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In many calculations of the two-photon decay of hadronic molecules, the decay matrix element is
estimated using the wave function at the origin prescription, in analogy to the two-photon decay of
parapositronium. We question the applicability of this procedure to the two-photon decay of hadronic
molecules for it introduces an uncontrolled model dependence into the calculation. As an alternative
approach, we propose an explicit evaluation of the hadron loop. For shallow bound states, this can be done
as an expansion in powers of the range of the molecule binding force 1=�. In the leading order one gets
the well-known pointlike limit answer. We estimate, in a self-consistent and gauge-invariant way, the
leading range corrections for the two-photon decay width of weakly bound hadronic molecules emerging
from kaon loops. We find them to be small, of order O�m"=�2�, where m and " denote the mass of the
constituents and the binding energy, respectively. The role of possible short-ranged operators and of the
width of the scalars remains to be investigated.
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I. INTRODUCTION

Hadronic molecules are bound states of two hadrons
held together by the strong interaction—clearly to be
distinguished from the so-called hadronic atoms, where
the two hadrons are bound by the Coulomb interaction.
In the latter case the strong interaction only leads to a slight
shift in the binding energies (and an additional width).
Hadronic atoms can nowadays be produced in laboratories
almost routinely. Hadronic molecules, on the other hand,
might well be part of the hadron spectrum but are not yet
identified unambiguously. In recent years evidence has
grown that a few of the large number of known scalar
mesons might be of molecular character. For recent re-
views on the meson spectrum, with emphasis on the heavy
states, see Refs. [1–3].

It was argued for many years that the studies of the two-
photon decay of scalars could distinguish among different
scenarios for scalar meson structure. One of the most
studied cases is that of the light scalar mesons a0�980�
and f0�980� and indeed, the predictions of various models
for these differ drastically. Assuming them to be q �q states
made of light quarks, one gets about 1.3 to 1.8 keV for the
f0�980� ! �� width in the relativistic quark model [4],
while, under the s�s assumption, the two-photon width of
the f0�980� is calculated to be about 0:3� 0:5 keV [5].
Within the molecular model for scalars, the predictions
vary from 0.2 keV in Ref. [6]1 to 0.6 keV in Ref. [9] and to
6 keV in Ref. [10]. In the present paper we demonstrate that
the technique used in Refs. [9,10] has a large theoretical
uncertainty. We also show that a gauge-invariant treatment

of the two-photon decay amplitude of the K �K molecule
yields the value of the �� width for the f0�980� close to
0.2 keV.

It is well known since long ago that the two-photon
decay rate for the parapositronium is very well approxi-
mated by the product of the square of the wave function at
the origin times the e�e� annihilation rate at rest [11,12].
This was taken as a recipe by many authors and was
applied also to calculate the two-photon decay rates of
hadronic molecules [9,10]. In this paper we argue that
this procedure leads to wrong results. Instead we propose
to calculate explicitly the hadron loops employing an
expansion in the range of forces, 1=�. Then the leading
term assumes a pointlike molecule vertex and the two-
photon decay of a scalar meson is found to be
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mS � 2m� "; (1)

where mS is the scalar meson mass, " denotes the binding
energy of the hadronic molecule, and m the mass of the
constituents—for simplicity we only study systems with
constituents of equal mass—and � � e2=4� denotes the
fine-structure constant. The factor � is different from 1, if
not all constituents participate in the decay. For example, in
case of the f0 only the charged kaons couple to the photons
in leading order and therefore �2 � 1=2. We also calculate
the leading range corrections to the two-photon decay rate.
They turned out to be suppressed by a factor m"=�2 � 1,
since we focus on shallow bound states.

The paper is organized as follows: in the next section we
present some very general arguments, why the wave func-
tion at the origin cannot be used to calculate the decay of
hadronic molecules. This will be demonstrated explicitly
in the subsequent sections: in Sec. III we give the general

1In this paper the chiral unitary approach is used. That the
scalars produced are to be interpreted as dynamically generated
is shown in Ref. [7]. For a somewhat different view on this
subject see Ref. [8].
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formulae for the two-photon decay of bound states that
allow us to investigate two limits: the weak coupling
limit—that leads to the wave function at the origin pre-
scription—is discussed in subsection III A and the limit of
the pointlike interactions in subsection III B. In Sec. IV the
leading range corrections to the latter limit are calculated.
We close with a summary and outlook.

II. THE RELEVANT SCALES

Before we go into details let us present some general
arguments why the wave function at the origin should not
be used to calculate the two-photon decay of hadronic
molecules. The most obvious argument is that we simply
do not know the wave function at the origin. In contrast to
the parapositronium decay, the equations solved for had-
ronic molecules are not solved using the fundamental
degrees of freedom. Instead one typically works with con-
veniently chosen interpolating fields—and this choice in-
fluences the short-range behavior of the molecule wave
function. For the deuteron wave function this is to some
extent discussed in Ref. [13]. Only the tail of the wave
function is completely determined by the binding energy
and is therefore known model independently. Our igno-
rance about the wave function at the origin translates into a
large spread for predictions for the corresponding two-
photon decay rate of, say, the light scalar mesons, from
0.6 keV in Ref. [9] to 6 keV in Ref. [10].2

The second argument is that any transition matrix ele-
ment using the wave function at the origin meets certain
problems with gauge invariance. In the case of positronium
this is a minor effect, since the violations are suppressed by
at least one extra power in the fine-structure constant �. In
the case of hadronic molecules, however, this violation
might well be more severe. This will be discussed in
some detail below.

The third argument is that the hierarchy of scales in the
case of the decay of hadronic molecules is very different to
that of positronium decay. The individual parts of the decay
are illustrated in Fig. 1. First of all there is the molecule
vertex � for the decay of the molecule into its constitu-
ents—here two mesons.3 Next come the two meson propa-
gators. The final piece is the annihilation potential A, given
by the photon-meson vertices and the intermediate meson
propagator. Corresponding to the building blocks there are
three scales relevant for the two-photon decay of the bound
state. To begin with, there is the intrinsic scale r� of the
vertex function � set by the dynamics of the bound-state
formation. An additional scale r" � 1=� appears due to the

presence of the bound state, where we defined the binding
momentum � �

�������
m"
p

, m is the mass of the molecular
constituents. The third scale is given by the range of the
annihilation potential. For a shallow bound state, the en-
ergy carried away by the individual photons is of the order
of m. Consequently, the range of the annihilation is given
by rA � 1=m.

Let us consider parapositronium decay from the point of
view of the hierarchy of the scales introduced above. We
clearly deal with a nonrelativistic system with the binding
energy " � �2me=4, with me denoting the electron mass.
Note, it is the parameter � �

���������
me"
p

� �me=2 that defines
the long-range piece of the molecular wave function,

which takes the form ��r� �
������������
�3=�

p
exp���r�. The ver-

tex function depends only on the electron three-momentum
~p and is trivially related to the bound-state wave function
[15]:

 � � ~p� �
���������
2mS

p
� ~p2 � �2� � ~p�; (2)

with mS being the positronium mass. We denote wave
functions in coordinate space by � and their Fourier-
transforms in momentum space by  . An explicit calcu-
lation with the positronium wave function yields

 � � ~p� /
1

~p2 � �2 ; (3)

so that r� � 1=� in the positronium case. Finally, as dis-
cussed above, we have rA � 1=me. Therefore there is the
hierarchy of scales

 case A: rA � r" 	 r�: (4)

Thus, in the case of the decay of positronium, the annihi-
lation process is well approximated as taking place at the
origin and consequently the decay amplitude scales to an
excellent approximation with the wave function at the
origin.

