� ��=�� sin2�� �O�v3=s3�;
cos�S ! 1�O�v2=s2�. With these inputs, we find
 

��h1 ! a1a1� �
m2
W

32�g2
2mh1

�
2�2 � 2�� sin2�

�
4��s
v

cos�A �
4�2s
v

sin�S

�O�v2=s2�

�
2

�
m2
W

32�g2
2mh1


O�v2=s2��2: (37)

In particular, the 
. . .� does not actually vanish for A� �

A� � 0 (there is no exact symmetry argument). One finds
that Br�h1 ! a1a1� can approach the [0.1–0.2] range for
the smallest � values allowed by general theoretical con-
sistency (good EWSB vacuum, . . .) for a given � value.
This is, of course, insufficient for escaping LEP constraints
when mh1

� 100 GeV. Thus, having an adequate size for
Br�h1 ! a1a1� for escaping the LEP constraints depends
critically upon having nonzero values for A� and, in par-
ticular, A�. From the numerical results presented in the
next section, it will be clear that magnitudes for A� and A�
of order those developed from RGE running beginning
with A��MU� � A��MU� � 0 are sufficient to give large
Br�h1 ! a1a1�.

III. RESULTS

As discussed in the introduction, the Higgs sector in the
NMSSM is determined by six basic parameters, given in
Eq. (4), as well as subsidiary parameters entering through
loop corrections. (In this section, all parameters are defined
at scale mZ.) Consequently, a complete survey of the
parameter space is difficult. To present results in a manage-
able way, we fix � and tan� together with all soft SUSY-
breaking masses and scan over trilinear and soft-trilinear
couplings. We will plot results in various 2-parameter
planes. The parameters are scanned over the following
regions with fixed steps: � 2 �0; 0:5� using 30 steps of
size 0.016 66; � 2 ��0:5; 0:5� using 70 steps of size
0.014 286; A� 2 ��300 GeV; 300 GeV� using 100 steps
of size 6 GeV; and finally A� 2 ��20 GeV; 20 GeV� using
100 steps of size 0.4 GeV. Varying the fixed soft SUSY-
breaking masses does not have any significant effect on the
results while different choices of � and tan� lead to
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important changes. Thus, we will present results for several
choices of � and tan� keeping all SUSY-breaking masses
fixed at MSUSY � 300 GeV. Let us recall that we are
interested in looking for parameters yielding mh1

>
90 GeV and ma1

< 2mb. The latter is imposed so that the
LEP limits on h1 ! a1a1 ! 4b do not apply (since if the
a1 decayed primarily to b �b they would require mh1

*

110 GeV, i.e. above our preferred mh1
� 100 GeV value).

The mh1
> 90 GeV restriction implies that we are above

the maximum value for which LEP limits on h1 ! a1a1 !
4� are available. In our plots, the small dark blue diamonds
are all points that satisfy the above constraints, while the
large light blue crosses are those which satisfy all experi-

mental limits, the main experimental constraint being that
Br�h1 ! b �b� must be suppressed sufficiently by a large
Br�h1 ! a1a1� that LEP limits on the Zh1 ! Zb �b channel
are satisfied. Roughly, this requires Br�h1 ! a1a1� * 0:7.

We first present results for MSUSY � 300 GeV, � �
150 GeV, and tan� � 10. In Fig. 1 we plot the allowed
region of parameter space in the A� � A� and �� �
planes. Similarly, in Fig. 2 we plot the allowed region in
the A� � � and A� � � planes. In Fig. 3, we plot a selec-
tion of the range of A� and A� values that have ma1

< 2mb

for fixed values of � and �. From Fig. 3, we see that for a
given value of A��mZ� keeping ma1

< 2mb requires that
A��mZ� be adjusted to a level of order 10%; at fixed

 

FIG. 1 (color online). Allowed parameter space in the A� � A� and �� � planes. Light gray (cyan) large crosses are points that
satisfy all experimental limits. The dark (blue) diamonds are those points that do not have large enough Br�h1 ! a1a1� so as to
suppress Br�h1 ! b �b� sufficiently to escape LEP limits.

