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Modeling Bose-Einstein correlations via elementary emitting cells
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We propose a method of numerical modeling Bose-Einstein correlations by using the notion of the
elementary emitting cell (EEC). They are intermediary objects containing identical bosons and are
supposed to be produced independently during the hadronization process. Only bosons in the EEC, which
represents a single quantum state here, are subjected to the effects of Bose-Einstein (BE) statistics, which
forces them to follow a geometrical distribution. There are no such effects between particles from different
EECs. We illustrate our proposition by calculating a representative number of typical distributions and
discussing their sensitivity to EECs and their characteristics.
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L. INTRODUCTION

In every high energy collision experiment, a vast number
of secondaries (mostly pions) is produced encoding valu-
able information on the dynamics of the hadronization
process. Because of their complexity, such reactions can
only be investigated by numerical modeling using speci-
alized codes, Monte Carlo event generators (MCEG) [1].
They all use positively defined probabilities to describe the
particle production process. This means that they neglect
off-diagonal terms in the corresponding density matrices
formally describing such processes. As a result, they did
not properly implement all the correlations, in particular,
the quantum mechanical correlations between identical
particles [both of Bose-Einstein type for identical bosons
(BE) and of Fermi-Dirac type for identical fermions (FD)].
The whole collision process is expressed only by the
product of single particle distributions. This makes the
present MCEG a priori impossible to properly account
for results of many experiments (starting from [2]), which
explicitly show features usually attributed to correlations
of this type [3]. To describe such experiments, one has to
introduce, in some way, effects of quantum statistics, open-
ing thus a new subject—Bose-Einstein (BEC) or Fermi-
Dirac correlations [3].

This subject already has a long and well documented
history [3] but it is still far from complete. Its most specific
features one is faced with are the following: In experiments
of an exclusive type (measuring all produced secondaries,
as in [2]), it is possible (at least in principle) to construct
the properly symmetrized wave function of all identical
pions and thus account for our inability to determine which
particle is emitted from which position in the source. In the
simplest approach using a plane waves representation of
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particles, such a wave function for the n -pion state has the
form [4]

Vi leklr) = - S| > piren| )

[o(j) denotes the jth element of permutation of the se-
quence{l, 2, ..., n,} and we sum over all n,.! permutations
in this sequence, including the identity permutation].
Points of detection, x’s, will vanish when calculating prob-
abilities, but points of production of secondaries, ’s, will
remain. Because experiments measure only momenta of
particles, one must integrate over {r;} using some multi-
particle spatiotemporal distribution function, p({r;}). This
is usually assumed to be factorizable, i.e., expressed by the
product of independent single particle distributions,
p(r;}) = T1;p(r;) [4]. Assuming further a totally chaotic
hadronizing source, one gets the probability of the n,.-pion
state in the form of a permanent of the matrix [|®; ],

1
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with

o, = feiq’frp(r)d4{’”}, g;=pri—pr; )
[which are all real if p(r) = p(—r)].

However, most modern experiments are of an inclusive
type as one measures the effect of BEC on limited samples
of secondaries only. The unobserved part of the system acts
then as a kind of thermal bath influencing measured
samples of data [5]. Also the registered multiplicities are
much higher prohibiting calculation of permanents given
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by Eq. (1). The subsystem subjected to further experimen-
tal (and theoretical) analysis forms only a (not too well
defined) part of the total system with strongly fluctuating
characteristics to be averaged during the data collection
procedure. Because, as we have mentioned, such systems
can be described only by numerical modeling, one faces
the fundamental question of how to account for BEC in
such modeling processes? It must be realized that this is a
completely different thing than a simple calculation of the
usually considered n, = 2 case, which in the case consid-
ered here amounts to a well-known expression for the 2-
particle BE correlation function defined as a ratio of a two
particle distribution and single particle distributions with

Ny(p;, p)) 2

=1 d . eior
Nl(pi)Nl(pj) * lf rplr) e
=1+ 1plg=0-RP 4)

(Cy — 2 when Q — 0 and C, — 1 for large values of Q)
[3,6—8]. In fact, in the majority of the cases, one is follow-
ing precisely this route with different functional forms of
P(OR) and sometimes even with an entirely different form
of C, (cf., for example, [9]), but always derived in some
analytical way—both for one- and three-dimensional
cases. One is then fitting such correlation functions to
appropriate sets of data, aiming to get information on the
quantity R (and similar others). The reason for this is that
C,(Q) is usually regarded as a (kind of) Fourier transform
of the space-time characteristic of the emitting source, g,
therefore providing information on p(r) [10].

It is precisely this fact that makes BEC so interesting,
but we shall not follow this route here. Our aim is to
provide an algorithm that could cope with BEC from its
first steps (to model it) and which could bring this effect to
other MCEGs once implemented there. This we shall do by
using the notion of the elementary emitting cell (EEC)
introduced some time ago [11]. They are some interme-
diary objects (in fact quantum states) containing identical
bosons (henceforth we shall assume them being pions),
which are supposed to be produced independently during
the hadronization process. Only bosons in EECs are sub-
jected to Bose-Einstein (BE) statistics, which makes them
follow a geometrical distribution. There are no such effects
between particles from different EECs. Using this idea, we
propose an algorithm that can be used in any MCEG,
which has effects of BEC as one of its basic features.
This will be presented on the background of previous
attempts to model BEC discussed in [4,12—-15]. We shall
illustrate its action by calculating a representative number
of typical distributions and discuss their sensitivity to
EECs and their characteristics. In this work no comparison
with experimental data is offered, we limit ourselves only
to a thorough discussion of our algorithm. It is supposed to
be the main building block of any serious MCEG aiming
for areal comparison with data and including therefore, for

Cy(Q) =
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example, also the distribution of energies one is supposed
to hadronize or possible flows in the system, i.e., subjects
which are out of the scope of this work. In particular, it will
be most useful in cases where the hadronizing source is
well defined (as in e* e~ annihilation processes and other
elementary processes) or where the number of secondaries
is exceptionally large (in high multiplicity events).

For completeness, in Sec. II we shall provide a short
overview of numerical modelling of BEC proposed so far.
This will put our investigation in proper perspective.
Section III contains details of the proposed algorithm and
examples of results obtained from its simplest version. The
last section contains conclusions and a discussion. Some
specific problems connected with the method proposed are
addressed in Appendices A, B, and C.

II. HISTORY OF NUMERICAL MODELING OF
BEC

A. Imitating BEC with existing MCEGs

Imitating BEC means to use the original outputs of the
existing MCEG codes and change them in such way as to
reproduce measured C,(Q) (or other experimental charac-
teristics of BEC). Two approaches are used for this. In the
first one, one introduces some special global weights (i.e.,
weights built for the whole event) to bias accordingly the
original results of MCEG [16] (usually checking whether
other observables were not changed too much— otherwise
one has to rerun MCEG with new input parameters). This
procedure is justified by noticing the following [17]: Let
M =3 ,M, be the matrix element describing the produc-
tion of a hadronic final state of n identical bosons. It
consists of n! terms, each corresponding to a particular
permutation o of the n identical particles in the final state.
In the simulation process of MCEG the interference terms
[off-diagonal elements in permanent Eq. (2)] are neglected
and one gets that the probability to produce such a state is

IMlﬁ/[CEG = ZlMalz = |M|2 (5)
o

To remedy this situation, one assumes some weight W,,
assigned to each event such that

|M/|1%/ICEG = ZwalMo-lz- (6)

There is no unique way to choose the weights W,,. The
only requirement is that one gets good fits to the corre-
sponding C, functions [16,17]. The tacit understanding is
that then also |M'3;cpg = IM|%.

In the second approach, one locally modifies (by weight-
ing each pair of particles in a given event) the original
output of the MCEG used. This can be done either by
modifying its energy-momentum spectra [18] or by chang-
ing the resulting charge assignment [19,20]. In the first
case, one introduces weight function fzg(g) for a pair of
particles momenta which are changed, such that
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f % a0(q) = f 90 pa(@dQ(g), ™
0 0

i.e., for fgp(g) >0 one has 6Q < 0. In this way the
energy-momentum imbalance that results from such a
procedure is properly accounted for and the number of
particles, N = f dQ, is conserved [18]. In the second
case [19,20] the original spatiotemporal and energy-
momentum structure of the original event is preserved,
but often spurious unlike particle correlations occur [21].
What must be stressed is that this approach, contrary to the
previous one, always works on the level of a single event. It
is therefore more suitable as an additional tool (sometimes
called afterburner) to be used together with the known
MCEGs.