Quite an opposite situation takes place for molecular
hadronic systems. Indeed, in this case the scale of the
vertex function is defined by the range of binding forces
1=�. If one deals with a loosely bound state formed by
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FIG. 1. Illustration of the different parts relevant for the decay
of a hadronic molecule into two photons. The vertex for the
transition of the molecule into its constituents is denoted by �,
the corresponding wave function by �, and the annihilation
potential by A. Solid and wavy lines denote the propagation of
the constituents of the molecule and of the photons, respectively.

2Also the recent attempt to improve on the wave function at
the origin formula presented in Ref. [14] is not a solution, for it
suffers from the same ignorance and, in addition, leads to a
violation of gauge invariance, as explained below.

3For simplicity we talk of mesons only for the constituents.
Note that the reasoning does not need to be changed in the
presence of fermions.
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zero-radius forces (�! 1) the hierarchy is

 case B: r� � rA � r": (5)

Then annihilation process cannot be described with the
wave function at the origin prescription.

To see which case (case A or case B) is more adequate
for hadronic molecules let us focus on the two-photon
decay of the f0�980� as a kaon molecule. Then we have
��m�, where m� is the mass of the �-meson, the lightest
meson participating in the meson exchange between kaons
(there is no one-pion exchange between two pseudosca-
lars), " < 0:1m, and, again, rA � 1=m. This leads to

 r� < rA � r": (6)

Comparing this to Eqs. (4) clearly shows that the decay of
hadronic molecules calls for a very different treatment as
compared to that for the decay of positronium. The ques-
tion arises if it is at all possible to give a simple recipe to
calculate such a two-photon decay of, say, the f0. In this
paper we argue that the corresponding decay amplitude is
well approximated by a kaon-loop integral evaluated in the
limit of a pointlike decay vertex (�! 1). We thus pro-
pose to work in the limit (5), as the zeroth approximation,
and build finite-range corrections in powers of 1=� to the
leading term. Naively one would expect such corrections of
order of �m=��2 which, in the case of the f0, turn out to be
of the order of 40%. However, an explicit calculation
presented below shows that the leading range corrections
in 1=� only scale as ��=��2 which, in the case of the f0,
turns out to be of the order of 1%. Therefore, in the case of
the f0 the corrections to the pointlike formula, Eq. (1), are
expected to be at most of order �m=��4 � 15%.

III. BETHE-SALPETER APPROACH

In this section we employ an explicitly gauge-invariant
approach based on the Bethe-Salpeter equation for the
molecule vertex in order to illustrate in more detail the
interplay of the various scales. For scattering amplitudes
similar formalisms were discussed in Refs. [16–18]. The
relevant equations in the two limiting cases A and B
introduced above will appear as special cases of these
general equations.

Consider a Lorentz-covariant theory describing the
meson-meson interaction via a potential V�p� k� which
possesses the inverse interaction range �. A priori no

assumption needs to be made on the structure of V, how-
ever, to keep the expressions simple in this very general
discussion we assume that there is no charge flow in the
potential. As a consequence there will be no meson ex-
change currents, when we include photons. This situation
is naturally realized for potentials given by t-channel ex-
changes of neutral particles. This gives rise to the so-called
ladder approximation for the scattering equation that we
will refer to in the following for simplicity.

In practice the just described restriction on the potential
implies the omission of many diagrams without a priori
justification. However, the goal of this section is to dem-
onstrate that in gauge-invariant approaches self-energies
get linked to scattering potentials. We will not draw any
quantitative conclusions from the considerations in this
section. In contrast to this, when we discuss the leading
finite-range corrections in Sec. IV as well as Appendix E
we do not need to make any additional assumptions and—
to this order in the range of forces—the problem is solved
exactly. The effect of charge exchange is explained in
Appendix E.

Scattering of two mesons can be described by the equa-
tion (see Fig. 2)
 

T�p; q; P� � V�p� q� � i
Z d4k

�2��4
S�k�S�k� P�V�p� k�


 T�k; q; P�; (7)

where P	 is the total momentum of the bound state and p	
is the four-momentum of one of its constituents. The
propagators given are solutions of the Dyson equation,
presented in the graphical form in Fig. 3—if we again
assume V to refer to the emission and absorption of a
neutral meson, we here work in the rainbow approximation

 S�1�p� � S�1
0 �p� � ��p�; S0�p� �

1

p2 �m2
0

;

��p� � �i
Z d4k

�2��4
S�k�V�p� k�;

(8)

with m0 being the bare meson mass. The physical meson
massm appears as the pole of the dressed propagator S�p�.

If there exists a bound state with the mass ms, we may
define the corresponding vertex function ��p; P� as the
solution of a homogeneous Bethe-Salpeter equation
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FIG. 2. Graphical representation of Eq. (7) for the full meson-meson scattering amplitude.
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 � �p; P� � �i
Z d4k

�2��4
S�k�S�k� P�V�p� k���k; P�;

(9)

which is to be evaluated at P2 � m2
s . The bound-state

vertex is normalized through the condition [19]

 � i
Z d4k

�2��4
�2�k; P�

@
@P	

S�k�S�k� P� � 2P	; (10)

which relates the vertex ��p; P� to the bound-state mass.
To describe radiative processes one should first define

the dressed photon emission vertex for a meson. In the
absence of charge flow in the potential V this is (see Fig. 4)
 

v	�p; q� � v�0�	 �p; q� � i
Z d4k

�2��4
T�p; k; q�S�k�S�k� q�


 v�0�	 �k; q�

� v�0�	 �p; q� � i
Z d4k

�2��4
V�p� k�S�k�S�k� q�


 v	�k; q�; (11)

where

 v�0�	 �p; q� � �2p� q�	 (12)

and q	 and p	 are the emitted photon and the emitting
meson momenta, respectively. As follows from Eqs. (7)
and (11), the dressed vertex v	�p; q� obeys the Ward
identity,

 q	v
	�p; q� � S�1�p� � S�1�p� q�: (13)

The two-photon decay amplitude for the bound state can
now be evaluated with the help of the diagrams depicted in
Fig. 5 and with the dressed vertices and propagators in-
volved (notice that the seagull vertex in Fig. 5(c) need not
be dressed since, due to the Bethe-Salpeter Eq. (9), the
corresponding diagrams are already included into the defi-
nition of the scalar vertex). The resulting transition matrix
element is

 W � "�1	"
�
2
W

	
; (14)

where

 