 

FIG. 2 (color online). Allowed parameter space in the A� � � and A� � � planes. Point conventions as in Fig. 1.
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A��mZ�, A��mZ� must lie within about a 5% range. As
quantified later, this is a rough measure of the tuning
required to achieve consistency of the envisioned scenario
with LEP constraints when mh1

� 100 GeV. Note that A�,
A� tuning could be made arbitrarily mild if very small
values of A��mZ� were allowed. However, as illustrated
by the dark blue points, too small a value for A��mZ� leads
to a value for Br�h1 ! a1a1� that is small and therefore a
value of Br�h1 ! b �b�) that is too large for consistency with
LEP constraints on the Zh! Zb �b channel. In any case, as
we have discussed, very small values of A��mZ� and
A��mZ� would be purely accidental from the RGE point
of view.

The correlations between A��mZ� and A��mZ� required
to achieve ma1

< 2mb can be understood from Eqs. (12)–
(19). For the following discussion, we consider the case of
�> 0, implying s > 0. Clearly, in order for both eigenval-
ues of the CP-odd Higgs mass matrix squared to be posi-
tive, both diagonal elements have to be positive. In the
limit jA�j � jA�j � v� s, and tan� * few, M2

22 is
dominated by the last term (unless jA�j is too small), and
so M2

22 > 0 leads to the condition �A� < 0. This means
that the contribution of the �A� term to the mass of the
lightest CP-odd Higgs is positive, see Eqs. (9) and (19).
Next, we note that M2

11 > 0 requires A� � �s > 0. Given
that �A� < 0, this implies that the denominator of the first
term in them2

a1
expression given in Eq. (19) is positive, and

that this first term will therefore have the same sign as �A�.
Thus, in order for the terms proportional to �A� and��A�
in Eq. (19) to cancel so as to give smallm2

a1
, �A� must have

the same sign as �A�. Given that �A� < 0, we must there-
fore also have �A� < 0. Altogether, we have two discon-
nected regions of allowed parameter space. The first one is
for � > 0, A� < 0, and A� < 0. It is the largest region

because the condition A� � �s > 0 is easily satisfied, es-
pecially with smaller values of A�. The second region is for
� < 0, A� > 0, and A� > 0 which is further constrained by
A� � �s > 0 and thus requires larger values of A� and
consequently larger values of A�.

The above discussion is not valid when A� is so small
that the �A� term does not dominate M2

22. For such pa-
rameters, ma1

< 2mb can still be achieved, but Br�h1 !

a1a1�> 0:7 is not possible. This region is seen in Fig. 2 as
a large dark (blue) region with a large range of A� > 0 with
� > 0 in the right-hand plot and a narrow band of very
small A� values and � > 0 in the left-hand plot. For this
region, � < 0:1 is typical. This region can be understood
by noting that when �A� is negligible, then Eq. (19) re-
duces to

 m2
a1
!
A�!0 9A���v2 sin2�

2�A� � �s�
: (38)

Since we require both m2
a1
> 0 and M2

11 / �A� � �s�> 0,
see Eq. (12), we must have A� > 0 and � > 0. Smallm2

a1
is

easily achieved in a variety of ways, for example, if A� is
small compared to �s or, more generally, for small �A� and
large tan�. Radiative corrections play a significant role
also, reducing the tree-level prediction given above by a
substantial amount.

The dependence of the branching ratio for h1 ! a1a1 on
A� and A� is given in Fig. 4. As we have stressed, a large
value for Br�h1 ! a1a1� is crucial for an mh1

� 100 GeV
light SM-like Higgs to have escaped LEP constraints. [It is
the constraint ma1

< 2mb which guarantees that when
A� � 0 then �A� must be very small as well, and vice
versa, thereby implying small Br�h1 ! a1a1�.] It is inter-
esting to see that if jA�j * 2 GeV and jA�j * 30 GeV (as
typical for the sizes of the RGE-induced contributions)
then Br�h1 ! a1a1� is almost always large enough for
the h1 to have escaped detection through the h1 ! b �b
channel. These plots also show clearly that Br�h1 !
a1a1� approaches a small (most typically, extremely small)
value when A�, A� ! 0. This suppression was discussed
analytically in the small v=s limit in the previous section.

