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General constraints on fluid velocity divergences for particles in quark matter are derived from baryon
number conservation and enforced electric charge neutrality. A new oscillation pattern in three-flavor
normal quark matter satisfying these conditions is found and its bulk viscosity is calculated. The result
may have astrophysical implication for maximum rotation frequencies of compact stars.
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In the core of compact stars where the density could
reach 5–10 times the normal nuclear matter density, the
constituents of nucleons and hadrons can be squeezed out
to form quark matter [1,2]. Quark matter in a normal state
could exist in various forms, such as strangelets [3–5],
mixed phases [6–9], etc. Searching for quark matter in
stellar objects is very challenging. The cooling behavior
dominated by neutrino emissions may be able to distin-
guish nuclear and quark matter [10–16]. But it is still
subjected to many experimental and theoretical uncertain-
ties [17–19]. Other transport properties such as shear and
bulk viscosities are also of great interest to this end. The
shear viscosity damps the differential rotation to make a
uniform rigid body rotation of stars. The bulk viscosity is
crucial for the damping of pulsations in compact stars.
Such pulsations could take place during the formation of
stars or by external perturbations. They could also be
driven by instabilities of gravitational wave radiation
such as the r-mode instability which arises in the absence
of damping effects. There has been a lot of literature about
calculations of viscosities in nuclear matter in various
situations [20–26]. The shear viscosity for color-flavor-
locking phase has been calculated [27]. The bulk viscos-
ities for normal and color superconducting quark matter
have been studied extensively [28–34]. In this paper we
put emphasis on general constraints of baryon number
conservation and charge neutrality on the bulk viscosity.
Following these constraints, we will give new solutions to
the bulk viscosity in normal quark matter different from
previous results [28–30,32–34,31].

The bulk viscosity is associated with the damping of the
baryon density oscillation denoted by �nB � �nB0ei!t

with the amplitude �nB0 and the frequency ! in the range
103–104 s�1. We assume that the amplitude of the oscil-
lation is small and can be treated as perturbation to its
equilibrium value. The perturbation in baryon density
drives quark matter out of chemical equilibrium via fol-
lowing processes

 

u� d$ u� s; �d$ s transition�;

u� e$ d� �; �Urca I�;

u� e$ s� �; �Urca II�:

(1)

Here we consider the normal quark matter with three
flavors u, d and s. Light quarks u and d are almost mass-
less, while s quarks have large mass. The relaxation to
chemical equilibrium is related to deviations of chemical
potentials from their equilibrium values for these pro-
cesses:

 ��1 � �s ��d � ��s � ��d;

��2 � �d ��u ��e � ��d � ��u � ��e;

��3 � �s ��u ��e � ��s � ��u � ��e:

(2)

The reaction rates for processes in (1) can then be written
as �k��k (k � 1; 2; 3) for small ��k � T, where �k are
coefficients. In our calculations, �1 and �3 are taken from
Ref. [33,34] except that we have included the mass effect
of s quarks [30] and phase space reduction from Fermi
liquid behavior [10,11,15]. The value of �2 is taken from
Ref. [33].

With massive s quarks a purely three-flavor system
cannot be electrically neutral, so there must be electrons
in the system. In reactions (1), the electron number and
flavors are not conserved since they can be created or
destructed, however the baryon number and electric charge
are conserved. The continuity equations for quark flavor,
baryon and electron number read

 

dni
dt
� nir � vi � Ji; �i � u; d; s; B; e�; (3)

where the substantial or material derivative is defined by
d
dt �

@
@t� vi � r. The sources Ji are linear combinations of

reaction rates �k��k when ��k are small. It is obvious that
JB � 0 required by baryon number conservation. The fol-
lowing relations for baryon number conservation and
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charge neutrality are widely used in literature:

 nB �
1

3

X
i�u;d;s

ni; ne �
X

i�u;d;s

Qini;

JB �
1

3

X
i�u;d;s

Ji � 0; Je �
X

i�u;d;s

QiJi:

(4)

The charge neutrality condition in the above is a natural
constraint since the accumulation of net charges would
make the Coulomb energy density blow up and be less
favorable in energy. With Eq. (4) and continuity equa-
tions (3), one obtains the following constraints on number
densities and velocity divergences:
 

nBr � vB �
X

i�u;d;s

1

3
nir � vi;

ner � ve �
X

i�u;d;s

Qinir � vi;

