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A phenomenological analysis of the three-family model based on the local gauge group SU�3�c �
SU�3�L �U�1�X with exotic charged leptons, is carried out. Instead of using the minimal scalar sector able
to break the symmetry in a proper way, we introduce an alternative set of four Higgs scalar triplets, which
combined with an anomaly-free discrete symmetry, produce quark and charged lepton mass spectrum
without hierarchies in the Yukawa coupling constants. We also embed the structure into a simple gauge
group and show some conditions to achieve a low energy gauge coupling unification, avoiding possible
conflict with proton decay bounds. By using experimental results from the CERN-LEP, SLAC linear
collider, and atomic parity violation data, we update constraints on several parameters of the model.
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I. INTRODUCTION

The standard model (SM) based on the local gauge
group SU�3�c � SU�2�L �U�1�Y [1], with all its successes,
is in the unaesthetic position of having no explanation of
several issues such as hierarchical charged fermion masses,
fermion mixing angles, charge quantization, strong CP
violation, replication of families, neutrino masses and
oscillations [2], etc. All this makes us think that we must
call for extensions of the model.

Doing physics beyond the SM may imply the introduc-
tion of a variety of new ingredients such as extra fermion
fields (adding a right-handed neutrino field to each family
constitutes its simplest extension and has several conse-
quences, as the implementation of the seesaw mechanism
for the neutrinos, and the enlarging of the possible number
of local Abelian symmetries that can be gauged simulta-
neously). Also one may include standard and nonstandard
new scalar field representations with and without vacuum
expectation values (VEV), and extra gauge bosons which
imply an enlarging of the local gauge group. Discrete
symmetries and supersymmetry (SUSY) are also common
extensions of the SM [3].

Interesting extensions of the SM are based on the local
gauge group [4–9] SU�3�c � SU�3�L �U�1�X (called
hereafter 3-3-1 for short). The several possible structures
enlarge the SM in its gauge, scalar, and fermion sectors.
Let us mention some outstanding features of 3-3-1 models:
they are free of gauge anomalies if and only if the number
of families is a multiple of three [4–6]; a Peccei-Quinn
chiral symmetry can be implemented easily [10,11]; the
fact that one quark family has different quantum numbers
than the other two may be used to explain the heavy top
quark mass [12,13]; the scalar sector includes several good
candidates for dark matter [14]; the lepton content is
suitable for explaining some neutrino properties [15,16];
and last but not least, the hierarchy in the Yukawa coupling
constants can be avoided by implementing several univer-
sal seesaw mechanisms [13,17,18].

So far, there are in the literature studies of five different
3-3-1 lepton flavor structures for three families, belonging
to two different electric charges embedding into SU�3�L �
U�1�X, the most popular one being the original Pisano-
Pleitez-Frampton model [4] (called the minimal model) in
which the three left-handed lepton components for each
family in the SM are associated to three SU�3�L triplets as
��l; l

�; l��L, where l � e, �, � is a family index for the
lepton sector, �l stands for the neutrino related to the flavor
l, and l�L is the right-handed isospin singlet of the charged
lepton l�L .

In a different embedding of the electric charge operator,
the three left-handed lepton triplets are of the form
��l; l�; �cl �L, l � e, �, �; where �cl is related to the right-
handed component of the neutrino field (a model with ‘‘-
right-handed neutrinos’’ [5]), with l�L becoming three
SU�3�L singlets. For the same charge embedding, an al-
most unknown alternative of a 3-3-1 fermion structure is
provided in Ref. [6], in which the three SU�3�L lepton
triplets are of the form ��l; l�; E�l �L, l � e, �, �; where
E�l stands for an exotic charged lepton per family, with l�L
and E�lL being six SU�3�L singlets (a model with ‘‘exotic
charged leptons’’).

Contrary to the former three structures in which each
lepton generation is treated identically, two more new
models are analyzed in Ref. [7], which are characterized
by each lepton generation having a different representation
under the gauge group. Even further, more possible 3-3-1
fermion structures can be found in Refs. [8,9], where also a
classification of all the models without exotic electric
charges is presented (if exotic electric charges are allowed
the number of models run to infinity).

The aim of this paper is to find, for the version of the
model that includes ‘‘exotic charged leptons’’ [6], the
minimal set of ingredients able to implement universal
seesaw mechanisms in the three charged fermion sectors,
with the analysis done in a similar way to the one presented
in Refs. [13,18], where a related calculation was carried
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through for the model with ‘‘right-handed neutrinos’’ (the
model that, contrary to the present one, does not contain
exotic electrons, becoming thus unable by itself to generate
seesaw masses for charged leptons [18]). It will be shown
in what follows that a convenient set of scalar fields,
combined with a discrete symmetry, produces an appealing
fermion mass spectrum without hierarchies for the Yukawa
coupling constants. Besides, we are also going to study the
embedding and unification of this structure into SU�6�, and
set updated constraints on several parameters of the model.

This paper is organized as follows: in Sec. II we review
the model, introduce the new scalar sector, embed the
structure into a covering group, and calculate the charged
and neutral electroweak currents; in Sec. III we study the
charged fermion mass spectrum; in Sec. IV we do the
renormalization group equation analysis and show the
conditions for the gauge coupling unification; in Sec. V
we constraint several parameters of the model by fixing
new bounds on the mixing angle between the two flavor
diagonal neutral currents present in the model, and finally,
in Sec. VI, we present our conclusions.

II. THE MODEL

The model we are about to study here was introduced in
the literature for the first time in Ref. [6]. Some of the
formulas quoted in Secs. II A and II Fare taken from
Refs. [6,9]. Corrections to some minor printing mistakes
in the original papers are included.

A. The gauge group

As stated above, the model we are interested in is based
on the local gauge group SU�3�c � SU�3�L �U�1�X which
has 17 gauge bosons: one gauge field B� associated with
U�1�X, the 8 gluon fieldsG� associated with SU�3�c which
remain massless after spontaneous breaking of the electro-
weak symmetry, and another 8 gauge fields associated with
SU�3�L that we write for convenience as [9]

 

X8

��1

��A�� �
���
2
p D�

1 W�� K��

W�� D�
2 K0�

K�� �K0� D�
3

0
B@

1
CA; (1)

where D�
1 � A�3 =

���
2
p
� A�8 =

���
6
p

, D�
2 � �A

�
3 =

���
2
p
�

A�8 =
���
6
p

, and D�
3 � �2A�8 =

���
6
p

. ��, � � 1; 2; . . . ; 8, are
the eight Gell-Mann matrices normalized as Tr������ �
2���.

The charge operator associated with the unbroken gauge
symmetry U�1�Q is given by

 Q �
�3L

2
�
�8L

2
���
3
p � XI3; (2)

where I3 � diag �1; 1; 1� is the diagonal 3� 3 unit matrix,
and the X values are related to the U�1�X hypercharge and
are fixed by anomaly cancellation. The sine square of the
electroweak mixing angle is given by

 S2
W � 3g2

1=�3g
2
3 � 4g2

1�; (3)

where g1 and g3 are the coupling constants of U�1�X and
SU�3�L, respectively, and the photon field is given by [6,9]

 A�0 � SWA
�
3 � CW

�
TW���

3
p A�8 �

������������������������
�1� T2

W=3�
q

B�
�
; (4)

where CW and TW are the cosine and tangent of the
electroweak mixing angle, respectively.

There are two weak neutral currents in the model asso-
ciated with the two flavor diagonal neutral gauge weak
bosons,

 Z�0 � CWA
�
3 � SW

�
TW���

3
p A�8 �

������������������������
�1� T2

W=3�
q

B�
�
;

Z0�0 � �
������������������������
�1� T2

W=3�
q

A�8 �
TW���

3
p B�;

(5)

and another electrically neutral current associated with the
gauge boson K0�. In the former expressions Z�0 coincides
with the weak neutral current of the SM [6,9]. Using
Eqs. (4) and (5) we can read the gauge boson Y� associated
with the U�1�Y hypercharge of the SM

 Y� �
�
TW���

3
p A�8 �

������������������������
�1� T2

W=3�
q

B�
�
: (6)

Equations (1)–(6) presented here are common to all the
3-3-1 gauge structures without exotic electric charges [5–
7] as it is analyzed in Refs. [8,9].

B. The spin 1=2 particle content

The quark content for the three families is the following
[6]: Qi

L � �d
i; ui; Ui�TL � �3; 3

	; 1=3�, i � 1, 2, for two
families, whereUi

L are two exotic quarks of electric charge
2=3 (the numbers inside the parenthesis stand for the

SU�3�c; SU�3�L; U�1�X� quantum numbers in that order);
Q3
L � �u

3; d3; D�TL � �3; 3; 0�, where DL is an exotic quark
of electric charge �1=3. The right-handed quarks are
uacL � �3

	; 1;�2=3�, dacL � �3
	; 1; 1=3� with a � 1, 2, 3, a

family index, Uic
L � �3

	; 1;�2=3�, i � 1, 2, and Dc
L �

�3	; 1; 1=3�.
The lepton content is given by [6] three SU�3�L triplets

LlL � ��
0
l ; l
�; E�l �

T
L � �1; 3;�2=3�, for l � e, �, � a lep-

ton family index, and �0
l the neutrino field associated to the

flavor l. The six lepton singlets are l�L � �1; 1; 1� and E�lL �
�1; 1; 1�. Notice in this model the presence of three exotic
electrons E�l of electric charge�1 (used in what follows to
implement the universal seesaw mechanism in the charged
lepton sector), and the fact that it does not contain right-
handed neutrinos. For this model, universality for the
known leptons of the three families is present at tree level
in the weak basis.

With the former quantum numbers, it is just a matter of
counting to check that the model is free of the following
gauge anomalies [8]: 
SU�3�c�3 [as in the SM, SU�3�c is
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vectorlike], 
SU�3�L�3 (six triplets and six antitriplets),

SU�3�c�

2U�1�X, 
SU�3�L�2U�1�X, 
grav�2U�1�X, and

U�1�X�3, where 
grav�2U�1�X stands for the gravitational
anomaly as described in Ref. [19].

