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We reconsider thermal production of gravitinos in the early universe, adding to previously considered
2! 2 gauge scatterings: (a) production via 1! 2 decays, allowed by thermal masses: this is the main
new effect, (b) the effect of the top Yukawa coupling, and (c) a proper treatment of the reheating process.
Our final result behaves physically (larger couplings give a larger rate) and is twice larger than previous
results, implying e.g. a constraint on the reheating temperature that is twice as strong. Accessory results
about (supersymmetric) theories at finite temperature and gravitino couplings might have some
pertinence.
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I. INTRODUCTION

We compute the abundance of gravitinos thermally pro-
duced in the early universe at temperature T. In the usual
scenario where sparticles around the weak scale keep it
naturally small, this process implies an important con-
straint on the maximal reheating temperature, possibly
saturated if such gravitinos are all observed dark matter
(DM). If instead sparticles exist far above the weak scale,
gravitino production is one of their very few experimental
implications that survive.

The gravitino production thermal rate was previously
computed in Refs. [1,2] at leading order in the gauge
couplings g3 (and g2, gY in Ref. [3]; we will add effects
due the top Yukawa coupling, which also has a sizeable
value). This roughly amounts to compute 2! 2 scatterings
(like gluon� gluon! gluon! gluino� gravitino), with
thermal effects ignored everywhere expect in the propa-
gator of the virtual intermediate gluon: a massless gluon
exchanged in the t channel gives an infinite cross section
because it mediates a long-range Coulomb-like force; the
resulting logarithmic divergence is cut off by the thermal
mass of the gluon, m� gT, leaving a lnT=m. The explicit
expression for the number of scatterings per space-time
volume, at leading order in the dominant QCD gauge
coupling, was found to be [2,3]1
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where �MPl � 2:4 1018 GeV is the reduced Planck mass,

M3 is gluino mass and m3=2 is the gravitino mass. This
production rate unphysically decreases for g3 * 0:7 be-
coming negative for g3 * 1:2. Figure 1 shows that the
physical value, g3 � 0:85 at T � 1010 GeV, lies in the
region where the leading-order rate function f�g3� (dashed
line) is unreliable. Figure 1 also illustrates our final result
(to be precisely described in Sec. IV B): f will be replaced
by the continuous lines, which agree with the leading-order
result at g�m=T � 1 and differ at g� 1.

Let us now explain why the leading-order approximation
in Eq. (1.1) starts to be inadequate already at g� 0:7. In
thermal field theory higher-order corrections are usually
suppressed by g=�: somewhat worse than the usual expan-
sion coefficient �g=��2 at T � 0, but still typically good
enough at g� 0:7. Naı̈ve power counting fails (without
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FIG. 1 (color online). Functions f3, f2, and f1 that, as sum-
marized in section IV B, describe our result for the gravitino
production rate from SU�3�c (upper continuous curve, in red),
SU�2�L (middle continuous curve, in blue), U�1�Y (lower con-
tinuous curve, in green) gauge interactions. The arrows indicate
the MSSM values of the thermal mass at T � 109 GeV. The
lower dashed curve shows the result from Ref. [2], which agrees
with our result in the limit of small gauge coupling, and behaves
unphysically for relevant O�1� values of the MSSM gauge
couplings.

1Since we will adopt a different technique, we cannot resolve
the minor disagreement between the results of [2,3]. Notice also
that, for later convenience, in Eq. (1.1) we explicitly show the
power �5 (following from the phase space for scattering pro-
cesses, and dictated by naı̈ve dimensional analysis), which is
explicitly present in Ref. [1] and partially hidden in numerical
coefficients in Ref. [2].

PHYSICAL REVIEW D 75, 075011 (2007)

1550-7998=2007=75(7)=075011(22) 075011-1 © 2007 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.75.075011


signaling a breaking of the perturbative expansion) when
some new phenomenon only starts entering at higher or-
ders, and this is what happens in the case of gravitino
production: a new simpler process gives corrections of
relative order �g��2. The gravitino couples to two particles
with different thermal masses: gluon/gluino, and quark/
squark. Since thermal masses grow like T, this gives
rise to a new process with a rate growing like T6: gravitino
production via decays, such as gluon! gluino�
gravitino, whose rate can be crudely estimated as

 �decay �
m
T
T3�

�2 �
m4T2

�3 �M2
Pl

�
g4

�3

T6

�M2
Pl

: (1.2)

Indeed �decay is of course proportional to the decay rate at
rest ��m3=� �M2

Pl; which is slowed down by the Lorentz
dilatation m=T factor; the T3 takes care of dimensions, and
less � are present at the denominator because a 1! 2
decay involves less particles than a 2! 2 scattering. So,
despite being higher order in g, the decay rate can be
enhanced by a phase-space factor �2. Subsequent higher-
order corrections should be suppressed by the usual g=�
factors. Our goal is including such enhanced higher-order
terms, and this finite-temperature computation is practi-
cally feasible because a decay is a simple enough process.

So far we explained the physical picture in a simple
intuitive way. A more precise technical language is neces-
sary to present how we will proceed. To get the gravitino
production rate we actually compute the imaginary part of
the gravitino propagator in the thermal plasma. Thermal
effects distort the dispersion relations E�k� of gluons,
gluinos, quarks, squarks by (i) adding a thermal mass E2 �
k2 �m2�k� to the modes already existing at zero tempera-
ture, (ii) by introducing new collective excitations (gluons
with longitudinal polarization, gluinos with ‘‘wrong‘‘ he-
licity, . . .) with their own dispersion relation, and
(iii) beyond the two poles mentioned above, the spectral
densities of particles in a thermal plasma also develop a
‘‘continuum’’ contribution, that can be thought of as a
partonlike distribution, with a continuum range of masses.

Physically it arises because particles can exchange energy
with the plasma.

In previous works [2,3] the gluon thermal mass was
taken into account to regulate infrared divergences encoun-
tered in scattering rates, and the contribution of the gluon
‘‘continuum‘‘ was computed using a standard technique
introduced in axion computations [4], that allows to extract
the rate at leading order in g. This was achieved by
introducing an arbitrary splitting scale k that obeys gT �
k� T.

We will not use this technique: because its validity is
doubtful for g3 � 0:85, and because we actually want to
include the enhanced higher-order terms, taking into ac-
count that a gravitino (unlike an axion) couples to two
particles with different thermal masses. We will instead
compute the decay diagram (D in Fig. 2) using resummed
finite-temperature propagators for gluons, gluinos, quarks,
and squarks. The perturbative expansion of this diagram D
contains the two-loop diagrams in Fig. 3: their imaginary
parts correspond to well-defined combinations of scatter-
ing processes, as dictated by cutting rules. This fixes how
scatterings must be subtracted in order to avoid overcount-
ings of effects already described by thermal masses via
diagram D. In Sec. II we compute the subtracted scattering
rates, in Sec. IV we compute the gravitino production rate
via ‘‘decay,’’ and in Sec. V we add the rate due to the top
quark Yukawa coupling.

In Sec. VI we sum these effects and compute the grav-
itino abundance writing a set of Boltzmann equations that
describe the reheating process, previously approximated
assuming a maximal temperature equal to the reheating
temperature TRH. Our results are summarized in the con-
clusions, Sec. VII.

In the passing we address some issues related to finite-
temperature and to supersymmetry. In section III we list
explicit values for thermal masses for all particles and
sparticles, noticing that they obey some supersymmetric
relation. Appendix A gives a (non uselessly) fully precise
summary of gravitino interactions, and in Appendices B
and C we collect full expressions for the thermal correc-
tions to vector and fermion propagators.
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FIG. 2 (color online). Some Feynman diagrams that contribute to the imaginary part of the gravitino propagator. Thick lines denote
resummed thermal propagators for the gluon g and gluino �. We do not plot diagrams involving quarks q and squarks ~q, but they are of
course included in our computation.
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II. SUBTRACTED SCATTERING RATE

Gravitinos �� with momentum P � �E;p� are pro-
duced via their coupling ���S

�=2 �MPl, where S� is the
supercurrent of the visible sector of a supersymmetric
theory, here assumed to be the minimal supersymmetric
model (MSSM). The visible sector is thermalized, while
the gravitino is not, since its coupling to the MSSM plasma
is weak. According to the general formalism of thermal
field theory [5], the production rate of such a weakly
interacting fermion is related to the imaginary part of its
propagator � as
 

� �
dN
dVdt

� �2
Z
d ~PfF�E� Im� �

Z
d ~P�<�P�;

d ~P 	
d3p

2E�2��3
:

(2.1)

Here �< is the nontime-ordered gravitino propagator
summed over its polarizations i.e. traced with the gravitino
polarization tensor ��� (Appendix A gives explicit ex-
pressions):

 �<�P� �
1

4 �M2
Pl

Tr
����P�hS��P� �S���P�iT�; (2.2)

where h� � �iT denotes thermal average. We employ �<

because it gives slightly cleaner formulæ than Im�.
Equation (2.1) is valid at leading order in the gravitino
coupling �M�1

Pl , and to all orders in the MSSM couplings,
gY;2;3 and �t. Extracting predictions from Eq. (2.1) is
limited only by our ability to evaluate [Eq. (2.2)].

Thermal field theory cutting rules allow to see that, at
leading order in the MSSM couplings, Eq. (2.1) is equiva-
lent to summing rates for the various tree-level processes
that lead to gravitino production. At tree level this formal-
ism is more cumbersome than a direct computation of
production rates. However, in this paper we want to take
into account finite-temperature corrections to the MSSM
particle propagators arising at one-loop level; Eq. (2.1)

becomes more convenient because it cleanly dictates how
one must resolve ambiguities encountered in scattering
computations that arise because Lorentz invariance is bro-
ken by the thermal plasma.

Figure 2 shows some main Feynman diagrams that
contribute to Im�. What we actually compute in this paper
is the first one-loop diagram ‘‘D,’’ using the Feynman
gauge resummed finite-temperature propagators for the
gluon and gluino in the loop. Therefore, it describes a
sum of an infinite number of multiloop diagrams: the
lowest-order ones are shown in Fig. 3. Resummation is
needed because thermal effect drastically change the gluon
and gluino propagators, in particular, opening a phase
space for decays, such as g! �� and/or �! g�.
Clearly diagram D contains this decay process. However,
by cutting Fig. 3, one sees that diagram D also describes
some of the 2! 2 scattering processes computed in pre-
vious analyses [2]. Therefore, before starting the compu-
tation, we clarify this issue showing how the total gravitino
production rate is obtained.

The total scattering rate is the sum of various 2! 2
processes A, B, C, . . ., listed in Table I. Each process is the
modulus squared of the sum of a few amplitudes, corre-
sponding to the single Feynman diagrams, that we label as
s, t, u, x:

 

�scattering � jAs � At � Au � Axj
2

� jBs � Bt � Bu � Bxj
2 � � � � :

This notation indicates that often 4 diagrams contribute to a
given process: 3 diagrams are generated by s, t, and
u-channel exchange of some particle among two vertices
(g3 and 1=MPl), and a fourth diagram arises from a quartic
supergravity vertex with coupling g=MPl. Figures 4 and 5
show concrete examples of the 4 diagrams that contribute
to gg! �� and to g�! �g scatterings, respectively.
The latter rate is logarithmically infrared (IR) divergent,
because diagram Bt is mediated by t-channel gluon ex-
change, that describes a Coulomb-like scattering.
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FIG. 3 (color online). Two-loop Feynman diagrams that appear in the expansion of diagram D, that resums all higher loop diagrams
with iterated one-loop corrections to gluon and gluino propagators.
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The main result can be obtained by careful visual in-
spection of cutting rules: diagram D describes the sum
jAsj

2 � jAtj
2 � jAuj

2 � jBsj
2 � jBtj

2 � jBuj
2 � � � � of

the modulus squared of all 2! 2 diagrams that contain
the gauge coupling g3. 2! 2 scattering rates generated by
supergravity quartic vertices are instead described by dia-
grams like S3 in Fig. 2. Some cuts of the two-loop diagrams
like S1 and S2 describe the interference terms among the
various Feynman diagrams. (Notice that the imaginary part
of a single two-loop diagram can describe contributions to
different scattering processes). Other cuts of these dia-
grams describe one-loop corrections to the gravitino verti-
ces, that do not give any leading-order contribution if
thermal masses are neglected. Thermal masses open a
phase space for 1! 2 processes (we can neglect the decay

rate generated by zero-temperature masses m, since we are
interested in T  m), and we will later argue that we can
still neglect thermal corrections to the gravitino vertex.

