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We investigate the spectroscopy and decays of the charmonium and upsilon systems in a potential
model consisting of a relativistic kinetic energy term, a linear confining term including its scalar and
vector relativistic corrections and the complete perturbative one-loop quantum chromodynamic short
distance potential. The masses and wave functions of the various states are obtained using a variational
technique, which allows us to compare the results for both perturbative and nonperturbative treatments of
the potential. As well as comparing the mass spectra, radiative widths and leptonic widths with the
available data, we include a discussion of the errors on the parameters contained in the potential, the effect
of mixing on the leptonic widths, the Lorentz nature of the confining potential, and the possible c �c
interpretation of recently discovered charmoniumlike states.
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I. INTRODUCTION

The discovery of the J= in 1974 [1,2] marked the
beginning of an extended interplay between experimental
results and the phenomenological treatment of heavy me-
sons using quantum chromodynamics. The prediction and
discovery of the various excited states of the charmonium
system and later the upsilon system encouraged the inves-
tigation of a variety of approaches to understand the sys-
tematics of quarkonium spectra and decay modes. These
include potential models [3–17], effective field theory
treatments [18–23], and, more recently, lattice gauge the-
ory calculations [24–27]. While the latter promise to pro-
vide an accurate nonperturbative description of mesons
and baryons, there is still interest in perturbative and
quasiperturbative models, particularly in the investigation
of the angular momentum and spin effects in heavy meson
spectroscopy.

Over the past 25� years, potential models have proven
valuable in analyzing the spectra and characteristics of
heavy quarkonium systems [28]. Motivation for revisiting
the potential model interpretation of the c �c and b �b systems
at this time is provided by recent experimental results:

(1) The discovery of several expected states in the
charmonium spectrum [�c�2S� and hc�1P�].

(2) The discovery of new states [X�3872�, X�3940�,
Y�3940�, Y�4260�] which could be a interpreted as
above threshold charmonium levels.

(3) The discovery of the 13D2 state of the upsilon
system.

(4) The determination of various E1 widths for c �c and
b �b.

Our objective here is to examine to what extent a semi-
relativistic potential model which includes all v2=c2 and

one-loop QCD corrections can fit the below threshold c �c
and b �b data—both spectra and decay widths—and ac-
commodate the new above threshold states.

One of the earliest and simplest nonrelativistic potential
models for heavy quarkonia is that of Eichten, et al. [3], the
Cornell model. This model contains a long-range linear
term to provide quark confinement, a short distance
Coulomb-like term inspired by the zeroth-order QCD in-
teraction, and a treatment of states above the continuum
threshold. In this approach, splittings within triplet state
multiplets of a given orbital angular momentum L are
generated indirectly by differences in the couplings of
states with different total angular momentum J to the
continuum. By including relativistic corrections to the
potential corresponding to scalar or vector particle ex-
change [4,5], it is possible to generate interaction terms
depending on orbital and spin angular momenta of the
quarks without introducing additional parameters. These
interaction terms provide a direct mechanism for splitting
the various J states of a triplet angular momentum
multiplet.

Further refinement of the potential requires a considera-
tion of how the orbital angular momentum and spin-
dependent interactions of the quarks are modified by the
quark-gluon interaction of QCD. The full one-loop quark-
antiquark interaction potential was obtained [29–33] and
employed in calculating the spectra and decays for the c �c
and b �b systems in nonrelativistic [7] and relativistic model
calculations [8,9]. The spectra determined in these models
proved to be very accurate for both c �c and b �b. In the case
of the � system, the addition of the one-loop corrections
enabled an accurate prediction of the energies and split-
tings of the 1P, 2P, and 1D levels [7].

More recently, the precise determination of leptonic and
E1 decay widths, along with the discovery of several new
states, some expected and some not, has led to a renewed
interest in the potential model description of heavy quar-
konia [12–15,17,34,35]. We have revised and extended the
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approach of our earlier papers in order to investigate the
newly measured states and decays as well as to discuss
other questions of modelling interest. These include the
scalar/vector mixture of the phenomenological confining
potential, errors associated with the determination of the
parameters appearing in the potential, and the accuracy of
the perturbation expansion as determined by treating the
Hamiltonian as ‘‘complete’’ in the variational calculation
discussed below.