C. The new scalar sector

Instead of using the set of three triplets of Higgs scalars
introduced in the original paper [6], or the most economi-
cal set of two triplets introduced in Ref. [9] (none of them
able to produce a realistic mass spectrum), we propose here
to start working with the following set of four Higgs scalar
fields, and VEV:

 

h�T
1 i � h��

�
1 ; �

0
1; �

00
1 �i � h�0; 0; v1�i � �1; 3; 1=3�;

h�T
2 i � h��

�
2 ; �

0
2; �

00
2 �i � h�0; v2; 0�i � �1; 3; 1=3�;

h�T
3 i � h��

0
3; �

�
3 ; �

0�
3 �i � h�v3; 0; 0�i � �1; 3;�2=3�;

h�T
4 i � h��

�
4 ; �

0
4; �

00
4 �i � h�0; 0; V�i � �1; 3; 1=3�; (7)

with the hierarchy v1 � v2 � v3 � v� 102 GeV� V.
Notice that the vacuum has been aligned arbitrarily such
that h�0

1i � h�
00
2 i � h�

0
4i � 0, in order to accomplish for

the following facts:
(i) To have at the electroweak scale v an effective

theory with properties resembling the two Higgs
doublet extension of the SM.

(ii) To properly implement several universal seesaw
mechanisms [17].

(iii) To avoid unnecessary mixing in the electroweak
gauge boson sector [9].

The alternative of minimizing the scalar potential is a
complicated and fruitless task at this stage of development
of this particular model.

The set of scalars and VEV in Eq. (7) break the SU�3�c �
SU�3�L �U�1�X symmetry into two steps,

 SU�3�c � SU�3�L �U�1�X ���!�V�v1�

SU�3�c � SU�2�L �U�1�Y ���!�v2�v3�
SU�3�c �U�1�Q;

which allows for the matching conditions g2 � g3 and

 

1

g2
Y
�

1

g2
1

�
1

3g2
2

; (8)

where g2 and gY are the gauge coupling constants of the
SU�2�L and U�1�Y gauge groups in the SM, respectively.

We will see in what follows that this scalar structure
properly breaks the symmetry, provides with masses for the
gauge bosons and, combined with a discrete symmetry, it is
enough to produce a consistent mass spectrum for the
charged fermion sectors (quarks and leptons). The mass
spectrum for the neutral lepton sector requires new ingre-
dients as it is going to be analyzed in Sec. III D.

D. SU�6� 
 SU�5� as a covering group

The Lie algebra of SU�3� � SU�3� �U�1� is a maximal
subalgebra of the simple algebra of SU�6�. The five fun-
damental irreducible representations (irreps) of SU�6� are
the following: f6g, f6	g, f15g, f15	g, and the f20g which is
real. The branching rules for these fundamental irreps into
SU�3�c � SU�3�L �U�1�X are [20]
 

f6g ! �3; 1;�1=3� � �1; 3; 1=3�;

f15g ! �3	; 1;�2=3� � �1; 3	; 2=3� � �3; 3; 0�;

f20g ! �1; 1; 1� � �1; 1;�1� � �3; 3	; 1=3� � �3	; 3;�1=3�;

where we have normalized the U�1�X hypercharge accord-
ing to our convenience.

From these branching rules and from the fermion struc-
ture presented in Sec. II B, it is clear that all the particles in
the 3-3-1 model with exotic electrons can be included in
the following SU�6� reducible representation:

 4f6	g � 6f20g � 5f15g � 3f15	g; (9)

which, besides the particles in the representations already
stated in the previous section, includes new exotic parti-
cles, as for example
 

�N0; E�; E0��L � �1; 3
	; 2=3� � f15g;

E�L � �1; 1;�1� � f20g;

�D0c; U0c; U00c�L � �3	; 3;�1=3� � f20g:

The analysis reveals that the reducible representation in
(9) is free of anomalies (irrep f20g is real and anomaly free,
and the anomaly of one f15g is twice the anomaly of a f6g
[20]).

It is clear from the following decomposition of irrep f6	g
of SU�6� into SU�5� �U�1�

 f6	g � fdc; N0
E; E

�; N0c
E gL ! fd

c; N0
E; E

�gL � N0c
EL; (10)

that for N0
EL � �eL and E�L � e�L , we obtain the known

SU�5� model of Georgi and Glashow [21]; so in some
sense, the SU�6� here is an extension of one of the first
grand unified theories (GUT) studied in the literature.

E. The gauge boson sector

After breaking the symmetry with h�ii, i � 1; . . . ; 4,
and using the covariant derivative for triplets D� � @� �
ig3�

�
LA

�
�=2� ig1XB�I3, we get the following mass terms

in the gauge boson sector.

1. Spectrum in the charged gauge boson sector

A straightforward calculation shows that the charged
gauge bosons K�� and W�� do not mix with each other
and get the following masses:M2

K� � g2
3�V

2 � v2
1 � v

2
3�=2

and M2
W � g2

3�v
2
2 � v

2
3�=2, which for g3 � g2 and using

the experimental value MW � 80:423� 0:039 GeV (ex-
perimental values throughout the paper are taken from
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Ref. [22]) implies
�����������������
v2

2 � v
2
3

q
’ 175 GeV. In the same way

K0� (and its antiparticle �K0�) does not mix with the other
two electrically neutral gauge bosons and gets a bare mass
M2
K0 � g2

3�V
2 � v2

1 � v
2
2�=2 � M2

K� . Notice that v1 does
not contribute to the W� mass because it is associated with
an SU�2�L singlet Higgs scalar.

2. Spectrum in the neutral gauge boson sector

The algebra now shows that in this sector the photon
field A�0 in Eq. (4) decouples from Z�0 and Z0�0 and remains
massless. Then in the basis �Z�0 ; Z

0�
0 � we obtain the follow-

ing 2� 2 mass matrix:

 

	2g2
3

4C2
W

v2
2�v

2
3

	2

v2
2C2W�v2

3

	
v2

2C2W�v2
3

	 v2
2C

2
2W � v

2
3 � 4�V2 � v2

1�C
4
W

0
@

1
A;

(11)

where C2W � C2
W � S

2
W and 	�2 � �3� 4S2

W�. This ma-
trix provides with a mixing between Z�0 and Z0�0 of the
form

 tan�2
�

�
2
����������������������
�3� 4S2

W�
q

�v2
2C2W � v

2
3�

4C4
W�V

2 � v2
1� � 2v2

3C2W � v
2
2�3� 4S2

W � C
2
2W�

���!V!10:

(12)

The physical fields are then

 Z�1 � Z�0 cos
� Z0�0 sin
;

Z�2 � Z�0 sin
� Z0�0 cos
:

An updated bound on the mixing angle 
 is going to be
calculated in Sec. V using experimental results.

F. Currents

1. Charged currents

The Hamiltonian for the currents charged under the
generators of SU�3�L is

 HCC � g3�W
�
�J

�
W� � K

�
�J

�
K� � K

0
�J

�
K0�=

���
2
p
� H:c:;

where

 J�W� �
�

�u3
L�

�d3
L �

�X2

i�1

�uiL�
�diL

�
�

X
l�e;�;�

��lL��l�L

�
;

J�K� �
��X2

i�1

�Ui
L�

�diL

�
� �u3

L�
�DL �

X
l�e;�;�

��0
lL�

�E�lL

�
;

J�
K0 �

��X2

i�1

�uiL�
�Ui

L

�
� �DL��d

3
L �

X
l�e;�;�

�E�lL�
�l�L

�
;

where K0
� is an electrically neutral gauge boson, but it

carries a kind of weak V-isospin charge; besides it is flavor
nondiagonal.

2. Neutral currents

The neutral currents J��EM�, J��Z�, and J��Z0� associ-
ated with the Hamiltonian H0 � eA�J��EM� �

�g3=CW�Z�J��Z� � �g1=
���
3
p
�Z0�J��Z0� are

 

J��EM� �
2

3

�X3

a�1

�ua��ua �
X2

i�1

�Ui��Ui
�

�
1

3

�X3

a�1

�da��da � �D��D
�

�
X

l�e;�;�

��l���l� � �E�l ��E
�
l �

�
X
f

qf �f��f;

J��Z� � J�;L�Z� � S
2
WJ��EM�;

J��Z
0� � J�;L�Z

0� � TWJ��EM�;

where e � g3SW � g1CW
������������������������
�1� T2

W=3�
q

> 0 is the unit of
electric charge, qf is the electric charge of the fermion f in
units of e, and J��EM� is the electromagnetic current.

The left-handed currents are
 

J�;L�Z� �
1

2

�X3

a�1

� �uaL��u
a
L �

�daL��d
a
L�

�
X

l�e;�;�

� ��lL���lL � �l�L ��l
�
lL�

�

�
X
F

�FLT3f��FL; (13)

 

J�;L�Z
0� � S�1

2W

�
� �u1L��u1L � �u2L��u2L � �d3L��d3L

�
X
l

� ��lL���lL�
�
� T�1

2W

�
� �d1L��d1L

� �d2L��d2L � �u3L��u3L �
X
l

��l�L ��l
�
L �

�

� T�1
W

�
� �U1L��U1L � �U2L��U2L � �DL��DL

�
X
l

� �E�lL��E
�
lL�

�

�
X
F

�FLT03f��FL; (14)

where S2W � 2SWCW , T2W � S2W=C2W , T3f �

Dg�1=2;�1=2; 0� is the third component of the weak iso-
spin, T03f � Dg�S�1

2W; T
�1
2W;�T

�1
W � is a convenient 3� 3

diagonal matrix, acting both of them on the representation
3 of SU�3�L (the negative value when acting on the repre-
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sentation 3	, which is also true for the matrix T3f), and F is
a generic symbol for the representations 3 and 3	 of
SU�3�L. Notice that J��Z� is just the generalization of
the neutral current present in the SM. This allows us to
identify Z� as the neutral gauge boson of the SM, which is
consistent with Eqs. (5) and (6).