In conclusion, the total gravitino production rate due to
gauge couplings will be computed as

 � � �D � �sub
S ; (2.3)

the sum of diagram D (that describes decay plus modulus
squared of many single 2! 2 diagrams) plus the set of
remaining 2! 2 rates, obtained by subtracting from the
total scattering rate �S the effects already included in �D.
Explicit results for �D and for �sub

S will be given in
Eqs. (4.7) and (2.6) respectively, and the conclusions will
describe how to use them.

Before proceeding to actual computations, we have to
clarify the issues of gravitino coupling and gravitino gauge
invariance. We are interested in T  m, where m denotes
sparticle or gravitino masses: gravitino $ Goldstino
equivalence (Appendix A) means that at leading order in
m=T the massive gravitino field �� can be replaced with
two massless field: a massless gravitino  coupled to the
supercurrent S� (given in Eq. (A28), it can be evaluated in
the supersymmetric limit ignoring soft terms) plus a mass-
less Goldstino �, coupled to the divergence of the super-
current (given in Eq. (A29), only the soft terms factored out
are relevant):

 L int �
� �S�

2 �MPl
�

���@�S�����
6
p

�MPlm3=2

: (2.4)

The gravitino production rate is given by ����� ’

�� �� � ����. While the total rate is gauge independent
(vectors have SU�3�c � SU�2�L � U�1�Y gauge invariance;
the computation of �� �� also involves gravitino gauge
invariance), its splitting in resummed and not-resummed
contributions is not. We are resumming a well-defined
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FIG. 5 (color online). Feynman diagrams that contribute to g�! g� scatterings.
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FIG. 4 (color online). Feynman diagrams that contribute to gg! �� scatterings.

TABLE I. Squared matrix elements for gravitino (�) produc-
tion in units of g2

N= �M2
Pl�1�M

2
N=3m2

3=2�, summed over all polar-
izations and gauge indices. The result hold for all three factors of
the SM gauge group with N � f1; 2; 3g, although the notations
are appropriate for the SU(3) case: g, �, q, ~q denote gluons,
gluinos, quarks, squarks. The gauge factors CN and C0N are
defined in the text. Rates A and B are the sum of vector and
ghost contributions.

Process jAj2full jAj2subtracted

F ��! �� �8C�s2 � t2 � u2�2=stu 0
A gg! �� 4C�s� 2t� 2t2=s� �2sC
B g�! g� �4C�t� 2s� 2s2=t� 2tC
H ~q�! ~q� �2C0�t� 2s� 2s2=t� �tC0

J ~q �~q! �� 2C0�s� 2t� 2t2=s� sC0

C ~qg! q� 2sC0 0
D gq! ~q� �2tC0 0
E �~qq! g� �2tC0 0
G q�! q� �4C0�s� s2=t� 0
I q �q! �� �4C0�t� t2=s� 0
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class of effects, but we cannot systematically include all
the effects up to a given order in g; therefore, our result has
a residual gauge dependence, of relative order g2=�2, due
to partial inclusion of higher-order terms. To make the
computation feasible, we choose for vectors the Feynman
gauge, and for the massless gravitino  � the gauge where
its propagator and polarization tensor does not involve
terms containing P� or P�, Eq. (A23):

 �3=2
�� � �1

2��P6 �� � P6 ���: (2.5)

One first motivation for this choice is that, in the super-
symmetric limit, the full supercurrent satisfies P�S� � 0,
while subsets of S� are not separately conserved: with
choice (2.5) we never have to deal with such terms. Of
course, the same gauge is used for computing both the
resummed diagram D and the subtracted scattering rates.

Table I gives explicit values for the subtracted massless
gravitino and Goldstino scattering rates due to gauge in-
teractions. It is important to notice that, unlike the total
rate, the subtracted rates are infrared convergent; no 1=t
factors appear because all divergent Coloumb-like scatter-
ings, like jBtj2, are included in diagram D, that we compute
using thermal masses that provide the physical cutoff.
Unlike in the conventional technique [4] employed in
Refs. [2,3], our technique does not need to introduce an
arbitrary splitting scale k� that satisfies the problematic
conditions gT � k� � T in order to control infrared di-
vergences. Some contributions to subtracted scattering
rates turn out to be negative, but the total rate will be
positive and dominated by diagram D. In Feynman gauge,
rates for the processes A and B (the ones that involve two
vectors) actually are the sum of scatterings involving two
vectors (four diagrams, computed with the Feynman po-
larization tensor

P
���

�
� � ����) plus scatterings con-

taining two ghosts (one diagram, negative jAj2).
A curious fact happens. Despite the fact that the mass-

less gravitino  and the Goldstino � have different
couplings (in particular the Goldstino has no coupling to
quark/squark, and consequently a reduced set of Feynman
diagrams), the differential production cross sections for
these two particles are the same, process by process, up
to the universal factor M2

N=3m2
3=2, where M1;2;3 are the

gaugino masses. We do not know if there is a simple
generic reason behind this equality. The second reason
for choosing the gravitino projector of Eq. (2.5) is that it
respects this equality also for subtracted scattering rates.

Subtracted rates for processes C, D, E, G, I vanish, and
looking at Goldstinos one can easily understand why: a
single Goldstino diagram contributes, such that no inter-
ference terms exist. This is not the case for scatterings
H and J, where a second Goldstino diagram contributes,
generated by the quartic Goldstino coupling in Eq. (A29).
(This extra coupling is not present for the ghost scatterings
in A and B analogous to H and J, as we employ a non-
supersymmetric gauge without ghostinos). In case of scat-

tering F the subtracted rate vanishes because proportional
to s� t� u � 0. A 1=2! factor must be included for the A
and F processes that have equal initial state particles, and a
factor 2 for C, D, G, H that can occur with particles and
with antiparticles. The total result for the subtracted grav-
itino production rate is

 �sub
S � 1:29

T6

8�5 �M2
Pl

X3

N�1

g2
N

�
1�

M2
N

3m2
3=2

�
�C0N � CN�;

(2.6)

where the numerical factor accounts for the difference
with respect to the scattering rate computed in
Boltzmann approximation, where � � 	T6=�4 where
	 �

PR
0
�s dtjAj

2=16�s2 is a constant. The sum runs
over the three components U�1�Y � SU�2�L � SU�3�c of
the MSSM gauge group with N � f1; 2; 3g, and CN �
jfabcj2 � N�N2 � 1� � f0; 6; 24g and C0N �

P
�jT

a
ijj

2 �

f11; 21; 48g where
P

� runs over all chiral multiplets. We
use the standard normalization for hypercharge, where left-
handed leptons have Y � �1=2, that differs from the
SU(5) normalization by a factor

��������
3=5

p
. All parameters

are renormalized at an energy scale �� T.
The next step is computing diagram D: we first need to

introduce finite-temperature effects.

III. FINITE-TEMPERATURE EFFECTS

Here we summarize some well known results from
quantum field theory at finite temperature that are relevant
for our computations: the spectral densities of scalars,
fermions and vectors that play a rôle analogous to parton
densities in hadron scattering processes. This section also
contains a few original points: practical formulæ for ther-
mal masses that apply to generic supersymmetric models,
the observation that thermal effects respect supersymmetry
at E T; we explain what qualitatively changes and why
we must go beyond the hard thermal loop (HTL) approxi-
mation; we discuss a possibly nonstandard point of view
about the problem of negative spectral densities.

A. The hard thermal loop approximation

Thermal corrections simplify when one restricts the
attention to diagrams with ‘‘soft’’ external momenta, k�
T [5,6]. This approximation is useful if couplings are
small, g� 1, as it describes collective phenomena that
develop at energies of O�gT� via simple effective thermal
Lagrangians. In the rest frame of the plasma, the nonlocal
HTL Lagrangian for scalars 
, fermions  and vectors is
[5,6]

 L HTL � m2
SjAj

2 �m2
F

Z
�

� 
i ^6K

K̂ �D
 

�m2
V Tr

Z
�
F��

K̂�K̂�

�K̂ �D�2
F�� � � � � ; (3.1)
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where � � � denotes Yukawa or scalar couplings that do not
receive HTL corrections; gauge couplings receive thermal
corrections such that LHTL is gauge invariant (indeed D
denotes the usual gauge-covariant derivative); K̂ � �1; k̂�
is the ‘‘loop’’ momentum (K̂2 � 0);

R
� �

R
d�=4� de-

notes angular average. It is performed analytically in the
more explicit results in Appendices B and C.

The key parameters are ‘‘thermal masses’’ of order m�
gT. By explicit computation we find the following values
for thermal masses in an unbroken supersymmetric theory
with massless chiral � � �
; � and vector V � �V�; ��
superfields2:

 m2

 � 2m2

 �

�
CR
2
g2 �

1

4
�2

�
T2;

m2
V � 2m2

� �

�
g2 CV � T

2
R

4

�
T2;

(3.2)

where g is the gauge coupling and � the coupling in the
superpotential W � ���0�00. Summation over gauge, fla-
vor and any indices is understood. The group factors CR
and T2

R are defined as TrTaRT
b
R � T2

R�
ab (index of the

representation) and as �TaRT
a
R�ij � CR�ij (quadratic

Casimir) where the generators are in the representation
R. By summing both over ij and over ab one finds that
they are related by T2

R dimG � CR dimR. Explicit values
are T2

R � 1=2 and CR � �N2 � 1�=2N for the fundamental
of SU�N� ( dimR � N, dimG � N2 � 1), CV � N for the
adjoint of SU�N�, and CR � q2 for a representation of U(1)
with charge q. In the MSSM with 3 generations and one
pair of Higgses one has the following vector thermal
masses

 m2
V3
� 9

4g
2
3T

2; m2
V2
� 9

4g
2
2T

2; m2
V1
� 11

4 g
2
YT

2;

(3.3)

and the following scalar masses:
 

m2
~E
�
g2
Y

2
T2;

m2
~L
� m2

Hd
�

�
3

8
g2

2 �
g2
Y

8

�
T2;

m2
Hu
�

�
3

8
g2

2 �
g2
Y

8
�

3

4
�2
t

�
T2;

m2
~Q
�

�
2

3
g2

3 �
3

8
g2

2 �
g2
Y

72
�
�2
t

4

�
T2;

m2
~U
�

�
2

3
g2

3 �
2

9
g2
Y �

�2
t

2

�
T2;

m2
~D
�

�
2

3
g2

3 �
g2
Y

18

�
T2;

(3.4)

where the �t terms are present only for third generation
squarks, and we neglected analogous �b and �� terms,
possibly relevant if tan��mt=mb. Squared thermal
masses for gauginos, Higgsinos, quarks, and leptons are a
factor 2 smaller, as summarized in Eq. (3.2).

We followed the standard convention for thermal
masses. Let us recall how they parameterize thermal dis-
persion relations !�k� where ! and k are the energy and
momentum with respect to the plasma rest frame. Scalar
thermal massesm2 correspond to the relativistic dispersion
relation !2 � k2 �m2, see Eq. (3.1). For fermions the
thermal mass m tells the energy at rest of particle and
hole (or ‘‘plasmon’’) excitations, !�k � 0� � m, while at
large momentum the hole disappears3 and particles have
!2�k T� ’ k2 � 2m2. For vectors the thermal mass m
tells the dispersion relation of transverse polarizations at
large momentum, !2�k T� ’ k2 �m2, while at rest
both transverse and longitudinal polarizations have energy
!2�k � 0� � 2m2=3.