It must be stressed that all these methods modify original
physics underlying MCEGs in an essentially unknown way
[22]. Using them one assumes therefore that changes in-
curred are small and irrelevant. We shall proceed now to
attempts to simulate BEC by which we understand a situ-
ation in which the algorithm introducing effects of quan-
tum statistics involves all produced particles [4,12,14,15].

B. Attempts to simulate BEC numerically
1. Metropolis importance sampling method

In [4], the standard Monte Carlo technique due to
Metropolis (Metropolis importance sampling method)
was used. This is a general method to generate an ensemble
of n-body configurations according to some prescribed
probability density. In [4] this technique was used to mod-
ify the directions of momentum vectors of selected parti-
cles from a system of n identical particles in order to
impose the n-particle distributions derived from BE corre-
lation functions. In particular, it was done by changing the
momenta of selected particles, p; — p! € d®N/dp?, in
such a way as to maximize the probability of detection of
the n,-multiparticle state, P, Pa i.e. accepting a new
configuration with probability P = min{l, Pe /Pl
where Pyq=P{l,....,p;....,p, } and Pu,=P{l, ..,
P+ Pyt This procedure is then repeated many times
until a kind of ““equilibrium” is achieved. As shown in [4],
one was able in this way to generate typical multipion
events, which explicitly exhibit all correlations induced
by Bose statistics. The most important result for our further
consideration is the fact that, as a result of the application
of this algorithm a number of objects, called speckles in [4]
and being clusters of a number of identical pions in phase-
space, is formed. It means that in the multidimensional
phase-space permanent (2) exhibits rich structure of local
maxima (attracting particles) and voids (repulsing them),
which replaces the original distribution one started from.
Actually the only drawback of this method is that symmet-
rization of clusters with sizes larger than n ., = 10 takes
a prohibitively long time.
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Two points must be stressed when summarizing this
symmetrization procedure. The first is that it involves all
(identical) secondaries in the event under consideration,
some producing specific structure in their distribution in
the allowed phase-space, namely, it is clustering them in
some regions of phase-space. The second point is that this
phenomenon leads immediately to a broadening of the
resultant multiplicity distribution (MD): starting from a
Poisson MD for a nonsymmetrized wave function one
ends up after symmetrization with a geometrical (or
Bose-Einstein) MD for a single speckle and with negative
binomial MD [23] for the whole system.

We close this section with the following remark. So far,
particles were represented, for simplicity, by plane waves.
However, this approach leads to some unpleasant effects
because it violates the Heisenberg uncertainty relation
constraining the simultaneous specification of coordinates
and momentum as implied by Eq. (4). For example, in the
case of sources with strong position-momentum correla-
tions the two-particle correlation function C,(Q) can drop
significantly below unity [8,24]. This method has therefore
been generalized in [12], where plane waves have been
replaced by wave packets. Both features mentioned above
were also observed here. Therefore in [13] modification
simplifying the selection process was proposed. It was
argued that it could be limited only to identical particles
whose wave functions overlap in phase-space, i.e., to par-
ticles forming speckles or clusters mentioned above (with
the size of this overlap being a new parameter). Notice that
such decomposition corresponds to replacing the full per-
manent in Eq. (2) by matrix with a block structure, each
block representing one cluster with no correlations be-
tween them:

EECI tee 0
: : (®)
0 --- EECy

cell

In what follows we shall identify these blocks with EECs
mentioned before. However, it should be remembered that
cells selected here were so far preselected in (P, ®) space
only and, by construction, tend to contain particles with
similar momenta. This method differs therefore from what
we are going to describe now in which EECs are created
dynamically without any restriction [14].

2. The acceptance-rejection method

The acceptance-rejection method used in [14] is the
well-known “hit-or-miss” technique of generating a set
of random numbers according to a prescribed distribution,
here given by an expression describing the collapse of a
multiparticle wave function into a properly symmetrized
state represented by Eq. (2), as required by Bose quantum
statistics. In contrast to that discussed above, this method is
sequential because the » multiparticle event is constructed
by adding the kth particle to the (k — 1) particles already
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selected, until k¥ = n is reached. This is done in the follow-
ing way. One starts with empty phase-space and inserts in it
the first particle with momentum chosen according to some
distribution (for example, the one which is supposed to
reproduce single particle spectra). The presence of the first
particle causes that a second particle must be added ac-
cording to the 2-particle distribution function, which for
identical bosons is given by the 2-particle correlation
function C, « Py, with momentum of the first particle
fixed and momentum of the second particle to be selected.
Because C,(Q = p, — p,) has a maximum at Q = 0, the
second particle will tend to be located near the first one in
phase-space but a priori it can take any position in it.
Addition of a third particle must be now performed accord-
ing to C3 « P, (with momenta p; and p, already fixed
and only p; being selected), which again has bumpy
structure, especially when particles 1 and 2 are located
far from each other. Therefore the third particle will most
probably locate itself near one of the already selected
particles but a priori it can take any position in phase-
space. If, by chance, it will be far away from both particles
1 and 2, it will become for future particles a new point of
attraction and seed of the new bump. Notice that if, say k
particles occupy the same region of phase-space, the
strength of the bump they form, which attracts other par-
ticles, increases k! times. This process, schematically illus-
trated in Fig. 1, continues until all particles are used (their
number can be either preselected, in which case the initial
energy will vary, or can result from the procedure itself
when initial energy is fixed).

To summarize: this procedure leads again to some spe-
cific nonuniform distribution of particles in the allowed
phase-space with some cell-like structures (bumps) show-
ing up. It results from the fact that regions with some
particles inside them already present will have a bigger
chance to attract a new particle. Unfortunately, this sequen-
tial procedure is even more time consuming than the
previous one and therefore rather unpractical.

3. Information theory approach

The only workable example of MCEG with features of
Bose-Einstein statistics built in from the very beginning
has been proposed in [15]. The known total energy E, has
there been distributed among a given (mean) number of
secondaries, 1 = nny + ini_ + iy (where i, = n_), with
limited transverse momentum parametrized by the mean
value {pr), and it was done in such way as to reproduce
data on both single particle distributions and those for BEC
as well. To this end, the information theory (IT) method
was used to obtain the most probable (and least biased)
formula for rapidity distributions, dN/dy, and multiplicity
distributions P(n). It resembles the usual grand canonical
distribution but is more general than that because the
“temperature’” 7 and ‘“‘chemical potential” @ occurring
there are now two Lagrange multipliers obtained by solv-
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FIG. 1. Schematic example of acceptance-rejection algorithm
proposed in [14] at work; C;;;(max) = (i + 1)! and R € [0, 1]
is a random number. For i particles already present with p;_,
fixed (gray circles, here i=19), one calculates
Cit1({p1...it px = Pi+1) and selects a random number R. For
the situation shown here [with schematic form of C(p,) as an
example], a new particle can only be added to “cells’ 1, 3, and 5
but not to 2 and 4.

ing the corresponding energy and particle conservation
constraints. To also get C,(Q) it turned out that it is enough
to additionally divide the available rapidity space into cells
of fixed size 6y each and assume that each cell can contain
only identical particles (i.e., pions of the same charge in
this case). It is remarkable that, in addition to reproducing
all single-particle characteristics of the collision as well as
backward-forward correlations, with this step one gets at
the same time also multiplicity distributions P(n) in nega-
tive binomial (NB) form [25], the proper structure of the
two-particle BEC function C,(Q) and intermittency signal
[26]. The distinctive feature of this method is that it deals
only with measured momenta of produced secondaries,
there is no trace on the unmeasured spatiotemporal struc-
ture present in other methods. If one now wants to some-
how deduce this information, one has to treat C,(Q) in the
same way one is treating all experimental results on BEC
[i.e., in fact one has to assume that it is a kind of Fourier
transform of the hadronizing source p(r) and perform its
routine analysis as in [6,10,27] ].