(5)

where the first line is the result of baryon number conser-
vation and the second one that of charge neutrality.
Equation (5) was not presented and applied explicitly in
previous literature. A simple solution to the above equa-
tions can be found at first glance [28–34],

 r � vi � r � vB; �i � u; d; s; e�; (6)

with number densities satisfying Eq. (4). This solution
corresponds to the homogeneous or one-component fluid
with a single fluid velocity field. Inserting Eq. (6) back into
continuity Eqs. (3), one finds

 nB
dXi
dt
�
dni
dt
� Xi

dnB
dt
� Ji; (7)

where Xi � ni=nB are partial fractions for particles i in
terms of the baryon number density. We have used the
continuity equation for the baryon number in Eq. (3).
Obviously Eq. (7) respects baryon number conservation
and charge neutrality. A property of the solution (6) is that
it will give a vanishing bulk viscosity in the case that all
quarks are massless, where the system is always in chemi-
cal equilibrium. An example of this property in two-flavor
normal quark matter can be found in Ref. [33].

In this paper we rigorously apply the constraints (5) and
find a new solution to Eq. (5) different from Eq. (6). Our
starting point is that the role of strange quarks is special
since they are much heavier and may respond to the density
oscillation more reluctantly than other particles. As an
extreme case, we assume r � vs � 0. We also assume r �
vu � r � vd. Then one obtains from Eq. (5) the following
relations:
 

r � ve �
nB�2nu � nd�
ne�nu � nd�

r � vB;

r � vu;d �
3nB

nu � nd
r � vB:

(8)

Generally the velocity divergence for a particle in a fluid
depends on its mass. Rigorously the fluid with more than
one particle species with different masses should be treated
as a multicomponent fluid. The above solution to Eq. (5) is
reasonable in the case that the masses of strange quarks are
of the same order as the chemical potentials and much
larger than light quark masses. If the strange quark masses
are small, one can investigate many other solutions which
are close to the solution (6). For example, one can assume
velocity divergences of particles deviate from that of bary-
ons by a small amount, r � vi � r � vB � "i with (i � u,
d, s, e). Following Eq. (5), these "i satisfy

P
i�u;d;s

1
3ni"i �

0 and
P
i�u;d;sQini"i � ne"e. Any small values of "i under

these constraints denote a slightly different solution from
Eq. (6). We will not consider these solutions in this paper
and focus on the solution (8). With these relations in Eq. (8)
for velocity divergences the bulk viscosity for a system of
quarks and electrons can be derived. The deviation of the
pressure from its thermodynamic value is related to the
bulk viscosity [35],

 �P � ��r � vB: (9)

The above also provides a definition for the bulk viscosity.
The variation �P can be expressed in terms of density
variations �ni � �ni0e

i!t for some quarks or electrons,
which are linearly independent after using Eq. (4). Here
�ni0 are complex amplitudes and can be solved by apply-
ing continuity equations. The number of continuity equa-
tions applied is equal to that of independent densities in
order to close the system of equations. Normally the
baryon density nB is set to be one independent variable.
The r.h.s of Eq. (9) is actually ��nB�

�1dnB=dt. So a
complex � can be obtained from Eq. (9), � �
nB�P=�d�nB=dt�, whose real part gives the bulk viscosity
[35].

We will first consider in reactions (1) two simplest cases,
the d$ s transition (by turning off Urca I and Urca II) and
Urca II (by turning off d$ s transition and Urca I), sepa-
rately. Finally we will address a more realistic case, the
three coupled processes together. The Urca processes with
light quarks (Urca I) was already studied in Ref. [33]. The
calculations for the d$ s transition without charge neu-
trality can be found in Ref. [34]. We list all quantities
needed in evaluating bulk viscosities in three cases in
Table I. The second column is for independent variables.
The third one is for continuity equations used in this paper
to solve the variations of densities. For example, we use
continuity equations for s quarks and electrons for the three
coupled processes. With Eq. (8) it makes no difference to
use other independent continuity equations. The fourth
column lists other variables expressed in terms of indepen-
dent ones. In the d$ s transition and Urca II, there are
additional constraints on electrons and d quarks, respec-
tively, since they do not participate in the reactions. With
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Je;s � 0 in Eq. (3) and (8), one can solve �ne and �nd in
terms of �nB in the last column.

For the d$ s transition, following Eq. (9) and with the
second row in Table I, one obtains the bulk viscosity,

 �1 � Re
�
nB�P
d�nB=dt

�
�

�1nB
@�1

@nB
@P
@ns

!2 � �2
1�
@�1

@ns
�2
;

where
 

@�1

@nB
� �C

@�d

@nd
;

@�1

@ns
�
@�d

@nd
�
@�s

@ns
;

@P
@ns
� ns

@�s

@ns
� nd

@�d

@nd
;

with C � 3nd=�nu � nd�. One can verify that �1 is defi-
nitely positive since @�1

@nB
< 0 and @PB

@ns
< 0 using the equa-

tion of state for degenerate Fermi gas for d and s quarks.
The numerical results for �1 are shown in Fig. 1. As shown
in the figure that the bulk viscosity increases with decreas-
ing frequency until it saturates below a critical frequency
!1c 	 �1j

@�1

@ns
j. One also sees that for low frequencies

!� !1c, �1 is inversely proportional to the transport
coefficient �1. This means the faster the reaction proceeds
the smaller the bulk viscosity is.