In the next section, we describe the potential model in
some detail. This is followed, in Sec. III, by an outline of
our calculational approach. In Sec. IV, we present our
results for the charmonium and upsilon systems, and then
give some conclusions in Sec. V. Some calculational de-
tails are given in the appendix.

II. SEMIRELATIVISTIC MODEL

In our analysis, we use a semirelativistic Hamiltonian of
the form
 

H � 2
������������������
~p2 �m2

q
� Ar�

4�S
3r

�
1�

3�S
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�
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6�
�33� 2nf��ln��r� � �E�
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 � H0 � VL � VS; (2)

where � is the renormalization scale, nf is the effective
number of light quark flavors, and �E is Euler’s constant.
VL contains the v2=c2 corrections to the linear confining
potential
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where A is the linear coupling strength. The first term in
Eq. (3) is the contribution from scalar exchange while the
second line is the contribution from vector exchange, with
fV representing the fraction of vector exchange in the
interaction. The short distance potential is [29–31]

 VS � VHF � VLS � VT � VSI; (4)

with
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We have chosen H0 such that it contains the relativistic
kinetic energy and the leading order spin-independent
portions of the long-range confining potential and the
one-loop QCD short-range potential. Note that, unlike all
other terms in Eqs. (5), the last term in Eq. (5d) has a 1=m
behavior.

III. CALCULATIONAL APPROACH

The c �c and b �b mass spectra and corresponding wave
functions are obtained using a variational approach. The
wave functions were expanded as

  mj‘s� ~r� �
Xn
k�0

Ck

�
r
R

�
k�‘

e�r=RYm
j‘s���; (6)

where Ym
j‘s��� denotes the orbital-spin wave function for a

specific total angular momentum j, orbital angular mo-

mentum ‘, and total spin s. The Ck’s are determined by
minimizing

 E �
h jHj i
h j i

(7)

with respect to variations in these coefficients. This proce-
dure results in a linear eigenvalue equation for the Ck’s and
the energies [see Eq. (A1)] and is equivalent to solving the
Schrödinger equation. The wave functions corresponding
to different eigenvalues are orthogonal and the kth eigen-
value �k is an upper bound on the exact energy Ek. For n �
14, the lowest four eigenvalues for any ‘ are stable to one
part in 106.

We performed the calculations in two ways:
(i) perturbatively, as implied above with H0 as the unper-
turbed Hamiltonian and all other terms treated as first-
order perturbations; (ii) nonperturbatively, with all terms
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included in the unperturbed Hamiltonian. The most sig-
nificant effect of the different treatments is on the wave
functions. Both approaches yield acceptable spectra, but
the leptonic decay widths (which depend strongly on the
behavior of the wave functions at the origin) turn out to be
better in the perturbative treatment. On the other hand, the
nonperturbative treatment provides a better description of
certain E1 decays. The results of both approaches are
shown below.

In either approach, we determine an optimal set of
potential parameters � � ��1; �2; � � � ; �n� by minimizing
the �2 function

 �2 �
XN
i�1

�Oexpi �Oth���i�2

	2
i

; (8)

where the Oi denote the experimental and theoretical
values of some quarkonium observable and the 	i are the
associated errors. In this work, the Oexpi consist of a subset
of the measured onia masses and leptonic widths. For the
masses, the 	i are taken to be the actual experimental error
and a common intrinsic theoretical error added in quad-
rature. The latter error reflects the theory uncertainty asso-
ciated with omitting corrections beyond one-loop and is
estimated by requiring the �2/degree of freedom to be
approximately unity. Typically, this error is a few MeV.
The minimization of �2 with respect to variations of the
parameters � is accomplished using the search program
STEPIT [36].

IV. RESULTS

We summarize our results in the following tables. It
should be noted that the parameter sets used in the char-
monium and upsilon fits are independent of each other. The
parameters resulting from our fits are given in Table I. The
errors on A, �S, and mq are those that change �2 by
approximately 1 when the parameters other than the one
in question are allowed to vary.

