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In an extension of the Nambu–Jona-Lasinio model where the quarks interact with the temporal gluon
field, represented by the Polyakov loop, we explore the relation between the deconfinement and chiral
phase transitions. The effect of Polyakov loop dynamics on thermodynamic quantities, on the phase
structure at finite temperature and baryon density and on various susceptibilities is presented. Particular
emphasis is put on the behavior and properties of the fluctuations of the (approximate) order parameters
and their dependence on temperature and net-quark number density. We also discuss how the phase
structure of the model is influenced by the coupling of the quarks to the Polyakov loop.
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I. INTRODUCTION

Quantum chromodynamics (QCD) exhibits dynamical
chiral symmetry breaking and confinement. Both features
are related with global symmetries of the QCD Lagrangian.
However, the relation of spontaneous chiral symmetry
breaking and confinement still remains an open issue.
While the chiral symmetry is exact in the limit of massless
quarks the Z�3� center symmetry, which governs confine-
ment, is exact in the opposite limit, i.e., for infinitely heavy
quarks. In order to obtain a unified picture of confinement
and chiral symmetry breaking several effective chiral mod-
els have been studied [1–9]. Recently an extension of the
Nambu–Jona-Lasinio (NJL) model [10,11] was proposed
and developed [2,3,5,12–15] to address this question.

The NJL model describes interactions of constituent
quark fields. It exhibits a global SU(3) symmetry that is a
replacement of a local gauge SU(3) color transformation of
the QCD Lagrangian. Thus, color confinement is lost in the
NJL dynamics. Recently, gluon degrees of freedom were
introduced in the NJL Lagrangian through an effective
gluon potential expressed in terms of Polyakov loops
[2,3,5]. Such a potential was constructed to preserve the
Z�3� symmetry of the gluon part of the QCD Lagrangian
and it has its origin in the recently developed effective
models with Polyakov loops as dynamical fields [16]. An
extended NJL Lagrangian (PNJL model) contains unified
properties of QCD related with Z�3� and the chiral sym-
metries. The interactions of quarks with the effective gluon
fields in the PNJL model is included through covariant
derivatives. Furthermore, due to the symmetries of the
Lagrangian, the PNJL model belongs to the same univer-
sality class as that expected for QCD. Thus, such a model
can be considered as a testing ground for studying the
phase structure and critical phenomena related with the
deconfinement and chiral phase transitions. This is particu-
larly interesting since there are still limitations in the
applicability of lattice gauge theory (LGT) to QCD ther-
modynamics at large net-quark densities.

Recently, it was shown [5,12–14] that the PNJL model,
formulated at finite temperature and finite quark chemical
potential, reproduces some of the thermodynamical ob-
servables computed within LGT. The properties of the
equation of state [5], the in-medium modification of meson
masses [15] as well as the validity and applicability of the
Taylor expansion in quark chemical potential used in LGT
were recently addressed within the PNJL model [12–14].
In Ref. [17] the model was extended to a system with finite
isospin chemical potential and pion condensation was
studied.

In this paper we will consider the fluctuations in various
channels at points in the phase diagram near the phase
boundary. In particular, we focus on the behavior of the
net-quark number fluctuations and the susceptibilities of
the order parameters.1 The susceptibilities of the Polyakov
loop and its conjugate as well as the chiral condensate will
be introduced and analyzed. The relation between the
chiral and deconfinement phase transitions will be quanti-
fied through the susceptibilities. Our calculations are per-
formed within the mean-field approximation and in the
PNJL model, including a nonlocal four-fermion interaction
to regulate the divergent momentum integrals.

The paper is organized as follows: In Sec. II the PNJL
model is formulated and the relevant thermodynamic po-
tentials are derived. In Sec. III the influence of the
Polyakov-loop dynamics on various thermodynamical
quantities is discussed. In Secs. IV and V we introduce
the susceptibilities of the order parameters and focus on
their properties. Concluding remarks and discussion are
presented in Sec. VI.

