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In a recent paper [J. Montano, F. Ramı́rez-Zavaleta, G. Tavares-Velasco, and J. J. Toscano, Phys. Rev. D
72, 055023 (2005).], we investigated the effects of the massive charged gauge bosons (bileptons) predicted
by the minimal 331 model on the off-shell vertex WWV� (V � �, Z) using a SUL�2� �UY�1� covariant
gauge-fixing term for the bileptons. We proceed along the same lines and calculate the effects of the gauge
bosons predicted by the 331 model with right-handed neutrinos. It is found that the bilepton effects on the
WWV� vertex are of the same order of magnitude as those arising from the standard model and several of
its extensions, provided that the bilepton mass is of the order of a few hundred of GeVs. For heavier
bileptons, their effects on the WWV� vertex are negligible. The behavior of the form factors at high
energies is also discussed as it is a reflection of the gauge invariance and gauge independence of the
WWV� Green function obtained via our quantization method.
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I. INTRODUCTION

Radiative corrections to the WWV (V � �, Z) vertex
have long received considerable attention. Apart from its
sensitivity to new physics effects, this vertex has theoreti-
cal interest of its own as it may serve as a probe of the
gauge sector of the standard model (SM). In this context,
the one-loop contributions to the WW� vertex, which
defines the static electromagnetic properties of the W
boson, have been calculated in the SM [1,2] and several
of is extensions such as two-Higgs doublet models
(THDMs) [3], supersymmetric models [4], 331 models
[5,6], etc. Similar attention has been paid to the study of
the WWZ vertex. Even though the attention has focused
mainly on the static properties of the W boson, a more
comprehensive study of the W boson properties requires
the analysis of the off shellWWV vertex, particularly when
the neutral V boson is off shell and the W bosons are on
shell as the resulting vertex could be tested with high
precision at the CERN large hadron collider (LHC) or
the planned future linear colliders. It is well known that,
although the on-shell WWV vertex renders a gauge-
independent amplitude by itself, gauge independence is
lost once any external particle goes off shell, thereby
requiring the use of a nonconventional calculation scheme.
The difficulties to obtain a gauge-independent Green func-
tion for the WWV� vertex have long been known. In
particular, a careless calculation of the radiative correc-
tions to the WWV� vertex via a conventional gauge-fixing
procedure irremediably leads to an ill-behaved gauge de-
pendent Green function. For instance, one-loop corrections
to the WWV� vertex were first calculated in the SM by the
authors of Ref. [2] using the Feynman-’t Hooft gauge via a
conventional gauge-fixing scheme. The result was an in-
frared divergent Green function that violates unitarity.
Aware of the fact that an off-shell Green function is gen-

erally gauge dependent, the authors of Ref. [7] invoked a
diagrammatic method known as the pinch technique (PT)
[8] to obtain a gauge-independent WWV� Green function
satisfying the requirements of gauge invariance and infra-
red finiteness. The PT exploits the fact that, although the
off-shell Green functions are gauge dependent, the
S-matrix elements to which they contribute are gauge
independent. In this way, order by order in perturbation
theory, one can construct a gauge-independent Green func-
tion for an off-shell vertex by combining its contribution
with all other Feynman diagrams that also contribute to a
particular physical process, thereby getting rid of any �
dependent terms. In this respect, while the WWV� vertex
by itself does not represent a physical process, it can
contribute to a gauge-invariant physical process such as
e�e� ! W�W� scattering. By this method, a gauge-
invariant and gauge-independent WWV� Green function
can be constructed. The PT was also used in Ref. [9] to
calculate the one-loop contributions to the WWV� vertex
from the unconstrained minimal supersymmetric standard
model (MSSM).

The PT is thus a diagrammatic method that allows one to
remove any unphysical gauge dependent term from an off-
shell n-point function at the level of the Feynman graphs
contributing to a certain physical process, thereby yielding
a well-behaved gauge-independent and gauge-invariant
Green function. The PT may turn itself, however, into a
somewhat cumbersome task. There is also the alternative
of removing any gauge dependent term at the level of the
generating functional. In this respect, although the back-
ground field method (BFM) [10] renders a gauge-invariant
quantum action, no mechanism has been found yet that
allows one to obtain both gauge-invariant and gauge-
independent Green functions from the generating func-
tional. Eventually, a connection between the PT and the
BFM has been found [11]: it turns out that the gauge-
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invariant and gauge-independent Green function obtained
via the PT is exactly reproduced if it is calculated through
the BFM using the Feynman rules given in the Feynman-
’t Hooft gauge (� � 1). Although such a correspondence,
which so far remains a puzzle, was first established at the
one-loop level [12], it has been shown that it persists at all
orders of perturbation theory [13]. Therefore, instead of
using the PT, one can use the BFM Feynman-’t Hooft
gauge to calculate gauge-independent off-shell amplitudes.
Along these lines, in Ref. [14] we calculated the one-loop
contributions to theWWV� vertex from the gauge sector of
the so-called minimal 331 model [15,16]. In order to con-
struct a well-behaved gauge-independent Green function,
rather than using the PT, we invoked an alternative method
inspired in the BFM and the Becchi, Rouet, Stora, and
Tyutin (BRST) symmetry [17], which is well suited to
study the sensitivity of the WWV� vertex to the virtual
effects of the new gauge bosons predicted by 331 models.
We will follow a similar approach here to calculate the one-
loop contributions from the 331 model with right-handed
neutrinos [18]. Although we will shortly describe the cal-
culation scheme below, for more details we refer the reader
to Ref. [14].