The couplings of the flavor diagonal mass eigenstates
Z�1 and Z�2 are given by

 

HNC �
g3

2CW

X2

i�1

Z�i
X
f

f �f��
aiL�f��1� �5�

� aiR�f��1� �5��fg

�
g3

2CW

X2

i�1

Z�i
X
f

f �f��
g�f�iV � g�f�iA�5�fg;

where

 

a1L�f� � cos
�T3f � qfS
2
W� �� sin
�T03f � qfTW�;

a1R�f� � �qf�cos
S2
W �� sin
TW�;

a2L�f� � sin
�T3f � qfS
2
W� �� cos
�T03f � qfTW�;

a2R�f� � �qf�sin
S2
W �� cos
TW�; (15)

where � � SWCW=
����������������������
�3� 4S2

W�
q

. From this coefficient we
can read

 

g�f�1V � cos
�T3f � 2qfS
2
W� �� sin
�T03f � 2qfTW�;

g�f�2V � sin
�T3f � 2qfS2
W� �� cos
�T03f � 2qfTW�;

g�f�1A � cos
T3f �� sin
T03f;

g�f�2A � sin
T3f �� cos
T03f: (16)

The values of giV , giA with i � 1, 2 are listed in Tables I
and II.

As can be seen, in the limit 
 � 0 the couplings of Z�1 to
the ordinary leptons and quarks are the same as in the SM;
due to this we can test the new physics beyond the SM
predicted by this particular model.

III. FERMION MASSES AND MIXING

The Higgs scalars introduced in Sec. II C break the
symmetry in a proper way and, at the same time, produce
mass terms for the fermion fields via Yukawa interactions.

In order to restrict the number of Yukawa couplings, and
produce an appealing mass spectrum, we introduce an
anomaly-free discrete Z2 symmetry [23] with the following
assignments of charges:
 

Z2�Q
a
L;�2; �3; �4; u

ic
L ; d

ac
L ; E

�
lL� � 1;

Z2��1; u
3c
L ; U

ic
L ; D

c
L; LlL; l

�
L � � 0; (17)

where a � 1, 2, 3, i � 1, 2, and l � e, �, � are family
indices as above.

Before entering into details, let us mention that in some
cases we may use a negative mass entry or find a negative
mass eigenvalue, which are not troublesome, because we
can always exchange the sign of the quark mass either by a
change of phase or by a transformation  ! �5 in the
Weyl spinor  .

A. The up quark sector

The most general invariant Yukawa Lagrangian for the
up quark sector, without using the Z2 symmetry, is given by
 

Lu
Y �

X2

i�1

� X
��1;2;4

Qi
L��C

�X
a

hu�ia u
ac
L �

X2

j�1

hU�ij U
jc
L

��

�Q3
L�
	
3C
�X2

i�1

hUi U
ic
L �

X3

a�1

huau
ac
L

�
� H:c:; (18)

where the h0s are Yukawa couplings and C is the charge
conjugation operator. Then, in the basis
�u1; u2; u3; U1; U2�, and with the Z2 symmetry enforced,
we get from Eqs. (17) and (18), the following tree-level up
quark mass matrix:

 Mu �

0 0 hu2
13v2 hU2

11 v2 hU2
12 v2

0 0 hu2
23v2 hU2

21 v2 hU2
22 v2

0 0 hu3v3 hU1 v3 hU2 v3

hu1
11v1 hu1

12v1 hu4
13V hU4

11 V hU4
12 V

hu1
21v1 hu1

22v1 hu4
23V hU4

21 V hU4
22 V

0
BBBBB@

1
CCCCCA; (19)

TABLE I. The Z�1 ! �ff couplings.

f g�f�1V g�f�1A

u1;2 �12�
4S2

W
3 � cos
���T�1

2W �
4TW

3 � sin
 1
2 cos
��T�1

2W sin

u3 �12�

4S2
W

3 � cos
���s�1
2W �

4TW
3 � sin
 1

2 cos
��S�1
2W sin


d1;2 �� 1
2�

2S2
W

3 � cos
���S�1
2W �

2TW
3 � sin
 � 1

2 cos
��S�1
2W sin


d3 �� 1
2�

2S2
W

3 � cos
���T�1
2W �

2TW
3 � sin
 � 1

2 cos
��T�1
2W sin


U1;2 �
4S2

W
3 cos
���T�1

W �
4TW

3 � sin
 �T�1
W sin


D
2S2

W
3 cos
���T�1

W �
2TW

3 � sin
 ��T�1
W sin


e�, ��, �� �� 1
2� 2S2

W� cos
���T�1
2W � 2TW� sin
 � 1

2 cos
��T�1
2W sin


�e, ��, ��
1
2 cos
��S�1

2W sin
 1
2 cos
��S�1

2W sin

E�e , E�� , E�� 2S2

W cos
���T�1
W � 2TW� sin
 ��T�1

W sin
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which is a seesaw type mass matrix. As a matter of fact, the
analysis shows that the matrix MuM

y
u , for all the Yukawa

coupling constants of order one but different from each
other, and v1 � v2 � v3 � V, has the following set of
eigenvalues: two of order V2 associated with the two heavy
exotic up quarks, one of order v2

3 associated with the top
quark, and two seesaw eigenvalues of order �vivj=V�2 for
i, j � 1, 2, 3, related somehow to the quarks u and c in the
first two families.

Also notice from matrix (19) that the permutation sym-
metry u1 $ u2 imposed on the quarks of the first two
families (which implies among other things that hu1

11 �
hu1

12 � hu1 and hu1
21 � hu1

22 � hu2) conduces to a rank four
seesaw type mass matrix, with the zero eigenvalue asso-
ciated to the eigenstate �1;�1; 0; 0; 0�=

���
2
p

. The u1 $ u2

symmetry is thus related, in the context of this model, with
a massless up type quark, that we identify with the u quark
in the first family.

In what follows, and without loss of generality, we are
going to impose the condition v1 � v2 � v3 � v� V,
with the value for v fixed by the mass of the charged weak
gauge boson M2

W� � g3�v2
2 � v

2
3�=2 � g3v2 which im-

plies v � 123 GeV. Also, and in order to avoid prolifera-
tion of unnecessary parameters at this stage of the analysis,
we propose to start with the following simple mass matrix:

 M0u � hcv

0 0 1 1 1
0 0 1 1 1
0 0 h=hc 1 1
1 1 ��1 h��1=hc ��1

1 1 ��1 ��1 ��1

0
BBBBB@

1
CCCCCA; (20)

where � � v=V is a perturbation expansion parameter and
all the Yukawa coupling constants have been set equal to a
common value hc, except hu3 � h which controls the top
quark mass and hU4

11 � h which simplifies the analysis and
avoids democracy in the heavy sector.

The eigenvalues of M0uM
0y
u , neglecting terms of order �3

and higher are the following: a zero eigenvalue associated
to the eigenvector �1;�1; 0; 0; 0�=

���
2
p

that we identify with
the up quark u in the first family, a seesaw eigenvalue
4h2

cv2�2 related to the eigenvector

 
0; 	; 0;��h� hc�2�; �h� hc�2��=N �O��2�;

where 	 � 1� 2��h� hc�
2=�h� hc�

2 and N is a normal-
ization factor, both values associated with the charm quark
c in the second family; a tree-level value �h� hc�2v2=2�
O��2� related to the eigenvector 
0; 0; 2

���
2
p
;��h�

hc��; �h� 3hc���=N0 that we identify with the top quark
t in the third family. There are also two heavy values �h�
hc�

2V2 and �2hch� 4h2�V2 �O��2� associated with the
two heavy states.

Using for the top quark massmt � 175 GeV [22] we get
�h� hc� � 2, and using for the charm quark mass mc �
1:25 GeV [22] we set the following bounds for the 3-3-1
mass scale: 2:5 TeV � V � 100 TeV, for 0:1 � hc � 4, a
Yukawa coupling constant in the perturbative regime.

The consistency of the model requires us to find a
mechanism able to produce a mass for the up quark u in
the first family; a mass which is protected by the symmetry
u1 $ u2 between the quarks of the first two families. For
this purpose the radiative mechanism [24] can be imple-
mented by using the rich scalar sector of the model. As a
matter of fact, the two radiative diagrams depicted in Fig. 1
(one for U1 and another for U2) can be extracted from the
Lagrangian, where the mixing in the Higgs sector in the
diagram comes from a term in the scalar potential of the
form f�1�2�3.

The contribution from the two diagrams in Fig. 1 is finite
and it is

 

×

φ 0
2 φ 0

1

fv 3

ui
L

Ujc
L hU 4

jj V Uj
L ukc

L
hU 2

ij hu 1
jk

FIG. 1. One-loop diagram contributing to the radiative genera-
tion of the up quark mass. i, j, k � 1, 2 are indexes for the first
two families.