1We will be somewhat lax, and refer to the Polyakov loop and
the quark condensate as order parameters, although, due to the
explicit breaking of the symmetries, neither of them is strictly
speaking an order parameter. However, as found in LGT calcu-
lations, both are useful quantities for identifying the location of
the phase boundary. Thus, it seems that the explicit breaking of
both the chiral and center symmetry in QCD is in this sense
weak.
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II. TWO-FLAVOR NJL MODEL WITH THE
POLYAKOV LOOP

Various methods have been proposed to account for
interactions with the color gauge field in effective chiral
models [1–3,5–7]. One of these is the extension of the
Nambu–Jona-Lasinio (NJL) Lagrangian by coupling the
quarks to a uniform temporal background gauge field,
which manifests itself entirely in the Polyakov loop
[2,3,5]. The PNJL Lagrangian for three colors (Nc � 3)
and two flavors (Nf � 2) with nonlocal four-fermion in-
teractions is given by
 

L � � �i 6D� m̂� � � �̂�0 �U���A�; ���A�;T�

�
GS

2
�� �q�x�q�x��2 � � �q�x�i�5 ~�q�x��

2�; (2.1)

where m̂ � diag�mu;md� is the current quark mass, �̂ �
diag��u;�d� is the quark chemical potential and ~� are the
Pauli matrices. We assume isospin symmetry and take
mu � md � m0 and �u � �d � �.

The Lagrangian is formulated with nonlocal interac-
tions, which are controlled by a form factor. This feature
of the model is implemented in order to deal with the
ultraviolet singularities that appear in the loop integrations.
In coordinate space, the form factor F�x� for the nonlocal
current-current interaction reads

 q�x� �
Z
d4yF�x� y� �y�: (2.2)

A possible choice for the regulator is in momentum space
given by [18]:

 f2�p� �
1

1� �p=��2�
; (2.3)

where f�p� is the Fourier transform of the form factor F�x�
and p is the three-momentum.

The strength of the interaction among constituent quarks
in (2.1) is parametrized by the coupling constant GS which
carries the dimension of a length squared. In the pure NJL
sector, the model is controlled by four parameters: the
coupling constant GS, the current quark mass m0 and the
constants � and �, which characterize the range of the
nonlocality. These parameters are determined in vacuum,
for a given �, by requiring that the experimental values of
the pion decay constant f� � 92:4 MeV and the pion mass
m� � 135 MeV as well as the dynamical quark mass
Mp�0 � 335 MeV are reproduced. For � � 10 the model
parameters are � � 684:2 MeV, GS�2 � 4:66, m0 �
4:46 MeV. The corresponding value of the quark conden-
sate is h �  i1=3 � �256:2 MeV [19]. The relevant parame-
ters of the model used in our calculations are summarized
in Table I.

The interaction between the effective gluon field and the
quarks is in the PNJL Lagrangian implemented (2.1) by
means of a covariant derivative

 D� � @� � iA�; A� � ��0A0; (2.4)

where we introduce the standard shorthand notation A� �
gAa�

�a
2 . Here g is the color SU(3) gauge coupling constant

and �a are the Gell-Mann matrices.
The effective potential U of the gluon field in (2.1) is

expressed in terms of the traced Polyakov loop � and its
conjugate ��

 � �
1

Nc
TrcL; �� �

1

Nc
TrcLy; (2.5)

where L is a matrix in color space related to the gauge field
by

 L� ~x� � P exp
�
i
Z �

0
d�A4� ~x; ��

�
; (2.6)

with P being the path (Euclidean time) ordering, and � �
1=T with A4 � iA0.

In the heavy quark mass limit QCD has the Z�3� center
symmetry which is spontaneously broken in the high-
temperature phase. The thermal expectation value of the
Polyakov loop h�i acts as an order parameter of the Z�3�
symmetry. Consequently, h�i � 0 at low temperatures in
the confined phase and h�i � 0 at high temperatures cor-
responding to the deconfined phase. For the SUc�3� color
gauge group the Polyakov loop matrix L satisfiesLLy � 1,
detL � 1 and can be written in diagonal form

 L � diag�ei’; ei’
0
; e�i�’�’

0��: (2.7)

In general � in Eq. (2.5) is not identical to ��.
The effective potential U��; ��� of the gluon field is

expressed in terms of the Polyakov loops so as to preserve
the Z�3� symmetry of the pure gauge theory [16]. We adopt
an effective potential of the following form [5]2:
 