Therefore, despite the misleading conventional factors
2, Eq. (3.2) means that within each multiplet, vector or
chiral, thermal effects at k T modify in the same way
the dispersion relation of its bosonic and of its fermionic
components. This likely is a consequence of the eikonal
theorem, that tells that gauge interactions with soft vectors
do not depend on the particle spin but only on its gauge
current (thermal masses physically describe the kinetic
energy that a particle acquires due to scatterings with the
thermal plasma). Figure 6 shows the dispersion relations
!�k� of the particles within chiral and vector multiplets.
Particles and sparticles have similar dispersion relations,
reducing the phase space for gravitino production via
decays.

B. Full one-loop thermal effects

The HTL approximation holds at momenta and energies
k,!� T, correctly describing thermal effects that arise at
k, !� gT if g� 1. However, the physically relevant
values of gauge couplings (especially the strong coupling)
are not small enough to justify the use of the HTL approxi-
mation. We therefore use the full one-loop thermal and
quantum corrections to propagators of scalars, fermions
and vectors. Explicit expressions are collected in
Appendices B and C (see also Refs. [5,8–10]) and Fig. 7
illustrates (in the case of a massless fermion) the qualita-
tively new effects that arise beyond the HTL limit.

The most visible effect (although not the most important
one) happens at j!j> k i.e. ‘‘above the light cone.’’ In the

2
 is a complex scalar,  and � are Weyl fermions. Explicit
formulæ for thermal masses of bosonic sparticles had been given
in Ref. [7]; we agree with their results.

3More precisely, its residue at the pole is exponentially sup-
pressed by k2=m2. The fact that residues Z�k� are not constant is
one reason why computing the imaginary part of the gravitino
propagator in terms of particle and sparticle spectral densities is
a better formalism than directly computing the gravitino pro-
duction rate: it precisely dictates how all these nonrelativistic
factors must be taken into account.
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g! 0 limit particles (and quasiparticles such as fermion
‘‘holes’’) have an infinitesimal width: their dispersion re-
lations are plotted as thin lines in Fig. 7(a). For finite g they
get a finite width � (both from T � 0 quantum effects and
from thermal effects), such that their spectral density gets
smeared acquiring the usual bell-like shape. This is why a
continuum appears also above the light cone in Fig. 7(b). A
well known problem encountered in thermal computations
is that sometimes thermal effects give �< 0. We therefore
included the T � 0 contribution, finding that the total � is
positive for scalars and fermions. This cure does not work
for vectors, because the T � 0 contribution to their � can
itself be negative depending on the gauge choice, see

Eq. (B3a). We therefore think that the negativity of � is
not related to higher-order subtleties in the thermal expan-
sion, but just to gauge invariance. It should not affect
computations of physical gauge-invariant quantities, pro-
vided that one can do an exact computation up to some
order in the perturbative expansion. The only trouble is that
in practice it is difficult to achieve this in finite-temperature
computations. In view of this situation, since the would-be
poles are anyhow reasonably narrow for the physical val-
ues of the coupling that enter our computation, we use for
them the HTL approximation.4 Notice that the HTL ap-
proximation correctly describes the position of the poles
(i.e. the dispersion relations) even at large k * T: poles lie
close to the light cone, j!j � k, even if g� 1 [10].

The new effect important for our purposes arises at
j!j< k, i.e. ‘‘below the light cone.’’ Quantum effects do
not give any contribution to spectral densities here (and
more generally below the threshold for zero-temperature
decays), and the purely thermal contribution is not prob-
lematic. Even in HTL approximation, thermal effects give
non zero spectral densities below the light cone: this de-
scribes ‘‘Landau damping’’ i.e. the fact that particles ex-
change energy with the thermal plasma. However the HTL
approximation cannot be applied at k� T (a region rele-
vant for us, since g� 1), and indeed it misses one key
physical fact: at k T spectral densities get suppressed
by an exponential Boltzmann factor. Indeed the thermally
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FIG. 7 (color online). Spectral density of a massless fermion in
a thermal plasma, plotted in HTL approximation (g� 1, i.e.
thermal mass m� gT � T) and beyond. Notice the main dif-
ferences: the particle (!> 0) and ‘‘holes’’ (!< 0) poles de-
velop a finite width, and, more importantly, the continuum below
the light cone gets Boltzmann suppressed at k * T. Contours are
equispaced in log scale.
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FIG. 6 (color online). Dispersion relations at finite temperature in HTL approximation for the components within a chiral (left) and
vector (right) massless supermultiplet. Thermal effects are supersymmetric at k m� gT.

4This might be not an entirely satisfactory approximation for
the pole-pole contribution to gravitino production, as particle
and sparticles happen to have similar dispersion relations at k�
T, and what matters for the phase space is their mass difference.
Because of this reason, we will find that the pole-pole contribu-
tion is small, and it seems unlikely that adding a finite width can
change this conclusion.

Furthermore, one might compensate this approximation by not
subtracting modulus squared of s-channel diagrams when com-
puting subtracted rates. Since these details have negligible
numerical significance, we prefect to avoid them.
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averaged coupling of a particle with large momentum k
T is small, since very few of the particles in the plasma
have the large momentum demanded by energy-
momentum conservation. This Boltzmann suppression of
the spectral density below the light cone is the main
difference between Fig. 7(a) (HTL approximation) and
Fig. 7(b) (full one loop), and makes the gravitino produc-
tion rate about 50% smaller than what one would find by
applying the HTL approximation at all momenta, outside
its domain of validity p� T.

C. Vector and gaugino propagators

We are now going to present how spectral densities are
practically used. We need the resummed propagators for
the vector with four momentum K � �k0; k� and the gau-
gino with four momentum Q � �q0; q� in the loop. We
employ non-time-ordered propagators (as they allow
slightly cleaner formulæ than imaginary parts of propaga-
tors), denoted with a < in the notation of Ref. [5] that we
follow. Thermally resummed propagators are denoted with
a �; they are (see Appendices B and C for more details)

 

�S<�Q� �
fF�q0�

2

��0 � � � q̂����Q�

� ��0 � � � q̂����Q��; (3.5a)

�D<
���K� � fB�k0�

�
�T
���T�K� ��L

��
jkj2

K2 �L�K�

� 
k�k�
K4

�
: (3.5b)

Some explanations are in order. First, q0 > 0 or k0 > 0
describes a fermion or a vector in the final state, and q0 < 0
or k0 < 0 describes a fermion or a vector in the initial state:
this convention allows to compactly describe all possible
processes. Indeed the factors

 

fB�k0� 	
1

ek0=T � 1
�

�nB if k0 > 0

��1� nB� if k0 < 0
; (3.6a)

fF�q0� 	
1

eq0=T � 1
�

� nF if q0 > 0

1� nF if q0 < 0
(3.6b)

give the usual statistical factors:�n (number of particles in
the initial state) or 1� n (stimulated emission or Pauli-
blocking in the final state), where nB;F�E� 	 1=�ejEj=T � 1�
are the usual Bose-Einstein and Fermi-Dirac distributions.

Second, ��, ��, �T , �L are the spectral densities for the
fermion, fermion pole, transverse vectors, and longitudinal
vectors, respectively. As discussed in the previous section,
we can keep the HTL pole approximation outside the light
cone, so that

 

���Q� � 2�
Z��q���q0 �!��q��

� Z���q0 �!��q��� � �cont
� �Q�; (3.7a)

�L;T�K� � 2�
ZL;T�k���k0 �!L;T�k��

� ZL;T��k0 �!L;T�k��� � �
cont
L;T �Q�: (3.7b)

In HTL approximation the residues at the poles are given in
terms of the pole positions !��q� and !L;T�k� as [5,8,9]

 Z� �
!2
� � q

2

2m2
F

; ZL �
!L�!L � k

2�

k2�k2 � 2m2
V �!

2
L�
;

ZT �
!T�!

2
T � k

2�

2m2
V!

2
T � �!

2
T � k

2�2
:

(3.8)

These formulæ tell that residues for longitudinal and hole
excitations are exponentially suppressed at energies larger
than gT: they are low-energy collective phenomena. The
continua �cont only exist below the light cone, at jq0j< q
and jk0j< k. The spectral densities satisfy sum rules such
as

 

Z �1
�1

dq0

2�
���Q� � 1;

Z �1
�1

dk0

2�
�T�K� � 1;

Z �1
�1

dk0

2�
�L�K� �

2m2
V

3k2 ;

(3.9)

and the continuum turns out to contribute ��10� 20�%
less than the poles. Equation (3.9) means that the number
density of longitudinal vectors diverges at k! 0, but this
leaves finite gravitino rates thanks to the d3k integration
factor. In the T � 0 limit !��q� � �q, !L;T�k� � k and
one can check that the standard expressions for the propa-
gators are recovered. Notice that �L;T have dimensions
mass�2, while �� have dimensions mass�1.

IV. GRAVITINO PRODUCTION RATE DUE TO
DECAY EFFECTS

We can now compute the imaginary part of diagram D in
Fig. 2, and extract from it the gravitino production rate.
Using the gravitino $ Goldstino equivalence, Eq. (2.4),
diagram D is obtained from Eq. (2.2) by inserting the
quadratic parts of the MSSM supercurrent (A28) and of
its divergence (A29):
 

S�
�2� � �

X3

N�1

1

4
F�N��� 
��; ������5��N�

�
���
2
p

�@�
i�

������iL� � �@
�
i���

���iR��;

�@ � S��2� � �
X3

N�1

MN

4
ON; ON � F�N��� 
��; ���i�5��N�

where N runs over the three factors of the MSSM gauge
group, and here F�N��� stands for the linearized part of the
corresponding field strength. We ignored soft-breaking
squared masses of scalars, as they have higher dimension
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than gaugino masses MN . The contribution to �< from
diagram D is
 

�<�P� �
1

4 �M2
Pl

�
Trh �S�

�2��
3=2
�� S��2�iT

�
2

3m2
3=2

Trh�@ � �S��2�P6 �@ � S��2�iT

�
(4.1)

 �
X3

N�1

1

32 �M2
Pl

�
1�

M2
N

3m2
3=2

�
Trh �ONP6 ONiT: (4.2)

We now explain how Eq. (4.2) is obtained. The Goldstino
part, proportional to M2

N=3m2
3=2, is straightforward. We

emphasize that the divergence of the supercurrent is eval-
uated before evaluating its thermal matrix element. Indeed,
while thermal masses naı̈vely look like supersymmetry-
breaking (SUSY-breaking) terms of order g2T, they ac-
tually do not contribute to @�S�, and a mistake about this
issue would make the Goldstino rate qualitatively wrong
[11–13] (see also Appendix A). Indeed, despite the nice
formalism employed to compute them (periodic and anti-
periodic boundary conditions in imaginary time for bosons
and fermions, respectively), thermal effects just are one
particular background: no background affects the operator
equations of motion, such that a supercurrent which is
conserved at T � 0 remains conserved at finite T.5

For the remaining massless gravitino part, we insert the
explicit value of the gravitino polarization tensor (2.5) and
get two terms of the form

 Tr h �S�
�2�P6 S

�
�2�iT �

1
2 TrhS6 �2�P6 �S6 �2�iT; (4.3)

where S6 �2� 	 ��S
�
�2�. We can now perform simplifications

that only employ the known Dirac-matrix structure of S�
�2�:

(i) The vector/gaugino contributions obey S6 �2� � 0
(thanks to ��
��; ����

� � 0), such that only the
first term of Eq. (4.3) contributes. It is reduced to the
same operator ON using the ������ � �2�� iden-

tity and taking into account that the thermally cor-
rected gluino propagator has the same �-matrix
structure as the massless propagator. This leads to
the 1�M2

N=3m2
3=2 prefactor in Eq. (4.2).

(ii) The quark/squark contributions vanish, thanks to a
cancellation between the two terms in Eq. (4.3).
Indeed, by applying the ������ � �2�� identity
(one time in the first term, and two times in the
second term) both terms reduce to the matrix
element Trh �R�@6 ’�P6 �@6 ’��Li, with opposite
coefficients.