TABLE II. The Z�2 ! �ff couplings.

f g�f�2V g�f�2A

u1;2 �12�
4S2

W
3 � sin
���T�1

2W �
4TW

3 � cos
 1
2 sin
��T�1

2W cos

u3 �12�

4S2
W

3 � sin
���S�1
2W �

4TW
3 � cos
 1

2 sin
��S�1
2W cos


d1;2 �� 1
2�

2S2
W

3 � sin
���S�1
2W �

2TW
3 � cos
 � 1

2 sin
��S�1
2W cos


d3 �� 1
2�

2S2
W

3 � sin
���T�1
2W �

2TW
3 � cos
 � 1

2 sin
��T�1
2W cos


U1;2 �4S2
W

3 sin
���T�1
W �

4TW
3 � cos
 ��T�1

W cos

D

2S2
W

3 sin
���T�1
W �

2TW
3 � cos
 �T�1

W cos

e�, ��, �� �� 1

2� 2S2
W� sin
���T�1

2W � 2TW� cos
 � 1
2 sin
��T�1

2W cos

�e, ��, ��

1
2 sin
��S�1

2W cos
 1
2 sin
��S�1

2W cos

E�e , E�� , E�� 2S2

W sin
���T�1
W � 2TW� cos
 �T�1

W cos
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�Mu�ik � fv3Nik
M
2m2

1 ln�M2=m2
1� �M

2m2
2 ln�M2=m2

2�

�m2
1m

2
2 ln�m2

1=m
2
2��; (21)

where

 Nik �

M
P
j
hU2
ij h

U4
jj h

u1
jk


16�2�m2
2 �m

2
1��M

2 �m2
1��M

2 �m2
2�
;

with M � V the mass of the exotic up quark Uj in the
diagram, and m1 and m2 are the masses of �001 and �0

2,
respectively. To estimate the contribution given by this
diagram we assume the validity of the ‘‘extended survival
hypothesis’’ (ESH) [25] which in our case means m1 �
m2 � v� V, producing a value

 �Mu�ik � �
f� ln�

8�2

X2

j�1

hU2
ij h

U4
jj h

u1
jk ;

which for the symmetry u1 $ u2 mentioned above implies
a democratic type mass submatrix in the upper left 2� 2
mass matrix Mu. So, in order to produce a mass different
from zero for the up quark in the first family, this symmetry
must be slightly broken. The simplest way found to accom-
plish this breaking is to set hu1

21 � 1� ku and hU2
12 � 1�

ku, with ku a small parameter, and all the other Yukawa
coupling constants as in matrix (20) (this is what we mean
by ‘‘slightly broken’’), with ku related to the u quark mass
mu which thus becomes

 mu � �

�
�h� 1�

2

�
2
k2
uf� ln�=�8�2�;

a positive value ( ln� < 0), which for h � 1, V � 25 TeV,
and v ’ 123 GeV implies mu � 0:3k2

uf10�3. So, a value
of f � v (as implied by the ESH [25]) and ku � 0:2
implies mu � 1:5 MeV, without introducing a new mass
scale, neither a hierarchy in the Yukawa coupling constants
of the up quark sector of this particular model.

B. The down quark sector

The most general Yukawa terms for the down quark
sector, using the four Higgs scalars introduced in
Sec. II B, are

 L d
Y �

X2

i�1

Qi
L�3C

�X3

a�1

hdiad
ac
L � h

0D
i D

c
L

�

�Q3
L

X
��1;2;4

�	�

�
hD�Dc

L �
X3

a�1

hda�dacL

�
� H:c:

(22)

In the basis �d1; d2; d3; D� and using the discrete symmetry
Z2, the former expression produces a 4� 4 mass matrix
with two zero eigenvalues, one seesaw eigenvalue associ-
ated with the bottom quark b in the third family, and a
heavy eigenvalue of order V related with the exotic quark

D. Unfortunately, the Z2 symmetry used allows the right-
handed ordinary down quarks dacL to couple only to �1 in a
vertex where only Q3

L is present; as a consequence, any set
of radiative diagrams able to provide mass terms to the
down quarks in the first two families, ends up in a demo-
cratic type of mass submatrices in the �d1; d2; d3� subspace,
and the rank of the mass matrix cannot be changed.

The simplest way found to provide masses for the down
d and strange s quarks in the context of this model, is to add
new ingredients. We propose to add first an extra down
exotic quark D0, with quantum numbers D0L �
�3; 1;�1=3�, D0cL � �3

	; 1; 1=3� (which by the way do not
affect the anomaly cancellation in the model because it
belongs to a vectorlike representation). Also, and in order
to implement the seesaw mechanism for this new exotic
quark, we introduce a neutral scalar field �0

5 � �1; 1; 0�
with VEV h�0

5i � v5 � v (which does not contribute to
theW� mass). The Z2 charges of the new fields are all zero.

With the new fields, and in the basis �d1; d2; d3; D;D0�,
the following 5� 5 mass matrix is obtained:

 Md �

0 0 0 h0D1 v3 hD
0

13v3

0 0 0 h0D2 v3 hD
0

23v3

0 0 0 hD2 v2 hD
0

32v2

hd11v1 hd21v1 hd31v1 hD4 V hD
0

4 V
h1

5v5 h2
5v5 h3

5v5 h0M0 hM

0
BBBBB@

1
CCCCCA; (23)

where M0 � M are bare masses introduced by hand, that
we set of the order of V.

The matrix Md is again a seesaw type mass matrix, with
the product MdM

y
d having rank one. As the algebra shows,

for the particular case v2 � v3, the eigenvector related to
the zero eigenvalue is proportional to

 
�h0D2 h
D0
32 � h

D0
23h

D
2 �; �h

D0
13h

D
2 � h

0D
1 h

D0
32�; �h

0D
1 h

D0
23 � h

D0
13h

0D
2 ��:

In what follows and in order to simplify matters we are
going to set again v1 � v2 � v3 � v5 � v, start with all
the Yukawa coupling constants equal to a common value
hb and, in order to avoid democracy in the heavy sector, we
are going to assume conservation of the heavy flavor in the
�D;D0� basis, which means hD

0

4 � h0 � 0. With this as-
sumptions we get a Hermitian down quark mass matrix
with two zero eigenvalues related to the eigenvectors
�1;�1; 0; 0; 0�=

���
2
p

and �1; 1;�2; 0; 0�=
���
6
p

, that we identify
with the down d and strange s quarks of the first two
families. There is also for such a matrix a seesaw eigen-
value 6hbv� associated with the eigenvector
�1; 1; 1;�3�;�3��=

��������������������
3� 18�2
p

that we identify with the
bottom quark b in the third family. The other two eigen-
values of the matrix are of order V.

Notice from this analysis that mb=mc � 3hb=hc without
a hierarchy between hb and hc.

The matrix Md, with the constraints discussed in the
previous section, cannot either generate radiative masses
for the quarks in the first two families, due to the flavor
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symmetry d1 $ d2 $ d3 present. To generate masses for
them such a symmetry must be broken. Working in this
direction, let us partially break the symmetry, keeping at
this stage the d1 $ d2 symmetry. This is achieved by
putting all the Yukawa coupling constants equal to a com-
mon value hb, except hD

0

32 � h3
5 � hs � hd�1� ks�, where

ks is a number smaller than 1, related to the strange quark
mass (when ks � 0, ms � 0).

The new orthogonal mass matrix generated in this way is
a seesaw rank four mass matrix, with the zero eigenvalue
related to the eigenvector �1;�1; 0; 0; 0�=

���
2
p

associated
with the down quark d in the first family. The two seesaw
eigenvalues are

 hbv��6� 2ks � k
2
s �

�����������������������������������������������������������
36� 24ks � 8k2

s � 4k3
s � k

4
s

q
�=2;

producing mb � hbv��6� 2ks � k2
s=3� and ms �

2hbv�k2
s=3, which implies ks � 3

���������������
ms=mb

p
� 0:47 �

�hs=hb � 1�, where ms � 120 GeV and mb � 4:8 GeV
were used [22]. From the former analysis we get hs �
1:47hb without a hierarchy between hs and hb.

Finally, radiative diagrams able to produce nonzero
mass for the quark d in the first family, must be found.
For this purpose the two diagrams in Fig. 2 can be extracted
from the most general Lagrangian, where the scalar mixing
are coming from terms in the scalar potential of the form
�13��1�	1���3�	3� for the upper diagram and �35��3�	3��
��5�

	
5� for the lower one (two more diagrams using the u3

L
mass entries hu3v3 in the fermion propagator are of the
same order of the two diagrams depicted in Fig. 2, because
the charged Higgs scalars mixing are proportional to
�v1V).

In order to avoid hierarchies in the coupling constants
�13 � �35 � 1 is going to be used. Again, democracy in
the first two families is avoided by breaking the d1 $ d2

symmetry which is achieved by using h0D1 � 1� kd and
hd11 � 1� kd, with kd a small number of order 10�1,
related to the d quark mass by the relation

 md � �h2
bk

2
dv� ln���=4�2 � 2

h2
bk

2
d

h2
Uk

2
u
mu;

which for mu � 3 MeV and md � 6 MeV [22] implies
kd �

�������
1:5
p

ku.

C. The quark mixing matrix

For a model like the one studied here, the ordinary quark
mixing matrix Vmix becomes the upper left 3� 3 subma-
trix of the unitary 5� 5 matrix V � VuLV

dy
L , where VuL and

VdL are unitary matrices that diagonalize MuM
y
u and

MdM
y
d , respectively. As a consequence, Vmix fails to be

unitary, and special attention must be paid to the con-
straints coming from the experimental results which imply
minimal mixing for the known quarks.

From the experimental side, the known results show that
the 3� 3 quark mixing matrix, parametrized as

 Vmix �

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

0
@

1
A; (24)

is almost diagonal, with measured values given by [22]

 

0:9728� 0:0030 0:2257� 0:0021 �36:7� 4:7� � 10�4

0:230� 0:011 0:957� 0:095 �41:6� 0:6� � 10�3

�1:0� 0:1� � 10�2 �41:0� 3:0� � 10�3 >0:78

0
B@

1
CA

[notice that we are quoting the most uncertain direct mea-
sured values and not the values constrained by the unitary
of VCKM, the Cabibbo-Kobayashi-Maskawa (CKM) mix-
ing matrix [26] ].

One more complication in the frame of this model comes
from the fact that our mass matrices may be of a demo-
cratic type in the down quark sector but not in the up quark

sector, due to the three nonzero tree-level top quark mass
entries present in (22). Fortunately, the model is full of free
parameters and this last inconvenience can be circum-
vented by letting hU4

11 , hU4
12 , hU4

21 , and hU4
22 become free

parameters in the interval 0:1 � jhU4
ij j � 4, i, j � 1, 2.