The most important result of [15] for us is demonstration
that the decisive factor leading to proper structure of the
correlation function C,(Q) was bunching property in the
rapidity space introduced there.

C. Quantum optical analogy

Let us therefore concentrate for a moment on this bunch-
ing feature of bosons introduced in [15]. At first let us
remind ourselves that it has been noticed and discussed
already many times [13,28—-30] and was regarded as a
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manifestation of quantum statistics [31]. It is especially
widely discussed and used in quantum optics [32] but it
was also employed to describe some aspects of the multi-
particle production processes [11,33,34]. This is because
C, can be also regarded as some measure of correlation of
fluctuations. One uses here the fact that

(nyny) = (nyXny) + {(ny — (np))(ny — (ny)))
= (n;X(ny) + po(ny)o(ny) G

[where o(n) is dispersion of the multiplicity distribution
P(n) and p is the correlation coefficient depending on the
type of particles produced: p = +1, —1, 0 for bosons,
fermions, and Boltzmann statistics, respectively]. It means
therefore that one can write the two-particle correlation
function (4) in terms of the above covariances (9) stressing
therefore its stochastic character [19,20,35]:

<ni(pi)[nj(pj) - 3ij]>
<”i(Pi)><”j(Pj)>
o(n;) 0'(”]) . 51']‘

P (y(p)y (mipo)

Notice that, for geometrical (Bose-Einstein) multiplicity
distribution o?(n;) = (n;(p;)[n;(p;) — 1]) (corresponding
to bosons, p = 1), one gets, for i = j, C,(Q = 0) = 2,
i.e., its maximal allowed value. This bunching property
has already been used in our previous proposition of
MCEG of the “afterburner” type [19,20] mentioned in
Sec. IT A, it was realized in the form of EECs introduced
in [11]. Essentially the same idea will be the cornerstone of
our algorithm, which we shall now present. Identical pions
will be assumed to be subjected to BEC only when inside
EECs, those from different EECs are totally independent
(this can be also expressed using notation chaotic and
coherent, see Appendix A).

C(0) =

— 1+ (10)

III. MODELING BOSE-EINSTEIN CORRELATIONS
VIA ELEMENTARY EMITTING CELLS—OUR
ALGORITHM

A. Introduction

The lesson learned from the approaches presented in
Sec. II is that construction of the proper quantum multi-
particle bosonic state can be performed (i) either by sym-
metrization of the corresponding wave function
constructed for all produced particles [4,12—-14] or (ii) by
following quantum statistical arguments formulated in
[28—30] and directly bunching produced identical secon-
daries with (almost) the same energy in phase-space to
form EECs [11,13,15]. So far, the fact that the distribution
obtained this way is of negative binomial (NBD) type was
only shown in [4]. Nevertheless the emergence of bunching
(both in [4,14]) is convincing and makes it an essential
characteristic of the bosonic character of produced secon-
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daries one has to account for. This will be our main
assumption in what follows.

We have decided to model the effects of proper symmet-
rization of a multiparticle state by assuring that identical
particles are produced in bunches with geometrical distri-
bution of particles. To get such a distribution, one has to
choose particles sequentially with some prescribed proba-
bility 2 until first failure. If this failure happens for the
(N + 1)th trial, one gets immediately that

P(N) = (1 — P)PY  with (N) = % (11
Notice that for P defined as
P =P exp(— %) (12)

(and only then), one gets the usual form of the Bose-
Einstein distribution for the ith EEC:

1

(N(E)) = W-

(13)

Because, according to Eq. (12) P, controls the maximal
number of particles which can be allocated in a given EEC,
one can formally introduce a kind of ‘“‘chemical potential”
(as in [15]) defined as u = T InP, and get [36]

1

(N(E)) = SE—mT _ 1

(14)
Such a choice of P is therefore very crucial in the process
of further modeling BEC and is thus the cornerstone of our
algorithm.

Let us now demonstrate this procedure on a simple
example of a one-dimensional pionic lattice model [20].
The pions located in the sites of the lattice (which prevents
identical pions to be found at the same point of phase-
space) are endowed with charges in such way that, after
selecting the charge of the first pion, one assigns the same
charge to the consecutive neighboring pions with proba-
bility 2 until first failure. After failure, one assigns (again
randomly chosen) charge to the next pion in line and
continues this procedure until all pions are used. In this
way a number of cells is formed with particles in them
distributed by construction [cf. Eq. (11) and [36]] in
geometrical fashion, cf., Fig. 2. In Fig. 2(a) dependence
of C, on the lattice spacing defined by different values of N
is presented whereas Fig. 2(b) presents its dependence on
Q defined as

meax
N

(where p € [— Pmax> Pmax] With prx = 10 GeV and N =
100 denotes the total number of sites in our lattice).
Comparing them, one can deduce that the width of the
correlation function, o(C,), is roughly proportional to the
product of the average number of particles in the cell,

O0=lpi—pjl= “li—jl=6p-n (15)
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FIG. 2. Example of C, occurring for a pionic lattice in (one-dimensional) momentum space: (a) C,(n) as function of the number of
particles in a given cell for different N; (b) C,(Q) as function of Q (in both cases P = 0.5). In (¢) C,(Q) as a function of Q defined by
Eq. (15) for artificially limited cell occupancy, i < ng,, (now P = 0.9).

(Npar)» and the average distance (& p) between these parti-
cle on the lattice, 0(C,) % (Npy) - (6p). Because the av-
erage distance between particles on the lattice is fixed by
the (constant) lattice spacing, the width of the correlation
function depends only on the mean cell occupancy, (N )
which is directly related to the probability 2 [cf. Eq. (13)]
and for constant 2 all widths of C,(n) in Fig. 2(a) are the
same. Finally, in Fig. 2(c) the correlation function C,(Q) is
shown for different limits N,,,, imposed on the maximal
allowed cell occupancy (i < Np,,) (for P = 0.9 to assure
large occupancy of EECs). Notice that both the value of the
intercept parameter, A = C,(Q = 0) — 1, and the width of
the correlation function C, depend on the maximally al-
lowed number of pions in one cell, N,,,.

B. Implementation

This experience prompted us to propose that BEC
should be introduced into the modeling procedure of multi-
particle production processes as early as possible, ideally at
the very first stage of the selection procedure. It means that
one must devise some procedure how to divide a given
amount of energy W into produced bosonic particles,
assumed to be pions of charges: (+, —, 0), without any a
priori assumption on what concerns their multiplicities
other than n™) = n(™) but with effects of quantum statis-
tics accounted for. Among procedures mentioned above
only that in Sec. II B 2 [14] satisfies this demand; however,
because it always involves all produced particles, it very
quickly becomes impossible to follow because of CPU
time demand. On the other hand, results of [4,14] show
explicitly that quantum statistics leads to bunching parti-
cles in phase-space. Such bunching was therefore assumed
in [12,13,15] and in [15], for the first time, the geometrical
distribution form of particles in bunches was used [25].

We shall assume therefore that particles are produced
according to a mechanism which can be regarded as a
quantum version of the clan model (CM) introduced in

[23] to explain the fact that apparently all multiparticle
production processes result in the NB form of resulting
multiplicity distributions P(N); we call it therefore the
quantum clan model (QCM), cf. Fig. 3. In the CM model
(distinguishable), particles are supposed to be produced in
clans, which were supposed to be formed independently
(and therefore distributed in Poisson fashion), with parti-
cles in clans following a logarithmic distribution.
Convolution of these two results in the NB form of P(N)
(P denotes the probability of producing a particle),

N+k—1

k—1 (16)

Py (N) = ( ):Pku - PN,

In QCM, because of quantum statistics, we must assume
that each quantum clan represents a single quantum state
and therefore contains only identical particles of (almost)
the same energy, which are distributed geometrically
[11,15,28]. Keeping the assumption of independent pro-
duction of quantum clans, one immediately finds that
previous NB multiplicity distribution (16) is now replaced
by the so-called Pdlya-Aeppli (geometric-Poisson) distri-
bution defined as [37] [with ® = (1 — P){N)]

)
- >
o J—} [
1
~
/]
1o ) _ /
adronic
Source 1 : > P(N)
—
\ — g
N -
SCom O [—
- —
— )

FIG. 3. Schematic view of quantum clan model (QCM).
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Ppa(N) = Poisson ® geometrical

_ opn §<N e “P/FY

= J! ,
which was already used in multiparticle phenomenology
some time ago [38]. It differs from the NB only at small
multiplicities. Otherwise it is essentially the same.