We do not know if there is some deeper reason dictating
these cancellations such that the full result is controlled by
the thermal matrix element of the operator ON times the
prefactor 1�M2

N=3m2
3=2. A general proof of this result

would allow to get the full production rate from the simple
Goldstino rate according to Eq. (4.2).

For completeness we mention that we have studied
thermal corrections to the ON operators in HTL approxi-
mation. As well known gauge vertices g receive very large
thermal corrections of order g�1� g2T2=k2�, where k� T
(HTL approximation) is some external momentum: their
presence would be problematic, as they seem to describe
infrared divergent effects (see e.g. Sec. 10.3 of Ref. [5]). In
the case of gauge vertices these corrections are demanded
by gauge invariance: different diagrams combine such that
LHTL of Eq. (3.1) contains the gauge-covariant derivative
D. On the contrary Yukawa couplings do not receive these
problematic HTL corrections. We verified that the
Goldstino vertex �ON does not receive any HTL correc-
tion.6 Beyond the HTL limit there will be corrections sup-
pressed by powers of g=�, that we can ignore.

A. Gravitino propagator

We now restart from Eq. (4.2) and explicitly compute the
imaginary part of the gravitino propagator with four mo-
mentum P � �p0;p� � K �Q, summed over its polariza-
tions:

 �<�E� �
X3

N�1

�
1�

M2
N

3m2
3=2

�
nN

16�2��2 �M2
Pl

Z d4K

�2��4
Tr
P6 
K6 ; ���i�5

�S<�Q�i�5
�K6 ; ���
�D���K��; (4.4)

whereN � f1; 2; 3g runs over the three factors of the standard model (SM) gauge group with nN � f1; 3; 8g vectors;MN are
the gaugino masses at zero temperature (renormalized at some scale around T). Inserting the explicit parameterization

5Although this is not relevant for us, we can be more precise: thermal effects spontaneously break supersymmetry in the visible
sector, and the associated thermal Goldstino mode was identified with a particular collective excitation [14]. The conservation of the
supercurrent at finite temperature is, therefore, analogous to how electroweak gauge currents remain conserved despite the Higgs
vacuum expectation value (vev). However, since the thermal Goldstino is a low-energy phenomenon, we do not know how to extend it
to write an explicit conserved supercurrent that also holds at energies E� T.

6The basic reason is the following. Since the Goldstino vertex has dimension 5, by dimensional analysis it receives gauge corrections
of order g2

R
d4K�K3��=
K

2�K � P1�
2�K � P2�

2�, where �K3�� denotes any vector formed with 3 powers of K: it necessarily contains
the combination K2, that, as explained in Ref. [5], does not lead to HTL vertices.
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 K � �k0; k; 0; 0�; Q � �q0; q cos�q; q sin�q�; P � �p; p cos�p; p sin�p�;

for the vector, gaugino, and gravitino four-momenta, respectively, one finds
 

�<�p� �
X3

N�1

p
�
1�

M2
N

3m2
3=2

�
nN
�M2

Pl

Z d4K

�2��4
fB�k0�fF�q0�

�
�L�K����Q�k

2cos2
�p � �q

2
� �L�K����Q�k

2sin2
�p � �q

2

� �T�K����Q���k
2 � k2

0��1� cos�p cos�q� � 2kk0�cos�p � cos�q��

� �T�K����Q���k
2 � k2

0��1� cos�p cos�q� � 2kk0�cos�p � cos�q��
�
: (4.5)

To compute the total rate �D using Eq. (2.1) it is convenient to multiply by 1 �
R
d4Q�4�K � P�Q�,7 perform the

nontrivial angular integrations over �p and �q, obtaining

 �D �
T6

2�2��3 �M2
Pl

X3

N�1

nN

�
1�

M2
N

3m2
3=2

�
fN; (4.6)

where
 

fN � T�6
Z �1
�1

dq0dk0kfB�k0�fF�q0�
�L�K����Q��p� q�
2
�p� q�2 � k2�

� �L�K����Q��p� q�
2
k2 � �p� q�2� � �T�K����Q���p� q�

2 � k2���1� k2
0=k

2��k2 � �p� q�2�

� 4k0�p� q�� � �T�K����Q��k
2 � �p� q�2���1� k2

0=k
2��k2 � �p� q�2� � 4k0�p� q���: (4.7)

The dimensionless coefficients fN are positive: each term
in the square brackets is positive in the allowed region,
except �T that becomes positive after being multiplied by
fB�k0�. The integration range is restricted by momentum
conservation, p� k� q � 0, i.e. jk� qj � p � k0 �
q0 � k� q: any side of a triangle cannot be longer than
the sum of the other two or shorter than their difference.

The last two equations generalize Eq. (38) of Ref. [2],
who considered the vector/gaugino loop in the limit of hard
gravitino and soft vector (small k0 � p, T, such that
fB�k0� ’ T=k0) and neglected the gaugino thermal mass
(i.e. �� ’ 0 and �� ’ 2���q0 � q� such that q � q0 �
p� k0).

B. Decay contribution to the gravitino production rate

In conclusion, the decay contribution to the gravitino
production rate per space-time volume is given by

Eq. (4.6). The coefficients fN have to be evaluated numeri-
cally. We approximate the spectral densities outside the
light cone as �-function poles (using full expressions they
would be narrow bells, making numerical integration dif-
ficult for our limited computing power), such that we
have four types of contributions: pole-pole, continuum-
continuum, (vector pole)-(gaugino continuum) and (vector
continuum)-(gaugino pole). A vector can be either longi-
tudinal or transverse, in the initial state or in the final state,
and similarly for the gaugino.

The resulting coefficients fN depend on the gauge cou-
plings and on the content of matter charged under the given
gauge group; in the MSSM it is convenient to parametrize
them as functions of the thermal vector masses mVN listed
in Eq. (3.3):

 fN 	 fN

�mVN

T

�
: (4.8)

For example, m3 � 1:3T for the gluon at T � 109 GeV.
The functions fN are plotted in Fig. 1. In HTL approxima-
tion there would be a unique N-independent function f,
and the functions fN turn out to be somewhat different,
depending on the relative amount of vector and chiral
multiplets present within each group. In nonminimal mod-
els with more chiral multiplets than in the MSSM, one
would have to add their extra contributions to vector ther-
mal masses, and to slightly revise the functions fN.

Finally, let us try to discuss the accuracy of our result.
Thermal corrections to the pressure have been computed
up to high orders in g3 [15]: these computations can be

7This step also allows to see that the seemingly esoteric
expression is actually equivalent to what one would naı̈vely
guess from the kinetic theory, if spectral densities are treated
like parton densities
 

dN

dVdtd ~P
�
XZ

q0;k0�0

d4Q

�2��4
d4K

�2��4
���Q��L;T�K�jAj

2�2��4

� �4�P�Q� K� � �statistical factors�;

where the sum is over all polarizations, gauge indices, gravitino
production processes with amplitudes A. As discussed around
Eq. (3.6), the factors fB�k0� and fF�q0� reproduce the usual
statistical factors, 1� n or �n.
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used to see how convergent the perturbative expansion is in
practice. In the favorable limit Nf  Nc (where Nf is the
number of flavors and Nc is the number of colors) the
perturbative expansion for the pressure remains accurate
up tomV=T � 1 (Fig. 1 of Ref. [15]). This presumably also
applies to our case, as SUSY-QCD has a set of fermions
and scalars that give the same contribution to the gluon
thermal mass as Nf � 21 flavors in the fundamental.

Furthermore, anti-de Sitter/conformal field theory (AdS/
CFT) techniques should allow to compute the large cou-
pling limit of the gravitino emission rate in some super-
symmetric theory, maybe not unrealistically different from
SUSY-QCD. This could be done analogously to how [16]
used AdS/CFT to compute the photon emission rate from
strongly coupled N � 4 SYM in the large Nc limit. By
analogy, we expect that at strong coupling the gravitino
rate functions fN will have a finite limit,Nc independent up
to 1=Nc corrections.

V. PRODUCTION OF GRAVITINOS DUE TO THE
TOP YUKAWA

Previous works considered gravitino production due to
the g3, g2 and gY gauge couplings; the top quark Yukawa,
�tQUH, also has a sizable coupling �t. There are two main
kind of scattering processes:

(a) Scatterings involving fermions only, such as QU !
� ~H: Fig. 8 shows the relevant Feynman diagrams.
They would populate only the spin 3=2 component
of the gravitino, as only dimension-2 soft terms
enter these diagrams, so that Goldstinos are not
produced. However, an explicit computation shows
that the dominant contribution of order T6=M2

Pl
vanishes.

(b) Scatterings involving two fermions and two scalars,
such as ~Q ~U ! � ~H: Fig. 9 shows the relevant

Feynman diagrams. The first diagram involves At,
the dimension-1 A term of the top Yukawa coupling,
and populates the spin 1=2 component of the grav-
itino. The other three diagrams populate the spin
3=2 component.

The total result is

 

X
all

jA�top scatterings�j2 � 72
�2
t

�M2
Pl

�
1�

A2
t

3m2
3=2

�
s; (5.1)

where s � �P1 � P2�
2 is the usual kinematical variable.

The corresponding gravitino production rate is

 �top � 1:30
9�2

t T
6

2 �M2
Pl�

5

�
1�

A2
t

3m2
3=2

�
; (5.2)

where the numerical factor 1.30 is the correction due to the
Fermi-Dirac and Bose-Einstein factors with respect to the
Boltzmann approximation.

In the language of previous sections, Eq. (5.2) is the
scattering contribution. We now explain why it also is our
total result. First, it happens to be infrared convergent: the
potentially divergent contributions given by the modulus
squared of the t-channel and u-channel diagrams in Fig. 9
actually vanish. Therefore, unlike in the case of gauge
scatterings, the inclusion of thermal masses is not neces-
sary for obtaining a finite result. Furthermore, including
thermal effects along the lines of the previous sections does
not affect the final result. Indeed the top Yukawa coupling
gives a thermal mass for top, stops (and Higgs and
Higgsinos): the resulting quark/squark/gravitino (and
Higgs/Higgsino/gravitino) decay rates have been com-
puted in section IV for generic thermal masses, and vanish.
Consistency requires that the subtracted top scattering rate
equals the total scattering rate of Eq. (5.2), and indeed the

 

Q
~
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H
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~

ψ
Q
~

U
~

Q

H
~

ψ Q
~

U
~

U

Q
~

U
~

H
~

ψ

FIG. 9 (color online). Top scatterings. Feynman diagrams contributing to ~Q ~U ! ��
~H. The � denotes a coupling proportional to

�t, and � its A term.
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FIG. 8 (color online). Top scatterings. Feynman diagrams contributing to QU ! ��
~H. The � denotes the top Yukawa coupling.
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subtracted terms are the modulus squared of the t-channel
and u-channel diagrams in Fig. 9, which vanish.

Again, all these cancellations have a simple interpreta-
tion: they are the ones needed such that the production rate
for the spin 3=2 components of the gravitino equals the
production rate for the spin 1=2 Goldstino components, up
to the prefactor in Eq. (5.1). Indeed, using the gravitino/
Goldstino equivalence, the Goldstino production rate can
be equivalently computed from one single diagram that
only involves the single quartic Goldstino coupling

 At�t Goldstino �Higgsino squark squark�

� quark squark� Higgs� H:c:�;

such that decay contributions and subtracted scattering
rates simply do not exist for the Goldstino.