As can be seen from Table I, the value of the parameter A
characterizing the confinement strength is smaller for the
perturbative treatment compared to the nonperturbative
treatment, but the variation is not great. The differences
between perturbative c �c and b �b values for A are rather
small, as are the differences between the nonperturbative

values. This may be an indication of some slight flavor
dependence of the confining term. The values of �S in the
two treatments are very nearly identical for a given q �q
system and the difference between the c �c and b �b values is
consistent with the fact that the scale in the upsilon system
is higher. In each case, the value of the quark mass is
smaller for the perturbative treatment compared to the
nonperturbative treatment. The primary difference be-
tween the parameters obtained for the perturbative and
nonperturbative approaches is in the values of the scale
parameter � and the fraction fV of vector exchange in-
cluded in the confining potential. In both systems, the value
of fV is zero in the perturbative case and of order 20% in
the nonperturbative case. Similarly, the renormalization
scale is always larger for the perturbative treatment. We
made no effort to restrict the value of � while fitting other
than to be sure that it did not settle on a value that would
suggest a change in the number of active flavors lighter
than the quark flavor being considered.

A. Charmonium

The results for our determination of the charmonium
levels are shown in Table II, where the � denotes the states
used in the fit [37]. We examined the effect of level mixing
induced by the tensor interaction and found that it has a
very modest effect on the spectrum. However, as discussed
below, s–d mixing does have a significant effect on lep-
tonic decay widths.

In both the perturbative and nonperturbative treatments,
the overall fit to the spectrum is quite good, with the hc�1P�
mass well described and the �c�2S� mass somewhat low.
Neither approach does very well in reproducing the  �3S�
level, although the  �4S� level is accurately predicted.

Recently, a number of states, which could be interpreted
as above threshold c �c states, have been observed in B
decays, at e�e� colliders and at hadron colliders. Among
these, the X�3872� is the most firmly established [38,39],
withm�X�3872�� � 3871:2� 0:5 MeV. An analysis of the
quantum numbers of this state [40] shows that the assign-
ments JPC � 1��; 2�� are the only ones capable of de-
scribing the data. If interpreted as charmonium states, the
assignments are either �c1�2P� or 11D2. The former is
more consistent with the masses in Table II, given the
tendency of the potential model to predict a larger value
for above threshold states.

The Belle collaboration reported two states, the
X�3940�, observed [41] in the recoil spectrum of e�e� !
J= X, and the Y�3940�, observed [42] in the decay B!
K�!J= �. These appear to be different states [41], with the
former also seen to decay into D� �D. Since the other states
seen recoiling against the J= have J � 0 [41], it is
tempting to associate J � 0 with the X�3940� [43]. The
charmonium assignments could then be ��3S�, which
would imply an unusually large 3S hyperfine splitting, or
the �c0�2P�, whose predicted mass tends to be too low.

TABLE I. Fitted parameters for the c �c and b �b systems.

c �c pert c �c nonpert b �b pert b �b nonpert

A (GeV2) 0:166�0:002
�0:002 0:186�0:003

�0:001 0:177�0:006
�0:002 0:193�0:004

�0:001

�S 0:334�0:009
�0:009 0:332�0:003

�0:004 0:296�0:004
�0:007 0:295�0:002

�0:006

mq (GeV) 1:51�0:07
�0:08 1:80�0:03

�0:05 5:36�0:87
�0:42 6:61�0:35

�0:18

� (GeV) 2.60 1.32 4.74 3.73
fV 0.00 0.24 0.00 0.21
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With the range of �cJ�2P� masses in Table II, the Y�3940�
could be accommodated as a 2P state.

The BABAR collaboration reported a state Y�4260� [44]
observed in the initial state radiation reaction e�e� !
�IS�

���J= and this state was confirmed by the CLEO
Collaboration [45]. The initial state radiation reaction as-
sures JPC � 1��, which, if the Y�4260� is a conventional
charmonium state, implies an assignment of  �nS� or
 �nD�. It has been suggested [46] that the Y�4260� rather
than the  �4415� be identified with the  �4S�, but this is at
odds with both the absence of any 1�� level in the vicinity
of this mass in most potential models and the absence of a
large ����J= signal from the  �4040� [45].

Included in Table II is the lowest multiplet of f states.
The center of mass of these states is essentially the same
for both the perturbative and nonperturbative treatments,
lying somewhat below the  �3S�. However, the pattern of
splittings between the 3FJ levels is quite different in the
two cases.

In computing the spectrum variationally, the wave func-
tions are sampled in an average sense. The radiative and

leptonic decay widths are of interest precisely because they
are sensitive to more detailed features of the wave func-
tions, either matrix elements of the dipole operator in the
case of E1 decays, or the behavior of the wave function at
the origin in the case of leptonic decays.