Similarly, with the third row in Table I, the bulk viscos-
ity for Urca II is

 �3 �
�3nB

@�3

@nB
@P
@ns

!2 � �2
3�
@�3

@ns
�2
; (10)

where
 

@�3

@nB
� ��3� C�

@�u

@nu
� �2� C�

@�e

@ne
;

@�3

@ns
�
@�s

@ns
�
@�u

@nu
�
@�e

@ne
;

@P
@ns
� �nu

@�u

@nu
� ns

@�s

@ns
� ne

@�e

@ne
:

One sees @�3

@nB
< 0 due to C< 2, and @P

@ns
� � m2

s
3�s
� m2

u
3�u

< 0

with �e � �u and ms 
 mu. The numerical results are
shown in Fig. 2. The behavior of �3 is similar to �1. For
critical frequencies one sees !3c 	 �3j

@�3

@ns
j � !1c be-

cause �3 � �1. The saturation value of �3 is larger than
that of �1 for the same reason. At high frequencies !

!3c one observes �3 � �1.

With the fourth row in Table I, the bulk viscosity for
three coupled processes can be expressed as

 � �
nB
!

�
Ds Im

�ns
�nB
�De Im

�ne
�nB

�
�
nB
F
�DsNs �DeNe�;

(11)

where F and Ne;s are quadratic and linear functions of !2
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FIG. 1 (color online). The bulk viscosity �1 for d$ s transi-
tion. The masses and chemical potentials (in MeV) are set to
mu � md � 0, ms � 100, �s � �d � 500, �u � 495, �e � 5.
Note that these values satisfy charge neutrality and chemical
equilibrium conditions.
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FIG. 2 (color online). The bulk viscosity �3 for the Urca II.
The parameters are the same as in Fig. 1.

TABLE I. Quantities for bulk viscosities in three cases with C � 3nd=�nu � nd�.

Independent variables Continuity eqs. Other variables Special constraints

d$ s �nB, �ns s �nu � �3� C��nB �nd � C�nB � �ns Je � 0 �ne � �2� C��nB
Urca II �nB, �ns s �nu � �3� C��nB � �ns �ne � �2� C��nB � �ns Jd � 0 �nd � C�nB
Coupled �nB, �ns, �ne s, e �nu � �nB � �ne �nd � 2�nB � �ne � �ns
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respectively. They also depend on coefficients �k. The
explicit form of these functions will be presented else-
where [36]. The coefficients De;s are given by

 De � nu
@�u

@nu
� nd

@�d

@nd
� ne

@�e

@ne
;

Ds � ns
@�s

@ns
� nd

@�d

@nd
:

The numerical result for the bulk viscosity � is shown in
Fig. 3 by solid curve. Also shown are dashed and dash-
dotted curves from the method with Eq. (6). With the same
parameters, the result from Eq. (8) (solid curve) is about 1
order of magnitude larger than that from Eq. (6) (dashed

curve). When ms is set to 300 MeV, the result from Eq. (6)
(dash-dotted curve) is comparable to the solid curve at high
frequencies but still differs from it substantially at low
ones. Generally there can be up to 3 plateaus in the log-
log plot of the bulk viscosity as function of frequency
depending on parameters. In Fig. 3, the solid and dash-
dotted curves have two plateaus, while the dashed curve
has only one. It can be verified that � is dominated by the s
quark part in Eq. (11). Since Ds is negative, the phase of
�ns should be delayed relative to �nB manifested by the
positivity of the bulk viscosity. The another calculation of
the bulk viscosity for the coupled processes can be found in
Ref. [37].

In summary, we have derived general constraints on
fluid velocity divergences of quarks and electrons in nor-
mal quark matter from baryon number conservation and
enforced electric charge neutrality. Under these constraints
we find a new solution to velocity divergences leading to
different bulk viscosities. As an extreme case, this new
solution could be realistic in some circumstances where
strange quarks respond to the oscillation in a very different
way from light quarks. Other solutions are also allowed by
these constraints. The new result for the coupled processes
may have astrophysical implication for larger maximum
rotation frequencies of compact stars. Similar constraints
on fluid velocity divergences can also be obtained for
nuclear matter.
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