W	
 � e2
Z d4k

�2��4
��k; P�v	�k; q1�v
�k� q1; q2�S�k� q1�S�k� P�S�k� � e

2
Z d4k

�2��4
��k; P�v
�k; q2�v	�k� q2; q1�


 S�k� q2�S�k� P�S�k� � 2g	
e2
Z d4k

�2��4
��k; P�S�k� P�S�k�; (15)

 

FIG. 4. Graphical representation of Eq. (11) for the dressed photon emission vertex.
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FIG. 3. Graphical representation of the Dyson equations for the dressed meson propagator and for the meson self-energy, Eq. (8).
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with q1;2 and ��1;2 being the four-momenta and the polarization vectors of the two photons. The quantity W	
 appears to be
gauge invariant,

 W	
q1	 � W	
q2
 � 0: (16)

To show this one may use the Ward identity, Eq. (13), to write

 W	
q
	
1 � e2

Z d4k

�2��4
��k; P�S�k� P�S�k� q1�v
�k� q1; q2� � e2

Z d4k

�2��4
��k; P�S�k�S�k� P�v
�k� q1; q2�

� e2
Z d4k

�2��4
��k; P�S�k�S�k� P�v
�k; q2� � e2

Z d4k

�2��4
��k; P�S�k�S�k� q2�v
�k; q2�

� 2q1


Z d4k

�2��4
��k; P�S�k�S�k� P�: (17)

Now, using the bound-state equation for ��k; P� and the second line of Eqs. (11) one may write

 

Z d4k

�2��4
��k; P�S�k� P�S�k� q1�v
�k� q1; q2� �

Z d4l

�2��4
��l; P�S�l� P�S�l��v
�l� q1; q2� � v

�0�

 �l� q1; q2��:

(18)

The same manipulations applied to the fourth line of
Eq. (17) lead to Eq. (16).

We therefore see that it is necessary that the vertex
function � and the photon-meson vertices are constructed
consistently in order to get gauge-invariant amplitudes. In
other words, using in the expression for the decay ampli-
tude the molecule wave function together with bare verti-
ces and propagators, inevitably leads to the violation of
gauge invariance.

For the decay S! �� involving real photons, Eqs. (16)
imply that
 

iW � M�P2��q
1q
	
2 � g

	
�q1q2��
�
1	�

�
2
;

P � q1 � q2:
(19)

Then, for the scalar of the mass mS, the total width of such
a decay can be evaluated as

 ��� �
m3
S

64�
jM�m2

S�j
2; (20)

where the identity of the photons in the final state is taken
into account in the overall coefficient in Eq. (20).

Equation (15) is still general (up to the absence of
exchange currents) and we may study it in both limits:
case A (Eq. (4)) as well as case B (Eq. (5)). Note, in order
to simplify Eq. (15) we need to assume the coupling to be
weak. In a situation, where case A holds for strong cou-
plings, the full system of coupled equations needs to be
solved. In the next subsections both limits are discussed
individually.

A. Case A in the weak coupling limit

In case A, r� � rA. As we shall see, the decay width in
this limit can be derived from the general expression of
Eq. (15) under the assumption of weak coupling. Then one
may neglect the dressing effects and self-energies alto-
gether—in Eq. (15) all propagators and vertices can be
replaced by the bare ones. As outlined above, this neces-
sarily implies a certain violation of gauge invariance,
however, those violations are suppressed by at least one
power in the coupling that is assumed to be small. In the
limit considered, the typical momentum in the loop is very
small and one may replace k0 in the photon vertices as well
as in the strong vertex � by m. Then one may write in the

 

)c()b()a(

FIG. 5. Diagrams contributing to the scalar decay amplitude.
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rest frame of the scalar (P	 � �2m� "; ~0�):

 � i
Z dk0

2�
S�k�S�k� P� 	

1

4m
1

~k2
� �2

;

�i
Z dk0

2�
S�k� q1�S�k� P�S�k�

	 S�k� q1�jk0�q0
1

�
�i

Z dk0

2�
S�k�S�k� P�

�
;

(21)

where only the leading pole is kept and nonrelativistic
kinematics is used for the mesons with momentum ~k. A
similar expression appears for q1 $ q2. What remains to
be evaluated now is the three-dimensional integral

 

W	
 � ��e
2

����
2

m

s Z d3k

�2��3
 � ~k�




�
�2~k� q1�	�2~k� P� q1�


m2 � � ~k� ~q1�
2

� �	$ 
; q1 $ q2� � 2g	


�
; (22)

where we used the relation (2) and defined ~k	 � �m; ~k�.
The term in parenthesis refers to the annihilation potential.
By assumption we have rA � r� which translates into ~k�
~q1;2. Under this condition one may neglect all ~k depen-
dence in this term, which then reduces to the annihilation
potential at rest, and pull it out of the integral. The remain-
ing integral is nothing but the definition of the wave
function at the origin (in coordinate space). These alto-
gether yield the gauge-invariant answer (19) for the am-
plitude, with

 M�P2� � i�e2 ��0�

m5=2
: (23)

Thus one arrives at the following expression for the two-
photon decay width for the limiting case A,

 �A�� � 2�2 ��
2

m2 j��0�j
2: (24)

Note that the final answer is gauge invariant, but this is true
only for the leading term in an expansion in the potential V
for the transition matrix elements. As explained, if one
wants to improve the accuracy of Eq. (24) it is insufficient
to just keep the momentum dependence in Eq. (22), as
proposed in Ref. [14], but also the meson self-energies are
to be kept explicitly. Consequently, Eq. (24) should only be
applied in the weak coupling limit.

There exists a prescription to calculate the two-photon
decay amplitude by contracting the on-shell decay ampli-
tude with the bound-state wave function  � ~k� (see, e.g.
[20]):

 W /
Z d3k

�2��3
 � ~k��W�K�� ~k�K��� ~k� ! ���: (25)

Since gauge invariance is preserved for the on-shell am-
plitude W�K�� ~k�K��� ~k� ! ���, then the full amplitude
(25) proves to be gauge invariant automatically. In the
leading nonrelativistic approximation the ~k dependence
of W can be neglected, so that Eq. (25) is identical to
Eq. (24). However, in general Eq. (25) violates energy
conservation: in the center-of-mass (c.m.) frame the use
of the on-shell amplitude in Eq. (25) implies that the kaon

energies k10 � k20 �
�����������������
~k2
�m2

p
, while energy conserva-

tion requires k10 � k20 � mS=2. This problem is discussed
in detail in Ref. [21].

Simple recipes to restore gauge invariance in the pres-
ence of nontrivial vertex functions through new contact
diagrams with the derivatives of this vertex, successfully
used for decays like �! �f0 [15], fail, since the photons
are not soft. As a result, gauge invariance, preserved in the
pointlike limit, appears broken already to order �m=��2 �
0:4 (see Appendix C for the details), where we used for
illustration with m � mK and � � m� the parameters
relevant for the f0. In the previous section we showed
that the inclusion of the scalar vertex structure in a
gauge-invariant way requires an accurate consideration of
the dressed meson propagators and photon emission
vertices.