Another way of characterizing the limited allowed re-
gion in A� and A� for which ma1

stays below 2mb (shown
in Fig. 3), is to calculate the tuning [as defined in Eq. (23)]
of A� and A� necessary to achieve this situation. The
dependence of Fmax on A� and A� is given in Fig. 5.
Similarly, the dependence of Fmax on � and � is given in
Fig. 6. As expected, the smallest fine-tuning or sensitivity
is achieved for as small A� and A� as possible. Of course,
as we discussed earlier, very small values of A� and A�
would require cancellations between the bare values and
the RGE-induced radiative corrections and this kind of
cancellation would not be visible from the definition of
Fmax given in Eq. (23). However, this is not a particularly
worrisome point given that, as discussed with regard to
Fig. 4, very small values of A� and A� do not in any case

 

FIG. 3 (color online). A selected region of the allowed pa-
rameter space in the A� � A� plane for fixed values of � � 0:38
and � � 0:4. Point conventions as in Fig. 1.
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FIG. 5 (color online). Tuning in m2
a1

vs A� and A�. Point conventions as in Fig. 1.

 

FIG. 4 (color online). Br�h1 ! a1a1� vs A� and A� for � � 150 GeV and tan� � 10. Point conventions as in Fig. 1.

 

FIG. 6 (color online). Tuning in m2
a1

vs � and �. Point conventions as in Fig. 1.
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lead to large enough Br�h1 ! a1a1� that Br�h1 ! b �b� is
adequately suppressed. Thus, in the region of parameter
space where soft-trilinear couplings are at least of order the
typical RGE-induced contributions, which is also the re-
gion where Br�h1 ! a1a1� is large, the Fmax measure of
the tuning of the soft-trilinear couplings can be as small as
O�5%–10%�.

However, as discussed in the analytic section of the
paper, fine-tuning with respect to GUT-scale parameters,
denoted there as Fma1

, need not be as large as Fmax. In

particular, there are many model scenarios in which Fma1
is

reduced compared to Fmax by cancellations between the
dependence of A��mZ� on the dominant GUT-scale pa-
rameter p and the dependence of A��mZ� on this same p,

in the simplest cases yielding Fma1
� FA� � FA� . In the

most naive approximation, m2
a1

is linear in A� and linear in
A� and therefore FA� ��FA� and Fma1

is then quite small.
Thus, it is important to understand the correlations between
FA� and FA� in order to assess the extent to which FA� �
FA� can be small. In the left-hand window of Fig. 7, we plot
FA� vs FA� for points with Fmax < 100. We see that many
of the points have FA� ��FA� . The corresponding values
of FA� � FA� appear in the right-hand plot. We observe
that the LEP-allowed points with small negative A� (which
are those with the smallest magnitudes of FA� and FA�
separately) yield still smaller FA� � FA� and therefore
possibly very small Fma1

for appropriate GUT-scale mod-

 

FIG. 8 (color online). In the left-hand frame, we plot Fmax vs ma1
for the points with Fmax < 100. In the right-hand frame, we plot

FA� � FA� vs ma1
for these same points.

 

FIG. 7 (color online). In the left-hand frame, we plot FA� vs FA� for the points with Fmax < 100. In the right-hand frame, we plot
FA� � FA� vs A� for these same points.
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els. For all LEP-allowed A� < 0 points, FA� � FA� is much
smaller than Fmax.

It is also useful to understand the extent to which Fmax

and FA� � FA� depend on ma1
. This dependence is re-

vealed in Fig. 8. We see that the smallest Fmax values are
achieved for the larger ma1

values up near 2mb. Small
values of FA� � FA� are distributed over the broader range
of 4 GeV & ma1

< 2mb. In either case, the fine-tuning
associated with ma1

< 2mb suggests some preference for
ma1

> 2m�. This is important in that h1 ! a1a1 ! 4�
decays may prove to be visible at the LHC, whereas h1 !
a1a1 with a1 ! c �c; gg; . . . will be much harder to detect.