VI. BOLTZMANN EQUATIONS WITH REHEATING

Here we compute the gravitino abundance by integrating
the relevant Boltzmann equations. While previous works
ignored the history of the universe prior to its reheating
(from the point of view of computing gravitino production
this in practice amounts to assuming that the big bang
started at the maximal temperature TRH), here we follow
the standard definition of the reheating temperature TRH,
where MSSM particles are progressively reheated by the
energy released by some nonrelativistic energy density �
,
which could describe e.g. an oscillating inflaton field, or
some nonrelativistic particle decaying into MSSM parti-
cles.8 In both cases the relevant Boltzmann equations are

 

8><>:
_�
 � 3H�
 � ��
�
;

_�R � 4H�R � �
�
;

_n3=2 � 3Hn3=2 � �;

(6.1)

where n3=2 is the gravitino number density summed over its

polarizations, a dot denotes d=dt, H � _R=R ����������������������������������
8���
 � �R�=3

q
=MPl is the expansion factor, �R �

�2g�T4=30 is the energy density of MSSM radiation at
temperature T (with g� � 228:75, up to O�g2� corrections,
and up to adding right-handed neutrinos), and �
 param-
eterizes the decay width of �
. The reheating temperature
TRH is defined in terms of �
 as the temperature at which
[18]

 

�
 � HR 	
1

MPl

�������������������������
8�
3
�R�TRH�

s
i.e.

TRH �

�
45

4�3g�
�2

M

2
Pl

�
1=4
: (6.2)

It is convenient to rewrite Eqs. (6.1) in terms of Y�z�, where
z 	 TRH=T and Y 	 n3=2=s, with s � 4�R=3T being the
MSSM entropy density. Following Ref. [19] one gets

 

(
HZz d�
dz � �3H�
 � �
�
;

sHZz dYdz � 3sH�Z� 1�Y � �;
(6.3)

where

 Z � �
_�R

4�RH
� 1�

�
�

4H�R

: (6.4)

To clarify the physical meaning of TRH, we emphasize that
TRH is not the maximal temperature; however what hap-
pens at T  TRH gets diluted by the entropy release de-
scribed by the Z� 1 factor (Z ’ 3=8 at T  TRH and
Z ’ 1 at T � TRH). In our case ��T� / T6 and the solution
is
 

Y�T � TRH� � 2
�
Hs

��������T�TRH

� 0:745
�
HRs

��������T�TRH

� 6:11 10�12 TRH

1010 GeV

�jT�TRH

T6
RH= �M2

Pl

: (6.5)

Figure 12 shows our results for the dimensionless order-
one combination �=�T6= �M2

Pl� that appears in Eq. (6.5).
Notice that the gravitino abundance is proportional to it,
and to TRH: the large power ��T� / T6 gets almost com-
pensated by cosmological factors.

In previous analyses �
 was ignored and the ‘‘instanta-
neous reheating’’ approximation was used, which amounts
to start the big bang from a maximal temperature T � TRH:
this gives a slightly larger gravitino abundance

 Y�T � TRH� �
�
HRs

��������T�TRH

: (6.6)

Figure 10 illustrates the different evolution of Y (in arbi-
trary units) between the two cases.

Within the standard �CDM cosmological model,
present data demand a DM energy density �DMh

2 �
0:110� 0:006; if DM are nonrelativistic particles with
mass M keV this corresponds to YDM � �0:40�
0:02� eV=M [20]. One has Y � YDM if gravitinos are the
observed DM. Equivalently, one can compute the present
gravitino mass density in terms of their relative entropy Y
as

 �3=2h2 �
m3=2Ys0

�cr=h
2 � 0:274 109Y

m3=2

GeV

� 0:001 67
m3=2

GeV

TRH

1010 GeV

�jT�TRH

T6
RH= �M2

Pl

; (6.7)

8Alternatively, some of the flat directions present in the MSSM
supersymmetric potential might develop large vevs during in-
flation. There is a debate in the literature whether such con-
densates can be sufficiently long-lived to affect reheating [17].
For simplicity, here we do not consider these possible but model-
dependent phenomena.
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where �cr � 3H2
0M

2
Pl=8� is the critical energy density,

H0 � 100h km= sec �Mpc is the Hubble constant, the
present entropy density is s0 � 2�2g�sT3

0=45 with g�s �
43=11 and T0 � 2:725 K. Figure 11 compares the regions
where the thermal gravitino abundance equals the DM
abundance with the regions compatible with standard ther-
mal leptogenesis [21], as computed in Ref. [19] with the
same definition of the reheating process. This plot ignores
all model-dependent issues, including who is the lightest
SUSY particle (LSP) and the next-to-lightest SUSY parti-
cle (NLSP). Let us briefly summarize these issues [1,22–
24].

(1) If the gravitino is the stable LSP then
(a) if m3=2  keV the gravitino behaves as cold

dark matter and its energy density can be at
most equal to the DM density.

(b) a somewhat stronger constraint applies if the
gravitino is lighter, T0 � m3=2 & keV, and
consequently behaves as warm dark matter
or radiation. The Goldstino component of
such a light gravitino thermalizes (unless
TRH is as low as possible), so that this sce-
nario is severely constrained: assuming that
the Goldstino was in thermal equilibrium
when g� � 100, present data demand m3=2 &

16 eV [23].

An additional contribution to the gravitino energy density,
�extra

3=2 ’ �NLSPm3=2=mNLSP (having neglected entropy pro-
duction, which typically is an excellent approximation) is
generated by NLSP decays, with mass mNLSP and mass
density �NLSP after their freeze-out. Weak scale sparticles
give �NLSP � 1, such that this extra contribution is signifi-
cant if m3=2 is not much smaller than mNLSP.

(2) If heavier than the LSP (which possibly has mass
mLSP � 100 GeV), the gravitino gravitationally de-
cays into the LSP and some SM particles:

(a) If m3=2  10 TeV the gravitino decays be-
fore BBN, generating a contribution to the
LSP energy density, �LSP ’ mLSP�3=2=m3=2

[1] (we neglected the entropy in gravitinos).
(b) A lighter gravitino decays during or after

BBN, damaging nucleosynthesis. The result-
ing bound on �3=2 depends on which SM
particles are produced by gravitino decays,
and typically is some orders of magnitude
stronger than the DM bound �3=2h2 & 0:1
[22]. Very late gravitino decay into photons
would also distort the CMB energy spectrum.

We recall that we computed thermal production of grav-
itinos from MSSM particles at temperatures TRH  m3=2,
msoft. The true physics might be different. For example, the
messenger fields with mass MGM employed by gauge-
mediation models might be so light that they get thermal-
ized (together with the hidden sector) and later decay back
to MSSM particles, leaving a thermalized Goldstino.
Equation (6.3) shows that this phenomenon is dominant
if MGM & �10� 100�TRH, as the gravitino abundance gets
washed out as Y / T5 during reheating at T * TRH.

VII. CONCLUSIONS

Previous computations of the thermal gravitino produc-
tion rate [2,3] were performed at leading order in small
gauge couplings, finding a rate of the form � / g2 ln1=g,
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which behaves unphysically when extrapolated to the true
MSSM values of the gauge couplings, g� 1 (see Fig. 1).
We improved on these results in the following ways:

(1) We included gravitino production via gluon!
gluino� gravitino and other decays: these effects
first arise at higher order in g (the phase space is
opened by thermal masses), but are enhanced with
respect to scattering processes by a phase-space �2

factor, typical of 3-body vs 4-body rates. The grav-
itino production rate becomes about twice larger, or
more if M3 * M1;2  m3=2.

(2) We added production processes induced by the top
quark Yukawa coupling. This enhances the gravitino
production rate by almost 10% or more if At is
bigger than gaugino masses.

(3) Finally, we computed the gravitino abundance re-
placing the instant reheating approximation with the
standard definition of the reheating process, where
TRH is not the maximal temperature but defines the
temperature at which inflaton decay ends, ceasing to
release entropy. This improvement decreases the
gravitino abundance by 25% and allows a precise
comparison with leptogenesis [21], where reheating
was included in Ref. [19].

Our result for the gravitino production rate is

 � � �D � �sub
S � �top; (7.1)

where the decay rate �D (which dominates the total rate) is
given in Eq. (4.6), the subtracted scattering rate �sub

S in
Eq. (2.6), and the rate induced by the top Yukawa coupling
in Eq. (5.2). Figure 12 summarizes our results, showing the
value of the dimensionless combination �=�T6= �M2

Pl� (as

well as the values of the single gauge and top contributions
to it) which determines the gravitino abundance as in
Eq. (6.5). In this plot we assumed �t � 0:7 and a unified
� � 1=24, renormalized at the scale MGUT � 2 �
1016 GeV.

Accessory results scattered through the paper include: a
clean precise rederivation of gravitino couplings; expres-
sions for thermal masses in a generic supersymmetric
theory; the observation that they respect supersymmetry
at energy much larger than the temperature; a collection of
formulæ for thermal corrections to vectors (including cor-
rect imaginary parts) beyond the hard thermal loop ap-
proximation; a possibly nonstandard discussion of the
physical meaning of negative spectral densities; a tech-
nique that allows to deal with Coulomb-like infrared di-
vergences without introducing an arbitrary splitting scale
k� that satisfies the problematic condition gT � k� � T.

A curious result simplified our computation: the differ-
ential production rates for the spin 3=2 and for the spin 1=2
(Goldstino) gravitino component are equal up to a univer-
sal prefactor, despite the fact that Goldstino couplings (to
dimension-1 SUSY-breaking soft terms in the supercur-
rent) are apparently much simpler than the spin-3=2 cou-
plings (gravitational, to the supersymmetric supercurrent).
This equality holds thanks to various cancellations, such
that various troubling contributions automatically drop out
from our computation.
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APPENDIX A: GRAVITINO PROPAGATOR AND
COUPLINGS

Here we derive the needed gravitino propagator and
couplings, both generic and specialized for the MSSM.
The results contained in this section are not new, but they
are useful for two reasons. First, because all factors (i, �5,
PL, etc.) and subtleties should be right, and are relevant for
satisfying the consistency checks that we performed in our
subsequent computations. Second, because we recomputed
relevant gravitino properties in a way that we consider
simpler than in previous literature, we proceed directly
without using Noether and supergravity techniques which
are unnecessarily cumbersome for our purposes. We use
the standard Weyl spinor and �-matrix conventions corre-
sponding to the signature �� ����; see e.g. Ref. [25].
The phase of the gauginos is chosen such that gaugino

 

104 106 108 1010 1012 1014

Temperature in GeV

0

0.1

0.2

0.3

0.4

0.5

G
ra

vi
tin

o
pr

od
uc

tio
n

ra
te

total

total [Pradler, Steffen]

SU(3)

SU(3) [Bolz et al.]

SU(2)

U(1) top

FIG. 12 (color online). Production rate � � dN=dV dt in units
of T6= �M2

Pl for the spin-3=2 gravitino components in the MSSM.
The upper curve is the total rate, and the other continuous curves
show the contributions from fg3; g2; gY; �tg interactions
(summed over decay and scattering processes). The production
rate for the Goldstino spin-1=2 components is obtained by
multiplying these four contributions times fM2

3;M
2
2 ;M

2
1;

A2
t g=3m2

3=2 respectively. The dotted curve show previous results
from Refs. [2,3].

VYACHESLAV S. RYCHKOV AND ALESSANDRO STRUMIA PHYSICAL REVIEW D 75, 075011 (2007)

075011-14



couplings to matter are real. We assume a Minkowski
background, i.e., we neglect the small cosmological
constant.

1. The gravitino Lagrangian

The gravitino is the gauge field associated with local
supersymmetry, and becomes massive by means of a super-
Higgs mechanism, ‘‘eating’’ the massless Goldstino fer-
mion arising when global supersymmetry is spontaneously
broken. This is analogous to a gauge vector that becomes
massive via the usual Higgs mechanism, so that we start
recalling some general properties of this well known sim-
pler case, and this analogy will later allow us to derive
gravitino properties following the same logic.

a. Paradigmatic digression

We thus consider a U(1) gauge symmetry broken by the
vev of a charged scalar field H. In the limit of vanishing
gauge coupling, a massless Goldstone � appears in the
expansion of H around the minimum, H � v� i�, and �
transforms (under a U(1) rotation with infinitesimal angle
") as �� � v". The total U(1) current is given by

 J� � Jmat
� � v@��; (A1)

where Jmat
� is the U(1) current of the rest of the theory (e.g.

fermionic matter). The total U(1) current is conserved:

 @�J� � @�Jmat
� � v@2� � 0: (A2)

This is the case if and only if the Lagrangian contains the
coupling

 L �
1

v
� � @�Jmat

� : (A3)

This is sometimes known as the Goldberger-Treiman rela-
tion, and shows that Goldstone interactions are predicted in
terms of nonconservation of the matter symmetry current
induced in the process of symmetry breaking.