As is usual in potential model treatments [9,13,16], the
radiative widths were calculated in the dipole approxima-
tion. We obtained the E1 and M1 matrix elements by using
the variational radial wave functions to construct initial and
final state wave functions with the appropriate angular
dependence and explicitly performing the angular integra-
tion. Our results are equivalent to the formulas
 

��n3LJ! n03L0J0 ��� �
4

3
q2�!3Cfijhn

03L0J0 jrjn
3LJij

2
Ef
Mi
;

(9)

for E1 transitions, and
 

��n2s�1LJ ! n02s
0�1LJ0 � ��

�
4

3
q2 �

m2
q
!3 2J0 � 1

2L� 1
�ss0�1jhn02s

0�1LJ0 jn2s�1LJij2
Ef
Mi

;

(10)

for M1 transitions. Here, ! is the photon energy, q is the
quark charge in units of the proton charge, Ef is the energy
of the final quarkonium state, Mi is the mass of the initial
quarkonium state, mq is the quark mass, and Cfi contains
the square of a 6j symbol that arises from the angular
integration [47].

The resulting c �c radiative widths are shown in Table III
for both the perturbative and nonperturbative treatments.
Comparing the two approaches, it is noteworthy that there
is a clear indication of a difference in behavior of the p
state wave functions. This is most easily seen in the results
for the  �2S� ! �cJ�1P� transition widths. In the pertur-
bative case, the dipole matrix element is that same for
every J, and the widths reflect the differences in phase
space. On the other hand, the nonperturbative widths are
very nearly equal, which means that the matrix elements
for the various values of J must differ. This difference is
also reflected in predictions for the  �1D� ! �cJ�1P��
decays recently reported by the CLEO Collaboration [48].

Unlike the radiative transitions, which are sensitive to
matrix elements of the dipole operator, the leptonic widths
are sensitive to the behavior of the wave function at the
origin. Quite generally, the expression for the leptonic
width of a 1�� can be written

 ��1�� ! e �e� �
8��2q2

3

jh0j ~J�0�j M1 ij
2

m2
 

; (11)

where h0j ~J�0�j M1 i is the matrix element of the quark
current i �q�0���q�0� between the vacuum and the 1��

bound state. If ��
�x� is the bound state two-body wave
function, it is shown in Ref. [49] that

TABLE II. Perturbative and nonperturbative results for the c �c
spectrum are shown. The perturbative fit uses the indicated states
and the leptonic widths of the  �1S� and  �2S�. In the non-
perturbative fit the �c�2S� and  �1D� are included and no
leptonic widths are used.

mc �c (MeV) Pert Nonpert Expt

�c�1S�
� 2980.3 2981.7 2980:4� 1:2

 �1S�� 3097.36 3096.92 3096:916� 0:011
�c0�1P�

� 3415.7 3415.2 3414:76� 0:35
�c1�1P�

� 3508.2 3510.6 3510:66� 0:07
�c2�1P�

� 3557.7 3556.2 3556:20� 0:09
hc�1P� 3526.9 3523.7 3525:93� 0:27
�c�2S� 3597.1 3619.2 3638:0� 4:0
 �2S�� 3685.5 3686.1 3686:093� 0:034
 �1D� 3803.8 3789.4 3771:1� 2:4
13D2 3823.8 3822.1
13D3 3831.1 3844.8
11D2 3823.6 3822.2
�c0�2P� 3843.7 3864.3
�c1�2P� 3939.7 3950.0
�c2�2P� 3993.7 3992.3 3929:� 5:4
hc�2P� 3960.5 3963.2
13F2 4068.5 4049.9
13F3 4069.6 4069.0
13F4 4061.8 4084.3
11F3 4066.2 4066.9
�c�3S� 4014.0 4052.5
 �3S� 4094.9 4102.0 4039:� 1
 �2D�� 4164.2 4159.2 4153:� 3
23D2 4189.1 4195.8
23D3 4202.3 4218.9
21D2 4190.7 4196.9
 �4S� 4433.3 4446.8 4421:� 4
 �3D� 4477.3 4478.9
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 h0jJ��0�j M1 i � iTr	C�1����0�
; (12)

where C is the charge conjugation matrix. This leads to the
expressions [49]

 

�e �e� �nS�� �
4�2q2

m2
nS

jIn0j
2;