To numerically implement the QCM we proceed in the
following way.

(i) A pion of randomly chosen charge is selected with
energy E; = Eggc following some assumed distri-
bution f(E). The form of this distribution is dictated
by physics of the model used to describe the produc-
tion process which we would like to follow (much
the same as in [14]). It has no influence on the
bosonization (other then emerging from conserva-
tion laws); on the other hand, it strongly affects the
final form of multiparticle distributions obtained (by
changing effective distributions of EECs). This pion
is therefore supposed to be the seed for the first EEC.
The other pions of the same charge are then added,
one after another, using probability P as given by
Eq. (12). This is done until the first failure, which
marks the end of formation of the first EEC. After
that, one starts formation of another EEC by pro-
ceeding to point (i) and choosing from f(E) another
energy Eggc of another pion of randomly chosen
charge, which forms the seed of the second EEC.
The whole procedure is repeated until all available
energy M is used up.

(i)
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which is selected from some distribution G(E;) cen-
tered on the energy of the first pion forming the seed
of this EEC, Eggc. The sense of the function G(E;) is
that it reflects the fact that the requirement that all
particles belonging to a given EEC must be in the
same energy state, in which case one expects that
G(E;) ~ 8(Eggc — E;) means that their energies can
differ only by an amount corresponding to the width
of the spectral line mentioned in [29]. We shall then
use G(E) either in the form of delta function men-
tioned above or parametrize it by a Gaussian,

[_ (Egpc — Ei)*
exp| — ————5—

G(El) = 20_2

1
s } (18)
In the thermal-like model for f(E) used here, there is
a natural length scale given by the temperature 7 and
it is therefore natural to choose o as being propor-
tional to it, we shall therefore take o = oyT (for the
possible physical meaning of o see Appendix B).
In this work we shall use the function f(E) in the form of
a Boltzmann distribution,

F(E) = exp(— ?)

corresponding to a kind of thermal-like model with tem-
perature 7 being the main parameter. In this case the
parameter P,, governing the number of particles in
EECs, plays the role of the chemical potential. As ex-
pected, one gets then EECs distributed according to a
Poisson distribution, each EEC containing particles of the
same charge only, which are distributed according to Bose-
Einstein (or geometrical) distribution, also the shape of

19)

(iii)) Once accepted, each of the selected pions forming  charged particle multiplicity distributions comes out as
the first EEC is endowed with energy E; (i = 2),  expected, see Fig. 4. It was obtained for hadronizing energy
10° 10*
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o o
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FIG. 4. Examples of the distribution of particles in a given EEC (left panel), distribution of EECs (middle panel), and total charged
particle distribution resulted from the convolution of distributions shown in the first two panels (right panel, open circles and solid
curve, see text for details). Notice that, with this choice of parameters, one can reproduce exactly the experimental data for e~ e*

annihilations taken at the same energy [57] (black circles).
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TABLE I. The mean total multiplicities and their dispersions
((N) and o), the mean total multiplicities of EECs and their
dispersions ({Ney) and oy ), and mean multiplicities and
dispersions in EECs ((Nyuq) and oy ) calculated for some
selected choices of parameters P, and T (upper part) and for
different initial energies [W(i) = 0.5W, W(i)=W =
91.2 GeV, and W(iii) = 2W —Ilower part]. All results are for
gy = 0.0 except the middle part, which was obtained for o, =
0.3 for comparison.

art

TO T <N > Y <N cell> ON <N parl> U-Npan
0.9 41.39 1287 1821 324 227 2.61
0.7 3.5 33.81 828 2058 373 1.64 1.28
0.5 3034 663 2241 411 1.35 0.78
03 28.22 569 2401 444 1.17 0.48

1.5 82.68 1529 3985 4.66 2.07 213
0.9 35 4139 1287 1821 324 2.27 2.61

5.5 2799 1113 1203 264 2.32 278
0.7 35 32.05 712 1954 347 1.63 1.27
w T fP() <N > Y <N cell) ON <N part> O-Npm.l
1) 35 2122 9.08 9.49 229 224 2.56
(i1) 09 4139 1287 1821 324 227 2.61
(iii) 81.70 1827 3562 458 2.29 2.65

W =91.2 GeV using T = 3.5 GeV, P, = 0.7, and o) =
0.3. For the corresponding values of mean multiplicities
and their dispersion cf. Table I (the middle row).

The W =91.2 GeV value of energy will be used
throughout the paper (chosen to allow for the only com-
parison with data we show in Fig. 4). In all examples shown
here the number of MC trials was Nyc = 50000 and a
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reference frame used to calculate the C, function is com-
posed from (+—) particles whereas C, themselves are
calculated for (— —) pairs. Table I shows the corresponding
multiplicities (and their dispersions) of all particles ob-
tained when hadronizing mass W and those for the total
number of EECs and particles in them. The bigger Py, the
bigger the total multiplicity, smaller the number of EECs,
and bigger their occupancy. Increase of 7 decreases the
total multiplicity and the number of EECs but slightly
increases their occupancy. The increase of available energy
W results in an increase of all these quantities, except for
the cell occupancy, which remains essentially the same.
Figure 5 shows an example of the corresponding energy
distributions of produced secondaries. Notice that the ef-
fect of bunching (i.e., effect of introducing EECs) is visible
only in the limited range of the allowed phase-space,
concentrated at small energies. In the case considered
here, where the allowed range is (1/2)-(W =
91.2) GeV, it practically vanishes for E > 7.0 GeV and
after that value the distribution follows the exponential
form of f(E) we have started from. This means that BEC
increases the multiplicity of the event by adding particles
with small energies (see also Table II). Notice that for
nonzero o one gets a displaced maximum for small values
of E. At large energies results follow the shape of the
original f(E) distribution (19) used here. The other impor-
tant feature is the fact that none of the numerical simula-
tions reproduces the Bose-Einstein form of energy
dependence of occupation number, usually used in all
analytical estimations and given by Eq. (13). This is be-
cause of the finiteness of available energy W one can use
for hadronization, which results in limited occupancy of

\ Q@ P =0.9,T=3.5GeV,c =0.3
6 = = = o 'y s 0,
10° : P =0.9, T=3.5 GeV,c =0.3 \ * P =0.9,T=3.5GeV, 0. =0.0
P =0.9,T=3.5 GeV,c =0.0 ° —0—P_ =0.9, T=3.5 GeV, 5 =0.0
(B-1)/3.5 <\ W = 364.8 GeV
~1/[e -1] /o
5] 2 ¢ P =0.3,T=3.5 GeV,c =0.0
10 1) % \ ° o
5
. @)
10 N OO\
10*+ %, \
E-p)/3.5
- —_ % \ NI/[C( w/3 a_l]
- m"-‘ \
5 10”4 ~e /35 E':
A N \
[* ~. \
2 ~ -
10 7 ~.
~ -
- -E/3.5 . 3
BN,
1
10" SR
10* g
) %
10° T T ; Pt e T T ; ;
o 10 20 30 40 50 o 1 2 3 4 5
E, [GeV] E. [GeV]

FIG. 5. Comparison of energy distributions obtained using zero and nonzero values of o compared (dashed line) with the
corresponding Bose-Einstein form of energy dependence of occupation number as given by Eq. (13). The mass of hadronizing
source is W = 91.2 GeV, except the last curve where it is 4-fold greater for comparison.
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TABLE II. The mean number of EECs, N, and charged
particles multiplicity in them, n.-, in different energy bins
calculated for 7 = 3.5 GeV and two sets of (o, Py).

0'0=0.1; ?0:09 (7'0:0.3; T0:O7

Bins in E (GeV) Ncan n - N N
0.0-0.5 0.58 2.62 0.63 1.2

0.5-1.0 0.72 3.00 0.79 1.60
1.0-2.0 1.16 2.98 1.26 2.62
2.0-3.0 0.87 1.58 0.95 1.70
3.0-5.0 1.15 1.64 1.25 1.76
5.0-7.0 0.65 0.77 0.71 0.83
>7.0 0.84 0.89 0.92 0.97

EECs and violates conditions used to obtain Eq. (13) [36].
Detailed results on the mean number of EECs and charged
particles multiplicity in them in different energy bins are
presented in Table II.