When the U(1) symmetry is gauged, the total gauge-
invariant Lagrangian is
 

L � �
1

4
F2
�� �

1

2
�@��� vA��

2 �

�
A� �

1

v
@��

�
Jmat
�

�Lmat: (A4)

We can fix the unitary gauge by setting � to zero or,
equivalently, by redefining A0� � A� � @��=v. The sec-
ond term in Eq. (A4) becomes a mass term for A0�. Notice
that while A� couples to the total conserved current J�
given by Eq. (A1), the massive vector A0� couples to Jmat

� .
The last thing that we want to recall concerns production

of massive gauge bosons at high energy E v. The
effective Lagrangian appropriate for this situation is ob-
tained from (A4) by keeping terms with the highest number
of derivatives in A� and �, and is given by

 

LHE � �
1

4
F2
�� �

1

2
�@���2 � A�Jmat

� �
1

v
� � @�Jmat

�

�Lmat: (A5)

We thus see that the total cross section can be approxi-
mated (up to terms suppressed by v=E) by the sum of
massless gauge boson production plus production of
Goldstones with coupling (A3):

 	�A0�� � 	�A�� � 	���: (A6)

This statement is called the equivalence theorem. It can
also be deduced (in a less transparent way) from the fact
that the physical state projector for the gauge boson of
mass m takes the form �g�� � k�k�=m2. Notice that,
while to get the correct Goldstone production rate it is
crucial to take current nonconservation into account, in
computing 	�A�� we can actually assume that Jmat

� is
conserved.

The main points of the above discussion—the form of
the total current, the Goldberger-Treiman relation, the fact
that the massive gauge boson couples to the same matter
current, and the equivalence theorem—will find their ana-
logues in the gravitino case.

b. Goldstino interaction

We now repeat the steps in the previous section in the
case of supersymmetry, under which the Goldstino � trans-
forms as �� �

���
2
p
F", where F is a supersymmetry-

breaking vev9 and " is the supersymmetric parameter.
The supercurrent is

 S� � S�vis � i
���
2
p
F���; (A7)

where the apex ‘‘vis’’ signals that we are interested in
theories consisting of a visible and a hidden sector.
Supersymmetry is broken spontaneously in a heavy hidden
sector, and its low-energy remnant is the Goldstino field:
all other hidden sector fields can be integrated out, if one is
interested in energies below the messenger scale. The full
supercurrent is conserved:

 @�S� � @�S
�
vis � i

���
2
p
F@6 � � 0: (A8)

The vanishing of Eq. (A8) gives the equation of motion for
�, and consequently implies the following Goldstino
Lagrangian:

 L Goldstino �
1

2
��i@6 ��

1���
2
p
F

��@�S
�
vis � � � � ; (A9)

where � � � indicates couplings involving two or more
Goldstinos, not needed in our computation.

9Although we choose the notations and normalizations which
are standard for F-term supersymmetry breaking, the result
apply to any combination of F and D-term breaking.
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c. Massless gravitino

In the supersymmetric limit, the massless gravitino is
described by a Majorana Rarita-Schwinger field  � with
Lagrangian

 L � �1
2"
���	 � ��5��@� 	 (A10)

invariant under the gauge SUSY transformations with pa-
rameter ": � � � �2 �MPl@�". Here �MPl � MPl=8� �
2:4 1018 GeV is the reduced Planck mass. The variation
of the matter action defines the Majorana supercurrent S�
as

 �Smatter �
Z
d4x �S�@�": (A11)

Demanding that the full action is invariant to zeroth order
in �M�1

Pl one obtains how the massless gravitino interacts
with the supercurrent

 L int �
1

2 �MPl

� �S�: (A12)

d. Super-Higgs mechanism

We will now follow how the massless gravitino eats the
Goldstino, getting a mass via the super-Higgs mechanism.
First of all, the gauge-invariant action for the goldstino-
gravitino system is [26,27]:

 L � �
1

2
"���	 � ��5��@� 	 �

1

2
��i@6 �

�m3=2

�
1

4
� �
�

�; ��� � � ����

���
3

2

s
� �i�

��
�
:

(A13)

It contains a gravitino-goldstino mixing mass term, that
agrees with the form of the supercurrent, Eq. (A7). Indeed,
this Lagrangian is invariant under the local field trans-
formations:

 � � � � �MPl�2@�"� im3=2��"�; �� �
���
2
p
F";

provided that the gravitino mass m3=2 and the SUSY-
breaking vev F are related as

 m3=2 �
F���

3
p

�MPl

: (A14)

(The derivation above used the flat space assumption.)
Introducing the gravitino mass required a deformation of
the supersymmetric transformation of the gravitino, and
the gravitino interaction term with matter Eq. (A12) is no
longer invariant. To restore invariance, we must add to the
Lagrangian the term

 

m3=2

2
���
2
p
F

��iS6 �
1

2 �MPl

1���
6
p ��iS6 ; S6 � ��S

�
vis: (A15)

It may seem surprising at first to find this new coupling of
Goldstino to the supercurrent in addition to the one in
Eq. (A9). However, there is no contradiction since the
new term vanishes as gravity is decoupled.

We can now choose the unitary gauge � � 0 or equiv-
alently define10

 �� �  � �
1���
6
p i����

���
2

3

s
@��

m3=2
; (A16)

such that the whole Lagrangian describing gravitino, gold-
stino, and their interaction with matter can be rewritten as
[27]
 

L � �
1

2
"���	 ����5��@��	 �

m3=2

4
���
�

�; �����

�
1

2 �MPl

���S
�
vis: (A17)

This is the Lagrangian describing the massive gravitino
��. We see that it couples to S�vis.

e. Equivalence theorem

The Lagrangian (A17) could be used to study production
of massive gravitinos at any energy below the messenger
scale. In this paper, we are interested in energies much
bigger than m3=2 and the sparticle masses. A simpler
effective Lagrangian appropriate for these energies can
be derived by noticing that the mass terms and mixings
between  � and � in Eq. (A13) can be neglected. Thus we
can study production of massless gravitinos  � and
Goldstinos � coupled to the visible sector by

 L int �
1

2 �MPl

�S�vis

�
 � �

���
1

6

s
i���

�
�

1���
2
p
F

��@�S
�
vis:

(A18)

This is the analogue of the previously mentioned equiva-
lence theorem for production of gauge bosons at energies
much larger than their masses. In the massive gauge boson
case, the equivalence theorem could also be derived from
the form of the physical state projector of the massive
gauge boson. Below we will see that an analogous deriva-
tion can also be given for the massive gravitino case. Just as
in the gauge boson case, we can assume that the super-
current in the coupling �S�vis � is conserved; in the
Goldstino coupling the current nonconservation is of
course crucial and has to be taken into account.

A further simplification concerns the Goldstino coupling
(A15); as we explain below, this coupling is irrelevant in
MSSM at energies much above the � term due to approxi-
mate scale invariance. Thus

10This notation reflects the fact that �� is ‘‘bigger’’ than  �
since it contains more degrees of freedom.
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 L int �
1

2 �MPl

� �S
�
vis �

1���
2
p
F

��@�S
�
vis �MSSM�:

(A19)

It is instructive to compare the relative importance of the
two terms in Eq. (A19) for the total production rate. Since
the divergence of the supercurrent will be proportional to
the soft-breaking masses (see below), the effective cou-
pling in the second term is msoft=F� 1=Mmess. Thus the
two terms are equally important if SUSY breaking is
mediated by gravity, Mmess � �MPl. If instead Mmess �
�MPl, like in gauge-mediation models, the Goldstino term

dominates [1].

2. The gravitino propagator and polarization tensor

a. Massless gravitino

Since the Lagrangian is invariant under local supersym-
metry, the same physics can be described by different
choices of gravitino propagators and polarization tensors.
Analogously to the vector case, the sum over the two
physical transverse polarizations is (see Ref. [28])

 �3=2
�� �P� 	

X
i��

��i�� ���i��

�
1

2
��P6 �� �

1

2
P���P6 Q6 �

1

2
P�Q6 P6 ��

� P�P�Q6 ; (A20)

where U is an arbitrary 4-velocity that defines a
preferred reference frame used to define what ‘‘transverse’’
means, and Q� 	 
2U��U � P� � P��=2�U � P�2. Gauge-
invariant observables do not depend on the choice of U.

As usual, local gauge invariance allows to define more
convenient gauge choices. For example, one can impose
the gauge-fixing condition F 	 ���� � 0 (in this gauge
one also has @��� � 0 as a consequence of the equations
of motion). To derive the propagator, it is best to consider
an analogue of the -gauge by adding to the Lagrangian the
gauge-fixing term �Fi@6 F=. Then the kinetic operator is
invertible, and the gravitino propagator is [29]

 

�3=2
��

P2 � i"
with �3=2

�� �
1

2
��P6 �� � �2� �

P�P6 P�

P2 :

(A21)

As usual, �3=2
�� is also the projector to be used when the

massless gravitino production rate is summed over the
gravitino polarizations. The dependence on the gauge-
fixing parameter  is irrelevant because the massless grav-
itino couples to the conserved supercurrent, P�S� � 0.
For the simplest choice  � �2 one has

 �3=2
�� � 1

2��P6 �� � �
1
2��P6 �� � P6 ��� � ��P� � P���:

(A22)

The last two terms do not contribute, again because the

supercurrent is conserved. For our later computation we
will choose

 �3=2
�� � �1

2��P6 �� � P6 ���: (A23)

b. Massive gravitino and the equivalence theorem

The massive gravitino is described by the Lagrangian
(A17). The mass term breaks the gauge symmetry present
in the massless case. The equations of motion coming from
the free part of (A17) imply

 ���� � 0; @��� � 0; �P6 �m3=2��� � 0:

(A24)

In the massless case the first two equations could have been
imposed as gauge-fixing conditions. The resulting propa-
gator is [28] ���=�P2 �m2

3=2 � i"� where
 

��� � ��P�m3=2�

�
g�� �

P�P�
m2

3=2

�

�
1

3

�
�� �

P�

m3=2

�
�P6 �m3=2�

�
�� �

P�

m3=2

�
: (A25)

Again ��� is also the polarization tensor to be used when

summing over all physical polarizations: ��� �P
i���1=2�;��3=2��

�i�
� ���i�� . One can check that Eq. (A25) is

consistent with Eq. (A24).
In this paper we are interested in production of ultra-

relativistic gravitinos. To study this limit, we expand
Eq. (A25) in powers of m3=2:
 

��� �
2

3

P�P�P6

m2
3=2

�
4P�P� � P6 ��P� � ��P6 P�

3m3=2

�

�
�g��P6 �

1

3
��P6 �� �

1

3
��P� �

1

3
��P�

�

�

�
����

3
� g��

�
m3=2: (A26)

If the supercurrent to which the gravitino couples is con-
served, the terms singular inm3=2 give no contribution. The
last term vanishes for m3=2 ! 0. The term that does not
depend on m3=2 differs from the massless gravitino projec-
tor (A22) by ��P6 ��=6, modulo irrelevant terms propor-
tional to P� or P�.

Thus in the limit m3=2 ! 0 we not only recover the
massless gravitino, but also get an additional massless
spin 1=2 fermion which couples to 1=

���
6
p

times the ‘‘trace’’
of the supercurrent, S6 � ��S

�. This is akin to the van
Dam-Veltman-Zakharov discontinuity [30] encountered
when adding to the graviton a Fierz-Pauli mass term mg:
the limit mg ! 0 then describes the usual massless gravi-
ton plus a scalar coupled to the trace of the energy-
momentum tensor T��. In our case this ‘‘discontinuity’’
is entirely expected and is consistent with the equivalence
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theorem as expressed by Eq. (A18): the extra spin 1=2
fermion is nothing but the Goldstino.