Numerical analysis shows that hU4
12 � hU4

21 � 0 instead of
one is a more appropriate set of values to reproduce the

 

×

φ 0∗
3 φ 0

5

λ 35 v3 v5

di
L D c

L
hM D L dac

L
hD

i 3 ha
5

(a )

×

φ 0∗
3 φ 0

1

λ 13 v1 v3

di
L D c

L
V hD

4 D L dac
L

h D
i hd

a 1

(b)

FIG. 2. One-loop diagram contributing to the radiative genera-
tion of the down quark mass. As in the main text, i � 1, 2 and
a � 1, 2, 3 are family indexes.
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experimental values of Vmix; unfortunately, the analytical
results are not quite so neat for this last set of values, as
compared with the previous quoted results.

Analysis also shows that the violation of unitary in this
model is proportional to �2 and so, a large 3-3-1 scale,
should reproduce fairly well the measured experimental
results. Numerical analysis shows that, for hU4

12 � hU4
21 � 0,

hU4
11 � hU4

22 � 1 and V � 100 TeV, with the other parame-
ters as in the two previous sections, reproduce not only the
experimental quoted values for Vmix, but also all the unitary
constrained values of the VCKM mixing matrix. Lowering
down the 3-3-1 scale to 60 TeV, keeping all the other
parameters as above, reproduces also all the experimental
unitary constraints values of VCKM, except Vtd which turns
out to be �1:3� 0:3� � 10�2 (statistical error) instead of
the unitary value of �8:14� 0:32� 0:64� � 10�3 quoted
in Ref. [22], which predicts a � angle 1.2 larger in the
VudV	ub � VcdV

	
cb � VtdV

	
tb � 0 unitary triangle, result re-

flected already indirectly in the large B0 � �B0 mixing
measured at the B factories [22]. But such a large 3-3-1
scale is a price too high to be paid, and in the end renders a
model unable to be tested in the upcoming generation of
accelerators.

What we propose at this point is to perform a numerical
analysis using hU4

12 , hU4
21 , hU4

11 , hU4
22 , hb, ku, ks, and kd as

aleatory variables, with all the other Yukawa coupling
constants equal to one, except h which fixes the top quark
mass, hc which fixes the 3-3-1 mass scale, and hb which
fixes the bottom quark mass. The analysis is constrained by
the six quark mass values and the experimental measured
values of Vmix, but not by the values obtained by imposing
unitary in the VCKM mixing matrix. Then we look for the
predictions of the model.

The random numerical analysis using Mathematica
Monte Carlo subroutines showed that, at the 3-3-1 scale
of 10 TeV, the following set of parameters hU4

12 � hU4
21 �

0:26, hU4
11 � hU4

22 � �0:96, ku � �0:15, ks � 0:38, and
kd � 0:17 reproduces the values of the VCKM with unitary
constraints, except for three of them: Vtd � �1:1� 0:2� �
10�2, Vub � �45:8� 5� � 10�4, and Vcb � �40:2�
0:8� � 10�3 (all the errors are statistical), which implies
a large B0 � �B0 mixing coming from Vtd and a depletion of
the branching decay b! s� coming from Vcb; decay
described by the magnetic dipole transition which is pro-
portional to [27] Mb!s� � VcbV	cs, with a value of
�42:21� 0:10� 0:80� � 10�3 quoted for Vcb in Ref. [22].

D. The charged lepton sector

The most general Yukawa terms for the charged lepton
sector, without using the Z2 symmetry, are

 L l
Y �

X
��1;2;4

X
l;l0�e;�;�

LlL�	�C�hE�ll0 E
�
l0 � h

e�
ll0 l
0��L � H:c:;

(25)

which in the basis �e;�; �; Ee; E�; E�� and with the dis-

crete symmetry in Eq. (17) enforced, produce the following
6� 6 mass matrix:

 Me�

0 0 0 hE2
ee v2 hE2

e�v2 hE2
e� v2

0 0 0 hE2
�ev2 hE2

��v2 hE2
��v2

0 0 0 hE2
�e v2 hE2

��v2 hE2
��v2

he1
eev1 he1

e�v1 he1
e�v1 hE4

ee V hE4
3e�V hE4

e�

he1
�ev1 he1

��v1 he1
��v1 hE4

�eV hE4
��V hE4

��V
he1
�ev1 he1

��v1 he1
��v1 hE4

�eV hE4
��V hE4

��V

0
BBBBBBBB@

1
CCCCCCCCA
;

(26)

where again v1 � v2 � v3 � v� V is going to be used.
Assuming for simplicity conservation of the family lepton
number in the exotic sector (hE4

ll0 � hl�ll0 which does not
affect at all the main results), the matrix (26) still remains
with 21 Yukawa coupling constants and it is full of physical
possibilities. For example, if all the 21 Yukawa coupling
constants are different to each other (but of order one), we
have that MeM

y
e is a rank zero mass matrix, with three

eigenvalues of order V2 and three seesaw eigenvalues of
order v2�2.

To start the analysis, let us impose the symmetry e$
�$ �, make all the Yukawa coupling constants equal to a
common value h�, and use conservation of the family
lepton number in the exotic sector. With these assumptions
the following orthogonal mass matrix is obtained:

 M0e � h�v

0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
1 1 1 ��1 0 0
1 1 1 0 ��1 0
1 1 1 0 0 ��1

0
BBBBBBBB@

1
CCCCCCCCA
; (27)

which is a symmetric rank four seesaw mass matrix, with
the six eigenvalues given by

 hlv
0; 0; ��
�1 �

��������������������
36� ��2

p
�=2; V; V�; (28)

with the two zero eigenvalues related to the null subspace
�1;�1; 0; 0; 0; 0�=

���
2
p

and �1; 1;�2; 0; 0; 0�=
���
6
p

that we
identify in first approximation with the electron and the
muon states (resembling the down quark sector).
Equations (27) and (28) imply that the � lepton may be
identified approximately with the vector �1; 1; 1; 0; 0; 0�=���

3
p

, up to mixing with the heavy exotic leptons [the exact
eigenvector is �1; 1; 1;�3�;�3�;�3��=

��������������������
3� 27�2
p

�, with
a mass value �m� � 9h�v� � 4:5h�mc=hu, which for
m� � 1:777 GeV implies the relationship hu � 3h�.

The next step is to break the e$ �$ � symmetry but
just in the � sector, keeping for a while the e$ � sym-
metry. This is simply done by letting hE2

�� � he1
�� � h� � 1

but of order one, with all the other Yukawa coupling
constants as in Eq. (27). We thus get a rank five orthogonal
mass matrix, with two seesaw eigenvalues, and a zero mass
eigenstate related to the eigenvector �1;�1; 0; 0; 0; 0�=

���
2
p
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that we identify with the electron state. The two seesaw
eigenvalues, neglecting terms of O��2�, are given by

 

h�v�
2

�
8�

�h�
h�

�
2
�

�
2�

h�
h�

�
��������������������������������������������������������
12� 4�h�=h�� � �h�=h��2

q ��
: (29)

Using for m� � 1777 GeV and m� � 107:7 MeV [22] we
get h� � 2:87h�, which in turn implies m� � 15:3h�v� �
7:6h�mc=hu.

Again, radiative corrections able to generate masses to
the electron must be found. For that purpose the three
diagrams in Fig. 3 can be extracted from the Lagrangian
(one for each exotic charged lepton), where the mixing in
the Higgs sector comes from a term in the scalar potential
of the form �12��1�

	
1���2�

	
2�. There are two more dia-

grams coming from the terms f�1�2�3 and f0�1�3�4

which are proportional to v3�f0 � f� that can be neglected
under the assumption f0 � f � v.

The contribution given by this diagram, again under the
assumption of validity of the ESH [25] is

 �M0e�ll0 �
�12� ln�

8�2

X
l0
hE2
ll0 h

e1
ll00 ;

that for the particular values of the Yukawa coupling con-
stants in matrix (27) generate a democratic mass submatrix
in the 2� 2 upper left corner of M0e. Again, the alternative
we have at hand is to softly break the e$ � symmetry
present in the mass matrix (27). This is achieved by letting
hE2
ee � 1� ke and he1

ee � 1� ke, with ke � 10�1 as before.
The evaluation of the diagram in Fig. 3 gives

 me � �
�12v� ln�k2

e

4�2 ;

which for me � 0:51 MeV [22], �12 � 1, V � 25 TeV,
and v � 124 GeV, produces a value of ke � 0:08, in
agreement with our original assumption.

E. The neutral lepton sector

With the particle content introduced so far there are no
tree-level mass terms for the neutrinos. Masses for the
neutral lepton sector are obtained only by enlarging the

model with extra fields, which may implement one or
several of the following mechanisms:

1. Tree-level masses

In the context of the model studied here, tree-level
masses for neutrinos can be generated only by introducing
scalar fields belonging to irrep f6	g of SU�3�L. These
scalars can be written as the 3� 3 symmetric tensor

 
f�;�g �

�4=3�X

11 
�1=3�X
12 
�1=3�X

13


2=3�X
22 
2=3�X

23


2=3�X
33

0
BB@

1
CCA� �1; 6	; X�;

(30)

where the upper symbol stands for the electric charge.
Clearly, a VEV of the form h
11�1; 6	; 4=3�0i �! is able
to produce the following Majorana mass terms: h�l0l!�

0
l0�

0
lL.

If so, h�l0l must become very small numbers, or ! must be
either a new very small mass scale in order to cope with the
experimental constraints [2], implying for the model a
hierarchy in the Yukawa coupling constants, or the intro-
duction of a new mass scale for the model.