As stressed before, the approximations necessary to
come to the wave function at the origin prescription in
the case of the positronium decay were justified, since only
terms of higher orders in � need to be neglected (such
corrections can be taken into account systematically, see
[22]). In a strongly interacting system, where the couplings
are typically of order unity or larger, these steps are not
justified: they lead to uncontrolled results and potentially
large violations of gauge invariance.

B. Case B: The zero-radius interaction limit

We now study the other limiting situation, case B
(Eq. (5)). In this limit we may assume the vertex function
to be pointlike (�! 1), which leads to a constant vertex
function ��p; P� � gS0 for, say, the decay of the f0 into
kaons. Then all dressing effects can be absorbed in cou-
pling constants and masses and thus bare (in form) vertices
and propagators may be used (but for different reasons as
compared to the previous subsection).

Then the matrix element (19) can be found from the set
of diagrams depicted in Fig. 5,
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Wa � �gS0e
2
Z d4k

�2��4



��1 � �2k� q1���2 � �2k� P� q1�

��k� q1�
2 �m2���k� P�2 �m2��k2 �m2�

;

Wb � Wa�1$ 2�;

Wc � �2�gS0e
2���1 � �

�
2�
Z d4k

�2��4



1

��k� P�2 �m2��k2 �m2�
;

(26)

where m, as before, denotes the meson mass.
The two-gamma decay of scalars can be viewed as a

particular case of a more general situation of the S! V�
decays, studied in detail in Ref. [23], with the vector
particle V also taken to be a photon. The details of the
calculations are well known, and can be found, e.g., in
Refs. [24–28]. Notice that, although all integrals in
Eq. (26) are logarithmically divergent, the sum Wa �
Wb �Wc is finite.4 Thus, adding these three yields for
the amplitude M introduced in Eq. (19):

 M�P2� � ��
gS0e

2

2�2m2 I�b�; (27)

with I�b� being the loop integral function, I�b� � I�a �
0; b� (see, for example, Refs. [24,28] for the definition of
I�a; b�), where b � m2

S=m
2,

 I�b� �
Z 1

0
dz
Z 1�z

0
dy

yz
1� byz

: (28)

The analytic expression for I�b� takes the form:

 I�b� �

8<:�
1

2b�
2
b2 �arcsin

��
b
p

2 
2; b < 4

� 1
2b�

1
2b2 �ln

��
b
p
�
�������
b�4
p��

b
p
�
�������
b�4
p � i�2; b > 4:

(29)

Finally, using Eqs. (20) and (27) together, one arrives at
the decay width

 �B�� � �2 g
2
S0�

2m3
S

16�3m4

��������I
�
m2
S

m2

���������2
; (30)

with the only unknown parameter being the coupling con-
stant gS0. For a loosely bound system with P2 � �2m�
"�2 	 4m�m� "�, "� m, the condition (10) gives the
relation between the coupling constant gS0 and the mole-
cule binding energy " [15],

 

g2
S0

4�
� 32m

�������
m"
p

: (31)

Inserting Eq. (31) into Eq. (30) gives Eq. (1).

For mS � 980 MeV and m � 495 MeV, which trans-
lates to " � 10 MeV, one arrives at the prediction

 ��� � 0:22 keV; (32)

for the two-photon decay of the scalar f0�980�, which we
refer to as the pointlike model prediction. In the following
we shall derive an estimate for the accuracy of this result.

IV. LEADING RANGE CORRECTIONS

In the previous subsection we investigated the limiting
case of �! 1. In this chapter we derive the leading
corrections that emerge from finite values of �—we shall
calculate the leading corrections in 1=�. This should pro-
vide a valuable insight into how accurate the formulae of
the previous chapter should be expected to be.

For this we use a simple covariant model complying
with the requirements of the previous chapter and thus
providing a gauge-invariant description of the two-photon
radiative decay of a non-pointlike molecular state.

We start from an effective meson interaction Lagrangian
which is responsible for the pointlike scalar formation and
supply it with an extra momentum-dependent self-
interaction:

 Lint �
1

2
1�’y’�2 �

2

2�2 �@	�’
y’�2: (33)

The form of the Lagrangian (33) is chosen such that, after
inclusion of the electromagnetic (e.m.) field, it does not
give rise to extra meson-photon vertices. Indeed, since the
Lagrangian (33) is written completely in terms of the real
field’y’, the standard substitution @	 ! @	 � ieA	 does
not touch it. As a result, the set of diagrams contributing to
the molecule decay to two photons is not modified and is
still exhausted with the three diagrams depicted in Fig. 5.
Additional terms that arise from possible charge exchanges
just lead to more complicated expressions but do not alter
the conclusions. This is discussed in detail in Appendix E.
The theory described by the Lagrangian (33) can be re-
normalized to the given order 1=�2. We present the neces-
sary details in Appendix A and briefly summarize the
results here.

The effective meson-meson interaction given rise by the
Lagrangian (33) is

 V�p� k� � 1 �
2

�2 �p� k�
2: (34)

Note that, in addition to the two terms given in Eq. (34)
also a term that scales as 2�s=�2� emerges from Eq. (33),
where

���
s
p
� Ecm. However, since we shall work at the

fixed s � m2
S, this term can be absorbed into 1. The

dressed meson propagator and the dressed photon emission
vertex are

4An elegant way of extracting the amplitude M, Eq. (27), by
reading off a finite coefficient at a specific combination of the
four-momenta in Wa was suggested in Ref. [28]. The problem of
convergence of the integrals (26) was also studied in detail in
Refs. [15,24,29]
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S�p� �
Z

p2 �m2 ;

v	�p; q� � Z�1�2p� q�	 � ~v	�p; q�;
(35)

where the renormalization factor Z and the explicit expres-
sion for ~v	�p; q� are given in Appendix A. We have
~v	�p; q�q	 � 0, so that the Ward identity (13) is pre-
served. From now on we stick to the renormalized, physical
value of the mass m. Besides that, ~v	�p; q� does not
contribute to the radiative �� decay under consideration
since �~v���q2�0 � 0, with ��	 being the photon polarization
vector.

We turn now to the Bethe-Salpeter equation (9) for a
loosely bound system. One can check that, to order m2=�2

and
����������
"=m

p
, the Bethe-Salpeter equation (9) is satisfied with

the vertex function (see Appendix A for details):

 � �p; P� � Z�1gS

�
1� �

p�p� P�

�2

�
; � �

2

1
; (36)

and the normalization condition (10) gives (see
Appendix B for details):

 

g2
S

4�
� 32m

�������
m"
p

�
1� 2�

m2

�2

�
; (37)

which, as �! 1, reproduces the relation (31) obtained in
the limit of the zero-range interaction.