331 models have been the source of great interest lately.
Recent studies within the framework of this class of theo-
ries have focused on neutrino physics [19], Z0 physics [20],
Higgs boson physics [21], bilepton physics [6,14,22,23],
supersymmetric extensions [24], dark matter [25], CP
violation [26], and theoretical aspects [27]. Models of
this kind are based on the SUL�3� �UX�1� gauge symme-
try [15,16] and are unique in the sense that they require that
all 3 fermion families be summed up in order to cancel
anomalies, in contrast with other models in which anomaly
cancellation is achieved family by family. As a conse-
quence, 331 models require that the number of fermion
families be a multiple of 3, the quark color number. This
may suggest a solution to the family replication problem.
Apart from this feature, 331 models are interesting as they
predict a pair of massive gauge bosons arranged in a
doublet of the electroweak group. While the minimal 331
model predicts a pair of singly charged Y� and a pair of
doubly charged Y�� gauge bosons, the model with right-
handed neutrinos predicts a pair of neutral no self-
conjugate gauge bosons Y0 instead of the doubly charged
ones. These new gauge bosons are called bileptons since
they carry two units of lepton number, thereby being
responsible for lepton-number violating interactions [18].
The neutral bilepton has been deemed a promising candi-
date in accelerator experiments since it may be the source
of neutrino oscillations [28]. The reason why the effects of
the bileptons on the WWV� vertex are worth studying is
because their couplings to the SM gauge bosons are rather
similar to the SM gauge boson couplings. Current bounds
put the bilepton masses in the range of a few hundred GeVs
[29], which means that the bileptons may show up via their

virtual effects in low-energy observables. This is an im-
portant reason to investigate the effect of these particles on
the WWV� vertex. Furthermore, due to the spontaneous
symmetry-breaking (SSB) hierarchy, the splitting between
the charged and neutral bilepton masses is bounded bymW ,
so the bilepton masses might be almost degenerate since
they are expected to be heavier thanmW . We will see below
that this is particularly suited for our calculation method.

The rest of the paper is organized as follows. In Sec. II
we present a brief introduction to the 331 model with right-
handed neutrinos. A survey of the quantization method is
presented in Sec. III along with a detailed discussion on the
gauge-fixing procedure for the bileptons, whereas Sec. IV
is devoted to the analytical results and the analysis. Finally,
the conclusions are presented in Sec. V.

II. THE 331 MODEL WITH RIGHT-HANDED
NEUTRINOS

The 331 model with right-handed neutrinos was first
introduced in Ref. [18]. In a previous paper, we worked
in the context of this model and calculated the static
electromagnetic properties of the W boson [6]. Also, the
one-loop contributions to the static electromagnetic prop-
erties of the neutral no self-conjugate Y0 boson were
calculated in Ref. [23]. It was shown that the main con-
tributions to the WW� vertex arise from the gauge sector,
i.e. from the bileptons, as the fermion sector does not
contribute and the Higgs sector gives a negligible contri-
bution quite similar to that arisen in a THDM [6].
Therefore, although for completeness we will present a
short description of the main features of the model, the
following discussion will be mainly focused on the gauge
sector as it is the one which is expected to give the
dominant contributions to the WWV� vertex. Further-
more, we will see that our calculation scheme is suited to
analyze the effects of the bileptons on the WWV� Green
function.

In the fermion sector of the 331 model with right-handed
neutrinos, leptons of the same generation are arranged in
left-handed triplets and right-handed singlets, the same
being true for each quark generation. Apart from the
introduction of right-handed neutrinos, there are three
new quarks, D1, D2, and T, which have the following
electric charge: QDi

� �1=3e and QT � 2=3e. In order
to cancel the SUL�3� anomaly, two quark families trans-
form as SUL�3� antitriplets and the remaining one as a
triplet. At the first stage of SSB, when the SUL�3� �UN�1�
group is spontaneously broken into SUL�2� �UY�1�, the
new quarks get their masses and emerge as singlets of the
electroweak group. Consequently, they cannot interact
with the W boson at the tree level. It follows that there is
no contribution from the new quarks to the WWV� vertex
at the one-loop level.

As far as the scalar sector is concerned, several Higgs
sectors have been proposed in the literature to achieve the
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SSB in 331 models [30]. As for the 331 model with right-
handed neutrinos, it requires the simplest Higgs sector of
this class of theories [18], i.e. only three triplets of SUL�3�
are required to reproduce the SM physics at the Fermi
scale:

 � �
�Y

�00

� �
	 �1; 3;�1=3�;

� �
�1

�0�

� �
	 �1; 3; 2=3�;

� �
�2

�00

� �
	 �1; 3;�1=3�;

(1)

where �yY � �G
0�
Y ; G

�
Y �, �y1 � ��

�; �0��, and �y2 �
��0�; ��� are SUL�2� �UY�1� doublets with hypercharge
�1, 1, and �1, respectively. The vacuum expectation
values are h�iT � �0; 0; w=

���
2
p
�, h�iT � �0; u=

���
2
p
; 0�, and

h�iT � �v=
���
2
p
; 0; 0�. The triplet � breaks the SUL�3� �

UN�1� group into SUL�2� �UY�1� at the w scale, whereas
� and � are meant to break SUL�2� �UY�1� into Ue�1�.

In the gauge sector, the model predicts the existence of
five new gauge bosons: two singly charged Y�, two neutral
no self-conjugate Y0, and a neutral self-conjugate Z0. All
these new gauge bosons and the new quarks as well acquire
their masses at the w scale. At this stage of SSB, the Z0

boson emerges as a singlet of the electroweak group and so
no interaction between the Z0 boson and the W boson
arises. However, in the following stage of SSB, at the
Fermi scale, the Z0 boson couples with the W boson via
the Z� Z0 mixing angle. As a consequence, the Z0 con-
tribution to the WWV� vertex will be proportional to the
square of the Z� Z0 mixing angle, which is highly sup-
pressed according to the most recent experimental bounds
[31,32]. We will thus ignore this contribution in this work.
In sharp contrast, the bileptons arise as a doublet of the
electroweak group at the w scale, which means that they
couple to the SM gauge bosons in a rather peculiar way:
due to the fact that the SUL�2� group is completely em-
bedded in SUL�3�, the bileptons couplings to the SM gauge
bosons have similar strength and Lorentz structure as those
of the SM gauge boson couplings themselves. These new
interactions, which arise solely from the Yang-Mills sector,
do not involve any mixing angle and are entirely deter-
mined by the SUL�2� coupling constant and the weak angle
�W .