We now proceed to the correlation functions C,(6y =
X, — X,) and start with distributions in energy, C,(8g). In
Fig. 6, one observes that, when using o = 0 [i.e., for the
strictly &-like form of G(E)], the whole effect is located in
the first bin only (this is just computer realization of delta
function). Therefore, if nonzero widths of C, are needed,
one must use o > 0. Notice, however, that this width is
not equal to the input o = (T used because the difference
of two variables, each following the same Gaussian distri-
bution, is again Gaussian but with twice o, therefore the
final distribution should be ~+/2 broader, which is roughly
the case shown in Fig. 6 [where o = 0.35 GeV was used as
input in (18) whereas the width which can be read off from
the obtained shape of Cj is equal to 0.45 GeV].

1.8
X —-—06 =0.0
o
* Y (So=0.01
1-6'! — =0,=0.1
I P=0.9%¢™"
1.4 T=3.5 GeV
~ 1 %
N .
& 124
o U
@) | .
l.O-i*
I
I
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We must stop for a moment to comment on the fact that,
in all figures presenting C,(8x) shown here, their values
are significantly smaller than unity for large values of Jy.
This is not an artifact of our algorithm, but results from the
method of presentation of our output. We want to keep the
same number of pairs both in the real event and in the
reference one (which, in our work, is always built from
pairs of opposite charges). Technically it means that one
has to conserve the area under each curve for C,(8y).
Actually this effect is also known in all other approaches
to BEC and is usually corrected by arbitrarily shifting C, in
such a way that it equals unity for some large value of the
argument (in practice set to be equal to 1 GeV) [16]. We
shall not do this here, but this fact must be remembered
when looking at our results.

In Fig. 6 C,(8) is compared with C,(8, ) calculated
assuming an isotropic distribution of momenta of particles
in a given EEC, p. The freedom presented in the choice of
directions of momenta results in a nonzero width of the
otherwise §-like structure of C,(8g) for oy = 0. It then
further broadens when one allows for some nonzero width
oo. This means that it can be used as an additional pa-
rameter when comparison with data would be attempted
(provided its physical meaning will be made clear, see, for
example, the discussion in Appendix B and [39]).

If one wants to further continue with C,(& vam), some
additional input [new parameter(s)] is necessary, which has
to be justified. We shall not discuss this point in detail, as it
would bring us outside the main scope of this paper.
Instead, we limit ourselves to showing in Fig. 7 the results
of some more refined choices of directions of momenta.

FIG. 6.

Illustration of importance of spreading in energy. Left panel: C,(8g) case with oy = 0.0, 0.01, and 0.1. For oy = 0 the

maximum of C, is divergent (all points are in the first bin). Right panel: C,(8g ), ) cases with oy = 0.0 or oy = 0.1. Notice that
C,(8,,) (calculated for momenta distributed isotropically) has nonzero width even for oy = 0. Introducing nonzero o results in

further broadening of C,.
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FIG. 7. Comparison of two different ways of choosing momenta of particles occupying given EECs (| p| is always fixed) for 8, (left
panels) and &, (right panels). Upper panels: the (+, —) sign of p; was chosen randomly for every particle without referring to the
EEC it belongs to. Lower panels: it was chosen randomly for EECs and kept the same for all particles in it. In all cases three choices of
pr is shown: unlimited (isotropic) and with limits imposed by two different values of (p;) when sampling p; from exponential

distribution; in all cases oy = 0.

All results are for oy = 0, introduction of nonzero o will
change them accordingly in the manner presented in Fig. 6.
They were obtained by choosing first values of transverse
momenta, pr = |prl, by selecting them from some expo-
nential distribution constrained only by the assumed mean
value, (pr), which serves therefore as a new parameter.

This corresponds to selection of polar angles from the band

centered on O, = arctan((p;)/p\™™), the correspond-

ing axial angles were chosen uniformly from the [0, 277]
range. In this way, one gets components p, and p, and

longitudinal component p, = p; = *./p* — p3. Two

natural situations are considered here: (i) the maximally

isotropic case [the p; of every consecutive particle, irre-
spective of the EEC they belong to, is randomly assigned
the sign (*)] and (ii) the case in which bunching in
energies is preserved also on the level of momenta (all
particles in a given EEC have p; in the same hemisphere).
All other choices should interpolate between these two.
Two characteristic features seen in Fig. 7 should be
noticed: (i) one observes narrowing of C,(8 px) (i.e., trans-
verse) distributions with tightening the allowed p; region
(i.e., when proceeding from fully isotropic distributions to
those restricted by assumed (p;) with diminishing values
of (pr)), this effect is essentially independent of the way
the signs of p, components are chosen. (ii) C,(8 pz) shows
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different behavior depending on which choice of signs is
followed: it shows no dependence on {p;) for the choice (i)
above whereas for the choice (ii) a difference shows up
only for 6, > 0.2 GeV. The situation changes dramati-
cally when one allows for smearing of energy in the EEC,
i.e., for oy > 0, see Fig. 8. This means introducing a new
parameter, to which our results are most sensitive but
which is still not well understood (see, for example,
Appendix B).

In Fig. 9 results for C,(8g) and C,(5, ) are compared
with those for C,(Qy,,), where Q2 = (pl p>)? with
P12 being 4-momenta of particles 1 and 2 (it is relativisti-
cally invariant variable , such that Q2 = 0 implies for
massive particles that p; = p, and BEC has its maximum
there). Notice the peaked shape of C,(Q;,,) and the fact

that C,(Q;,v = 0) > 2 here. As shown in [40] both features
1.8
] 5 %o =0.3 GeV
—8  0,=0- 1GeV
1.6 —-—-5 ¢,=0.0 GeV
P= og*e”1 T=3.5 GeV
<p,>=0.3 GeV

0.6 T T T
0.0 0.5 1.0 1.5 2.0
5§ [GeV]
X
1.8
o 6 . ,=0.3 GeV
—7}—6 % =0.1 GeV
1.6 —-—-5 c—ooGeV
P=0.9 e”l T=3.5 GeV
<p,>=0.3 GeV
1.44
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L A
o ~g°
- &
0.6 T T T
0.0 0.5 1.0 1.5 2.0
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are mostly due to the specific kinematics of the Q;,,
variable (because of which it collects in the first bin con-
tributions from the whole range of momenta provided only
that they are near enough to each other). The point is that in
the case of Q;,, variable smearing o in energy E and
smearing in momentum p are not independent and there-
fore they do not sum up (as is the case for independent
variables) but rather they tend to cancel. In fact, their

global effect is of the order of o - (y/p> + m*> — p) which
tends to zero for large momenta and never exceeds o - m,
where m is pion mass. In other words, smearing in Qj,, is
considerably smaller than that in energy and momentum.
Therefore there is a natural tendency of increasing occu-
pancy of the lowest bins in 6; = Q;,, in comparison to 8y

or &,
1.8
i ] 5 c—OgGeV
i —@'&*—5 , 5o=0" 1GeV
1.5_' —-—-6 c—OOGeV
: PogeE/rT35GeV
P <p,>=0.3 GeV
1 5
L X%

0.6 T
0.0 05 1.0 15 2.0 25 30 35 4.0
5§ [GeV]
1)Z
1.8 -
! i‘«; o 3 c-ogGeV
: ® —*—8 c—01GeV
1.6 | x —-—-5 c—ooGeV
I P= OgemT35GeV

FIG. 8. The same as in Fig. 7 but for choice of p; restricted by (py) = 0.3 GeV and for different values of oy = 0.0, 0.1, and 0.3.
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FIG. 9. Comparison of C,(8; = 8, ) as presented in Fig. 6 for oy = 0.1 with C,(8; = Qjy,) for the same parameters (left panel).
Notice that the maximum of C,(Q;,, = 0) > 2, and to get it below this value one has to increase o7 (see right panel with oy = 0.3).