2. Seesaw masses

The seesaw mechanism can be implemented in the
model by adding a singlet, electrically neutral Weyl spinor
N0
L � �1; 1; 0� with Z2 charge 1, which picks up a tree-level

mass value V0N0
LN

0
L with V 0 an undetermined mass scale.

Then, a Yukawa Lagrangian of the form

 

X
l

hlLlL�
	
3N

0
L

will produce a seesaw type mass matrix

 M� �

0 0 0 hev3

0 0 0 h�v3

0 0 0 h�v3

hev3 h�v3 h�v3 V 0

0
BBB@

1
CCCA ; (31)

which has two nonzero tree-level mass eigenvalues V 0 ������������������������������������������������������
V 02 � 4�h2

e � h2
� � h2

��v2
3

q
, one of them of the seesaw

type and proportional to v2
3=V

0 which for a convenient
larger value of V 0 (again a new mass scale) produces a
small neutrino mass. Of course, this mechanism alone is
not enough to explain the spectrum because two neutrinos
will remain massless, something which is ruled out by
experimental results [2].

3. Radiative masses

Radiative Majorana masses for the neutrinos are gener-
ated when a new scalar triplet �5 � ��

��
5 ; ��5 ; �

0�
5 � �

�1; 3; 4=3� is introduced, with a Z2 charge equal to zero
(notice that h�5i � 0). This new scalar triplet couple to the
spin 1=2 leptons via a term in the Lagrangian of the form

 

φ 0
2 φ 0

1

λ 12 v1 v2

l−
L

E +
l L hE 4

l l V E −
l L l +

L
hE 2

ll he1
l l

FIG. 3. One-loop diagram contributing to the radiative genera-
tion of the electron mass.

SALAZAR, PONCE, AND GUTIÉRREZ PHYSICAL REVIEW D 75, 075016 (2007)

075016-10



 

L �
X
ll0
h�ll0LlLLl0L�5

�
X
ll0
h�ll0 
�

��
5 �l

�
L E
�
l0L � l

0�
L E

�
lL�

���5 �E
�
lL�l0L � E

�
l0L�lL�

��0�5 ��lLl
0�
L � �l0Ll

�
L �� ;

for l � l0 � e, �, �.
Using �5, the following terms in the scalar potential

Lagrangian are allowed by the Z2 discrete symmetry:

 �51��5:�	1���3:�	2�; �52��5:�	1���3:�	4�;

�53��5:�
	
2���3:�

	
1�; �54��5:�

	
4���3:�

	
1� :

The former expressions allow us to draw the radiative
diagram depicted in Fig. 4, which is the only diagram
available for the radiative mechanism in the neutral lepton
sector.

Notice, by the way, that this diagram is already a second
order radiative diagram because its charged lepton mass
insertion is already a first order radiative correction (see the
diagram in Fig. 3) and its value is smaller than the value
produced by any other radiative diagram already studied in
this paper. Attempts to draw a diagram with the exotic
heavy leptons in the fermion propagator became fruitless,
due to the Z2 symmetry introduced in the analysis [a term
like ��5:�	2���3:�	4� is not Z2 allowed].

4. The Zee-Babu mechanism

Introducing a new SU�3�L singlet, electrically charged
scalar, as done, for example, in Ref. [15], the two loop
diagram of the Zee-Babu mechanism [28] can be included
in the context of this model.

Without going into further details, let us say that the
neutrino mass spectrum is outside the scope of the present
analysis.

IV. GAUGE COUPLING UNIFICATION

In a field theory, the coupling constants are defined as
effective values, which are energy scale dependent accord-
ing to the renormalization group equation. In the modified
minimal substraction scheme [29], which we adopt in what
follows, the one-loop renormalization group equation

(RGE) for � � g2=4� is given by

 �
d�
d�
’ �b�2; (32)

where � is the energy at which the coupling constant � is
evaluated. The constant value b, called the beta function, is
completely determined by the particle content of the model
by

 2�b �
11

6
C�vectors� �

2

6
C�fermions� �

1

6
C�scalars�;

where C�. . .� is the group theoretical index of the repre-
sentation inside the parentheses (we are assuming Weyl
fermions and complex scalar fields [20]).

For the energy interval mZ < �<MG, the one-loop
solutions to the RGE (32) for the three SM gauge coupling
constants are

 ��1
i �mZ� �

��1
i �MG�

ci
� bi�F;H� ln

�
MG

mZ

�
; (33)

where i � Y, 2, c refer to the coupling constants of U�1�Y ,
SU�2�L, and SU�3�c, respectively, with the beta functions
given by

 2�
bY
b2

bc

0
@

1
A � 0

22
3

11

0
@

1
A�

20
9
4
3
4
3

0
B@

1
CAF�

1
6
1
6
0

0
B@

1
CAH; (34)

where F is the number of families contributing to the beta
functions andH is the number of low energy SU�2�L scalar
field doublets (H � 1 for the SM). In Eq. (33) the constants
ci are group theoretical factors which depend upon the
embedding of the SM factors into a covering group, and
warrant the same normalization for the covering group G
and for the three group factors in the SM. For example, if
the covering group is SU�5�, then �cY; c2; cc� � �3=5; 1; 1�,
but they are different for other covering groups (see, for
example, the Table in Ref. [30]).

The three running coupling constants �i in Eq. (33) may
or may not converge into a single energy GUT scale MG; if
they do, then �i�MG� � � is a constant independent of the
index i. Now, for a given embedding into a fixed covering
group, the ci values are fixed, and if we use for F � 3 (an
experimental fact) and H � 1 as in the SM, then Eqs. (33)
constitute a set of three equations with two unknowns, �
and MG, which may or may not have a consistent solution
(more equations than unknowns).

The inputs to be used in Eq. (33) for ��1
i �mZ� are

calculated from the experimental results [22]
 

��1
em �mZ� � ��1

Y �mZ� � �
�1
2 �mZ� � 127:918� 0:018

sin2
W�mZ� � 1� ��1
Y �mZ��em�mZ�

� 0:231 20� 0:000 15

�c�mZ� � 0:1213� 0:0018;

 

φ +
5 φ −

1

λ 54 V v3

νlL l −
L Rad l +

L νl Lhν
ll he 1

l l

FIG. 4. Loop diagrams contributing to the radiative generation
of Majorana masses for the neutrinos.
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which imply ��1
Y �mZ� � 98:343� 0:036, ��1

2 �mZ� �
29:575� 0:054, and ��1

c �mZ� � 8:244� 0:122.
It is a well known fact that the model based on the

nonsupersymmetric SU�5� group of Georgi and Glashow
[21] lacks of gauge coupling unification because MG cal-
culated from the RGE is not unique in the range
1014 GeV � MG � 1016 GeV, predicting for the proton
lifetime �p a value between 2:5� 1028 yr and 1:6� 1030

yr, values that are ruled out by experimental measurements
[31]. If we introduce one more free parameters in the
solutions to the RGE as, for example, letting H become a
free integer number, then we now have three unknowns
with three equations that always have a mathematical
solution (not necessarily with physical meaning). Doing
that, in Eqs. (33) we find that for H � 7 (seven Higgs
doublets) we get the unique solution MG � 1013 GeV�
mZ which, although a physical solution, is ruled out by the
proton lifetime. So, if we still want unification, new phys-
ics at an intermediate mass scaleMV such thatmZ <MV <
MG must exist—SUSY being a popular candidate for that
purpose [31].

The question now is whether or not the 3-3-1 model
under consideration in this paper introduces an intermedi-
ate mass scale MV such that it achieves proper gauge
coupling unification, being an alternative for SUSY. To
answer this question using SU�6� as the covering group
as presented in Sec. II D, we must solve the following set of
seven equations:

 ��1
i �mZ� �

��1
i �MV�

ci
� bi�F;H� ln

�
MV

mZ

�
;

��1
j �MV� �

��1

c0j
� b0j ln

�
MG

MV

�
;

��1
Y �MV� � ��1

1 �MV� � ��1
3 �MV�=3;

(35)

where the last equation is just the matching conditions in
Eq. (9), and i � Y, 2, c and j � 1, 3, c for the SM and the
3-3-1 model, respectively. The constants ci are
�cY; c2; c3� � �3=5; 1; 1� as before, and �c01; c

0
3; c
0
c� �

�3=4; 1; 1�, with the value c01 � 3=4 calculated from the
electroweak mixing angle in Eq. (3). b0j stand for the beta
functions for the 3-3-1 model under study here.

Equations (35) constitute a set of seven equations with
seven unknowns �, �j�MV�, MV , MG, and
�Y�MV� 
�2�MV� � �3�MV� according to the matching
conditions]. There is always a mathematical solution to
this set of equations, but we want only physical solutions,
that is solutions such that mZ <MV <MG.

The new beta functions calculated with the particle
content introduced in Secs. II A, II B, II C, and III B (it
includes the new exotic down quark D0) are

 2�
b01
b03
b0c

0
@

1
A � 0� 12� 11=9

11� 4� 4=6
11� 20=3� 0

0
@

1
A � �119=9

19=3
13=3

0
@

1
A ; (36)

where in the middle term we have separated the contribu-
tions coming from the gauge bosons, the fermion fields,
and the scalar fields in that order. When we introduce these
values in Eq. (35) we do not obtain a physical solution in
the sense that we get mZ <MG <MV .

Of course, if there are more particles at the 3-3-1 mass
scale then the beta functions given in Eqs. (36) are not the
full story. In particular, we know from Sec. III D that at
least new Higgs scalars are needed in order to generate a
consistent lepton mass spectrum, so let us allow the pres-
ence in our model of the following Higgs scalar multiplets
at the 3-3-1 mass scale: N�1�X SU�3�L singlets [with U�1�X
hypercharge equal to X], N�3�X triplets (color singlets), ~N�3�X
leptoquark triplets (color triplets) andN�6�X sextuplets (color
singlets). These new particles contribute to the beta func-
tions b0j with the extra values

 2�
b01
b03
b0c

0
@

1
A � �

P
X
X2f�N�6�X ; ~N�3�X ; N

�3�
X ; N

�0�
X �

1
6

P
X
�N�3�X � 3 ~N�3�X � 5N�6�X �P

X

~N�3�X =2

0
BBBBBB@

1
CCCCCCA ; (37)

where the function f�. . .� is f�N�6�X ; ~N�3�X ; N
�3�
X ; N

�0�
X � �

�2N�6�X � 3 ~N�3�X � N
�3�
X � N

�0�
X =3�; with this new SU�3�L

multiplets contributing or not to the beta functions bi of
the SM factor groups, in agreement with the extended
survival hypothesis [25] (for example, a sextuplet with a
VEV h
11�1; 6	; 4=3�i �! contributes as an SU�2�L dou-
blet in bY and b2, etc.).