Higgs phenomenology is crucially dependent upon the
singlet and doublet compositions of the lightest CP-even
and CP-odd Higgs mass eigenstates. The lightest CP-even
Higgs boson is preferably SM-like although it can have up
to a 20% singlet component, see Fig. 9, while the lightest

 

FIG. 10 (color online). Singlet component of a1 vs A� and A�. Point conventions as in Fig. 1.

 

FIG. 9 (color online). Singlet component of h1 vs A� and A�. Point conventions as in Fig. 1.

 

FIG. 11 (color online). Singlet component of h1 vs singlet
component of a1. Point conventions as in Fig. 1.
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CP-odd Higgs boson has to be very close to being a singlet,
at least 98% singlet in the region where the least tuning is
necessary, see Fig. 10. [Here, sin�A, see Eq. (7), is the
singlet component of the a1 at the amplitude level. The
probability for the a1 to be singlet is sin2�A. Similar
definitions are used in the case of the h1.] This correlation
between the h1 and a1 compositions is explicit in the plot
of the h1 singlet component versus the a1 singlet compo-
nent given in Fig. 11. This figure shows that as the a1

becomes less singlet the h1 must have less singlet compo-
nent. The left-hand plot of Fig. 12 also makes it clear that
the h1 singlet component must be small (or zero) in order to
maximize Br�h1 ! a1a1�. The right-hand plot of Fig. 12
shows that the a1 singlet component must be at least 70%
in amplitude, i.e. 50% in probability, for the range of
parameters scanned with most points corresponding to an
a1 that is mainly singlet.

A particularly revealing pair of plots is that of Fig. 13
where we show how Br�h1 ! a1a1� and FA� � FA� depend

on cos�A, the nonsinglet component of the a1. We see from
the first plot that there is a lower bound on j cos�Aj of order
0.06 (this is the bound for tan� � 10—the precise number
depends on tan�) in order for Br�h1 ! a1a1� to be large
enough that LEP limits are evaded. The existence of the
lower bound follows from the fact, discussed earlier, that �
and A� must have opposite signs in order for the scenario to
be viable. Since the nonsinglet component of the a1 is
proportional to A� � 2�s, see Eq. (22), it cannot go to
zero for the given correlation of signs. From the second
plot, we see that the FA� � FA� measure of fine-tuning for
ma1

has a very distinct minimum value close to 0 for
cos�A ��0:1. Combined with the dependence of FA� �
FA� on ma1

displayed in Fig. 8, we see a possible prefer-
ence for ma1

> 2m� and cos�A ��0:1 in order to be
reasonably certain that fine-tuning is not required in order
to achieve large Br�h1 ! a1a1� and ma1

< 2mb. We note
that the coupling of the a1 to down-type quarks is propor-
tional to tan� cos�A which is never smaller than about 0.6

 

FIG. 12 (color online). Br�h1 ! a1a1� vs singlet component of h1 and a1. Point conventions as in Fig. 1.

 

FIG. 13 (color online). Br�h1 ! a1a1� and FA� � FA� vs the nonsinglet component of the a1. Point conventions as in Fig. 1.
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FIG. 14 (color online). Allowed parameter space in the A� � A� and �� � planes for tan� � 3 and � � 150 GeV. Point
conventions as in Fig. 1.

 

FIG. 15 (color online). Allowed parameter space in the A� � � and A� � � planes for tan� � 3 and � � 150 GeV. Point
conventions as in Fig. 1.

 

FIG. 16 (color online). Fmax and Br�h1 ! a1a1� vs A� for tan� � 3 and � � 150 GeV. Point conventions as in Fig. 1.
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FIG. 18 (color online). Allowed parameter space in the A� � � and A� � � planes for tan� � 50 and � � 150 GeV. Point
conventions as in Fig. 1.

 

FIG. 17 (color online). Allowed parameter space in the A� � A� and �� � planes for tan� � 50 and � � 150 GeV. Point
conventions as in Fig. 1.