Let us now stress the most specific feature of our algo-
rithm: it always produces BEC of the highest possible
order n [for which C,(6; = 0) = n!]. This order is dic-
tated by the number of particles in the most populated
EEC, which in turn depends strongly on the location of a
given EEC in phase-space, see Table II. It will significantly
influence both the strength [as given by C,(8 = 0)] and the
shape of the BEC effect, cf., Fig. 10. In it we show what
happens when the maximal number of particles in each
EEC is artificially limited so as not to exceed some im-

1.8
Y—-n___=—unlimited
max
1.6—%32% n =4
% —n =2
max
1.4 _ %o B/T m_
P=0.9%*e¢ ', T=3.5 GeV
-t 6=0.1*T
eﬂ 1.2 %7%%
Q Sa
1.0 e,
e
0.8
0.6 T T T
0.0 0.5 1.0 1.5 2.0
3, [GeV]

FIG. 10. Comparison of C,(8E) for different maximally al-
lowed sizes of EECs given by maximal number of particles n,,,,
they can have. Notice the difference from the similar results
obtained for pionic lattice and presented in Fig. 2(c). It is caused
by the fact that here the distance between particles is not limited
by the fixed spacing of the lattice as before.

posed maximal value equal to n,,,. Notice that this re-
quirement also affects the resulting number of EECs (the
smaller population of EECs the more of them must be
present). It is clear that this effect will be strongest in
events with very high multiplicities recorded (cf. [41] for
references to projects of the respective experiments). The
sensitivity of our algorithm to n.,,’s presented in Fig. 10
[for C,(8,, ) the changes are qualitatively the same for all
choices of momenta presented here] makes it an ideal tool
for numerical investigations of BEC also for particles
satisfying statistics different than BE (for example, the
so-called parastatistics [42]).

We close this section showing how sensitive C,(8;) are
to different choices of EECs represented by different val-
ues of parameters P, and T and to different masses W of
hadronizing source, cf. Fig. 11 and Table I (this is done
again for o, = 0 and using isotropic distributions of direc-
tions of momenta. Any changes in them, as discussed
before, would then change these results accordingly in
the way demonstrated in Figs. 6—8). The most character-
istic feature is the observed growth of C,(8; = 0) [i.e., the
grow of the so-called ‘“‘parameter of chaoticity” A =
C,(6; = 0) — 1] with a diminishing number of EECs,
(Neenn)- Actually, this result was behind the original intro-
duction of the notion of EECs in describing the BEC effect
done in [11] where the number of EECs is tightly con-
nected with the parameter k in the NB multiparticle dis-
tributions used to fit data. An interesting feature of this
approach, shared by our picture as well, is that, as shown in
[11], it explains in a natural way the dependence of A on
dN/dy and on the atomic number of projectiles A [43]. In
Appendix C we discuss changes in C,(§;) introduced when
correcting for the inevitable energy-momentum and charge
imbalances induced by our algorithm.
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FIG. 11. Left panel and middle panel: sensitivity of C,(8, ) to different choices of EECs exemplifying by different sets of

parameters used. Right panel: the same but for different energies W and fixed size of EEC (as indicated, in all cases oy = 0 and
isotropic source was considered). The corresponding values of mean multiplicities, their dispersion as well as the mean number of

EECs and their mean occupancies are listed in Table 1.

C. Discussion

Let us recapitulate the physical picture we are propos-
ing. Its basic object is an EEC, a quantum state containing a
number of identical secondaries of the same, or nearly the
same, energies. These secondaries are assumed to satisfy
the BE statistics which is imposed by demanding that they
follow geometric distribution. As a result, the correlation
functions C,(8x) that follow are very sensitive to the
characteristics of the EEC, for example, the width of
C,(8y) is proportional to the allowed energy spread in an
EEC, o. It is best seen on the example of C,(8y), cf. Fig. 6.
Interestingly enough, when all particles in the EEC have
the same energy C,(8) is divergent. On the other hand, in
the same situation, correlation functions in momenta have
already nonzero widths. This is because the choice o = 0
does not constrain directions of momenta. The simplest
case of isotropically selected directions, represented by
C,(8,,), is shown in Fig. 6. The choice of directions
provides therefore additional freedom in modeling
C5(8,, ). It can be seen in Figs. 7 and 8 where examples
of restricting the range of transverse momenta and the
choice of longitudinal momenta are displayed. As for the
physical meaning of o > 0, it is tempting to identify it with
the temporal characteristic of the hadronization process, in
fact with the life time of an average EEC.

So far we presented results only for direct pions being
produced. To include resonances, one would first have to
decide whether the BEC should affect them in the same
way as particles or whether they affect only the pions
resonances decay into. This point surely deserves further
discussion, but it would bring us outside the scope of our
paper. Therefore we present in Fig. 12 results for C,

calculated for p mesons [of charges (+, —, 0) and mass
m, = 0.7 GeV, with zero widths assumed for simplicity]
considered to be simple particles subjected to the same

1.8
SE—SPX p
e *® 8E SPX p->2n
P=0.9%¢e /T, T=3.5 GeV
c =0
o
1.4
1.2

C,,)

1.0—‘% M

0.8—

0-6 T T T T T T
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FIG. 12. Comparison of BEC for mesons p (with m, =
0.7 GeV) and for pions obtained from their decays. To maximize
the effect, we use the EEC for p’s with fixed energies (i.e., oy =
0). Both C,(8g) and C,(8), ) are presented. Notice that also for p
correlation function C,(8g) is concentrated in the first bin only.
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procedure of building EECs as that for pions. This is
compared with the case where such p’s subsequently decay
into pions. Notice that, whereas the BEC for p’s is quite
strong and not very much different from that for pions only,
it hardly survives the process of p’s decay, especially for
the C,(8,, ) case. However, it must be stressed at this point
that, so far, our p’s were treated as spinless particles and
that they were assumed to decay into pairs of pions in an
isotropic way in their center of mass [44].

In our algorithm only particles in EECs are subjected to
BEC, there are no intercorrelations of the BE type between
particles from different EECs (see Appendix A). Such
picture seems to be supported by recent data on BEC in
ete” — WH*W™ multi-W boson production which show
nonexistence of inter-W BEC. This result suggests strongly
that, although spatially located practically on top of each
other, nevertheless bosons W act as independent sources of
pions in this case [45].

We would like to stress here that all restrictions on
energies and momenta mentioned above influence first
of all the shape of a single EEC in momentum space rather
than global characteristic of a given hadronizing source
used. It is therefore to a large extent the EEC information
on which are encoded in the correlation function C,.
On the other hand, their number depends in the first in-
stance on the characteristics of the hadronizing source
encoded in the choice of f(E). Occupancy of EECs, how-
ever, depends strongly on 2, and together with T from
f(E) change substantially both the multiplicity distribu-
tions (in our case from the Poisson-like to Polya-Aeppli
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one) and single particle distributions as well (see Figs. 4
and 5).

It is worth mentioning at this point that together with
BEC our algorithm introduces also some intermittency
signal, much in the way expected already in [26], see
Fig. 13. It depends noticeably on the smearing of EECs
in energy and is very sensitive to the energy-momentum
imbalance corrections (cf., Appendix C) [46].

IV. SUMMARY AND CONCLUSIONS

To summarize: we argue that proper numerical symmet-
rization of the multiparticle state of identical particles can
be achieved in an economical way (in what concerns
computational time) only by bunching them in phase-space
in such a way that (identical) particles in each bunch
(called here EEC—-elementary emitting cell) have (al-
most) the same energies and follow a geometrical (Bose-
Einstein) distribution. Only particles in EECs experience
BEC, those from different cells do not (see Appendix A).
We regard this conjecture as emerging in a natural way
from previous investigations [4,12,14,15,47]. It is the main
result of studies of a properly symmetrized multiparticle
wave function of identical secondaries produced in the
reaction [4,12,14]. They unravelled that in such a state
the originally uniformly distributed particles start to bunch
[4,14], also changing the original Poissonian multiplicity
distribution to a NB one [4]. The similarity with the clan
model [23] leading to QCM proposed here was then im-
mediate. The same conjecture was achieved independently

10°

F (M)

M =Y/dy

—=d=w/0o
—a— Q-E-p conservation

M =Y/sy

FIG. 13. Example of intermittency signals obtained using our algorithm with Py = 0.9, T = 3.5. Left panel: not corrected for
energy-momentum and charge imbalances results for oy = 0 (black curves) and oy = 0.3 ( gray curves) are compared. Right panel:
results for g = 0 only with and without corrections (most of the visible effect comes from correcting the energy-momentum

imbalance). Moments F,(M) are defined as in [58].
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following studies in which one works with a number of
quanta (particles) without invoking wave functions [28—
30,32-35]. In the first practical application of the concept
of bunching [15], the whole (one-dimensional) phase-
space was divided into such EECs (of equal size in rapidity
space) and this simple decision resulted in profound con-
sequences for what concerns the ability to describe differ-
ent physical distributions. We develop this idea further: our
EECs are formed dynamically, they can both overlap each
other and be widely separated from each other and their
number and multiplicities (i.e., their sizes) of particles in
them fluctuate from event to event. This work is then about
how to form such EECs and what to do with them.