In the weak coupling limit that we focus on here, the
bound-state formation should be controlled by nonrelativ-
istic momenta. As a consequence geff , the effective cou-
pling constant of the bound state to its constituents, should
have corrections at most of the order ofm�=�2 [30,31], for
the scale m2 does not appear in nonrelativistic equations.
To recover this result we need to use Eq. (36) at the bound-
state pole, P � P0 with P2

0 � m2
s , and for on-mass-shell

mesons, p � p0 with p2
0 � �p0 � P0�

2 � m2, to get

 

g2
eff

4�
�
Z2

4�
�y�p0; P0���p0; P0� � 32m

�������
m"
p

�
1� 4�

m"

�2

�
;

(38)

where the factor Z2 was put according to the rules of the
Lehman-Symanzik-Zimmerman (LSZ) reduction formula.
The scaling of the corrections in Eq. (38) is in line with the
estimates of Refs. [15,30–32]. Here we used that, for the
given kinematics, p�p� P� � �2m2 �m2

s�=2.
The general form of the matrix element is given in

Eq. (19). Following the method proposed in Ref. [28]
(see Appendix D for an alternative method) we notice
that only the diagrams (a) and (b) in Fig. 5 give rise to
the structure q1
q2	 in the transition matrix element (19).
Moreover, these two diagrams give the same contribution
to W, so it is sufficient to consider only one of them,

 

Wa
	
 � e2�gS

Z d4k

�2��4
��k; P�S�k� P�v
�k� q1; q2�


 S�k� q1�v	�k; q1�S�k�; (39)

and to read off the coefficient at the structure q1
q2	 which
appears after the introduction of the Feynman parameters
and shifting the integration variable [28]. Notice that in this
structure the Z-factors coming from propagators, from e.m.
vertices, and from the norm of the scalar vertex cancel
against each other, so that

 Wa
	
 � �gSe2

Z d4k

�2��4



�2k� q1�	�2k� P� q1�
�1� �k�k� P�=�2�

��k� q1�
2 �m2���k� P�2 �m2��k2 �m2�

:

(40)

The corresponding loop integral is finite and the result
reads:

 M�m2
S� � M�0��m2

S� � �
m2

�2 M
�1��m2

S�; (41)

where M�0� is given by the pointlike result, Eq. (27),
whereas M�1� takes the form:

 M�1��m2
S� � ��

gSe2

2�2m2
~I�b�; b �

m2
S

m2 ; (42)

with
 

~I�b� �
1

6
�

1

2

Z 1

0
dz
Z 1�z

0
dy
�
�y� z� 8yz� ln�1� yzb�

�
1� y� z� 2yz

1� yzb

�
: (43)

Thus, up to order 1=�2, the integrals I�b� and ~I�b� enter
the two-photon decay amplitude in the combination
�I�b� � ~I�b��=I�b�:

 M � Mpointlike

�
1� �

m2

�2

I�b� � ~I�b�
I�b�

�
; (44)

where the factor 1� ��m2=�2� comes from gS (see
Eq. (37)) and I�b� � ��m2=�2�~I�b� appears from the decay
diagrams. The integral ~I�b� can be calculated analytically.
The result reads:

 

~I�b� �
�
1�

b
2

�
I�b�: (45)

So, for the total width, we arrive at an extremely simple
formula:

 ������ � ���

�
1� �

4m2 �m2
S

�2

�
� ���

�
1�O

�
m"

�2

��
;

(46)

HANHART, KALASHNIKOVA, KUDRYAVTSEV, AND NEFEDIEV PHYSICAL REVIEW D 75, 074015 (2007)

074015-8



where ��� is given by Eqs. (1) and (32), and the corrections
of order of m2=�2 cancel against each other. Contrary to
Eq. (38), here the cancellation is unexpected and nontri-
vial: since the photons carry away an energy of the order of
the mass m, their momenta are the same and therefore at
least one of the particles in the meson loop has a typical
momentum of the order of its mass. Consequently there is
no justification for the use of nonrelativistic kinematics in
the evaluation of the two-photon decay of scalar mesons.

Evaluation of the actual coefficient in front of the struc-
ture �m"�=�2 would require making assumptions concern-
ing the details of the molecule formation which are model
dependent, though, given a particular model of this type, it
is straightforward to apply the technique of the present
work to establish this coefficient which is expected to be of
order unity (see also Appendix B).

Equation (46) is the central result of this work, for it
shows that the predictions derived for the limit a pointlike
interaction should be quite accurate. If one assumes the
coefficient � also to take its natural value of order unity
(1 � 2), we find that the leading range corrections to
Eq. (32) should be of the order of m"=�2, which translates
into a few percent in the decay amplitude. Therefore the
accuracy of Eq. (1) should be given by the subleading
range corrections that are expected to be of the order of
�m=��4, which is about 15% for the case of the f0.

Another source of uncertainty for any prediction based
on Eq. (1) is our ignorance on the true binding energy. To
investigate this point, in Fig. 6, the dependence of Eq. (1)
on " is shown, again using for illustration the parameters
relevant for the f0, namely m � mK. As one can see, the
dependence on " is quite moderate, once the binding
energy exceeds 5 MeV. Therefore, even if " is varied
between 5 and 20 MeVaround 10 MeV—the typical value
used above—the predicted two-photon width changes by
less than 0.05 keV.

However, one should be aware of the following impor-
tant disclaimers:

(i) Most of the hadrons—including the f0 —are un-
stable. Thus the concept of vertex function and bind-
ing energy is not well defined for those, and one
should employ a multichannel Bethe-Salpeter for-
malism. The quantity that should replace the bound-
state vertex ��p; P� in all the formulae given above is
the multichannel t-matrix. The proof of gauge in-
variance proceeds along the lines similar to those
given in Sec. III. In the molecular case, for the
energies around the K �K threshold (and far away
from the inelastic thresholds) the amplitude in the
K �K channel can be written in the scattering length
approximation with the complex K �K scattering
length:

 aK �K �
1

�1 � i�2
; �2 > 0: (47)

In the limit �2 ! 0, the coupling to inelastic chan-
nels is switched off, and, for �1 > 0, there is a bound
state in theK �K channel with " � �2

1=m. As shown in
[33], the data on, say, �� scattering near the K �K
threshold can be described in the scattering length
approximation with �2 around 50� 100 MeV, and
the ratio �1=�2 of order unity. Thus, the hierarchy of
scales in the case of unstable scalar is similar to the
one considered above. The two-photon decay of an
unstable scalar meson in the limit of pointlike inter-
actions was evaluated, for example, in Ref. [34].
More systematic studies of the problem of unstable
particles will be the subject of a future work.

(ii) Another issue is the possible presence of additional
short-ranged operators, for example, of the type of
vector meson exchanges studied in Ref. [6].
Estimates for these and their proper inclusion in
the renormalization program also go beyond the
scope of the present paper and will also be the
subject of a future work.

V. SUMMARY

(1) The ��0� formula for slow particles annihilation
does not work for the two-gamma decays of had-
ronic molecules. Not only are the results numeri-
cally uncontrolled, which is reflected in a wide
spread of predictions for the decay f0 ! �� width
found in the literature, but there is also a potentially
large violation of gauge invariance necessarily
present in the derivation of the formula.

(2) Simple recipes to restore gauge invariance in the
presence of nontrivial vertex functions through new
contact diagrams with the derivatives of this vertex,
successfully used for decays like �! �f0 [15],
fail, since the photons are not soft. As a result, gauge
invariance, preserved in the pointlike limit, appears

 Γ γγ

FIG. 6. Dependence of the width ���, defined in Eq. (1), on the
value of the binding energy.
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broken already to order 1=�2. We showed that the
inclusion of the scalar vertex structure in a gauge-
invariant way requires an accurate consideration of
the dressed meson propagators and photon emission
vertices.