The calculation shows that for the following set of extra
scalar fields which do not develop VEV: N�0�X � 0, N�3�1=3 �

1, N�3�
�2=3 � 1, ~N�3�X � 0 N�3�0 � 8, and N�6�0 � 15, the set of

equations in (37) has the physical solution

 MV � 2:0 TeV<MG � 3:0� 107 GeV; (38)

which provides with a convenient 3-3-1 mass scale, and a
low unification GUT mass scale, as it is shown in Fig. 5.

 

FIG. 5. Solutions to the RGE for the 3-3-1 model. For the
meaning of N�r�X see the main text.

SALAZAR, PONCE, AND GUTIÉRREZ PHYSICAL REVIEW D 75, 075016 (2007)

075016-12



But, is this low GUT scale in conflict with proton decay?
The answer is no, because due to the Z2 symmetry our
unifying group is SU�6� � Z2. Then we must assign to
each irrep of SU�6� in Eq. (9) a given Z2 value in accord
with the Z2 value assigned to the 3-3-1 states in Eq. (17).
For example, if we assign to one of the four f6	g �
fDc;�N0

E; E
�; N0c

E gL states in (9) a Z2 value equal to 1,
then we can perfectly identify Dc

L with one of the ordinary
down quarks �dc; sc; bc�L, but then ��N0

E; E
�; N0c

E �L can-
not correspond to ���0

l ; l
�; �0c

l �L because all of them have
a Z2 value equal to zero; and the same for the other way
around. As a consequence, the down quark dcL cannot live
together with ��e; e��L in the same SU�6� � Z2 irrep, and
the proton cannot decay to light states belonging to the
weak basis. The decay can of course occur via the mixing
of ordinary 3-3-1 states with the extra new states in SU�6�,
but such a mixing is of the order of �MV=MG�

2 which is a
very small value. Of course, this argument is valid as far as
we can find a mechanism able to produce GUT scale
masses for all the extra states, but such analysis is outside
the present work.

V. CONSTRAINTS ON THE PARAMETERS

In this section we are going to set bounds on the mass of
the new neutral gauge boson Z�2 , and its mixing angle with
the ordinary neutral gauge boson Z�1 . We also are going to
set constraints coming from unitary violation of the quark
mixing matrix and the possible existence of flavor chang-
ing neutral current (FCNC) effects.

A. Bounds on MZ2
and �.

The diagonalizing of the quark mass matrices presented
in Secs. III A and III B allow us to identify the mass
eigenstates as a function of the flavor states. This informa-
tion is going to be used next, in order to set proper bounds
for sin
, the mixing angle between the two neutral cur-
rents, andMZ2

, the mass of the new neutral gauge boson. In
the analysis we are going to include the c and b quark
couplings to Z�1 , values measured with good accuracy at
the Z pole from CERN e�e� collider (LEP) [22].
Experimental measurements from the SLAC Linear
Collider (SLC), and atomic parity violation are also going
to be taken into account. The set of experimental con-
straints used is presented in Table III.

The expression for the partial decay width for Z�1 ! f �f,
including only the electroweak and QCD virtual correc-
tions, is
 

��Z�1 ! f �f� �
NCGFM3

Z1

6�
���
2
p �

�
3�� �3

2

g�f�1V�2

� �3
g�f�1A�
2

�
�1� �f�REWRQCD; (39)

where f is an ordinary SM fermion, Z�1 is the physical

gauge boson observed at LEP,NC � 1 for leptons while for
quarks NC � 3�1� �s=�� 1:405�2

s=�2 � 12:77�3
s=�3�,

where the 3 is due to color and the factor in parenthesis
represents the universal part of the QCD corrections for
massless quarks (for fermion mass effects and further QCD
corrections which are different for vector and axial-vector
partial widths, see Ref. [32]); REW are the electroweak
corrections which include the leading order QED correc-
tions given by RQED � 1� 3�=�4��. RQCD are further
QCD corrections (for a comprehensive review, see
Ref. [33] and references therein), and � ������������������������������

1� 4m2
f=M

2
Z1

q
is a kinematic factor which can be taken

equal to 1 for all the SM fermions except for the bottom
quark. The factor �f contains the one-loop vertex contri-
bution which is negligible for all fermion fields except for
the bottom quark for which the contribution coming from
the top quark at the one-loop vertex radiative correction is
parametrized as �b � 10�2
1=5�m2

t =�2M2
Z1
�� [34].

The � parameter can be expanded as � � 1� ��0 �

��V where the oblique correction ��0 is given by ��0 �

3GFm
2
t =�8�

2
���
2
p
�, and ��V is the tree-level contribution

due to the �Z� � Z0��mixing which can be parametrized as
��V � �M

2
Z2
=M2

Z1
� 1�sin2
. Finally, g�f�1V and g�f�1A

are the coupling constants of the physical Z�1 field with
ordinary fermions which for this model are listed in
Table I.

Notice that in our expression for ��Z�1 ! f �f� in
Eq. (39), the 3-3-1 contributions are kept at tree level,
which as a first approximation is correct due to the fact
that ��0�331� � 0, since only SU�2�L Higgs scalar singlets
and doublets develop VEV [35].

In what follows we are going to use the experimental
values[22]:MZ1

�91:188 GeV,mt�174:3 GeV,�s�mZ��

0:1192, ��mZ�
�1�127:938, and sin
2

W � 0:2333. The ex-
perimental values are introduced using the definitions
R	��Z�		�=�Z�hadrons� for 	�e, �, �, b, c, s, u, d.

TABLE III. Experimental data and SM values for some pa-
rameters related with neutral currents.

Experimental results SM

�Z (GeV) 2:4952� 0:0023 2:4966� 0:0016
��had� (GeV) 1:7444� 0:0020 1:7429� 0:0015
��l�l�� (MeV) 83:984� 0:086 84:019� 0:027
��inv� (MeV) 499:0� 1:5 501:81� 0:13
��b!s��

��b!Xe�� 3:39�0:62
�0:54 � 10�3 �3:23� 0:09� � 10�3

Re 20:804� 0:050 20:744� 0:018
R� 20:785� 0:033 20:744� 0:018
R� 20:764� 0:045 20:790� 0:018
Rb 0:216 38� 0:000 66 0:215 69� 0:000 16
Rc 0:1720� 0:0030 0:172 30� 0:000 07
QW�Cs� �72:65� 0:28� 0:34 �73:10� 0:03
QW�Tl� �116:6� 3:7 �116:81� 0:04
MZ1

(GeV) 91:1872� 0:0021 91:1870� 0:0021

PHENOMENOLOGY OF THE . . . PHYSICAL REVIEW D 75, 075016 (2007)

075016-13



As a first result notice from Table I that our model
predicts Re � R� � R�, in agreement with the experimen-
tal results in Table III, independent of any flavor mixing at
tree level.

The effective weak charge in atomic parity violation,
QW , can be expressed as a function of the number of
protons (Z) and the number of neutrons (N) in the atomic
nucleus in the form

 QW � �2
�2Z� N�c1u � �Z� 2N�c1d� ; (40)

where c1q � 2g�e�1Ag�q�1V . The theoretical value for QW

for the cesium atom is given by [36] QW�
133
55 Cs� �

�73:09� 0:04� �QW , where the contribution of new
physics is included in �QW which can be written as [37]

 �QW �

��
1� 4

S4
W

1� 2S2
W

�
Z� N

�
��V ��Q0W: (41)

The term �Q0W is model dependent and it can be ob-
tained for our model by using g�e�iA and g�q�iV , i � 1, 2,
from Tables I and II. The value we obtain is
 

��Q0W � �9:16Z� 4:94N� sin


� �4:63Z� 3:74N�
M2
Z1

M2
Z2

: (42)

The discrepancy between the SM and the experimental
data for �QW is given by [38]

 �QW � Qexp
W �Q

SM
W � 0:45� 0:48; (43)

which is 1:1� away from the SM predictions.
Introducing the expressions for Z pole observable in

Eq. (39), with �QW in terms of new physics in Eq. (41)
and using experimental data from LEP, SLC and atomic
parity violation (see Table III), we do a 
2 fit and we find
the best allowed region in the (
�MZ2

) plane at 95%
confidence level (C.L.). In Fig. 6 we display this region
which gives us the constraints

 � 0:0026 � 
 � �0:0006;

2 TeV � MZ2
� 100 TeV;

(44)

with a central value at about 20 TeV.
As we can see the mass of the new neutral gauge boson

is compatible with the bound obtained in p �p collisions at
the Fermilab Tevatron [39]. From our analysis we can see
that MZ2

peaks at a finite value larger than 100 TeV when
for j
j ! 0, which still copes with the experimental con-
straints on the � parameter.

B. Bounds from unitary violation of the quark mixing
matrix

The seesaw mass mixing matrices for quarks and leptons
presented in Eqs. (19), (23), and (26) are not a consequence
of the particular discrete Z2 symmetry introduced in
Eq. (17); a straightforward calculation shows that any

discrete symmetry will reproduce the same mass matrices
as far as we impose the following constraints:

(i) To have pure seesaw mass matrices in the down, and
Charged Lepton sectors.

(ii) To have a tree-level mass entry for the top quark
mass in the third family, plus seesaw entries for the
other two families in the up quark sector.