In the first stage of SSB, the bilepton masses are degen-
erate: mY0 � mY� � mY � gw=2. However, when
SUL�2� �UY�1� is broken down to Ue�1�, the bilepton
mass degeneration is also broken. Once the Higgs
kinetic-energy sector is diagonalized, there emerge the
following mass-eigenstate fields:

 Y0
� �

1���
2
p �A4

� � iA5
��; (2)

 Y�� �
1���
2
p �A6

� � iA7
��; (3)

 W�� �
1���
2
p �A1

� � iA2
��; (4)

with masses m2
Y0 � g2�w2 � u2�=4, m2

Y� � g2�w2 �

v2�=4, and m2
W � g2�u2 � v2�=4. The remaining three

gauge fields A3
�, A8

�, and N� define the self-conjugate
mass eigenstates. From the above expressions, it is
straightforward to obtain the following upper bound on
the bilepton mass splitting [18]:

 jm2
Y0 �m2

Y�j 
 m2
W: (5)

Therefore, the bilepton masses become nearly degener-
ate when they are much larger than mW . While in the
minimal 331 model an upper bound on the bilepton masses
of the order of 1 TeV can be derived from the theoretical
constraint sin2�W 
 1=4 [16,32,33], which is obtained
from matching the gauge couplings constants at the
SUL�3� �UX�1� breaking scale, in the version with right-
handed neutrinos the corresponding bound is highly re-
laxed as the theoretical constraint is sin2�W 
 3=4 [18].

The Yang-Mills sector induces all the couplings we need
to compute the bilepton contribution to the WWV� vertex,
so we will devote particular attention to it. The respective
Lagrangian can be written as

 L YM � �
1
4F

a
��F

��
a �

1
4N��N

��; (6)

where Fa�� � @�Aa� � @�Aa� � fabcAb�Ac� and N�� �
@�N� � @�N�, with fabc the structure constants associated
with SUL�3�. When the mass-eigenstate fields are intro-
duced, the above Lagrangian can be split into three
SUL�2� �UY�1�-invariant terms [18]:

 L YM � LSM
YM �LSM-NP

YM �LNP
YM: (7)

While LSM
YM stands for the usual SM Yang-Mills

Lagrangian, LSM-NP
YM comprises the interactions between

the new gauge bosons and the SM ones. The latter
Lagrangian is the only one relevant for the present discus-
sion and we will get back to it later. As for the last term,
LNP

YM, it induces the couplings of the Z0 boson to the
bileptons. At the one-loop level there are no contributions
to the WWV� vertex induced by this Lagrangian.

In order to calculate the one-loop correction to the
WWV� vertex, we will introduce a SUL�2� �
UY�1�-covariant gauge-fixing procedure for the bileptons.
This will be discussed in the following section.

III. A SUL�2� � UY�1� COVARIANT GAUGE-FIXING
PROCEDURE FOR THE BILEPTONS

A. Overview of the quantization method

We now turn to present an overview of the quantization
method used to obtain a gauge-invariant and gauge-
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independent Green function for the WWV� vertex in the
331 model with right-handed neutrinos. This method,
which is inspired in the BFM and BRST formalism, was
comprehensively discussed in our previous work [14] and
we refrain from presenting a detailed discussion here.

The BFM [10] is a powerful tool that allows one to
construct a gauge-invariant quantum action out of which
gauge-invariant Green functions can be obtained that are
free of pathologies and satisfy simple Ward identities. In a
conventional quantization formalism, all the fields appear-
ing in the action are quantized. In the BFM, the gauge
fields are decomposed into a quantum field and a classical
(background) field. While the quantum fields are integrated
out, the background fields are treated as sources. As a
result, the quantum fields can only appear as internal lines
in loop diagrams, whereas the background fields appear as
external lines. In principle, it is necessary to gauge fix both
the quantum and the classical fields in order to define
S-matrix elements, but it is enough to gauge fix the former
to obtain off-shell Green functions. In this respect, while
gauge invariance with respect to the quantum fields is
broken when they are gauge fixed, this process leaves
unaltered the gauge invariance with respect to the classical
fields. The resulting Green functions will be gauge invari-
ant but they will still maintain the dependence on the gauge
parameter that characterizes the gauge-fixing scheme used
for the quantum fields. However, we can exploit the con-
nection between the BFM and the PT to obtain a gauge-
invariant and gauge-independent Green function. We just
need to use the BFM Feynman rules given in the Feynman-
’t Hooft gauge. We will see below that our quantization
method incorporates some features of the BFM.

Although gauge invariance with respect to the full theory
is broken when a conventional quantization scheme is
applied, one can still preserve the gauge invariance under
a subgroup of the theory. This approach is well suited when
the virtual effects of the gauge fields associated with the
subgroup are expected to be considerably small. In this
context, following the philosophy of the effective
Lagrangian approach, where a SUL�2� �UY�1� effective
Lagrangian is constructed out of the light (SM) fields to
assess the effects of the heavy fields on a low-energy
observable, it would be convenient to analyze the virtual
effects of the bileptons on the WWV� Green function in a
SUL�2� �UY�1�-covariant manner. A quantization scheme
for the bileptons would only be required since the SM
gauge fields would only appear as external lines. Thus, a
SUL�2� �UY�1�-invariant effective Lagrangian can be
constructed by introducing a SUL�2� �UY�1�-covariant
gauge-fixing procedure for the bileptons, which then can
be integrated out. The gauge-fixing procedure must involve
the SUL�2� �UY�1�-covariant derivative given in the rep-
resentation in which the heavy fields transform under this
group, which is the reason why such gauges are known as
nonlinear or covariant. This class of gauges has proved to

be very useful for the calculation of radiative corrections in
the SM and beyond [34].