(3) For phenomenologically adequate values of " �
10 MeV and �� 0:8 GeV for the scalar meson
f0�980� our prediction for the two-photon width is

 �f0
�� � �0:22� 0:07� keV: (48)

Our result compares nicely with the experimental
values for the �� width of the light scalar f0�980�
[35]

 ����f0�980�� � 0:31�0:08
�0:11 keV; (49)

and [36]

 ����f0�980�� � 0:28�0:09
�0:13 keV: (50)

The new experimental value [37]

 ����f0�980�� � 0:205�0:095
�0:083�stat��0:147

�0:117�syst� keV

(51)

gives an even better agreement. This clearly sup-
ports the molecular assignment for the f0�980�.

It has to be stressed that the uncertainty of our theoretical
prediction (48) so far only includes our estimate of the
possible influence of the structure of the vertex function for
the scalar meson (about 15% for the amplitude). Neither
was the possible influence of the finite width included nor
possible additional terms from shorter ranged transitions.
Both will be the subject of future investigations.

It should be emphasized that the main goal of our study
was to quantify the effect of range corrections to the two-
photon decay of hadronic molecules in a model-
independent way. Those we identified as parametrically
suppressed compared to what is expected naively. This
finding should not be changed by the inclusion of inelastic
channels (like �� in case of the f0). From this point of
view our work is an additional justification for the use of,
for example, the chiral unitary approach, for the calcula-
tion of the two-photon decay of the light scalar mesons [6].
Here scalar mesons appear as hadronic molecules based on
pointlike interactions. On the other hand, in Ref. [6] the
�� channel is included in a coupled channel framework. It
is also reassuring that the width calculated in this reference
is consistent with our result, Eq. (48).
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APPENDIX A: RENORMALIZATION OF THE
MODEL AND THE BETHE-SALPETER EQUATION

To renormalize the theory (33) to the given order 1=�2

we start from the interaction Lagrangian

 Lint �
1

2
1�’y’�2 �

2

2�2 �@	�’
y’�2: (A1)

We consider the meson mass operator then,

 ��p� � �i
Z d4k

�2��4
S�k�V�p� k�; (A2)

and use the dimensional regularization scheme to make it
finite. It is easy to see that ��p� can be written in the form

 ��p� � �1� Z�1�p2 � �m2; (A3)

where

 Z � 1�
2m

2

�4��2�2 ��� 1�; � �
2

�
� �E � ln

4�	2

m2 ;

(A4)

with D � 4� � being the number of dimensions, 	 and
�E 	 0:577 being an auxiliary mass parameter and the
Euler constant, respectively. The physical meson mass is
simply m2 � Z�m2

0 � �m
2�, and the meson propagator

takes the form given in Eq. (35). It is also straightforward
to evaluate, to the same order 1=�2 and in the same
regularization scheme, the photon emission vertex,
 

v	�p; q� � �2p� q�	 � i
Z d4k

�2��4
V�p� k�S�k�S�k� q�


 �2k� q�	; (A5)

to arrive at

 v	�p; q� � Z�1�2p� q�	 � ~v	�p; q�; (A6)

where
 

~v	�p; q� �
2

12��2

�
�

3
�

1

6
�

4m2 � q2

q2 �

�
4m2 � q2

q2

�
3=2


 arctan

��������������������
q2

4m2 � q2

s �
�q2p	 � �pq�q	; (A7)

with the renormalization factor Z given in Eq. (A4). This
agrees with Eq. (35).

Now, before we come to the Bethe-Salpeter equation, we
introduce two auxiliary integrals,
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 I0�P� � �i
Z d4k

�2��4
1

�k2 �m2���k� P�2 �m2�
;

I2�P� � �i
Z d4k

�2��4
k2

�k2 �m2���k� P�2 �m2�
;

(A8)

which are divergent and, in the dimensional regularization
scheme, take the form:

 I0�P� �
1

�4��2
�� I0R�P�;

I2�P� �
2m2

�4��2
�� I2R�P�;

(A9)

where I0R and I2R are finite.
The Bethe-Salpeter equation is

 

��p; P� � �i
Z d4k

�2��4
��k; P�S�k�S�k� P�




�
1 �

2

�2 �p� k�
2

�
; (A10)

where dressed kaon propagators should be used. In the
leading order in 1=�2 the scalar vertex can be found in
the form:

 � �p; P� � g1 �
g2

�2 p�p� P�; (A11)

with the coefficients g1 and g2 satisfying the equations:

 g1 � 1g1I0�P� � 2
12g1

�2 I0�P�
m2

�4��2
��� 1�

�
1g2

�2 I2�P� �
1g2P

2

2�2 I0�P� �
2g1

�2 I2�P�; (A12)

 g2 � 2g1I0�P�: (A13)

These yield the equation which defines the mass M of
the bound state as (P2 � M2)
 

1� 1I0�P� �
2

�2

�
1I0�P�

2m2

�4��2
��� 1� � 1I0�P�I2�P�

�
1

2
P21I2

0�P� � I2�P�
�
� 0: (A14)

We treat this equation perturbatively in 1=�2. Then, in the
zeroth order, one has

 

1

1
� I0�M0�; (A15)

where M0 is zero-order mass of the bound state. The
divergent part of the integral I0�M0� is absorbed into the
coupling constant 1. Then, in the next-to-leading order,
 

1

1
� I0�P��

2�

�2

�
m2

�4��2
��� 1�� I2�P��

1

4
P2I0�P�

�
� 0;

�� 2=1; (A16)

with the problem of renormalization solved similarly to
Eq. (A15). As g2 enters the vertex together with 1=�2,
Eqs. (A13) and (A15) together yield

 g2 � �g1; (A17)

and thus we arrive at the vertex function in the form

 � �p; P� � g1

�
1� �

p�p� P�

�2

�
; (A18)

which requires normalization. This is discussed in detail in
Appendix B.

APPENDIX B: NORMALIZATION OF THE
VERTEX FUNCTION

Normalization of the vertex function is given by
Eq. (10). In the zeroth order in the 1=�2 expansion this
gives

 g2
1

@I0�P�

@P2 � 1; (B1)

which, for a loosely bound state with "� m, reproduces
the relation (31) with gS0 � g1. Let us go beyond the
zeroth order now and include corrections / 1=�2. The
form of ��p; P� given in Eq. (A18) obviously represents
the first two terms in the successive expansion of the exact
vertex function in the inverse powers of �2. Such an
expansion performed prior to taking integrals with
��p; P� involved may explode if the rest of the integrand
does not converge fast enough to suppress the contribution
of the higher and higher powers of the loop momentum
which appear in the 1=�2 expansion of ��p; P�. This is
obviously not the case for the loop integral (10) and thus
we face the problem of convergence of the normalization
integral already to order 1=�2. Notice, however, that the
solution of this problem is well known—the normalization
integral evaluated with the vertex function in the full form
converges, and the expansion in 1=�2 is to be performed
afterwards. Building the full form of the vertex function
would require resorting to a particular model of the mole-
cule formation which we would like to avoid in our general
consideration. Fortunately, for loosely bound states, the
model-dependent contributions to the vertex function ap-
pear in higher orders in the "=m expansion. Indeed, if we
substitute the vertex function (A18) to the normalization
condition (10) and perform integration in d4k retaining
only the terms of order

����������
"=m

p
and neglecting all higher

contributions, then the result can be expressed entirely
through the integrals I0�P� and I2�P� defined in
Appendix A, computed to the same order,

 I0�P� �
1

�4��2
��

1

8�2 �
1

16�

����
"
m

r
� . . . ;

I2�P� �
2m2

�4��2
��

3m2

16�2 �
m2

16�

����
"
m

r
� . . .