U��; ��;T�

T4 � �
b2�T�

2
����

b3

6
��3 � ��3� �

b4

4
� ����2;

(2.8)

with

 b2�T� � a0 � a1

�
T0

T

�
� a2

�
T0

T

�
2
� a3

�
T0

T

�
3
: (2.9)

The coefficients T0, ai and bi are fixed by requiring that the
equation of state obtained in pure gauge theory on the

2The presence of quarks will clearly affect the Polyakov-loop
dynamics. Thus, one may ask why this is not reflected in the
effective potential U. However, at least partly such effects are
treated explicitly in the PNJL model through the coupling to the
quarks. Thus, in order to minimize the double counting problem,
we keep the Z�3� symmetric form of the effective potential, but
consider the possibility that the parameters, in particular T0, may
depend on the number of dynamical flavors Nf, thus accounting
for quark loop effects not included in the mean-field
approximation.
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lattice is reproduced. In particular, at T0 � 270 MeV the
model reproduces the first order deconfinement phase tran-
sition of the pure gauge theory. The parameters are listed in
Table II.

In the mean-field approximation the Lagrangian (2.1) is
rewritten as
 

L � � �i 6D� �̂�0� �
Z
d4y1d

4y2
� �y1�M�y1; y2; x� �y2�

�
GS

2
�h �q�x�q�x�i�2 �U��; ��;T�; (2.10)

where
 

M�y1; y2; x� � m0�
�4��x� y1��

�4��x� y1�

� F�x� y1�F�x� y2�h �q�x�q�x�i: (2.11)

In momentum space the dynamical quark mass is deter-
mined by the current quark massm0, the quark momentum
distribution function f�p� and the chiral condensate h �qqi

 Mp � m0 � �M�m0�f
2�p�; M � m0 �GSh �qqi;

(2.12)

where M denotes the dynamical quark mass at p � 0. In a
uniform system, the chiral condensate

 h �qqi �
Z
d4pf�p�2h � �p� �p�i (2.13)

is independent of the position.
From the mean-field Lagrangian (2.10) one obtains the

thermodynamic potential in the following form:

 

��M;�; ��;T;�� �U��; ��;T� �
�m0 �M�

2

2GS
� 6Nf

Z d3p

�2��3
�Ep � Ep�Mp � m0��

� 2NfT
Z d3p

�2��3
fTrc ln�1� Le�E

���=T� � Trc ln�1� Lye�E
���=T�g; (2.14)

where we have introduced E�	� � Ep 
� for the particle (� ) and antiparticle (� ) with Ep �
����������������������
j ~pj2 �M2

p

q
being a

quasiparticle energy. The third term in the thermodynamic potential (2.14), which corresponds to the vacuum contribution,
is renormalized by subtracting the term Ep�Mp � m0� under the momentum integral. This removes the divergence from
and introduces an irrelevant constant shift of �.

Furthermore, by taking the trace in color space, one obtains the final expression for the thermodynamic potential
 

��M;�; ��;T;�� �U��; ��;T� �
�m0 �M�

2

2GS
� 6Nf

Z d3p

�2��3
�Ep � Ep�Mp � m0��

� 2NfT
Z d3p

�2��3
fln�g����M;�; ��;T;�;p�� � ln�g����M;�; ��;T;�;p��g; (2.15)

where

 g����M;�; ��;T;�;p� � 1� 3��� ��e�E
���=T�e�E

���=T � e�3E���=T;

g����M;�; ��;T;�;p� � 1� 3� ����e�E
���=T�e�E

���=T � e�3E���=T:
(2.16)

Under the transformation �!��, the role of quarks and
antiquarks is exchanged. Inspection of (2.16) shows that
in the PNJL model the charge conjugation transform-
ation also exchanges the role of the Polyakov loop and
its conjugate. This is reflected in the relation
g����M;�; ��;T;�;p� � g����M; ��;�;T;��;p�.

Although the Polyakov loop is complex, the thermody-
namic potential is real. Because of the symmetry in color
space, the imaginary part of � vanishes after performing
the functional integral [see Appendix A].