Since we want to introduce a nonlinear gauge-fixing
procedure for the bileptons, we need to be careful as the
difficulties to implement the Faddeev-Popov method
(FPM) [35] in such a case have long been known. More
specifically, it is known that renormalizability becomes
ruined when the FPM is applied to a nonlinear gauge.
We can invoke instead the BRST formalism [17] to con-
struct the most general renormalizable nonlinear gauge-
fixing term [36]. We will thus introduce a SUL�2� �
UY�1�-covariant gauge-fixing term for the bileptons, which
will lead to an invariant quantum action out of which a
gauge-invariant WWV� Green function will be obtained.
Invoking the connection between the PT and the BFM, the
Feynman rules given in the Feynman-t’ Hooft gauge will
render a gauge-independent Green function.

Finally, we would like to point out that both our quan-
tization method and the BFM are meant to construct gauge-
invariant quantum actions. The main difference resides in
the fact that, while the BFM allows one to analyze any new
physics effects regardless the energy scale, ours is only
appropriate to study heavy physics effects on low-energy
(SM) Green functions. This stems from the fact that, while
in the BFM gauge-invariance would be preserved with
respect to the gauge group of a complete theory, in our
quantization method there is only invariance under a sub-
group of such a theory. In the case of the present paper, our
quantization method preserves gauge invariance under the
SUL�2� �UY�1� group rather than SUL�3� �UN�1�.
While the calculation will be greatly simplified because
of electroweak invariance, the price to be paid is that our
result will only be approximate as it will only account for
the bilepton effects on the WWV� vertex at the w scale,
when the bilepton masses are still degenerate. We will see
below that this is indeed a good approximation.

B. Gauge-fixed Lagrangian and Feynman rules

The procedure to gauge fix the Yang-Mills Lagrangian
of the 331 model with right-handed neutrinos is similar to
that described in the case of the minimal 331 model. So, we
refrain from presenting a detailed discussion here and refer
the reader to Ref. [14].

After introducing the most general action for a Yang-
Mills system consistent with BRST symmetry and renor-
malization theory [37], we integrate out the auxiliary fields
to obtain an action defined by the following gauge-fixed
SUL�2� �UY�1�-invariant Lagrangian:

 L BRST � LYM �LGF �LFP; (8)

where LGF and LFP are the gauge-fixing term and the ghost
sector Lagrangian, respectively. As for the Yang-Mills
Lagrangian LYM, which is given in Eq. (7), for our calcu-
lation we only need the LSM-NP

YM term as it is the only one
that induces the interactions between the bileptons and the
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SM gauge bosons. It can be expressed as

 

LSM-NP
YM � �

1

2
�D�Y� �D�Y��y�D�Y� �D�Y��

� iYy��gF�� � g0B���Y�

�
ig
2

������������������
3� 4s2

W

q
cW

Z0��Y
y
� �D�Y� �D�Y��

� �D�Y� �D�Y��yY��; (9)

where Yy� � �Y0�
� ; Y�� � is a doublet of the electroweak

group with hypercharge �1, and D� � @� � igA� �

ig0B� is the electroweak covariant derivative. We have
also introduced the definitions F�� � 	iFi��=2, A� �

	iAi�=2, and B� � YB�=2, with 	i the Pauli matrices.
As for the gauge-fixing term LGF and the ghost sector

Lagrangian LFP, they can be written as

 L GF � �
1

2�
f �af �a; (10)

and

 L FP � � �C �a�
f �a� �
2

�
f �abcf �a �CbCc

�
1

2
f �abcfcde �C �a �CbCdCe; (11)

where f �a are the gauge-fixing functions and �C �a stands for
the antighost fields. In addition, Ca are the ghost fields
associated with the Aa� fields, fabc are the SUL�3� structure
constants, and � is the gauge parameter.

According to Ref. [14], the most general SUL�2� �
UY�1�-covariant gauge-fixing functions f �a consistent
with renormalization theory is given by

 f �a � �
 �ab@� � gf
�abiAi��A

�b �
�g���

3
p f �ab8�y�b�;

�a � 4; 5; 6; 7; i � 1; 2; 3; 8:

(12)

We can now insert this expression into the gauge-fixed
Lagrangian. Apart from analyzing the dynamics induced
by each term of the gauge-fixed Lagrangian, we would like
to put special emphasis on the covariance under SUL�2� �
UY�1�.

The covariant structure of the gauge-fixing term be-
comes manifest when the mass eigenstates f0

Y �
1��
2
p �f4 �

if5� and f�Y �
1��
2
p �f6 � if7� are introduced in an SUL�2� �

UY�1� doublet,

 fY �
f0
Y
f�Y

� �

�

�
D� �

ig
������������������
3� 4s2

W

q
2cW

Z0�

�
Y� �

ig����
2
p �00��Y: (13)

We will now decompose the gauge-fixing Lagrangian into
three terms in order to analyze the dynamics it induces:

 L GF � LGF1 �LGF2 � � � � ; (14)

where each term is separately SUL�2� �UY�1� invariant:

 L GF1 � ���1�D�Y��y�D�Y�� �
�g2

2
��00��00���yY�Y�;

(15)

 L GF2 �
ig���

2
p ��00��D�Y

��y�Y � �
00�yY�D�Y

���; (16)

whereas the third term, denoted by � � � , involves the Z0

boson and is irrelevant here.
We note that the first term of LGF1 defines the bilepton

propagators and gives new contributions to the trilinear and
quartic couplings involving the bileptons and the SM
gauge bosons, which originally arise from the LSM-NP

YM
Lagrangian. After some algebra, we are led to the
Feynman rules for these modified couplings, which are
shown in Fig. 1. The Lorentz structure associated with
the trilinear couplings is given by
 

�����k; k1; k2� � �k2 � k1��g�� � �k� k2 � �
�1k1��g��

� �k� k1 � �
�1k2��g��; (17)

whereas those of the quartic couplings are

 �WWYY��� � g�g�� � 2g��g� � �1� �
�1�g��g�;

(18)

and
 

�WVYY��� � �Q
V
Y� �Q

V
Y0�g�g��

� ��1� ��1�QV
Y0 � 2QV

Y�g��g�

� ��1� ��1�QV
Y� � 2QV

Y0g��g�: (19)