(iii) To work with the nonminimal set of five Higgs
scalars as introduced in the main text.

As a consequence of the mixing between ordinary and
exotic quarks, violation of unitary in the quark mixing
matrix appears as discussed already in Sec. III C. This
violation must be compatible with the experimental con-
straints of the mixing parameters as discussed in Sec. 11 of
Ref. [22].

For the model discussed here, the structure of the quark
mass matrices implies a mixing proportional to cos� (with
� � v=V as before) for the known quarks of each sector,
which, when combined in the Vmix entries, gives a mixing
of the form cos2� � 1� sin2� � 1� �2, being �2 pro-
portional to the violation of unitary in the model. Taking
for V � MZ2

� 2 TeV [the lower bound in Eq. (44)], we
obtain �2 � 3:2� 10�3, which is above the limit of the
allowed unitary violation of Vmix [22]. As discussed in
Sec. III C, a value of V � 10 TeV for the 3-3-1 mass scale
is safe as far as the present violation of unitary in Vmix is
concerned.

C. FCNC processes

In a model like this, with four scalar triplets and mixing
of ordinary with exotic fermion fields, we should worry
about possible FCNC effects which may come either from
the scalar sector, from the gauge boson sector, or from the
unitary violation of Vmix.

First, notice that due to our Z2 symmetry, FCNC coming
from the scalar sector are not present at tree level because
each flavor couples only to a single scalar triplet. But
FCNC effects can occur in J�;L�Z� and J�;L�Z0� in
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FIG. 6 (color online). Contour plot displaying the allowed
region for 
 vs MZ2

at 95% C.L.
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Eqs. (13) and (14), respectively, due to the mixing of
ordinary and heavy exotic fermion fields [notice from
Eq. (13) that J�;L�Z� only includes as active quarks the
three ordinary up and down-type quarks].

The stringiest constraints in FCNC in the quark sector
came from the transition d$ s, and the best place to look
for them is in the (K0

L � K
0
S) mass difference, which may

get contributions from the exchange of Z�1 and Z�2 . The
contribution from Z�1 is proportional to jV	usVudj2 �
jV	usVudj2CKM � 4�4 (where jV	usVudj2CKM refers to the
CKM). Then, the mixing of light and heavy quarks implies
extra FCNC effects proportional to 4�4, which for V �
2 TeV implies a contribution to new FCNC effects above
the allowed limits. So again, the 3-3-1 mass scale V must
be raised. Taking V � 10 TeV as discussed before, FCNC
effects are now of the order of 10�7, value to be compared
with the experimental bound m�KL� �m�Ks� �
3:48� 0:006� 10�12 MeV [22], given that 4�4 <
0:006=3:48, which means that in the context of this model
there is room in the experimental uncertainties to include
new FCNC effects, coming from the mixing between
ordinary and exotic quarks.

Now, the FCNC contributions from Z�2 are safe, because
they are not only constrained by the � parameter, but also
by the mixing angle �0:0026 � 
 � �0:0006 as given in
Eq. (44).

VI. CONCLUSIONS

During the last decade several 3-3-1 models for one [40]
and three families have been analyzed in the literature, the
most popular one being the original Pisano-Pleitez-
Frampton model [4]. Four other three-family 3-3-1 models
are presented in Refs. [5–7], one of them being the subject
of study of this paper. The systematic analysis presented in
Refs. [8,9] shows that there are in fact an infinite number of
models based on the 3-3-1 local gauge structure, most of
them including particles with exotic electric charges. But
the number of models with particles without exotic electric
charges are just a few [7,9].

In this paper we have carried out a systematic study of a
3-3-1 model that we have called a model with ‘‘exotic
charged leptons.’’ In concrete, we have calculated for the
first time its charged and neutral currents (see Tables I and
II), we have embedded the structure into SU�6� as a cover-
ing group, looked for unification possibilities, studied the
gauge boson and fermion mass spectrum, and finally, by
using a variety of experimental results, we have set con-
straints in several parameters of the model.

In our analysis we have done a detailed study of the
conditions that produce a consistent charged fermion mass
spectrum, a subject not even touched in the original paper
[6], except for a brief discussion of the neutrino sector done
in Ref. [15]. First we have shown that a set of four Higgs
scalars is enough to properly break the symmetry produc-
ing a consistent mass spectrum in the gauge boson sector.

Then, the introduction of an appropriate anomaly-free
discrete Z2 symmetry plus an extra exotic down quark
and a singlet scalar field, allow the construction of an
appealing mass spectrum in the electrically charged fer-
mion sector, without hierarchies in the Yukawa coupling
constants. In particular we have carried a program for the
quark sector in which the four exotic quarks get heavy
masses at the TeV scale, the top quark gets a tree-level
mass at the electroweak scale, then the bottom, charm, and
strange quarks get seesaw masses, and finally, the two
quarks in the first family get radiative masses; the former
without introducing strong hierarchies in the Yukawa cou-
pling constants, neither new mass scales in the model.

The Higgs sector used in order to break the symmetry
and to provide with masses to the charged fermions, plus
whatever extra scalar fields could be needed to explain the
masses and oscillations of the neutral lepton sector, renders
the model with a quite complicated scalar potential, with
several trilinear couplings possible (as, for example,
f�1�2�3 already used to give mass to the u quark in the
first family). These couplings are able to generate VEV for
all the fields that feel them [41]. As a consequence, the
pattern of spontaneous symmetry breaking becomes un-
stable and the minimization of the scalar potential may
become a hopeless task. But this subject is far beyond the
purpose of the present analysis.

We have also embedded the model into the covering
group SU�6� 
 SU�5� and studied the conditions for gauge
coupling unification at a scale MG � 3� 107 GeV. The
analysis has shown that a physical �mZ <MV <MG� one-
loop solution to the RGE can be achieved at the expense of
introducing extra scalar fields at the intermediate energy
scale MV .

The fact that the RGE produces the same 3-3-1 mass
scale as the lower limit obtained in the phenomenological
analysis presented in Sec. V [compare Eqs. (38) and (44)]
is neither accidental nor fortuitous. As a matter of fact, the
extra scalar fields contributing to the beta functions in
Eq. (37), were just introduced for doing this job. A differ-
ent set of scalar fields will produce either a different 3-3-1
and GUT mass scales, not unification at all, or either
unphysical solutions. Even though our analysis may look
a little arbitrary, we emphasize that we made the decision
to deal only with the most obscure part of any local gauge
theory: the Higgs and scalar sectors.

Without looking at the neutral lepton sector, we may
say that there are in this model only two mass scales: the
3-3-1 scale V � 2 TeV, and the electroweak scale
v � 102 GeV. Notice also that the discrete symmetry Z2

introduced in the main text has the effect that each quark
flavor gains a mass only from one Higgs field, which
suppresses possible FCNC effects.

What is lacking in this paper is a detailed analysis of
neutrino masses and oscillations. We could say that the
study presented in Ref. [15] covers this part of the analysis,
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but unfortunately this is not the case. Comparing: the
authors in Ref. [15] use a different set of scalar fields,
with a total set of just four scalar triplets, one of them being
�5 in Sec. III E 3 which generates one-loop radiative
Majorana masses, using the exotic heavy leptons as the
seed; including also one electrically double charged Higgs
scalar, singlet under SU�3�L, which turns on the Zee-Babu
mechanism. In their analysis they do not use a discrete
symmetry, and they work under the assumption that the
ordinary leptons (e, �, and �) have tree-level diagonal
mass terms. Clearly, most of their assumptions do not fit
in our picture. So, a detailed study of the neutral lepton
sector must be done in the context of the model presented
in this paper. Neutrino physics in this model is very rich
and it deserves further attention.

Similar studies to the one presented here but for the
model with ‘‘right-handed neutrinos’’ [5], have been
done in Refs. [13,18]. Contrary to what is obtained here,
the paper in Ref. [13] shows that for the model with ‘‘right-
handed neutrinos,’’ the seesaw mechanism for the up and
down quark sectors can be implemented without including
extra quark fields. But the model here does not need extra
exotic electrons, which is the case for the model with ‘‘-
right-handed neutrinos’’ [18]. Besides, the two models are
embedded into SU�6� as the common covering group, with
extra scalar fields added in such a way that unification of
the three gauge coupling constants is achieved at a rela-
tively low energy scale, without conflict with proton decay
bounds. Also, similar results for the bounds of the 3-3-1
mass scale V and mixing angle 
 [18] were found.

We have presented in this paper, original results com-
pared with previous analysis [6,15]. First and most impor-
tant, our Higgs sector and VEV are different from the ones
introduced in the original paper [6]. They imply different

mass matrices for gauge bosons and fermion fields, with
quite a different phenomenology. The most important fact
about our Higgs sector is that it allows for a consistent
charged fermion mass spectrum, without a strong hierarchy
between the Yukawa coupling constants. Besides, it allows
for the first time in the context of the model, the identi-
fication of the quark mass eigenstates, as a function of the
weak states. Using that information, a consistent phenome-
nological analysis which sets reliable bounds on new phys-
ics coming from heavy neutral currents can be done.

As far as the particle spectrum is concerned, let us say
that in the scalar sector, and according to the ESH [25], at
least one more SU�2�L neutral singlet and a second Higgs
doublet should show up at the electroweak scale, with all
the other Higgs scalars getting a mass at the TeV scale (the
neutral singlet does not couple to the SM fermions at the
tree level). For the charged fermions, the four exotic quarks
(two up and two down) and the three exotic electrons
should get masses at the 3-3-1 scale (2 TeV � V �
10 TeV). Some of these particles should show up at the
forthcoming LHC facilities.
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Note added in proof.—During the time period of revi-
sion of the original manuscript, a paper by Ponce and
Zapata [42] appeared, addressing in full detail the lepton
sector of the model studied here. In particular, a set of
constraints were imposed in the parameters of the lepton
sector such that lepton FCNC and neutrinoless double beta
decay became suppressed below the experimental bounds.
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