An interesting feature of the PNJL model described by
the thermodynamic potential (2.15) is the qualitative be-
havior in the low-temperature phase. In the limit of �,
��! 0, which is expected at low temperatures, the con-
tributions of one- and two-quark states to g�	� are sup-

pressed and only the three-quark term � exp��3E�	�=T�
survives. In this sense the PNJL model mimics the con-
finement of quarks within three-quark states. The suppres-
sion of quark degrees of freedom at low temperatures is, on
a qualitative level, similar to confinement in QCD thermo-
dynamics. Thus, the PNJL model is better suited for de-
scribing the low-temperature QCD phase than the standard
NJL model, where the constituent quarks are abundant also
at low temperatures. However, at least in the mean-field
approximation, the model only has the three-quark states,
but there are no one- and two-quark states, which also play
an important role at low temperatures.

In the mean-field approximation the dynamical quark
massM and the expectation values of the Polyakov loop �
and �� are obtained from the stationarity conditions
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@�

@M
�
@�

@�
�
@�

@ ��
� 0; (2.17)

obtained by extremizing the thermodynamic potential with respect to M, � and ��.
These conditions yield the following set of coupled gap equations:

 M � m0 � 6GSNf
Z d3p

�2��3
Mpf

2�p�

Ep

�
1�
��� 2 ��e�E

���=T � e�2E���=T�e�E
���=T

g����M;�; ��;T;�;p�

�
� ��� 2�e�E

���=T � e�2E���=T�e�E
���=T

g����M;�; ��;T;�;p�

�
; (2.18)

 b2�T� ��� b3�2 � b4� ���� �� � �
12Nf
T3

Z d3p

�2��3

�
e�E

���=T

g����M;�; ��;T;�;p�
�

e�2E���=T

g����M;�; ��;T;�;p�

�
; (2.19)

 b2�T��� b3
��2 � b4�� ���� � �

12Nf
T3

Z d3p

�2��3

�
e�2E���=T

g����M;�; ��;T;�;p�
�

e�E
���=T

g����M;�; ��;T;�;p�

�
: (2.20)

As noted above, the role of � and �� are exchanged under
charge conjugation (�! ��). This symmetry is reflected
in the relation between the gap equations (2.19) and (2.20)
under the charge conjugation transformation. In particular,
this relation implies that � � �� for � � 0. Furthermore,
we note that for � � �� � 1, Eq. (2.18) is reduced to the
gap equation of the standard NJL model without any
coupling to the color SUc�3� gauge field.

III. THERMODYNAMIC QUANTITIES AT FINITE
QUARK CHEMICAL POTENTIALS

The thermodynamics of the PNJL model in the mean-
field approximation is characterized by the potential
���; ��;M� introduced in Eq. (2.15). In Figs. 1 and 2 we
show the effective potential of the Polyakov loop U as
well as the PNJL thermodynamic potential � in the chiral
limit, at high temperatures where chiral symmetry is re-
stored and the dynamical quark mass M vanishes.

Consequently, only the Polyakov loop and its conjugate
are the relevant classical fields in the problem.

For vanishing quark chemical potential, � and �� are
equivalent. Hence, the thermodynamic potential is charac-
terized by only one variable � that for a given temperature
is determined by the gap equation (2.19). In Fig. 1 we show
the � dependence of U. This potential exhibits the ex-
pected structure in the Z�3� symmetry broken phase with a
minimum at a finite value of � below unity.

The influence of quarks on the PNJL model thermody-
namics is illustrated in Fig. 2, where the � dependence of
� is shown for the same temperature, T � 0:5 GeV. A
comparison of Figs. 1 and 2 clearly shows that the inter-
actions of the effective gluon field with the quarks leads to
a shift of the minimum to larger values of �. At high
temperatures the minimum corresponds to �> 1.

The dynamical quark mass M and the traced Polyakov
loop � are the order parameters of the chiral and Z�3�
symmetries, respectively. Thus, the T and� dependence of

 

FIG. 1. The Polyakov-loop effective potential U=T4 as a
function of � at T � 500 MeV in the chiral limit.