(B2)
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All divergent contributions disappear, as discussed in
Appendix A, and the result (37) is readily reproduced,
where

 gS � Zg1: (B3)

Then, finally, the scalar vertex function takes the form of
Eq. (36).

As a cross-check of the results (36) and (37) we assume a
particular form of the full scalar vertex compatible with the

large-� expansion (36). As such we choose, for the sake of
transparency, the form:

 � �p; P� � Z�1gS
�2

�2 � �p�p� P�
: (B4)

Then, introducing Feynman parameters and integrating out
the four-momentum, one can rewrite the normalization
condition (10) in the form:

 

g2
S

8�2

Z 1

0

zdz

Q2

Z �1�z��2=��Q2�

0
dx

x�1� z� �xQ2=�2�2��

�x2�2Q2P2=�4 � x�1� ��zP2 �m2�=�2� � 13
� 1; (B5)

where Q2 � m2 � z�1� z�P2. The integral in x can be easily evaluated and yields, to order 1=�2,

 

Z �1�z��2=��Q2�

0
dx

x�1� z� �xQ2=�2�2��

�x2�2Q2P2=�4 � x�1� ��zP2 �m2�=�2� � 13
	

1

2
�1� z�

�
1� 2�

zP2 �m2

�2

�
; (B6)

so that the relation (B5) reduces to

 

�
1� �

P2 � 2m2

�2

�
g2
S

16�2

Z 1

0
dz
z�1� z�

Q2 � 1; (B7)

where the symmetry of the function z�1� z�=Q2 with
respect to the variable change z! 1� z was used. The
remaining integral in z is specific for the pointlike limit and
it was evaluated before in order to derive the relation (37).
Therefore, one can rewrite (B7) in the form

 

g2
S

4�
�

�
1� �

P2 � 2m2

�2

��
g2
S

4�

�
pointlike

�

�
1� 2�

m2

�2 �O

�
m"

�2

���
g2
S

4�

�
pointlike

: (B8)

Thus the relation (37) is rederived plus the first correction
of the form �m"�=�2 is established for the vertex function
(B4). As it was anticipated before, the term of orderm2=�2

is model independent and coincides with the one obtained
in the simple approach described in the beginning of this
appendix.

The result of this appendix can be understood in the
language of effective field theories. Indeed, all divergen-
cies are to be absorbed into appropriate counterterms,
however, there are no counter terms allowed that are non-
analytic in ". Consequently all terms that scale as

���
"
p

are
fixed model independently.

APPENDIX C: FAILURE OF A SIMPLE RECIPE OF
GAUGE INVARIANCE RESTORATION FOR A

NONTRIVIAL VERTEX FUNCTION ��k; P�

In this appendix we demonstrate that gauge invariance
appears broken to order m2=�2 for the naive attempts to
consider a nontrivial vertex function ��k; P�without a self-
consistent dressing of the photon emission vertices and the
meson propagators. Thus we start from Eq. (15) with a

nontrivial vertex function ��k; P� but with the bare photon
emission vertices and meson propagators. This yields:

 

W	
q
	
1 � e2

Z d4k

�2��4
���k� q1; P� � ��k; P�S�k�


 S�k� q2��2k� q2�
: (C1)

For ��k; P� � const the difference in the square brackets
does not vanish, and as a result also W	
q

	
1 remains finite.

A naive counting of powers of � shows that this difference
scales as 1=�2 (see, for example, Eq. (36) for the form of
the vertex ��k; P�) and thus a simple trick with adding
contact diagrams with the photon emission from the scalar
vertex described by @�=@k	 could solve the problem to the
given order 1=�2, so that gauge invariance breaking hap-
pens only in the order 1=�4 which we neglect throughout
the paper. In Ref. [15] this approach was successfully used
for the decay �! �f0 —the interested reader can find the
details and the discussion of the method, for example, in
the aforementioned paper. In contrast to the �-decay, here
we have two identical photons in the final state. The
requirement of symmetry of the amplitude with respect
to the interchange of these leads to two single contact
diagrams and one double contact diagram, the latter con-
taining @2�=@k	@k
 in the scalar vertex. The contributions
to be added to W	
q

	
1 take the form:

 

�W�1�	
q
	
1 � �q

	
1 e

2
Z d4k

�2��4
@��k; P�
@k	


 S�k�S�k� q2��2k� q2�
;

�W�2�	
q
	
1 � �q

	
1 e

2
Z d4k

�2��4
@��k; P�
@k



 S�k�S�k� q1��2k� q1�	;

(C2)
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 �W�3�	
q
	
1 � q	1 e

2
Z d4k

�2��4
@2��k; P�
@k	@k


S�k�; (C3)

so that the resulting expression reads
 

W	
q
	
1 � e2

Z d4k

�2��4

�
��k� q1; P� � ��k; P�

� q	1
@��k; P�
@k	

�
��2k� q2�
S�k� q2�S�k�

� 2k
S
2�k�; (C4)

where the integral coming from the double contact vertex
was integrated by parts. In order to proceed we use the
form of Eq. (B4) for the vertex function—since we are
only after the scaling behavior of the remaining violation
of gauge invariance, here we are free to work within a
particular model. This choice ensures convergence of the
loop integral and complies with the large-� expansion
(36). Then we get

 � �k� q1; P� � ��k; P� � q
	
1

@��k; P�
@k	

� Z�1gS
�2�2�2�kq1� � �q1q2�

2

��2 � ��k� q1��k� q2�
2��2 � �k�k� q1 � q2�

; (C5)

which scales as 1=�4 as �! 1. However, in contrast to
this the corresponding integral of Eq. (C4) for W	
q

	
1

scales as 1=�2. To see this observe that convergence to
the integral is provided by the denominator with the
consequence that k takes values of the order of � (for large
�). Therefore, the relevant estimate for Eq. (C5) is
�2�kq1�

2=�6 �!2=�2, where ! is the typical energy of
a photon. We checked by an explicit calculation that this
behavior is valid for the integral (C4) as well.

Therefore, even introducing the correction terms of
Eqs. (C3), does not change the order where a violation of
gauge invariance appears—it appears at order !2=�2. In
the given kinematics photons are not soft,! 	 m. Thus the
simple prescription described in this appendix to cure the
violation of gauge invariance does not improve the situ-
ation, since gauge invariance is still broken by the terms of
the order of m2=�2.