 

FIG. 19 (color online). Fmax and Br�h1 ! a1a1� vs A� for tan� � 50 and � � 150 GeV. Point conventions as in Fig. 1.
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in magnitude for the points that escape LEP limits. Thus,
even though the a1 is largely singlet, it has substantial
down-quark and lepton couplings. In a follow-up paper
[19], we show that this implies an ma1

-dependent lower
limit on the branching ratio for �! �a1 decays. This
lower limit can probably be probed at future, if not exist-
ing, B factories if ma1

is not too close to M�, especially if
ma1

> 2m� so that a1 ! ���� decays are dominant.
Finally, in order to see the effect of varying tan� and �,

we give a selection of some of the same plots for: � �
150 GeV and tan� � 3; � � 150 GeV and tan� � 50;
and � � 400 GeV with tan� � 10. These appear in
Figs. 14–23. We note that there is an exact symmetry
under �! �� (implying s! �s in the � > 0 conven-
tion we employ), A� ! �A� and A� ! �A�. Thus, only
positive � values need be considered when both signs of
A� and A� are scanned.

Comparing the plots for tan� � 3, Figs. 14–16, and the
plots for tan� � 50, Figs. 17–19, with the previous plots
for tan� � 10 we see that the region of allowed parameter
space for � > 0, A� < 0, and A� < 0 does not change much
when varying tan�. On the other hand the allowed region
of parameter space with � < 0, A� > 0, and A� > 0
changes dramatically. It does not even exist for
tan� � 3.4 The reason is that the first two terms in
Eq. (14) are less suppressed for smaller tan� and they
combine into a term proportional to A� � 4�s. The last
term in Eq. (14) dominates only for larger values of A�. If
the last term does not dominate, the first two terms are
positive only for very large A� making the region with � <

 

FIG. 20 (color online). Allowed parameter space in the A� � A� and �� � planes for tan� � 10 and � � 400 GeV. Point
conventions as in Fig. 1.

 

FIG. 21 (color online). Allowed parameter space in the A� � � and A� � � planes for tan� � 10 and � � 400 GeV. Point
conventions as in Fig. 1.

4There is a tiny allowed region with positive A� and positive
but very small A�. This region is not a continuation of the region
present in the plots for tan� � 10.
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0, A� > 0, and A� > 0 very constrained. For exactly the
same reason, this region is larger for tan� � 50 compared
to tan� � 10, and the allowed parameter space expands to
lower values of A� as particularly noticeable in the A� vs �
plots; compare Figs. 2, 15, and 18. In the region of pa-
rameter space with � > 0, A� < 0, and A� < 0 the condi-
tion A� � 4�s > 0 is always satisfied when the necessary
condition for having positive mass squared eigenvalues,
A� � �s > 0, is satisfied. Therefore, this region of parame-
ter space is not very sensitive to tan�.

Quite interestingly, once ma1
< 2mb is achieved for

tan� � 3, Br�h1 ! a1a1� is automatically large enough
( * 0:75 for the most part) and, correspondingly, Br�h1 !
b �b� is sufficiently suppressed that Zh! Zb �b constraints at
LEP are satisfied; see Fig. 16. As in the tan� � 10 case,
Fmax is smallest for the smallest possible A� and ap-
proaches �15 for a couple of the points with A� > 0.
Overall, it would appear that ma1

< 2mb is a bit more
difficult to achieve without tuning when tan� � 3 vs

when tan� � 10. For tan� � 50, see Fig. 19, small Fmax

( & 20) is achieved for a narrower range of A� and A� > 0
gives the smallest Fmax values (whereas for tan� � 10
there was no particular preference with regard to the sign
of A�).

Finally, we discuss the effect of increasing �. We con-
sider � � 400 GeV at tan� � 10 and present results in
Figs. 20–23. These figures clearly show that the range of
parameter space for which ma1

< 2mb shrinks with in-
creasing �. This is easy to understand from Eq. (9) or
Eq. (19). For fixed �, increasing � results in an increase of
s. Consequently, the term proportional to A� in the formula
forma1

is further suppressed while the term proportional to
A� is enhanced. In order to compensate for this so as to
keep ma1

small, smaller values of � and A� and larger
values of � and A� are required as compared to the � �
150 GeV case. Moreover, the ma1

< 2mb region of pa-
rameter space with � < 0, A� > 0, and A� > 0 is even
further constrained by the condition A� � �s > 0 which

 

FIG. 22 (color online). Fmax and Br�h1 ! a1a1� vs A� for tan� � 10 and � � 400 GeV. Point conventions as in Fig. 1.