 

FIG. 2. The thermodynamic potential �=T4 as a function of �
at T � 500 MeV in the chiral limit.
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these order parameters is used to identify the phase
boundaries of the model. In Figs. 3 and 4 we show �
and M at � � 0, as functions of T in the chiral limit.
The phase change of the model is clearly indicated by
rapid changes of the order parameters. The Polyakov-
loop potential U introduced in the PNJL Lagrangian pre-
serves the invariance under the Z�3� symmetry. However,
due to the interactions with the quarks this symmetry is
explicitly broken in the model. Thus, the Polyakov loop is
not an order parameter in the strict sense and the transition
is a rapid crossover. This is a remnant of the ‘‘deconfine-
ment’’ phase transition of the pure Polyakov-loop model.
On the other hand, in the chiral limit the chiral transition is
a true second order phase transition, with an order parame-
ter M, which is strictly zero for temperatures above T ’
242 MeV.

In Fig. 4 the dynamical quark mass M obtained in the
PNJL model is also compared with that of the NJL model.3

It is clear that the coupling of the quarks to the effective
gluon field shifts the chiral phase transition temperature to
the higher value. This is a consequence of attractive inter-
actions; in the presence of the Polyakov loop there is
stronger ‘‘binding’’ of the constituent quarks in the chirally
broken phase.

The nonlocality of the quark interactions introduced by
the form factor F�x� also affects the critical temperature of
the chiral phase transition. Suppressing the form factor in
the PNJL Lagrangian results in a lower transition tempera-
ture. With the parameters used in our actual calculations,
the reduction of Tc is on the order of 15 MeV, if in the
thermal part of the PNJL model the momentum cutoff is
not implemented.

The introduction of a finite quark chemical potential is
expected to modify the behavior of the order parameters.
The� dependence ofM, � and �� are shown in Figs. 5 and
6. There is a clear shift of the chiral transition to lower
temperatures with increasing � as is seen in Fig. 6. At a
nonzero quark chemical potential the charge conjugation
symmetry is broken, which leads to a splitting between �
and ��. As seen in Fig. 5 the Polyakov loop � is decreasing
whereas �� is increasing with�. This is expected due to the
relation of the Polyakov loop and its conjugate to the free
energy of a quark and an antiquark respectively [20]. In a
system with more quarks than antiquarks it is relatively
easy to screen a static antiquark by a quark, forming a
virtual q �q state, whereas a static quark can only be
screened by a diquark, thereby forming a colorless three-
quark state.

At finite quark chemical potential, the order of the chiral
phase transition can change. This is illustrated in Fig. 7
where the phase diagram of the PNJL model is shown. At
low temperatures and large � the transition is first order.
The first order transition terminates at the tricritical point
(TCP). With the actual value of the model parameters,
summarized in Table. III, the TCP appears at �TTCP �
157; �TCP � 266� MeV. Beyond the TCP, at smaller
chemical potentials, the transition is second order. This is
consistent with the gross structure of the phase diagram,
expected for QCD according to universality arguments
[21].

We explore the influence of the Polyakov loop on the
thermodynamics, by considering observables that are re-
lated to the conservation of the net-quark number such as
the quark number density nq�T;�� and the corresponding
susceptibility 	q�T;��. Both observables are obtained as
derivatives of the thermodynamic potential � with respect
to �. The quark number density is obtained from

 nq � �
@�

@�
: (3.1)

With the thermodynamic potential of the PNJL model
(2.15) one finds

 

FIG. 3. Expectation value of the traced Polyakov loop � in the
chiral limit as a function of temperature T for vanishing quark
chemical potential.

 

FIG. 4. The dynamical quark mass M in the chiral limit as a
function of temperature T for vanishing quark chemical poten-
tial. The dash-dotted line denotes the result obtained in the NJL
model.

3In the NJL model, without Polyakov loops, we use the local
version of the cutoff, i.e., a sharp cutoff. The cutoff is not
implemented in the thermal part, which is anyway convergent.
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 nq � 6Nf
Z d3p

�2��3

�
e�E

���=T

g���
��� 2 ��e�E

���=T

� e�2E���=T� �
e�E

���=T

g���
� ��� 2�e�E

���=T

� e�2E���=T�

�
: (3.2)

The temperature dependence of the net-quark number
density obtained with Eq. (3.2) is shown in Figs. 8 and 9 for
various values of �. The PNJL model results are also
compared with those of the NJL model. Clearly there is a
substantial change in nq when the Polyakov-loop dynamics
is included.