The reason why the trilinear couplings WYY and VYY
have the same Lorentz structure is a consequence of
SUL�2� �UY�1� invariance. This is also reflected in the
fact that a simple Ward identity is satisfied by these verti-
ces:

 k������k; k1; k2� � �YyYy
�� �k2� ��YY

���k1�; (20)

where �YY
���k� is the two-point vertex function

BILEPTON EFFECTS ON THE WWV� VERTEX IN THE . . . PHYSICAL REVIEW D 75, 075008 (2007)

075008-5



 �YY
���k� � ��k�m

2
Y�g�� � ��

�1 � 1�k�k�: (21)

Note that the unphysical masses for the pseudo-
Goldstone bosons associated with the bileptons are deter-
mined by the scalar part of LGF1, which also modifies
various unphysical couplings arising from the Higgs po-
tential. As for LGF2, it allows one to remove various
unphysical vertices that arise from the � kinetic-energy
sector LK�, which can be written as

 L K� � LK�1 �LK�2 � � � � ; (22)

where each term is SUL�2� �UY�1�-invariant by itself:
 

LK�1 � �D��Y�
y�D��Y� � @��00�@��00

�
g2

2
��00��00Yy�Y� � ��

y
YY���Y

�y�Y��; (23)

 L K�2 � ieW��00�Yy��D��Y� ��yYY�@
��00 � H:c:�:

(24)

Once again, the terms denoted by � � � are irrelevant for our
calculation as they involve the Z0 boson.

From these expressions it is clear that LK�1 induces the
couplings of the pseudo-Goldstone bosons to the SM gauge
bosons. The respective Feynman rules for these coupling
can be extracted straightforwardly and are presented in
Fig. 2. As for LK�2, it induces the bilinear terms

Y0;0�
� G0�;0

Y and Y��G
�
Y , together with the unphysical tri-

linear couplings Y0;0�
� W�;�G�;�Y , Y�;�� W�;�G0;0�

Y , and
some quartic vertices irrelevant for our calculation. It turns
out that all these couplings exactly cancel when LK�2 and
LGF2 are combined:

 

LK�2 �LGF2 � ieW��
00�@��Y

�y�Y�

��yYY�@
��00 � H:c:� � � � � ; (25)

where � � � stands for irrelevant surface terms. This is
the reason why this gauge-fixing procedure will simplify
considerably our calculation as we can get rid of
several Feynman diagrams involving the couplings
Y0;0�
� W�;�G�;�Y and Y�;�� W�;�G0;0�

Y .
Finally, we would like to show the covariant structure of

the ghost sector and extract the Feynman rules necessary
for our calculation. We introduce the mass eigenstates in
SUL�2� �UY�1� doublets:

 CY �
C0
Y

C�Y

� �
�CY �

�C0
Y

�C�Y

� �
; (26)

where the mass eigenstates are defined as C0
Y �

1��
2
p �C4 �

iC5� and C�Y �
1��
2
p �C6 � iC7�, and similar expressions for

the antighost field �CY . The LFP Lagrangian can thus be
written as follows:

 

W ±
α (k )

Yµ (k1 )

Y †
ν (k2 )

− ieW Γα µν (k, k1 , k2)
Vα (k )

Yµ (k1 )

Y †
ν (k2 )

− ieV QV
Y Γαµν (k, k1 , k2)

W −
β

W +
α Y −

µ

Y +
ν

− ie2
W ΓW + W − Y − Y +

αβ µν

W −
β

W +
α Y 0

µ

Y 0∗

ν

− ie2
W ΓW + W − Y 0 ∗

Y 0

αβ µν

Vβ

W +
α Y −

µ

Y 0∗
ν

− ieW eV Γ W + V Y − Y 0 ∗
αβ µν

Vβ

W −
α Y 0

µ

Y +
ν

− ieW eV ΓW − V Y 0 Y +

αβ µν

FIG. 1. Feynman rules for the trilinear and quartic vertices involving the bileptons and SM gauge fields in the SUL�2� �
UY�1�-covariant R�-gauge. eV � e, QV

Y� � �1, and QV
Y0 � 0 for V � �, whereas eV � g=�2cW�, QV

Y� � 2s2
W � 1, and QV

Y0 � 1

for V � Z. In addition, eW � g=
���
2
p

. See Eqs. (17)–(19) for the Lorentz structures.
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LFP � �D�CY�
y�D� �CY� �

g2

4
��Yy�	

iY���CyY	
i �CY� � 3�Yy�Y

���CyY �CY� � 4�Yy�CY��Y
�y �CY� �

ig���
2
p Yy�MCD

� �CY

�
ig
2
Yy�MC

�CY �
�g
2
��00��00CyY �CY � �00�yYMC

�CY � �C
y
Y�Y���

y
Y

�CY�

�
i
���
2
p

�
�� �MCCY �MC

�CY�
y�D�Y

�� � �D�Y
��� �MCCY �MC

�CY�

� g��yY� �MCCY �MC
�CY��

00 � �00�� �MCCY �MC
�CY�
y�Y � H:c:�

1

2
f �abcfcde �C �a �CbCdCe; (27)

where

 MC �
1��
2
p �C3 �

���
3
p
C8� 1��

2
p �C1 � iC2�

1��
2
p �C1 � iC2� � 1��

2
p �C3 �

���
3
p
C8�

0
@

1
A; (28)

 M C �
�D3i

� �
���
3
p

D8i
��Ci �D1i

� � iD21
� �Ci

�D1i
� � iD2i

��Ci ��D3i
� �

���
3
p

D8i
��Ci

 !
;

(29)

where i � 1, 2, 3, 8, Dij
� � 
ij@� � gfijaAa� is the cova-

riant derivative given in the adjoint representation of
SUL�3�, and �MC is obtained from MC after replacing the
ghost fields by the antighost fields. Under a SUL�2� �
UY�1� unitary transformation U, MC transforms as MC !
UMCUy. The same is true for �MC and MC. It is thus clear
that LFP is SUL�2� �UY�1� invariant.