One can ask whether cells (or proper bunching of iden-
tical particles in phase-space, advocated here) are really
needed to model quantum Bose statistics or, perhaps, it
would be enough just to use the usual Bose-Einstein dis-
tributions to this aim. To answer this question, let us
compare two ways of producing bosonic particles:
(i) generating them directly from Bose-Einstein distribu-
tion [like (N(E;)) as given in Eq. (14), which is the most
simple way advocated on many occasions] and,
(i) generating particles from a Boltzmann distribution
and bunching them in an appropriate way in phase-space
according to QCM presented here. In the first case, one gets
the correct single particle distribution, whereas in the
second case one also accounts for multiparticle correla-
tions of quantum statistical origin. The corresponding re-
sults are presented in Fig. 14. They show that both

1.4
o0 o BEC with cells (P=0.7%¢"/%%)
131 o *— BEC w/o cells
o
1.2 %
o
1.1 JAFAO
S alle e
e o
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.9 ¢
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FIG. 14. Comparison of C, modeled by using MC event gen-
erators with EECs (circles) and without EECs but with selecting
particles directly from the corresponding Bose-Einstein distri-
bution (N(E;)) as given in Eq. (14) [59]. In both cases the
Boltzmann distribution for classical particles was used as a
reference event. This fact may be crucial to get an apparent
increase in the case of using directly Bose-Einstein distributions
(as in [59]). The use of a mixed event instead, which will not
affect substantially the result obtained using EECs, will most
probably kill the other effect.
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approaches lead to very different results, which can be
understood by realizing that case (i) corresponds to a
particular realization of case (ii), namely, with only one
cell containing the same average number of particles. In
fact, case (i) shows only some trivial correlations which
can be eliminated by a proper choice of the reference
distribution. Therefore, we argue that, according to our
understanding, the better approach (after correcting addi-
tionally for charge and energy-momentum conservations)
is that

BEC = cells + geometrical distribution. (20)
From its construction it is evident that our algorithm is best
suited to study events with large multiplicities (as planned
in some experiments [41]). The statement (20) also sum-
marizes the only possible way to incorporate our algorithm
in MCEG codes: according to our finding it should be done
by enforcing particles to be produced in bunches with
characteristics of our EECs. In fact, closer inspections on
all previous efforts to imitate BEC mentioned in Sec. IT A
show that they all implicitly were aiming in a similar
direction [16—20]. The difference was that they were try-
ing to do it a posteriori rather than a priori and that their
weighting procedure was aimed more at the spatiotemporal
(unknown) characteristics of the hadronizing source than
on the true physical principles of BEC.

In this work we have stopped short of a general com-
parison with data. The reason is that we were using here a
most simple statistical model of hadronization in order to
illustrate our algorithm. According to it, a hadronizing
source is assumed to be a single object with some fixed
mass W and fixed initial charge, which is the situation
encountered only in e"e” annihilation reactions. In all
other multiparticle production processes, one either en-
counters W varying from event to event (following some
distribution, for example, inelasticity distribution [48]) or
there is a number of hadronizing sources with different W
in each event (which is the most probable situation in
heavy ion collisions). Moreover, the statistical scheme of
hadronization employed here means that our hadronizing
source does not experience any internal flows and is not
subjected to any external force, which would result in some
energy-position correlations or specific effects of partial
coherence (cf., [9]) and thus additionally influence the C,
correlation function. The problem of the possible net
charges of such subsources was never discussed. All this
asks for a very specialized study, which goes outside the
scope of this paper. What we can only say at this moment is
that, when undertaken, such a study would mean the ne-
cessity of developing our formalism further in what con-
cerns details of modeling EECs mentioned before. The
most probable approach would be to additionally assume
that each EEC itself should be described by a properly
symmetrized np,-particle wave function (where np, is the
number of particles in this EEC). Only then would one be

074030-15



UTYUZH, WILK, AND WLODARCZYK

able to introduce into the model a characteristic
momentum-positions correlation caused by quantum sta-
tistics [much in the spirit leading to Eq. (1)]. The price for
following such a procedure is the necessity to also intro-
duce to our description the space-time characteristics of the
hadronizing source, which we were not dealing with so far.
This would result in the same permanent structure as given
by Eq. (2), but with much smaller sizes and with explicit
dependence on spatiotemporal variables [as in Eq. (8)] to
be used later when selecting momenta (actually, they
would be effectively integrated out in this procedure).
However, the noticeable feature is that in our case this
procedure would not demand the spatiotemporal factoriza-
tion property of the hadronizing source assumed in (1).
When replacing plane waves used there by Coulomb dis-
torted wave functions [49] (which is common practice
nowadays), one could then attempt, in principle, to account
for the influence of Coulomb interactions so far neglected
here (albeit only on the level of 2-body interactions). This
is, of course, not the only possible generalization and
therefore we leave the problem of confrontation with real
data for further studies. Finally, let us notice that any
serious comparison with data would have to be done
including corrections for energy-momentum and total
charge imbalances induced by our algorithm, which (as
seen in Appendix C) can be quite substantial and not
unique.

Let us close by noticing that, although our algorithm was
originally intended to model quantum phenomena of BEC
only, it is in fact more general. The reason is that the
characteristic structure of the C, correlation function asso-
ciated with specific bunching of identical particles turns
out to be a quite universal phenomenon also observed in
many other, purely classical systems, provided only that
they exhibit strong and correlated fluctuations [50]. This
means then that our algorithm, albeit with different moti-
vation, could also be applied there. At this point, one
should also notice an attempt at numerical modeling of
another quantum phenomenon, namely, Bose-Einstein
condensation presented in [51] and the possible connection
of the above with the physics of networks [52]. Finally, we
also claim that, because of its sensitivity to maximal occu-
pancy of EECs, our method could easily be modified to be
able to study BEC effects for parabosons [42].
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APPENDIX A: SOME REMARKS ON EECS

We would like to comment in more detail on our prop-
osition that identical bosons should come in EECs and
experience effects of BEC there, whereas no such effects
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should be seen when bosons from different cells are con-
sidered. In the language used in [53], the probability of
registration of a coincidence of n bosons in states ji, ..., j,
is given by a normalized correlation tensor of rank 2n,

(nn)
(_nn)‘ . = Gjl-“jnjn+l“'j2n
g.]l-~-jn]n+l~--.]2n ’
2n (11) Al
i=1Y Y, (A1)
(nm) _ t t
where G;™ . . Tr{paj1 .ajaj coeaj}

is given in terms of the density matrix operator p, whereas
a' and a are, respectively, creation and annihilation op-
erators. If

(nn) | —
|gjl--~j2n | - 1

n=N, (A2)
we have coherence of the order 2N. Experimentally this
means that the probability of registering n bosons in coin-
cidence is equal to the product of probabilities to register
individual ones. Because of commutation relations for
bosons, [a, a;] = [a}:, a;r] =0 and [ay, a;r] = &y, one
has that a;ra;rakal =aq, a}:aka, = a,:ra;ralak =ajaya,a, =
ngn; and then from Eq. (Al) that for two bosons from
different states

2 _ WM

8kylkyly MWy Apc A (A3)