In the region above the chiral phase transition the stan-
dard NJL model shows a relatively strong decrease of
nq=T

3 with increasing temperature. This behavior exactly
reproduces the temperature dependence of a noninteracting
gas of massless quarks, nq � Nf��

3=�2 ��T2�. Thus,
the leading term in nq=T

3 is proportional to �=T.
Furthermore, the quark density increases as the critical
temperature Tc is approached from below. This is due to
the decrease of the effective quark mass as the chiral
symmetry is restored. The PNJL model shows a substan-
tially different temperature dependence of the quark den-
sity. First, there is a suppression of the one- and two-quark
contributions to the density below Tc, due to the interac-
tions with the effective gluon field. Hence, the leading
contribution to the net-quark density is due to the three-
quark states. Clearly this leads to a strong suppression of
the quark density below Tc. Above Tc, the suppression is

 

FIG. 7. The phase diagram of the PNJL model in the chiral
limit. The dot indicates the location of the tricritical point,
located at �TTCP � 157; �TCP � 266� MeV.

 

FIG. 8. The net-quark number density nq=T3 in the chiral limit
as a function of temperature T at � � 100 MeV. The dash-
dotted line denotes the result obtained in the NJL model.

 

FIG. 6. The dynamical quark mass M in the chiral limit as a
function of temperature T for finite quark chemical potentials
� � 0, 200 MeV, 270 MeV from right to left.

 

FIG. 5. Expectation values of the traced Polyakov loop � (solid) and �� (dashed) in the chiral limit as a function of temperature T for
finite quark chemical potentials. The lines in the left figure show � and �� at � � 200 MeV and the chiral phase transition is of second
order. The right figure shows the results obtained at � � 270 MeV, which correspond to the first order chiral phase transition.
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much less effective. However, because � is still less than
unity, a suppression compared to the quark density of a free
gas at the same temperature and chemical potential
remains.

The quark number susceptibility measures the response
of the quark number density to changes in the quark
chemical potential. This observable is of particular interest
for exploring the tricritical point. This is because 	q is
expected to diverge at the TCP. This divergence is a
remnant of the diverging fluctuations of the scalar-isoscalar
sigma field [22–24]. The net-quark number susceptibility
is defined by

 	q �
@nq
@�

: (3.3)

In the PNJL model the dynamical quark massM and the
Polyakov loops �, �� implicitly depend on �. Thus, be-
sides an explicit �-dependent contribution through
Eq. (3.3) there are also terms proportional to
�-derivatives of the effective condensates. In the PNJL
model one finds
 

	q � 	�0�q � T2A���M
@M
@�
� T3A����

@�

@�
� T3A�����

@ ��

@�

� 	�0�q � 	
�M�
q � 	���q � 	�

���
q ; (3.4)

where 	�0�q corresponds to the 0th order contribution given
by
 

	�0�q �
6Nf
T

Z d3p

�2��3

�
e�E

���=T

�g����2
f�� 4 ��e�E

���=T

� 3�1� ����e�2E���=T � 4�e�3E���=T � ��e�4E���=Tg

� � ��;�;���
�
: (3.5)

The functions A����M;�; ��;T;�� and the �-derivatives
of the condensates are introduced in Appendix B.

The quark number susceptibility at vanishing and at
finite � is shown as a function of the temperature in
Figs. 10 and 11 for the PNJL and NJL models. At
high temperature 	q approaches the ideal gas limit,
	q=T

2 ’ 2. In the chiral limit, the quark number suscepti-
bility has a discontinuity at the chiral phase transition at
finite�, as found in Landau-Ginzburg theory [22] (see also
[25,26] for a detailed discussion of the quark number
susceptibility in the NJL model).

The effect of quark-gluon interactions on the quark
number susceptibility, shown in Fig. 10, is similar to that
discussed in the context of the net-quark density. There is a
reduction of the quark fluctuations below Tc in the PNJL
model relative to the fluctuations obtained in NJL calcu-
lations. The PNJL results for the T and� dependence of 	q
and nq are in good agreement with recent LGT calculations
of these quantities [27]. Thus, in contrast to the NJL model,
the PNJL model provides a quantitative description of
QCD thermodynamics near the phase transition.