APPENDIX D: ALTERNATIVE DERIVATION OF
EQ. (42)

As a cross-check of gauge invariance, let us extract the
amplitude (42) from the coefficient at the structure g	
 in
Eq. (19). This is less trivial as the seagull diagram
[Fig. 5(c)] contributes. This seagull has Z�1 factor coming
from the scalar vertex and Z2 factor due to the two meson
propagators. Because of this mismatch of Z-factors, in
addition to the contribution giving the result (42), a diver-
gent piece arises in W	
, which comes from the leading
term, of order �1=�2�0, in the scalar vertex ��p; P�:
 

�2�ig	
gSe
2I0�Z� 1� � �2�ig	
gSe

2I0
2m2

�2�4��2


 ��� 1�; (D1)

where the expressions for the Z and � in the dimensional
regularization scheme are given in Eq. (A4). To order
1=�2, one can make use of Eq. (A15) and replace 2I0 in
(D1) by

 2I0 � �1I0 � �: (D2)

In the meantime, another divergent contribution comes
from the 1=�2 term in ��k; P�, which reads:

 2�ig	
gSe
2 �

�2

m2

�4��2
��� 1�; (D3)

so that the two undesired divergent contributions to Wa
	


cancel against each other and the gauge-invariant formula
(19) is rederived, with M�P2� given by Eq. (41).

APPENDIX E: ACCOUNT FOR EXCHANGE
CURRENTS

The interaction Lagrangian (33) does not give rise to
extra kaon-photon vertices, in addition to those following
from the kinetic part of the kaons Lagrangian. In this
appendix we consider the possibility for these vertices to
appear due to meson exchange currents.

Let us introduce field doublet ’�, and have the interac-
tion Lagrangian in the form

 Lint �
1

2
1�’� ~�’�2 �

2

2�2 �@	�’
� ~�’�2: (E1)

In momentum space, it gives rise to the four-point vertex of
the form

 

�
1 �

2

�2 �p� k�
2

�
~��� ~�


�; (E2)

where p and k are the momenta of the incoming and
outgoing kaons, and �, � and �,  are the isospin indices
of incoming and outgoing mesons, respectively. As before,
the term linear in s was absorbed into 1.

Electromagnetic interaction is then found from the mini-
mal substitution,

TWO-PHOTON DECAYS OF HADRONIC MOLECULES PHYSICAL REVIEW D 75, 074015 (2007)

074015-13



 p	��� ! p	��� � eA	Q
�
�; (E3)

where Q � �1� �3�=2 is the charge operator. Thus two
new kaon-photon vertices are generated in the order 1=�2:
the contact single-photon vertex (q	 is the photon momen-
tum),

 i
2

�2 �3kn��k��

n��2k� 2p� q�	; (E4)

and the double-photon vertex,

 2g	

2

�2 � ~�
�
� ~�


� � ��3��


3��: (E5)

The dressed propagator is now

 S�� � ���S�p�; S�p� �
Z

p2 �m2 ; (E6)

with

 Z � 1�
32m

2

�4��2�2 ��� 1�: (E7)

The dressed photon emission vertex,

 

v	;��p; q� � Q
��2p� q�	 � i

2

�2 ~�

�Q

�
� ~���

Z d4k

�2��4
S�k�S�k� q��p� k�2�2k� q�	

�
2

�2 �3kn�
�
k;��


n;�

Z d4k

�2��4
S�k��2k� 2p� q�	; (E8)

satisfies the Ward identity

 q	v	;� � Q
��S

�1�p� � S�1�p� q�; (E9)

with S�p� given by Eqs. (E6) and (E7). After simple
algebraic transformations the photon emission vertex
(E8) can be represented as

 v	;��p; q� � Q
�Z
�1�2p� q�	 � . . . ; (E10)

where the ellipsis denotes the terms irrelevant to the ��
decay involving real photons.

The Bethe-Salpeter equation is now
 

����p; P� � �i
Z d4k

�2��4
~����

�
 �k; P� ~�


�S�k�S�k� P�




�
1 �

2

�2 �p� k�
2

�
: (E11)

The momentum dependence of the vertex and the nor-
malization condition are the same as in Eqs. (36) and (37),
respectively, while the matrix structure of the vertex is
either

 � �
��p; P� /

1��
2
p ���; (E12)

in the isosinglet case, or

 � �
��p; P� /

1��
2
p ��k�; (E13)

in the isotriplet one. Consequently, in the former case,
Eq. (A15) is replaced by

 

1

1
� 3I0�P�; (E14)

whereas, in the latter case, it becomes

 

1

1
� �I0�P�: (E15)

Thus one may have either an isosinglet or an isotriplet
bound state, depending on the sign of 1.

Let us turn to the calculation of the two-gamma decay
amplitude. The contributions to the decay amplitude pro-
portional to q1
q2	 are left intact by inclusion of the
exchange currents and they are given by the graphs (a)
and (b) of the Fig. 5. In the meantime, extra terms appear
which contribute to the coefficient at the structure g	
.
Because of the mismatch of Z-factors, the divergent piece
coming from the leading order term of ����p; P� appears,
similarly to Eq. (D1), to be

 � 6ig	

gSe

2���
2
p I01

�

�2

m2

�4��2
��� 1�; (E16)

while the contribution from the 1=�2 term in ����p; P�
remains the same as in the neutral exchange case—see
Eq. (D3). Thus, using the relations (E14) and (E15), one
arrives at the conclusion that, in the isosinglet case, the
graphs of Fig. 5 do not generate extra contributions pro-
portional to g	
 either while, in the isotriplet case, such an
extra term reads:

 8ig	

gSe2���

2
p

�

�2

m2

�4��2
��� 1�: (E17)

In addition to the graphs depicted in Fig. 5, there are extra
contributions due to the presence of new contact vertices
(E4) and (E5) (see Fig. 7). The single-photon vertex (E4)
generates the contribution [see Fig. 7(a)]
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W�1�	
 � gSe2 2

�2 i�3kn��k��
�
�


n�Q

�
�

Z d4k

�2��4
d4q

�2��4


 S�k�S�k� P�S�q�S�q� q2��2q� 2k� q1�	


 �2q� q2�
 � �1$ 2; 	$ 
�; (E18)

where the matrix structure of �� is given by either
Eq. (E12) or by Eq. (E13). The double-photon vertex
(E5) gives rise to [see Fig. 7(b)]
 

W�2�	
 � 2g	
gSe2 2

�2 �
�
 � ~�

�
� ~�


� � ��3��


3��

Z d4k

�2��4
d4q

�2��4


 S�k�S�k� P�S�q�: (E19)

Explicit calculations yield, for real photons,

 W�1�	
 �W
�2�
	
 � 0; (E20)

in the isosinglet case, and

 W�1�	
 �W
�2�
	
 � �8ig	


gSe2���
2
p

�

�2

m2

�4��2
��� 1�; (E21)

in the isotriplet case, so that this divergent term cancels
against that given by Eq. (E17). As a result, we conclude
that Eq. (46) holds also if exchange currents are included.
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