 

FIG. 23 (color online). We plot FA� vs FA� (left window) and FA� � FA� vs A� (right window) for � � 400 GeV, and tan� � 10.
Point conventions as in Fig. 1.
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requires larger A� for larger s. These effects are clearly
visible in Fig. 20 and 21. The increased value of A�
required for this scenario to work for larger � leads to
larger tuning necessary to achieve ma1

< 2mb. Figure 22
shows a dramatic narrowing of the A� region for which

moderate Fmax values are achieved and that the best Fmax

value for points having large enough Br�h1 ! a1a1� that
LEP limits are evaded is of order �30 in contrast to the
Fmax � 15 values achieved for � � 150 GeV. However,
we see from Fig. 23 that the values of FA� and FA� are more

 

FIG. 24 (color online). In the left-hand set of plots, we presentmh2
vsma2

(top),mh3
vsma2

(middle), andmh3
vsmh2

(bottom). In the
right-hand set of plots, we present Cd�a2� vs ma2

(top), Cd�h2� vs mh2
(middle), and Cd�h3� vs mh3

(bottom). All plots are for tan� �
50 and � � 150 GeV. Point conventions as in Fig. 1.
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strongly correlated so that FA� � FA� can again take on
small values. As we have seen, the latter implies small Fma1

in models in which the soft SUSY-breaking parameters are
correlated or A��mZ� and A��mZ� are dominated by a single
soft SUSY-breaking parameter.

Given that detection of the h1 at hadron colliders will be
quite challenging for the large-Br�h1 ! a1a1� scenarios
that we focus on, an interesting question is then whether
or not the other Higgs bosons h2;3 and a2 might be detect-
able. This will depend on their masses and on their cou-
plings. We will see that, within the scenarios considered,
their masses can range from somewhat above 100 GeV to
quite large values. As regards their couplings, since the h1

has quite SM-like WW;ZZ couplings for the scenarios
being considered (as illustrated earlier), the h2;3 will have
quite weak WW;ZZ couplings, and of course the a2 has no
tree-level couplings to WW;ZZ. Thus, the question is
whether production mechanisms relying on q �q couplings
of the h2; h3; a2 could lead to an observable signal. This
same question of course applies to the H and A of the
MSSM. The answer there is that high tan� is required, in
which case gg! b �bH; b �bA production is highly enhanced
since the H;A have b �b coupling strength of order tan�
times the SM-like strength. We wish to explore the extent
to which this also applies in the NMSSM for the h2; h3; a2

in scenarios with large Br�h1 ! a1a1�. For this purpose,
we present some additional plots in the case of tan� � 50.
We will denote the strength of the b �b coupling (generally
any down-type quark or lepton) of any given Higgs boson
relative to the SM-like strength by Cd�h�, where h �
h2; h3; a2 will be considered. The relevant plots appear in
Fig. 24.

In the left-hand plots of Fig. 24, we give mh2
vsma2

,mh3

vs ma2
, and mh3

vs mh2
. The light (cyan) points are those

that have bothma1
< 2mb and Br�h1 ! a1a1� large enough

to escape the LEP limits on the Z� 2b channel. For such

points, the smallest allowed values ofma2
,mh2

, andmh3
are

about 120, 105, and 180 GeV. We see that at low ma2
<

200 GeV, mh2
�ma2

, while at large ma2
> 600 GeV one

finds ma2
�mh3

. At intermediate ma2
, one can have either

degeneracy. On the right-hand side of Fig. 24, we plot the
relative coupling strength Cd of each of the heavier Higgs
bosons as a function of its mass. Correlating with the mass
plots, we observe that for ma2

& 200 GeV it is always the
h2 that is degenerate with the a2 and that both have Cd �
tan�. Forma2

* 600 GeV, we always havemh3
�ma2

and
Cd�h3� and Cd�a2� are both � tan�. For ma2

in the inter-
mediate mass range, the situation is more complicated and
we can get cases where ma2

�mh2
�mh3

and while
Cd�a2� � tan� one finds that the h2 and h3 can share the
tan� enhancement factor. This is illustrated in Fig. 25.