From LFP, it is straightforward to show that the
Feynman rules for the trilinear and quartic couplings in-
volving the ghost fields and the SM gauge bosons have the
same Lorentz structure than those involving the pseudo-
Goldstone bosons and the SM gauge bosons, which stems
from the fact that each sector is SUL�2� �UY�1� invariant
by itself. The Feynman rules for the ghost (antighost) fields
are summarized in Fig. 2 together with the Feynman rules
for the pseudo-Goldstone bosons. We see that the trilinear

vertices WSyS and VSyS, with S standing for a commuta-
tive (pseudo-Goldstone boson) or anticommutative (ghost)
charged scalar, satisfy simple Ward identities:

 k��VS
yS

� � �SySy�k2� ��SS�k1�; (30)

where �VS
yS

� � �k1 � k2�� and �SS�ki� stands for the two-
point vertex functions ��k� � k2 � �m2

Y .

IV. ANALYTICAL RESULTS AND DISCUSSION

A. A gauge-invariant and gauge-independent Green
function for the WWV� vertex

The most general transverseCP-even vertex function for
the W�� �p� q�W� ��p� q�V

�
��q� coupling has the form

[1,38]
 

�V�� � �igV

�
A�2p�g� � 4�qg�� � q�g��

� 2��V�qg�� � q�g��

�
4�QV

m2
W

�
p�q�q �

1

2
q2p�g�

��
: (31)

The longitudinal terms were ignored as they become neg-
ligibly small when V� couples to a light fermion current, as
in e�e� ! WW scattering. The SM tree-level values are

 

W ±
α (k )

S (k1)

S †(k2)

− ieW Γα (k1 , k2)
Vα (k )

S (k1)

S †(k2)

− ieV QV
Y Γα (k1 , k2)

W −
β

W +
α S

S †

ie2e2
W gαβ

Vβ

W +
α S

S †

ieW eV (QV
Y − + QV

Y 0 )gαβ

FIG. 2. Feynman rules for the trilinear and quartic vertices involving SM gauge fields and scalar unphysical particles (pseudo-
Goldstone bosons and ghosts) in the SUL�2� �UY�1�-covariant R�-gauge. In this gauge, the W and V couplings to pseudo-Goldstone
bosons and ghosts coincide.
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A � 1 and �� � �Q � 0. While ��, and �Q are ultra-
violet finite at the one-loop level, A is divergent and
requires renormalization. The coefficients ��� and �Q�,
obtained from the WW� vertex function, determine the
static electromagnetic properties of the W boson, namely,
its magnetic dipole moment�W and its electric quadrupole
moment QW .

From the Feynman rules presented in Figs. 1 and 2, we
can construct all the Feynman diagrams contributing to the
WWV vertex at the one-loop level, which we show in
Fig. 3, and extract the ��V and �QV coefficients.
Although there is a similar set of Feynman diagrams for
the pseudo-Goldstone bosons and the ghost fields, the
unphysical particles only contribute to Eq. (31) via the
triangle diagram. Moreover, it turns out that the ghost
(antighost) contribution is minus twice that of the
pseudo-Goldstone bosons, which is due to the separate
SUL�2� �UY�1� invariance of these sectors. We have eval-

uated the loop amplitudes in the Feynman-’t Hooft gauge
via the Passarino-Veltman reduction method [39]. We have
verified that the bilepton contribution can be written ex-
actly as Eq. (31), which means the WWV� Green function
satisfies the Ward identity �V��q

� � 0. It turns out that
the form factors are the same regardless of V, which means
that, just as occurs at the tree level, ���� and �Z�� only
differ by the gV coefficient. Thus, SUL�2� �UY�1� invari-
ance is preserved at the one-loop level. The gV coefficient
is given by gV � eV�Q

V
Y0 �QV

Y��, which, after inserting
the charge values, gives gV � e for V � � and gV � cWg
for V � Z.

We now introduce the following shorthand notationQ �
2q, Q̂2 � Q2=m2

W , xY � m2
Y=m

2
W ,�Q̂2� � 6a=�4� Q̂2�3,

a � g2=96�2, and express the ��V and �QV coefficients
in terms of two- and three-point Passarino-Veltman scalar
functions:

 

�QV � 2�Q̂2�

�
�6xYG�Q2� � 1�Q̂4 � 2�2�2xY � 1�F�m2

W;Q
2� � 2xYF�0; Q2� � 6�3xY � 1�G�Q2� � 3�Q̂2

� 4��8xY � 5�F�m2
W;Q

2� � 8xYF�0; Q2� � 6�3xY � 1�G�Q2� � 5� � 8�3F�m2
W;Q

2� � 8xYF�0; Q2�

� 3�1� 4xY�G�Q
2� � 6�

1

Q̂2

�
(32)

 

Vµ

W −
βW +

α

Y 0 , Y −Y 0 , Y −

Y − , Y 0∗

Vµ

Y 0 , Y −Y 0 , Y −

W +
α W −

β

Vµ

W −
βW +

α

Y 0

Y −

Vµ

W −
βW +

α

Y −

Y 0

FIG. 3. Feynman diagrams for the WWV vertex in the SUL�2� �UY�1�-covariant gauge. The pseudo-Goldstone bosons and ghosts
contribute through an identical set of diagrams, but only the triangle ones give a nonvanishing contribution to ��V and �QV .
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��V � �Q̂2���F�m2
W;Q

2� � 4xYF�m
2
W; 0� � 6�1� 3xY�G�Q

2� � 3�Q̂4 � 2�2� 16xYF�m
2
W; 0�

� �13� 16xY�F�m2
W;Q

2� � 3�1� 3xY�G�Q2��Q̂2 � 32�1� 2�F�m2
W; 0� � 2F�m2

W;Q
2���xY; (33)

where F�m2; Q2� � B0�m2; m2
Y; m

2
Y� � B0�Q2; m2

Y; m
2
Y� and G�Q2� � m2

WC0�Q2; m2
W;m

2
W;m

2
Y; m

2
Y; m

2
Y�, with the scalar

two-point B0 and three-point C0 functions given in the usual notation. From here, it is clear that ultraviolet divergences
cancel up in the W form factors.