When we take soft SUSY breaking into account, the
supercurrent is no longer conserved. The first term in
Eq. (A26) can then be interpreted as corresponding to the
Goldstino production due to the last term in Eq. (A18) [the
coefficient agrees as one checks using (A14)]. In this
derivation of the equivalence theorem it is nonobvious
that the terms in (A25) proportional to m�1

3=2 should cancel,
as is required for full agreement with (A18). However this
cancellation does happen, as verified in the explicit com-
putations needed for this paper.

3. MSSM supercurrent at zero temperature

a. Gravitino couplings

In a generic renormalizable SUSY gauge theory with
vector supermultiplets �Aa�; �a� and matter chiral super-
multiplets �i � �
i; i� and superpotential W the Weyl
part s� of the Majorana supercurrent S� � �s�; �s�� is (see
e.g. Ref. [31] or explicitly compute it)

 s� � �
���
2
p

�D�
i�

��	� �	�i� � iW
�
i �


��	� �i�

� 1
2F

a
���	� �	�	� ��a� � ig�
�i T

a
ij
j��	� ��a�;

(A27)

where D�
ij � �ij@� � igA

�aTaij is the gauge-covariant de-
rivative. The first two terms are the supercurrent of the
Wess-Zumino model and of the SUSY gauge theory with-
out matter. The third term is a correction which arises as a
result of coupling between the two. (With the Noether
formalism it would arise because the Lagrangian is super-
symmetric up to a total derivative). In 4-component nota-
tion it becomes11:

 S� � �
���
2
p

�D�
i�

������iL� � �D
�
i������iR�

� iWi�
��
�iL � iW

�
i �


����iR�

� 1
4F

a
��
��; ������5�a � ig�
�i T

a
ij
j����a;

(A28)

where we introduced Majorana spinors �i; �i�
T and

��a; ��a�T which by abuse of notation we denoted again
i and �a. As usual L 	 PL, R 	 PR, Wi � @W=@
i
and the index i runs over all chiral multiplets.

The supercurrent is conserved @�S� � 0 as a conse-
quence of equations of motion. After fixing the vector
gauge symmetries in the usual way, the vector equations
of motion change due to the gauge-fixing terms and to the

ghost current. The ghosts are scalars under supersymmetry
(in particular, they do not have superpartners and they
couple only to the gauge field but not to the gaugino),
and one could be worried that SUSY is broken by the
gauge choice. Indeed the supercurrent divergence is no
longer zero, however it is Becchi-Rouet-Stora-Tyutin
(BRST) exact (see e.g. Ref. [33]). Thus the amplitude for
longitudinal gravitino emission still vanishes, and the grav-
itino gauge invariance is preserved.

The terms proportional to �� are sometimes omitted
from the supercurrent expression (A28), because they do
not contribute to the massive gravitino production due to
the on-shell condition ���� � 0. However, one should be
careful to keep these terms if one wants to use the equiva-
lence theorem and the massless gravitino gauge invariance,
because the supercurrent is no longer conserved if they are
omitted.

b. Goldstino couplings

According to the equivalence theorem discussed above,
the spin �1=2 component of the massive gravitino at high
energies can be replaced by the Goldstino coupled to the
divergence and trace S6 of the visible sector supercurrent
with coefficients given in Eq. (A18). The divergence @�S

�
vis

measures the SUSY breaking in the visible sector, which at
energies lower than the messenger scale looks like explicit
breaking by soft terms. In absence of soft terms @�S

�
vis � 0

as a consequence of equations of motion. Nonzero soft
terms modify the equations of motion, so that @�S

�
vis �

msoft � 0. For dimensional reasons we can neglect dimen-
sion 2 soft terms (i.e. scalar squared masses): only soft
terms with dimension 1 (i.e. gaugino masses M and tri-
linear scalar couplings A) contribute to Goldstino produc-
tion at dominant order, � / T6. By taking into account how
the relevant soft terms modify the equations of motion of
particles and sparticles we get

 

@�S
�
vis � �

iM
4
Fa��
��; ����5�a �Mg�
�Ta
��a

�
���
2
p

�AW�i�
�iL � �AW�

�
i �


��iR�; (A29)

where i runs over all chiral multiplets and a sum is under-
stood over the components of the gauge group. The pres-
ence of the second gauge term was first noticed in
Ref. [34], and is here reobtained via a simple direct com-
putation. Notice that to get it, it is crucial to keep the last
term in Eq. (A28), that does not contribute to massive
gravitino production due to the on-shell condition
���� � 0.

In the MSSM the relevant soft terms are the three
gaugino masses M1;2;3 and the top A term, At:

11See Ref. [32], page 141. Notice that Ref. [32] has a misprint
in normalizing the second line of the right-hand side of (27.4.40),
cf. (26.7.10). The difference in �5 in the terms involving gluinos
is because our gluino-squark-quark coupling is real: �our �
i�5�his. The extra i is then compensated by the difference in
��our � i��his.
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 L soft �
X3

N�1

MN

2
�aN�

a
N � �tAt� ~Q ~UHu � H:c:� � � � � :

(A30)

Finally, we elaborate on the Goldstino coupling to S6 ,
finding that it can be neglected in the MSSM. Using
��
��; ����� � 0, (A27) implies

 �	�s� � �
���
2
p

�2�D�
i�

�	�i � 4iW�i �

�� �i�

� 4ig�
�i T
a
ij
j� ��a: (A31)

Rewriting the first term as

 �D�
i�
�	�i � @��


�
i 	�i� �


�
i 	�D�i

and using the fermion equation of motion, several terms
cancel and we remain with

 �	�s� � 2
���
2
p
@��
�i 	�i� � 2

���
2
p
i

�i W

�
ij � 2W�j �


��� �j:

(A32)

The first term does not contribute to massless Goldstino
production rate since ��@��
�i 	�i� vanishes on-shell due
to �	�@�� � 0. The second term vanishes if Wj is a qua-
dratic function of the fields, i.e. for cubic terms in W. We
thus conclude that the only nontrivial coupling to
Goldstino arising from the (A15) vertex is due to the �
term and is of the form

 �
�
�MPl

��H1
~H2 � ~H1H2� � H:c:

This vertex is irrelevant at energies much bigger than �.
The reason for the above is that the trace of the super-

curent S6 falls into a supersymmetric ‘‘anomaly multiplet’’

 fS6 ; @�R�; T
�
�g;

where T�� is the trace of the energy-momentum tensor
expressing the scale invariance of the theory, and R� is
the current of the R symmetry under which all chiral
multiplets have charge 2=3 (see Ref. [32]). In MSSM,
both the scale invariance and the above R symmetry are
broken classically only by the � term, and this explains
S6 ��. At quantum level the scale invariance and the R
symmetry are anomalous, e.g. @�R� is given by the tri-
angle anomaly equation

 @�R� �
X bNg

2
N

48�2 F
�N�
�� ~F�N���;

where the anomaly coefficients bN � f11; 1;�3g are the
same as the one-loop �-function coefficients of the MSSM
gauge groups, which is again related to the fact that @�R�

and T�� are in the same supermultiplet. Since supersym-
metry relates S6 to @�R�, one can show that (see Ref. [35])

 S6 �
X bNg

2
N

16�2 F
�N�
�� 
��; �����N�: (A33)

Below we argue that this equation can be used also at finite
temperature.

4. Gravitino and goldstino couplings at finite
temperature

Gravitino production from a supersymmetric thermal
plasma is best studied in terms of its nontime ordered
propagator �<�P� given by Eq. (2.2). Supersymmetry is
broken by finite temperature, but this breaking is sponta-
neous, so the supercurrent remains conserved: @�S� � 0
holds as an operator equation. This means that the produc-
tion rate of longitudinal gravitinos vanishes also at finite
temperature. Equivalently, �<�P� is invariant under gauge
transformations of the gravitino polarization tensor
��3=2

�� � P�A� � P�B�, with arbitrary A, B. The state-
ments of the previous paragraph should hold identically in
any computation including all diagrams to a given order in
the thermal bath coupling g. In practice, however, it may be
difficult to see the vanishing of ��< explicitly. For ex-
ample, as explained in Sec. II we are resumming a well-
defined class of physical effects to order g4: those en-
hanced by a 1! 2 phase-space factor, unlike a generic
O�g4� correction. More precisely, diagram D is computed
including thermal corrections to the propagators of parti-
cles to which the gravitino couples, while diagrams S1;2;3

are computed using tree-level propagators. In particular,
we do not include corrections to the gravitino vertex. For
this reason we expect a residual gravitino gauge depen-
dence, which we believe to be of relative order g2=�2 with
respect to our result. The reason is that in our calculation of
the massless gravitino production rate, thermal masses act
similar to soft SUSY-breaking terms, modifying equations
of motion by terms of order g2T, so that @ � S� g2T rather
than being zero. This means that ��< �O�g4�. We see
that this nongauge invariance is of the right order of
magnitude to be cancelled by vertex corrections. The
above residual nongauge invariance can be tolerated
when computing the massless gravitino production rate.

When computing the Goldstino production rate, we have
taken into account that, in absence of soft-SUSY breaking,
the Goldstino coupling to @ � S vanishes at finite tempera-
ture by evaluating the divergence of the supercurrent be-
fore computing the thermal matrix element, i.e. we start the
finite-temperature computation from Eq. (A29). Since we
do not evaluate vertex corrections, this procedure is ex-
pected to give a result with the same O�g2=�2� error as the
gravitino production rate.

Finally, the anomaly relation (A33) valid at zero tem-
perature also holds at finite temperature. The argument is
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the same as in case of the supercurrent conservation: the
thermal bath is a background, and Eq. (A33) is a dynamical
property of the Hamiltonian valid for any background. In
practice this means that the Goldstino coupling to S6 can be
neglected.

APPENDIX B: VECTOR PROPAGATOR AT FINITE
TEMPERATURE

We list the full one-loop expressions for thermal correc-
tions to a vector with four momentum K � �!; ~k� (K2 �
!2 � k2) with respect to the rest frame of the thermal
plasma. In general, we denote by U� the four-velocity
U� of the plasma. We use the Feynman gauge where all
effects are condensed in two form factors even in the non-
Abelian case [9]. Polarizations are conveniently decom-
posed in transverse (i.e. orthogonal to K and to ~k), longi-
tudinal (i.e. orthogonal to K and parallel to ~k) and parallel
to K. The corresponding projectors ��T ��L �

�K��� � ���� are

 

�T
�� � �~��� �

~K�
~K�

�k2 �
0 0

0 �ij � kikj=k2

 !
; (B1a)

�L
�� � ���� �

K�K�
K2 ��T

��; (B1b)

�K
�� � �

K�K�
K2 ; (B1c)

where ~��� � ��� �U�U�, ~K� � K� � �K � U�U�. The
vector propagator is

 

�D�� � i
�

�T
��

K2 � �0 � �T
�

�L
��

K2 � �0 � �L
�

�K
��

K2

�
:

(B2)

In the following ’ denotes the HTL limit, where the result
can be expressed in terms of the vector thermal massm2

V �
1
6 g

2T2�N � NS � NF=2�, where the vector, fermion and
scalar coefficients are defined having in mind a group
SU�N� with NF massless Dirac fermions and NS scalars
plus antiscalars in the fundamental representation. Table II
lists the explicit values of N, NF, NS in the SM and in the
MSSM. The one-loop quantum correction at T � 0 in the
MS scheme is

 �0 � g2K2 2NF � NS � 5N

48�2 ln
�K2

��2 ; (B3a)

where the gauge-dependent vector loop gives a negative
contribution to spectral densities above the light cone, at
K2 > 0. The thermal corrections are

 �L � �
K2

k2 g
2�NSHS � NFHF � NHV�

’ �
K2

k2 �L� 1�m2
V; (B3b)

 �T � �
�L
2
�
g2

2
�NSGS � NFGF � NGV�

’ m2
V

�
1�

K2

k2

L� 1

2

�
; (B3c)

where

 GS �
Z 1

0

dp

2�2

�
4p�

K2

4k
L�

�
nB�p� ’

T2

3
; (B3d)

 GF �
Z 1

0

dp

2�2

�
4p�

K2

2k
L�

�
nF�p� ’

T2

6
(B3e)

 GV �
Z 1

0

dp

2�2

�
4p�

5K2

4k
L�

�
nB�p� ’

1

3
T2; (B3f)

 HS �
Z 1

0

dp

2�2

�
2pL�

M
k
�
k
4
L�

�
nB�p� ’

L� 1

6
T2;

(B3g)

 HF �
Z 1

0

dp

2�2

�
2pL�

M
k

�
nF�p� ’

L� 1

12
T2; (B3h)

 HV �
Z 1

0

dp

2�2

�
2pL�

M
k
�
k
4
L�

�
nB�p� ’

L� 1

6
T2;

(B3i)

having defined !� 	 �!� k�=2,
 

L 	 1�
!
k

ln
!�
!�

;

L� 	 ln
p�!�
p�!�

� ln
p�!�
p�!�

;

M 	 �p�!���p�!�� ln
p�!�
p�!�

� �p�!���p�!�� ln
p�!�
p�!�

’ 2kp

See Refs. [9,10] for previous results. We added scalar loops
and wrote logarithms such that imaginary parts (needed to
get spectral densities) are obtained using the prescription
!! !� i0�, with lnz having a cut along the negative
real axis. We emphasize that our expressions cannot be
simplified using ln�ab� � lna� lnb, because this would

TABLE II. Numerical coefficients for vector thermal mass
m2
V �

1
6 g

2T2�N � NS � NF=2�.