This means that two bosons from different states (in our
case: from different EECs) exhibit second order coherence.
On the other hand, in the situation in which only one state k

is occupied, i.e., when a,:fa,:rakak = a,:raka,fak - a,:fak =

2 _

ny — ny, BEq. (Al) results in
2 =2
@ M TP 2
8kikikoks — = =2 (A4)

Mg Mgt g

(here we use the fact that in geometrical distribution n7 —

ng> = (1 + 71z)). Notice that it is greater by unity than
(A3) but, because g is not limited, it cannot serve as a
degree of coherence. On the other hand, we can write
following Sec. II C the true correlation function C, as

Var(n)

_n(n—=1) 1
i? i’

C,=— =1+
2 ﬁ2

(AS5)

where Var(n) = Var(n,) = (1 + 71) for bosons from the
same state, which in our case means from the same EEC.
This immediately leads to C, =2 in this case [for
Boltzmann statistics Var(n) = i and one gets C, = 1 in-
stead]. For k EECs we have multiplicity distribution in NB
form with variance Var(n) = kVar(n,) = i + n>/k and
mean multiplicity 77 = kii;. This leads immediately to
C,=1+1/k, ie., we have C, =2 for k=1 and C, —
1 for k — oo,
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TABLE III.
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Schematic presentation of how a different form of commutation relation in a quantum field theoretical description of

BEC results in a different form of C, function [9]. The actual form of C, [i.e., of the function g(Q - R)] depends on the form of function

A(- - +) used to moderate the original (- - -) function.

Volume (4 dim) Wave function

Commutation relation [¢(p,,), &(p},)]

Correlation function C,(Q) — 1

V — o e*ip,;x“

V=V, e~ ipuxt—(1/203)p°

8*(p — ph)
x A*(p, — pl)

8(Q0R)
g(Q-R)

APPENDIX B: STRUCTURE OF C,(Q) AND
FINITENESS OF HADRONIZING SOURCE

As demonstrated in [9], using a quantum field theory
approach to BEC, the structure of the correlation function
C,(Q) is connected with the finiteness of the hadronizing
source. In the four-dimensional case, the wave function
formalism with exp(—ip, - x*) implies the infinite (4-
dimensional) volume of the hadronizing source, V — oo.
This can then be connected to the fact that commutation
relations for the respective operators contain delta func-
tions,

[e(pu), é(p))] = 8*(p, — Pl), (B1)
which are nonzero only for identical values of the four-
momenta (i.e., also energies), . They in turn lead to corre-
lation functions C,(Q) in the form of

C(Q) =1+68(Q"-R), (B2)

ie, to Cy(Q)>1 but only at one point, Q=0
(cf., Table III).

However, as shown in [9], assuming commutation rela-
tions in the form of some sharply piked (but not infinite)
functions A, i.e., replacing delta functions by functions
with supports larger than limited to a one point only,

[e(p). e(pi)] = A*(p, — P,

results immediately in the correlation function endowed
with final width:

C(Q)=1+g(Q"R)

where the form of g (Q - R is a straightforward reflection of
the assumed form of A*(p, — p})). Such a procedure
corresponds to introducing a finite dimension of the source,
V=1V, [and the use of wave packets formalism,
exp[—ip, - x* — p*/(202)], instead of plane waves].

(B3)

(B4)

APPENDIX C: CORRECTING FOR ENERGY-
MOMENTUM AND CHARGE IMBALANCES

Any random selection procedure, even when following
formulas which assume exact energy-momentum and
charge conservations, frequently induces some energy-
momentum and charge imbalances and this is also true in
the case of our algorithm [54]. The obvious remedy would
be to only accept events preserving the initial values of
energy-momentum and charge. This, however, would re-
sult in an unacceptable long computational time. To the
best of our knowledge, only in the algorithm presented in
Sec. IIB 3 [15] is energy-momentum assured using this
method (with <20% accuracy) and charges are conserved
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FIG. 15. Effects of correcting for the imbalances introduced by our selection procedure in energy-momentum (the first two panels

from the left and the right panel) and total charge (the last two panels). Results without (w/0) corrections are the same at all panels.
Two selections of the ( + / — ) sign of the p; component are used: it is chosen randomly for each particle irrespective to the EEC it
belongs to (all panels except the first from the left); all particles in a given EEC possess p; of the same sign (left panel). In all panels
the first bin of the gray full curve contains uncorrected C,(8g). In all cases oy = 0.
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by accepting only events reproducing the initially assumed
charge. Results of all other algorithms presented here were
prepared in the same way as what we have presented, i.e.,
not corrected for any, therefore they can be compared with
each other. We would now like to discuss changes in
correlation functions induced by correcting for energy-
momentum and charge imbalances introduced in the se-
lection process. At first, one must stress that there is no
unique procedure to perform such corrections [55]. In what
follows we shall use a very simple (but fast) procedure:
(i) shifting (by the same amounts, Ap,, Ap, and Ap,)
components of momenta, p, . and, after balancing mo-
menta, appropriately rescaling energies; (ii) by converting
the necessary number of ( + ) particles to ( — ) ones (or
vice versa, depending on the actual charge balance in the
event) and, in case of odd number of particles with surplus
charge, attribute the surplus charge to some randomly
chosen (0) charged particle.

The results are shown in Fig. 15 (our hadronizing
sources have zero initial charge). The most sensitive to
the correcting procedure is C,(8g), correlations of mo-
menta feel corrections only when all particles in a given
EEC are located in the same hemisphere. Otherwise there
is essentially no difference, The reason for such behavior is
that, in the other case, the relative differences of momenta
considered here are not changed by the shifting procedure.
In correcting for AQ # 0, the EECs with single particle
only were chosen first, afterwards EECs with Ny, > 1
were chosen randomly until the correct balance of charge
was achieved. In this case, as one can see in Fig. 15 (lower
panels), the effect is quite dramatic and essentially inde-
pendent of the way the momenta were chosen or on their
energy-momentum balance. The best measure of this is
provided by the widening of the originally 8-like C,(8g).
Notice also the clearly visible upward bending of the tail of
C, distributions. It is worth noticing at this point that
similar shapes are observed in C, obtained from e*e”
annihilation experiments, in which, as in the case consid-
ered here, the original energy and total charges are well
known and fixed.

Effects shown here are so dramatic because, in order to
be as near as possible to the proper BE distributions in the
average EEC in the situation of only limited energy W
available for hadronization, we had maximized sizes of
EECs by allocating to them many particles; this was tech-
nically achieved by using a large value of parameter P,
Py = 0.9. It resulted in a very broad total charge distribu-
tion (centered on the assumed value Qpor = 0), see
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FIG. 16. Typical distributions of total charges obtained from
our selection procedure performed for W =91.2 GeV, T =
3.5 GeV, and o = 0. for different sizes of EECs as dictated
by parameter Py, = 0.9 and P, = 0.3 and for maximal size of
EECs artificially limited to ny,, = 4 (for Py = 0.9). The best
fits to most narrow and most wide distributions are shown. Total
initial charge of hadronizing mass W was assumed Q = 0.

Fig. 16. The reason for such large fluctuations is as follows.
In our algorithm each EEC contains particles of the same
charge (+, —, 0) selected randomly (with equal probabil-
ities). With only one particle per EEC, N, = 1, this
would result in quite narrow AQggc. However, because
in general Ny, > 1 and fluctuates, the charge imbalance
AQggc broadens considerably to what is observed in
Fig. 16. It leads then to very large fluctuations and events
with large charge imbalance are quite frequent. The effect
is therefore, as seen in Fig. 16, very sensitive to the size of
EECs allowed (see Fig. 4 and Table 1), i.e., to the parameter
P, responsible for N, and to any attempts to limit it as,
for example, shown in Fig. 10 [56].

To summarize: this problem arises because our proce-
dure destroys part of the originally formed EECs and forms
some new ones which results in the sensitivity observed.
On the other hand, we do not see at the moment any
economical way to account for extremely complicated
correlations arising when attempting to keep Qror =0
all the time. The only apparent cure, to keep only events
with exactly right charge balance, would place our algo-
rithm in the same category (in what concerns the use of
computational time) as those presented in Secs. II B 1 and
IIB2 [4,14] (which, by the way, were not attempting to
impose any conservation laws at all).
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