�e �e� �nD�� �
8�2q2

9m2
nD

jIn2j
2:

(13)

The integrals In0 and In2 are

 In0 �

����
2

�

s Z 1
0
dpp2

�
2

3
�

1

3

mq������������������
p2 �m2

q

q �
�n0�p�;

In2 �

����
2

�

s Z 1
0
dpp2

�
1�

mq������������������
p2 �m2

q

q �
�n2�p�:

(14)

Here, �n0�p� and �n2�p� are the momentum space wave

functions and the factors involving
������������������
p2 �m2

q

q
represent

relativistic corrections. To the leading order in p2=m2
q,

these expressions reduce to the familiar forms

 �e �e� �nS�� �
4�2q2

m2
nS

jRn0�0�j
2;

�e �e� �nD�� �
25�2q2

2m2
nDm

4
q
jR00n2�0�j

2:

(15)

For charmonium, we find that the relativistic effects on the
s states are rather small for both the perturbative and non-
perturbative cases. The d states, on the other hand, receive
large corrections in both cases, with the nonperturbative
case receiving the larger of the two. To be consistent, we
have used the expressions in Eq. (13) for all charmonium
leptonic decay widths. For the s states, we also include the
QCD correction factor �1–16�S=3��. As mentioned above,
we included mixing in our perturbative treatment and
found little effect on the spectrum due to small mixing
angles. However, even a small s–d mixing angle has a
noticeable effect on  �nD� leptonic widths, and we in-
cluded this mixing in the perturbative calculation. The
results are shown in Table IV.

The message here is rather mixed in the sense the
perturbative results for the  �1S� and  �2S� widths, which
were included in the fit, are in reasonable agreement with
the data, while the  �3S� and  �4S� widths are too large.
Despite the inclusion of mixing, the  �1D� and  �2D�
widths are small compared to the data. On the other
hand, the nonperturbative treatment, which has no leptonic
widths in the fit, does a reasonable job accounting for the
 �3S� and  �4S� widths, but predicts  �1S� and  �2S�
widths that are too small. With the inclusion of the rela-
tivistic correction, the nonperturbative  �1D� and  �2D�
widths are of the right order of magnitude.

TABLE IV. The leptonic widths of the J � 1�� states are
shown.

�e �e (keV) Pert Nonpert Expt

 �1S� 4.28 1.89 5:55� 0:14
 �2S� 2.25 1.04 2:48� 0:06
 �3S� 1.66 0.77 0:86� 0:07
 �4S� 1.33 0.65 0:58� 0:07
 �1D� 0.09 0.23 0:242� 0:030
 �2D� 0.16 0.45 0:83� 0:07

TABLE III. The radiative decays of the charmonium system
are shown. The  �1D� ! �J�1P� widths marked with a � are
from [48]; see also [43].

�� (keV) Pert Nonpert Expt

 �1S� ! �c�1S� 2.7 1.8 1:21� 0:37
 �2S� ! �c�2S� 1.2 0.4 <0:7
 �2S� ! �c�1S� 0.0 0.45 0:88� 0:14
 �2S� ! �c0�1P� 45.0 25.2 31:0� 1:8
 �2S� ! �c1�1P� 40.9 29.1 29:3� 1:8
 �2S� ! �c2�1P� 26.5 25.2 27:3� 1:7
�c�2S� ! hc�1S� 8.3 17.4
 �3S� ! �c0�2P� 87.3 30.1
 �3S� ! �c1�2P� 65.7 45.0
 �3S� ! �c2�2P� 31.6 36.0
 �3S� ! �c0�1P� 1.2 2.1
 �3S� ! �c1�1P� 2.5 0.3 <880
 �3S� ! �c2�1P� 3.3 2.4 <1360
�c0�1P� !  �1S� 142.2 139.3 135� 15
�c1�1P� !  �1S� 287.0 293.7 317� 25
�c2�1P� !  �1S� 390.6 384.1 417� 32
hc�1P� ! �c�1S� 610.0 546.4
�c0�2P� !  �2S� 53.6 89.7
�c1�2P� !  �2S� 208.3 235.8
�c2�2P� !  �2S� 358.6 319.4
�c0�2P� !  �1S� 20.8 24.0
�c1�2P� !  �1S� 28.4 5.1
�c2�2P� !  �1S� 33.2 36.7
�c0�2P� !  �1D� 1.2 7.4
�c1�2P� !  �1D� 11.1 12.3
�c2�2P� !  �1D� 1.2 0.8
�c1�2P� ! 13D2 20.9 23.5
�c2�2P� ! 13D2 12.7 9.1
 �1D� ! �c0�1P� 415.4 243.9 172� 30�

 �1D� ! �c1�1P� 146.7 104.9 70� 17�

 �1D� ! �c2�1P� 5.8 1.9 <21�

13D2 ! �c1�1P� 317.3 256.7
13D2 ! �c2�1P� 65.7 61.8
13D3 ! �c2�1P� 62.7 39.5
 �2D� ! �c0�1P� 8.9 23.3
 �2D� ! �c1�1P� 4.7 0.02 <721
 �2D� ! �c2�1P� 0.26 0.23 <1340
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B. Upsilon

The results for our determination of the upsilon levels
are shown in Table V, where, again, the � denotes the states
used in the fit. In this case, both approaches give very good
fits to the spectrum. In the perturbative case, the determi-
nation of the parameters is quite robust in the sense that fits
using fewer states than the eight indicated in Table V yield
parameters, masses, and values of �2 that are quite similar
to the ones listed. For instance, using only the ��1S�,
��2S�, ��3S�, and ��4S� states results in a fit in which
the 13PJ multiplet is displaced upward by about 7 MeVand
the rest of the spectrum is well described. The nonpertur-
bative fit includes the leptonic width of the ��1S� and the
main difference in the results of the two approaches occurs
in the ��nS� � �b�nS� hyperfine splitting, which is always
smaller in the nonperturbative treatment. In the � system
there are f states occurring below B �B threshold. The 11F3,
13FJ multiplet, in the vicinity of the ��3S�, is certainly

below threshold and the 21F3, 23FJ multiplet is very near
threshold.

Our results for the upsilon radiative transitions are
shown in Table VI. Because of a lack of knowledge of
the widths of the �bJ�1P� and �bJ�2P� states, direct com-
parisons to experimental data are limited primarily to
��nS� ! �bJ�n

0P� transitions. For these, both the pertur-
bative and nonperturbative wave functions are able to
account for the radiative widths quantitatively, including
the 61� 23 eV width of the ��3S� ! �b0�1P� transition.
Regarding the �bJ�nP� ! ��n0S�� decays, one can com-
pare ���bJ�2P� ! ��2S��=���bJ�2P� ! ��1S�� to the ra-

TABLE VI. The radiative decays of the upsilon system are
shown.

�� (keV) Pert Nonpert Expt

��1S� ! �b�1S� 0.004 0.001
��2S� ! �b�2S� 0.0005 0.0002
��2S� ! �b�1S� 0.0 0.005 <0:02
��2S� ! �b0�1P� 1.15 0.74 1:22� 0:16
��2S� ! �b1�1P� 1.87 1.40 2:21� 0:22
��2S� ! �b2�1P� 1.88 1.67 2:29� 0:22
�b�2S� ! hb�1P� 4.17 20.4
��3S� ! �b0�2P� 1.67 1.07 1:20� 0:16
��3S� ! �b1�2P� 2.74 2.05 2:56� 0:34
��3S� ! �b2�2P� 2.80 2.51 2:66� 0:41
��3S� ! �b0�1P� 0.03 0.03 0:061� 0:023
��3S� ! �b1�1P� 0.09 0.003
��3S� ! �b2�1P� 0.13 0.11
�b0�1P� ! ��1S� 22.1 19.6
�b1�1P� ! ��1S� 27.3 23.9
�b2�1P� ! ��1S� 31.2 26.3
hb�1P� ! �b�1S� 37.9 4.61
�b0�2P� ! ��2S� 9.90 9.91
�b1�2P� ! ��2S� 13.7 12.4
�b2�2P� ! ��2S� 16.8 13.5
�b0�2P� ! ��1S� 6.69 1.83
�b1�2P� ! ��1S� 7.31 4.81
�b2�2P� ! ��1S� 7.74 6.86
�b0�2P� ! ��1D� 1.13 1.05
�b1�2P� ! ��1D� 0.62 0.52
�b2�2P� ! ��1D� 0.04 0.03
�b1�2P� ! 13D2 1.48 1.31
�b2�2P� ! 13D2 0.47 0.35
��1D� ! �b0�1P� 18.1 12.5
��1D� ! �b1�1P� 9.82 7.59
��1D� ! �b2�1P� 0.51 0.44
13D2 ! �b1�1P� 19.3 14.9
13D2 ! �b2�1P� 5.07 4.35
13D3 ! �b2�1P� 21.7 18.8