Standard model MSSM
Vector N NF NS N NF NS

Gluon SU�3�c 3 6 0 3 9 6
Weak SU�2�L 2 6 1=2 2 9 7
Hypercharge U�1�Y 0 10 1=2 0 11 11
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give wrong imaginary parts. The spectral densities em-
ployed in Eq. (3.5b) are defined as

 �T � �2 Im
1

K2 � �0 � �T
;

�L � �2 Im
K2

k2

1

K2 � �0 � �L
:

(B4)

As is well known [5,9], �L contains a collective longitu-
dinal excitation, that corresponds to longitudinal waves of
electric fields allowed by Maxwell equations with vanish-
ing dielectric constant.

APPENDIX C: FERMION PROPAGATOR AT
FINITE TEMPERATURE

Fermions can receive thermal corrections from gauge
and Yukawa couplings. In HTL approximation the full
result is determined, in a generic nonsupersymmetric the-
ory, by one parameter, the thermal mass:

 m2
F �

�
CR
8
g2 �

�2

16

�
T2; (C1)

where we used for g, �, CR the same notation as in

Eq. (3.2), except that g, � here denote nonsupersymmetric
couplings. The same parameter mF controls the full one-
loop expression in the Feynman gauge. See Refs. [8,10] for
previous results. The spectral densities for particles (��)
and holes (��) are given by

 �� � �Im
�
!�

�
1�

1

2�2

�
CR
8
g2 �

�2

16

�
ln
�K2

��2

�

�m2
FF�

�
�1
; (C2)

where the T � 0 contribution gives a spectral density only
above the light cone, and
 

F��!; k� � �
Z 1

0

dp

�2

!�
k2 
pL� � �nB�p� � nF�p��

� L� � �nB�p�!� � nF�p�!���

�
L!� �!�

k!
: (C3)

The functions !� � �!� k�=2 and L� are the same
previously defined for vectors. The last terms is the HTL
contribution (complex only below the light cone). Again
branch cuts are defined by the prescription !! !� i0�.

[1] J. R. Ellis, J. E. Kim, and D. V. Nanopoulos, Phys. Lett. B
145, 181 (1984); M. Kawasaki and T. Moroi, Prog. Theor.
Phys. 93, 879 (1995). See also hep-ph/9503210; M. Bolz,
W. Buchmuller, and M. Plumacher, Phys. Lett. B 443, 209
(1998).

[2] M. Bolz, A. Brandenburg, and W. Buchmuller, Nucl. Phys.
B606, 518 (2001).

[3] J. Pradler and F. D. Steffen, Phys. Rev. D 75, 023509
(2007); hep-ph/0612291.

[4] E. Braaten and T. C. Yuan, Phys. Rev. Lett. 66, 2183
(1991).

[5] M. Le Bellac, Thermal Field Theory (Cambridge
University Press, Cambridge, England, 2000).

[6] E. Braaten and R. D. Pisarski, Phys. Rev. D 45, R1827
(1992).

[7] D. Comelli and J. Espinosa, Phys. Rev. D 55, 6253
(1997).

[8] For a discussion of fermions at finite temperature, see V. V.
Klimov, Sov. J. Nucl. Phys. 33, 934 (1981); H. A. Weldon,
Phys. Rev. D 26, 2789 (1982); 40, 2410 (1989).

[9] For a discussion of vectors at finite temperature, see D. J.
Gross, R. D. Pisarski, and L. G. Yaffe, Rev. Mod. Phys. 53,
43 (1981); H. Weldon, Phys. Rev. D 26, 1394 (1982); H. T.
Elze, K. Kajantie, and T. Toimela, Z. Phys. C 37, 601
(1988); R. Kobes, G. Kunstatter, and K. W. Mak, Z. Phys.
C 45, 129 (1989); H. Weldon, Ann. Phys. (N.Y.) 271, 141
(1999).

[10] A. Peshier, K. Schertler, and M. Thoma, Annals Phys. 266,
162 (1998).

[11] W. Fischler, Phys. Lett. B 332, 277 (1994).
[12] R. Leigh and R. Rattazzi, Phys. Lett. B 352, 20 (1995); J.

Ellis, D. Nanopoulos, K. Olive, and S. Rey, Astropart.
Phys. 4, 371 (1996) showed that thermal effects do not
give contributions to the gravitino production rate of the
form � � T8=m2

3=2M
2
Pl. The first paper also showed that

the mixing of the true Goldstino with the thermal
Goldstino can be ignored.

[13] J. Ellis, D. Nanopoulos, K. Olive, and S. Rey, Astropart.
Phys. 4, 371 (1996).

[14] For a discussion of SUSY at finite temperature, see D.
Boyanovsky, Phys. Rev. D 29, 743 (1984); H. Aoyama,
Phys. Lett. B 171, 420 (1986); R. Gudmundsdottir and P.
Salomonson, Nucl. Phys. B285, 1 (1987); K. Kratzert,
Ann. Phys. (N.Y.) 308, 285 (2003). See also among the
references of these papers. We are aware of no works
containing explicit results for the supercurrent at finite
temperature.

[15] See A. Ipp, G. Moore, and A. Rebhan, J. High Energy
Phys. 01 (2003) 037, for a recent discussion and refer-
ences.

[16] S. Caron-Huot, P. Kovtun, G. D. Moore, A. Starinets, and
L. G. Yaffe, J. High Energy Phys. 12 (2006) 015.

[17] For recent discussions see K. Olive and M. Peloso, Phys.
Rev. D 74, 103514 (2006); R. Allahverdi and A.
Mazumdar, hep-ph/0608296.

[18] See e.g. E. W. Kolb and M. S. Turner, The Early Universe
(Addison-Wesley, Menlo Park, CA, 1990).

[19] The constraint on the reheating temperature for successful

THERMAL PRODUCTION OF GRAVITINOS PHYSICAL REVIEW D 75, 075011 (2007)

075011-21



thermal MSSM leptogenesis was found to be TRH >
1:6 109 GeV in G. F. Giudice, A. Notari, M. Raidal, A.
Riotto, A. Strumia, Nucl. Phys. B685, 89 (2004), working
in one flavor approximation and warning that this approxi-
mation is generically accurate up to O�1� corrections; the
constraint was reconsidered in S. Antusch and A.M.
Texeira, hep-ph/0611232, where flavor was included
(and some O�g2=�2� corrections neglected), finding
TRH > 1:9 109 GeV.

[20] D. N. Spergel et al. (WMAP Science Team), astro-ph/
0603449.

[21] Here we discuss the leptogenesis constraint on the reheat-
ing temperature. It is implied by the Davidson-Ibarra
bound, see S. Davidson and A. Ibarra, Phys. Lett. B
535, 25 (2002); This bound only holds up to an O�1�
flavor factor, for a recent discussion see e.g. E. Nardi, Y.
Nir, E. Roulet, and J. Racker, J. High Energy Phys. 01
(2006) 164; A. Abada, S. Davidson, F. Josse-Michaux, M.
Losada, and A. Riotto, J. High Energy Phys. 09 (2006)
010; For an early discussion, see R. Barbieri, P.
Creminelli, N. Tetradis, and A. Strumia, Nucl. Phys.
B575, 61 (2000); Furthermore it holds assuming that
right-handed neutrinos are very hierarchical: thermal lep-
togenesis at low temperature is possible within the stan-
dard seesaw if right-handed neutrinos are mildly
hierarchical, see e.g. M. Raidal, A. Strumia, and K.
Turzynski, Phys. Lett. B 609, 351 (2005); It is also
possible when they are quasidegenerate, see e.g. M.
Flanz, E. A. Paschos, U. Sarkar, and J. Weiss, Phys.
Lett. B 389, 693 (1996); L. Covi and E. Roulet, Phys.
Lett. B 399, 113 (1997); A. Pilaftsis and T. Underwood,
Nucl. Phys. B692, 303 (2004).

[22] K. Kohri, T. Moroi, and A. Yotsuyanagi, Phys. Rev. D 73,

123511 (2006); M. Pospelov, hep-ph/0605215.
[23] M. Viel, J. Lesgourgues, M. Haehnelt, S. Matarrese, and

A. Riotto, Phys. Rev. Lett. 97, 071301 (2006).
[24] For recent works, see e.g. K. Jedamzik, K. Choi, L.

Roszkowski, and R. Ruiz de Austri, J. Cosmol.
Astropart. Phys. 07 (2006) 007; J. Ellis, A. Raklev, and
O. Oye, J. High Energy Phys. 10 (2006) 061; R. H. Cyburt,
J. Ellis, B. D. Fields, K. A. Olive, and V. C. Spanos, J.
Cosmol. Astropart. Phys. 11 (2006) 014; F. D. Steffen, J.
Cosmol. Astropart. Phys. 09 (2006) 001.

[25] J. D. Lykken, hep-th/9612114.
[26] S. Deser and B. Zumino, Phys. Rev. Lett. 38, 1433 (1977).
[27] E. Cremmer, B. Julia, J. Scherk, S. Ferrara, L. Girardello,

and P. van Nieuwenhuizen, Nucl. Phys. B147, 105 (1979).
[28] P. Van Nieuwenhuizen, Phys. Rep. 68, 189 (1981).
[29] A. Das and D. Z. Freedman, Nucl. Phys. B114, 271

(1976).
[30] H. van Dam and M. J. G. Veltman, Nucl. Phys. B22, 397

(1970); V. I. Zakharov, Pis’ma Zh. Eksp. Teor. Fiz. 12, 447
(1970) [JETP Lett. 12, 312 (1970)].

[31] M. Drees, R. Godbole, and P. Roy, Theory and
Phenomenology of Sparticles: An Account of Four-
Dimensional N � 1 Supersymmetry in High Energy
Physics (World Scientific, Singapore, 2004).

[32] S. Weinberg, The Quantum Theory of Fields,
Supersymmetry, Vol. 3 (Cambridge University Press,
Cambridge, 2000).

[33] K. Fujikawa and K. Okuyama, Nucl. Phys. B521, 401
(1998).

[34] T. Lee and G.-H. Wu, Phys. Lett. B 447, 83 (1999).
[35] P. C. West, Introduction to Supersymmetry and

Supergravity (World Scientific, Singapore, 1990).

VYACHESLAV S. RYCHKOV AND ALESSANDRO STRUMIA PHYSICAL REVIEW D 75, 075011 (2007)

075011-22