Overall, it is clear that if tan� is large a search at the
LHC in channels such as gg! b �b� Higgs could reveal a
signal so long as ma2

is not too large. For ma2
& 250 GeV,

the Tevatron might also be able to detect this kind of signal
when tan� is large enough.

IV. CONCLUSIONS

Eliminating EWSB fine-tuning in supersymmetric mod-
els has become an important issue. In the NMSSM, this is
most easily achieved by allowing the lightest Higgs boson,
h1, to have mass of order 100 GeV, as naturally predicted
after radiative corrections for stop masses in the range of a
few hundred GeV. The modest stop masses imply no
significant fine-tuning. However, such an h1 is typically
standard model-like in its ZZ coupling and can escape LEP
limits only if the dominant decay is h1 ! a1a1 (so that the
h1 ! b �b decay is sufficiently suppressed to escape LEP
limits) and if ma1

< 2mb (so that the a1a1 final state does
not feed into the Z� b0s final state that is strongly con-
strained by LEP data). In this paper, we have considered
the degree to which the GUT-scale soft SUSY-breaking
parameters must be tuned in order to have ma1

< 2mb and
Br�h1 ! a1a1�> 0:7 (the rough requirement for suppress-
ing the h1 ! b �b mode sufficiently). We have found that
such a scenario need not have significant tuning. We began
by assessing the tuning required of the mZ-scale parame-
ters A��mZ� and A��mZ� that primarily control both ma1

and Br�h1 ! a1a1�. This tuning was quantified via

 Fmax � maxfjFA� j; jFA� jg; FA �
@ logm2

a1

@ logA
; (39)

evaluated at scalemZ. We found that so long as� is not too
large (j�j & 200 GeV) then the values of A��mZ� and
A��mZ� need only be tuned to a level of order Fmax �
10–20, corresponding to tuning in the range of 5% to
10%, for the magnitudes of A��mZ� and A��mZ� that are
of order those automatically generated by radiative evolu-
tion from small GUT-scale values. Further, these same
RGE-generated values automatically give the required

 

FIG. 25 (color online). We plot Cd�h3� vs Cd�h2� for tan� �
50 and � � 150 GeV. Point conventions as in Fig. 1.
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large values of Br�h1 ! a1a1�. We also discussed how
these tuning estimates based on Fmax will generically
greatly overestimate the tuning with respect to GUT-scale
soft SUSY-breaking parameters. In any SUSY scenario in
which A��mZ� and A��mZ� deriving from RG evolution are
dominated by a GUT-scale parameter or model-correlated
set of GUT-scale parameters, generically denoted by p, the
tuning with respect to p is given by fp � FA� � FA� and
for the A��mZ� and A��mZ� regions with ma1

< 2mb and
Br�h1 ! a1a1�> 0:7 one finds FA� ��FA� . As a result
fp can easily be very modest in size, even for quite large
�—the opposite-sign correlation becomes increasingly
effective as � increases.

Thus, we have demonstrated that GUT-scale parameters
can be chosen so that fine-tuning can essentially be elim-
inated for the NMSSM scenario of a light Higgs with
mh1
� 100 GeV, decaying primarily via h1 ! a1a1 with

ma1
< 2mb and Br�h1 ! a1a1� * 0:7 (both being required

to escape LEP limits). We regard this scenario (or some-
thing similar) as a highly attractive possibility for the
Higgs sector. It solves both the � problem and the fine-
tuning problem. It does, however, introduce the need for
proving viability of LHC discovery modes involving h1 !
a1a1 ! 4� or 4 jets, where the jets could be c; g; s; . . . . The

4 jets mode is certain to be quite difficult to probe at the
LHC—only diffractive pp! ppX might provide a signal
in the form of a bump in the MX distribution at mh1

. In this
regard, it is important to note that our work shows that
minimizing the GUT-scale fine-tuning measure fp appears
to mildly preferma1

> 2m�. Thus, a strong effort should be
made to develop h1 ! a1a1 ! 4� discovery modes at the
LHC and to see if LEP data can constrain this possibility.
Of course, discovery of the h1 at the ILC through a bump at
MX � mh1

in the e�e� ! Z� ! ZX channel will be ex-
tremely easy.
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