�1=�2 Pert Nonpert Expt

�1��b0�=�2��b0� 1.48 5.42 5:11� 4:14
�1��b1�=�2��b1� 1.87 2.58 2:47� 0:60
�1��b2�=�2��b2� 2.17 1.97 2:28� 0:47

TABLE V. Perturbative and nonperturbative results for the b �b
spectrum are shown. The perturbative fit uses the indicated
states.

mb �b (MeV) Pert Nonpert Expt

�b�1S� 9413.70 9421.02
��1S�� 9460.69 9460.28 9460:30� 0:26
�b0�1P�

� 9861.12 9860.43 9859:44� 0:52
�b1�1P�� 9891.33 9892.83 9892:78� 0:40
�b2�1P�� 9911.79 9910.13 9912:21� 0:40
hb�1P� 9899.99 9899.94
�b�2S� 9998.69 10 003.6
��2S�� 10 022.5 10 023.5 10 023:26� 0:31
��1D� 10 149.5 10 148.8
13D2 10 157.1 10 157.0 10 161:1� 1:7
13D3 10 162.9 10 164.1
11D2 10 158.4 10 158.3
�b0�2P�

� 10 230.5 10 231.4 10 232:5� 0:6
�b1�2P�

� 10 255.0 10 257.6 10 255:46� 0:55
�b2�2P�� 10 271.5 10 271.1 10 268:65� 0:55
hb�2P� 10 262.0 10 263.1
13F2 10 353.0 10 351.0
13F3 10 355.8 10 355.6
13F4 10 357.5 10 359.7
11F3 10 355.9 10 355.9
�b�3S� 10 344.8 10 350.4
��3S� 10 363.6 10 365.6 10 355:2� 0:5
��2D� 10 443.1 10 443.7
23D2 10 450.3 10 451.2
23D3 10 455.9 10 457.5
21D2 10 451.6 10 452.4
23F2 10 610.0 10 609.0
23F3 10 613.0 10 613.4
23F4 10 615.0 10 617.3
21F3 10 613.2 10 613.7
�b�4S� 10 622.8 10 631.5
��4S� 10 643.0 10 643.4 10 579:4� 1:2
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tios of the measured branching ratios (�1=�2 in Ref. [37]).
These are appended to the bottom of Table VI. Overall,
both approaches give a good description of the data, with
the perturbative results getting the nod in the case of
��nS� ! �bJ�n0P� transitions and the nonperturbative re-
sults being more consistent with the �1=�2 ratios. Given
the current errors, though, the results from both approaches
are certainly satisfactory.

The calculated leptonic widths for the ��nS� states,
including the QCD correction, are compared with the
experimental data in Table VII. For the � system, the
relativistic corrections of Eq. (13) are negligible. In the
perturbative case, none of the leptonic width data were
used in the fitting and the agreement is very good. For the
nonperturbative case, where the ��1S� leptonic width is
used in the fit, the results are almost identical. Unlike the
perturbative case, failure to include the ��1S� leptonic
width in the fit leads to an unsatisfactory description of
all the ��nS� leptonic widths. The calculated leptonic
widths of the ��1D� and ��2D� are very small
�0:02 keV in both perturbative and nonperturbative
treatments.

V. CONCLUSIONS

We have shown that a potential model consisting of the
relativistic kinetic energy, a linear long-range confining
potential together with its v2=c2 relativistic corrections,
and the full v2=c2 plus one-loop QCD corrected short
distance potential is capable of providing extremely good
fits to the spectra of the c �c and b �b heavy quarkonium
systems. Interestingly enough, the results are about as
good with the spin-dependent and nonleading order spin-
independent terms of the potential treated either as a
perturbation or as part of the unperturbed Hamiltonian.
We find that for both the charmonium and upsilon systems,
the perturbative treatment requires the long-range potential
to be entirely due to scalar exchange, while the nonpertur-
bative treatment requires the long-range potential to be
about one-fifth vector exchange.