Before the numerical evaluation, it is interesting to analyze the static electromagnetic form factors, i.e. the scenario
when Q2 � 0. Note that Q̂2 and F�0; Q2� vanish when Q2 � 0, whereas G�0� � �2� F�m2

W; 0��=�1� 4xY� [40]. After
taking the Q2 ! 0 limit in the last two terms of Eq. (32), �Q� can be written as

 

�Q� �
3m2

Wa
2

�
1

6m2
W�1� 4xY�

��21� 48xY � 3�1� �10� 32xY�xYF�m2
W; 0���

� �8xY � 3�
@B0�Q2; m2

Y; m
2
Y�

@Q2

��������Q2�0
�3m2

W�1� 4xY�
@C0�Q2; m2

W;m
2
W;m

2
Y; m

2
Y;m

2
Y�

@Q2

��������Q2�0

�
; (34)

where L’Hôpital rule has been used for the indeterminate
limit. Since any three- and two-point scalar function and
their derivatives can be written as a combination of two-
point functions [40], we can write

 

@B0�Q2; m2
Y; m

2
Y�

@Q2

��������Q2�0
�

1

6m2
Y

; (35)

and

 

@C0�Q2; m2
W;m

2
W;m

2
Y; m

2
Y;m

2
Y�

@Q2

��������Q2�0

�
1

6m2
Wm

2
Y

1� �5� 6xY�xYF�m2
W; 0� � 5xY

�1� 4xY�2
: (36)

We thus obtain
 

�Q� �
4a

1� 4xY
��1� �1� 3�2xY � 1��B0�m2

W;m
2
Y; m

2
Y�

� B0�0; m
2
Y; m

2
Y���xY�; (37)

whereas ��� can be obtained immediately from (33)

 ��� �
3a
2
�1� 6xY�B0�m

2
W;m

2
Y; m

2
Y� � B0�0; m

2
Y; m

2
Y���:

(38)

In the limit of very large xY (mY � mW) we obtain

 B0�m
2
W;m

2
Y; m

2
Y� � B0�0; m

2
Y; m

2
Y� ’

1

6xY
; (39)

which can be used to show that both �Q� and ��� vanish
in the large bilepton mass limit, i.e. these coefficients are of
decoupling nature. Furthermore, it is evident that �Q�
decreases more rapidly than ��� as mY increases.

We emphasize that the above expressions account for the
bilepton effects on the WWV� vertex at the w scale, when
the bilepton masses are degenerate and equal to mY . These

results are thus approximate but can give a realistic esti-
mate of this class of effects. We now proceed to the
numerical evaluation and analysis.

B. Numerical evaluation and discussion

We now would like to analyze the behavior of �QV and
��V as functions of Q2 and the bilepton mass, which are
the only free parameters which they depend on.

As far as Q2 is concerned, we will focus on the values
that can be at the reach of the future planned linear col-
liders as this vertex has the chance of being studied through
e�e� ! W�W� scattering. We thus consider the range

200 GeV 

������
Q2

p

 2 TeV [41].

As for the bilepton mass, it is convenient to give a short
account on the existing bounds from both the theoretical
and experimental sides. First of all, we already mentioned
that the 331 model with right-handed neutrinos requires
that sin2�W 
 3=4 because of the matching of the gauge
coupling constants at the SUL�3� �UX�1� breaking scale,
from which an upper bound on the bilepton mass can be
derived after considering radiative corrections to sin�W and
the most recent experimental data [42]. The respective
bound is somewhat weak and contrasts with the case of
the minimal 331 model, which requires that mY & 1 TeV
[16,32,33] for consistency with the theoretical bound
sin2�W 
 1=4. Therefore, whereas the bileptons predicted
by the minimal 331 model could be searched for via
collider experiments in a near future, thereby confirming
or ruling out the model, the 331 model with right-handed
neutrinos would still leave open the door. We have also
mentioned that, because of the symmetry-breaking hier-
archy, the bilepton mass splitting is bounded by jm2

Y� �

m2
Y0 j 
 m2

W . This means that mY0 and mY� cannot be
arbitrarily different. In fact, the heavier the bilepton
mass, the closer its degeneracy. Our approximation of
mass degeneracy has thus much sense. We now would
like to examine the lower bounds on the bilepton masses.
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In Ref. [29] it was argued that the data from neutrino
neutral current elastic scattering give a lower bound on
the mass of the new neutral gauge bosonmZ0 in the range of
300 GeV, which along with the symmetry-breaking hier-
archy yield mY� 	mY0

	 0:72mZ0 � 220 GeV. A similar
bound was obtained in Ref. [28] from the observed limit on
the wrong muon decay R � ���� ! e��e ����=���� !
e� ��e��� 
 1:2%, which leads tomY� � 230� 17 GeV at
90% C.L. These lower bounds on m�Y are in agreement
with that obtained from the latest BNL measurement on the
muon anomaly [29]. It is then reasonable to consider the
range 200 GeV 
 mY0 
 2000 GeV for our numerical
analysis. This will allow us to assess the behavior of the
form factors and get an estimate of their order of magni-
tude. A word of caution is in order here: it has been pointed
out that some of the existing bounds on the bilepton masses
are too model dependent and thus can be relaxed by con-
sidering extra assumptions [43], so a relatively light bilep-
ton cannot be ruled out yet.

In Fig. 4 we show the W form factors ��V and �QV vs

the center-of-mass energy ECM �
������
Q2

p
, i.e. the momentum

carried by the virtual V boson, for the bilepton mass values
mY � 200, 600, and 1000 GeV. On the other hand, the
dependence of the W form factors on the bilepton mass is
shown in Fig. 5, where we have plotted ��V and �QV vs
the bilepton mass for ECM � 500 and 1000 GeV.