The photon and leptonic widths obtained from the varia-
tional wave functions are, for the most part, in very good
agreement with the available data. An interesting differ-
ence between the two treatments is that in the nonpertur-
bative treatment every state has its own wave function,
while in the perturbative treatment all states in the same

angular momentum multiplet have the same wave function.
It is this feature that is responsible for the nonperturbative
treatment’s somewhat better description of the radiative
widths. In the charmonium system, the leptonic widths are
better described by the perturbative wave functions, while
in the upsilon system, the nonperturbative description is
just as good as the perturbative description provided one
leptonic width is included in the fit. In both the charmo-
nium and upsilon systems, inclusion of the QCD correction
to the s state leptonic widths is essential to obtain agree-
ment with experiment.

Although in some respects the perturbative treatment,
and hence pure scalar exchange for the long-range poten-
tial, yields a somewhat better description of the charmo-
nium system, the nonperturbative approach, with mixed
scalar and vector exchange, is also viable. In the upsilon
system, both approaches give very good descriptions of the
available data and, given the rich spectrum below the
continuum threshold, it should be possible to decide which
is preferable with additional data such as the ��nS� �
�b�nS� hyperfine splittings.
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APPENDIX: SOME CALCULATIONAL DETAILS

The choice of the variational wave function, Eq. (6)
results in an equation for the Ck’s and the energies of the
form

 

Xn
k�0

hijHjkiCk � �
Xn
j�0

hijNjkiCk; (A1)

where for a state with fixed j, ‘, and s
 

hijHjki �
Z
d3r

�
r
R

�
i�‘
e�r=R�Ym

j‘s����
yH

�
r
R

�
k�‘

� e�r=RYm
j‘s���; (A2)

 

hijNjki �
Z
d3r

�
r
R

�
i�k�2‘

e�2r=R�Ym
j‘s����

yYm
j‘s���

�
R3

2i�k�2‘�3
��i� k� 2‘� 3�: (A3)

The matrix elements hijVjki of the potential, Eqs. (3) and
(4), can be evaluated analytically in coordinate space. The

contribution of the kinetic energy, 2
������������������
~p2 �m2

p
, is evaluated

numerically in momentum space, where the expansion of
the wave function is

TABLE VII. The leptonic widths of the ��nS� states are
shown.

�e �e (keV) Pert Nonpert Expt

��1S� 1.33 1.33 1:340� 0:018
��2S� 0.61 0.62 0:612� 0:011
��3S� 0.46 0.45 0:443� 0:008
��4S� 0.35 0.30 0:272� 0:029
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�m
j‘s� ~p� � ��i�

‘R3
Xn
k�0

Ck
�cos��k�‘�2

tan�

�
���������
sin�
p

��k� 2‘� 3�P�‘�1=2
k�‘�3=2�cos��Ym

j‘s���:

(A4)

Here, P�‘�1=2
k�‘�3=2�cos�� is the associated Legendre function

and � is related to the magnitude of ~p as

 tan� � pR: (A5)

Given the matrix elements hijHjki and hijNjki, eigen-
values and eigenvectors for the linear system Eq. (A1) can
be obtained using any standard package [50]. We typically
use 14 terms in the expansion Eq. (6).

Calculation of the matrix elements of potential using the
variational wave function Eq. (6) is relatively straight
forward. Perhaps the only integrals requiring special atten-
tion are those involving

 

Z 1
0
drr2r2

�
ln�r� �E

r

�
F�r�; (A6)

where F�r� denotes a product of the radial wave functions,

which has the form �r=R�L�L
0
e�2r=R. If L� L0 � 0, then,

effectively,

 r2

�
ln�r� �E

r

�
! �

1

r3 ; (A7)

and the integral in Eq. (A6) reduces to a Gamma function.
When L� L0 � 0, we have

 

1

4�

Z 1
0
drr2r2

�
ln�r� �E

r

�
e�2r=R � 1� ln

�
�R
2

�
:

(A8)

When calculating the matrix elements of the �� ~r� terms in
Eqs. (5a) and (5d), we ‘‘soften‘‘ their singularity by adopt-
ing the quasistatic approximation of Ref. [10], which leads
to the replacement

 �� ~r� !
m2

�r
e�2mr; (A9)

where m is the quark mass. This softening helps the
stability of the eigenvalue calculation, particularly in the
nonperturbative approach.
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