As far as the energy dependence of the form factors,
from Fig. 4 it is clear that both �QV and ��V are of the
order of about 10�4 for a relatively light bilepton with a
mass of 200 GeV and a center-of-mass energy around the
energy threshold ECM � 2mY , where the form factors
reach their extremum values and develop an imaginary
part. Below this threshold, the form factors are purely
real, which reflects the fact that the bileptons that couple
to the V boson are necessarily virtual, whereas the direct
production of a bilepton pair becomes possible for energies
ECM � 2mY . Although the direct production of a bilepton
pair would be preferred over the search for their virtual
effects, the latter would be useful for a high precision test
of the WWV vertex. We can also see that the form factors
decrease by 1 order of magnitude when mY � 500 GeV
and by 2 orders of magnitude when mY � 1000 GeV,
which is depicted in Fig. 5. For very high energies, the
form factors have a good behavior as they approach zero
asymptotically after reaching an extremum value above
ECM � 2mY . Therefore, unitarity is respected, which stems
from the fact that the WWV Green function that we have
obtained is gauge invariant. In Fig. 4 we can also observe
that, except for the reversed sign, the curves for �QV and
��V are very similar. For a relatively light bilepton both
form factors are of about the same order of magnitude, but
the magnitude of �QV decreases more quickly as mY
increases.
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FIG. 4. The W form factors �QV (upper plots) and ��V (lower plots) vs the center-of-mass energy ECM �
������
Q2

p
for various values of

the bilepton mass. The form factors are in units of 10�6 and ECM is in units of GeV. The solid (dashed) lines represent the real
(imaginary) part of the form factors.
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It is interesting to compare our results with those ob-
tained in the SM and some of its extensions. As far as the
SM is concerned, the gauge boson contribution to the �QV
form factor is of the order of 10�3–10�4 for ECM in the
range 200–1000 GeV, whereas �QV is about 1 order of
magnitude below [2,7]. These contributions are of the same
order of magnitude as those of the fermion and scalar
sectors of the theory [2]. As far as supersymmetric models
are concerned, the total contribution from the uncon-
strained MSSM is about the same order of magnitude or
larger than the SM total contribution for some set of the
values of the parameters of the model [9]. Our results in the
331 model with right-handed neutrinos and relatively light
bileptons, with a mass around 200 GeV, are of the same
order of magnitude as the SM contribution. These results
are similar to those obtained in the minimal 331 model [14]
and other weakly coupled theories. Unless a very high
precision is achieved in future particle colliders, it would
be very hard to discriminate the contributions from differ-
ent models to the WWV vertex. However, testing this
vertex would still be useful for probing some particular
model once it has been confirmed by experimental data.

V. FINAL REMARKS

We have used a nonconventional quantization method
inspired on the BFM and BRST symmetry to analyze the
effects of the new gauge bosons (bileptons) predicted by

the 331 model with right-handed neutrinos on the off-shell
WWV� vertex. Hopefully, this class of effects might be
searched for at a future linear collider through e�e� !
V ! W�W� scattering. In particular, it has been pointed
out that CLIC would reach a sensitivity of about 10�4 in
the measurement of the so-called form factors, �QV and
��V , characterizing the WWV� vertex [41]. Following the
philosophy of the BFM, our method considers the bilep-
tons as quantum fields and the SM gauge bosons as clas-
sical fields. A nonlinear SUL�2� �UY�1� invariant gauge
fixing term is then introduced for the bileptons, which are
integrated out in the generating functional. The result is a
quantum action defined by a SUL�2� �UY�1� invariant
Lagrangian1 out of which a gauge-invariant and gauge-
independent Green function can be obtained. To this end,
we made use of the link between the diagrammatic method
known as the PT and the BFM, which establishes that the
gauge-invariant and gauge-independent Green function
obtained via the PT coincides with that obtained via the
BFM as long as the Feynman-’t Hooft gauge Feynman
rules are used when calculating the latter. We emphasize
that our method is only approximate as the quantum action
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FIG. 5. The W form factors �QV (upper plots) and ��V (lower plots) vs the bilepton mass mY for ECM � 500, and 1000 GeV. The
form factors are in units of 10�6 and mY is in units of GeV. The solid (dashed) lines represent the real (imaginary) part of the form
factors.

1Actually, this scheme is quite analogous to the effective
Lagrangian approach, in which an SUL�2� �UY�1� effective
Lagrangian is constructed out of the SM fields to analyze the
virtual effects of the heavy fields, which have been integrated
out.
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is only invariant under SUL�2� �UY�1� rather than
SUL�3� �UN�1�. This method is suited to analyze the
bilepton effects at the SUL�3� �UN�1� breaking scale,
when their masses are still degenerate. The advantages of
our calculation scheme are twofold: the introduced non-
linear gauge-fixing term for the bileptons allows one to
remove several unphysical vertices, which in turn allows
one to get rid of several Feynman diagrams; on the other
hand, preserving the electroweak invariance turns the cal-
culation into a simple task as each sector of the theory
gives a gauge-invariant contribution that by itself satisfies
simple Ward identities. Once our method was applied, we
obtained the form factors �QV and ��V , which were
analyzed for several values of the bilepton mass and con-
venient values of the momentum carried by the virtual V
boson. It was found that the bilepton effects on the WWV�

vertex are of the same order of magnitude as the SM and
the minimal 331 model contributions, provided that the

bilepton mass is of the order of a few hundred of GeVs. For
very heavy bileptons, the respective contribution to the
WWV� is negligibly small. This indicates that it will be
very hard to discriminate between different classes of
effects on the WWV� vertex arising from distinct models.
However, if a high precision is achieved in future linear
colliders, theWWV� vertex might serve as a probe to some
particular model by then confirmed by other experimental
data. The good behavior of the form factors at high ener-
gies was also discussed, as it is an indication of the gauge
invariance and gauge independence of the WWV� Green
function obtained via our quantization method.
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