 

FIG. 10. The quark number susceptibility 	q=T2 in the chiral
limit as a function of temperature T, at � � 0. The dash-dotted
line denotes the result obtained in the NJL model.

 

FIG. 11 (color online). The quark number susceptibility 	q=T2

in the chiral limit as a function of temperature T. The lines
correspond to the results in the PNJL model at � � 0, 100, 150,
200 MeV from below.

 

FIG. 9 (color online). The net-quark number density nq=T3 in
the chiral limit as a function of temperature T. The lines, starting
from the lowest one, correspond � � 100, 150, 200 MeV.
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At the TCP the quark number susceptibility diverges as
shown in the left panel of Fig. 12. We now analyze the
different contributions in Eq. (3.4). The right panel of
Fig. 12 clearly shows that the singular behavior of 	q is

caused by the divergence of 	�M�q . Both 	���q and 	�
���
q have

sharp peak structures at Tc, but, in contrast to 	�M�q , they
remain finite.

In order to understand the relation between the singular
contributions to the susceptibilities, we consider an effec-
tive Lagrangian of the Landau type [28]

 ��T;�� ’ �0�T;�� �mM�
1
2a�T;��M

2 � 1
4b�T;��M

4;

(3.6)

where a�T;�� and b�T;�� are temperature dependent co-
efficients and m is a source term, which breaks the sym-
metry explicitly. At the end of the calculation we consider
the ‘‘chiral limit,’’ and setm � 0. The equilibrium value of
the order parameter M is determined by the gap equation
@�=@M � 0. In the broken symmetry phase M ��������������
�a=b

p
, while in the symmetric phase M � 0. The model

exhibits a second order transition at a � 0 for b > 0, and a
tricritical point at a � b � 0 (see e.g., Ref. [22]). The
chiral susceptibility

 	mm �
@M
@m
�

1

a�T;�� � 3M2b�T;��
(3.7)

diverges along the second order transition line as well as at
the TCP in the broken phase.

On the other hand, the singular part of the quark number
susceptibility is given by

 	�M�q � �
@a
@�

M
@M
@�

: (3.8)

By using the gap equation one finds

 

@M
@�
�M	mm; (3.9)

which implies

 	�M�q �M2	mm �
1

b�T;��
; (3.10)

where in the final step we used the gap equation to elimi-
nate M. Thus, the quark number susceptibility diverges
only at the TCP. The mixing of the chiral and quark number
susceptibilities can also be interpreted as a consequence of

–! mixing at finite baryon density [22–24,26].

IV. CHIRAL AND POLYAKOV-LOOP
SUSCEPTIBILITIES

In the PNJL model the constituent quarks and the
Polyakov loops are effective fields related with the order
parameters for the chiral and Z�3� symmetry breaking. In
LGT the susceptibilities associated with these fields show
clear signals of the phase transitions. In this section we
present the calculational scheme for computing the sus-
ceptibilities and discuss their relation to the spontaneous
breaking of the chiral and Z�3� symmetries.

Consider first the generating functional of a scalar field
theory

 

FIG. 12. The quark number susceptibility 	q=T2 in the chiral limit as a function of temperature T at the TCP � � 266 MeV. The
components 	�M�q , 	���q and 	�

���
q as a function of T at the TCP are defined in Eq. (3.4).
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 Z�J� � e�iW�J� �
Z

D� exp
�
i
Z
d4x�L��� � J��

�
;

(4.1)

where J is an external source. The second functional
derivative of W�J� with respect to J yields the following
correlation function:

 

�2W�J�
�J�x��J�y�

��������J�0
� h��x���y�i � h��x�ih��y�i: (4.2)

The effective action ���� is introduced through the
Legendre transformation

 ���� � �W�J� �
Z
d4xJ�x���x�: (4.3)

The correlation function introduced in Eq. (4.2) can now be
expressed by means of

 

�2W�J�
�J�x��J�y�

��������J�0
�

�
�2����

���x����y�

�
�1
: (4.4)

Thus, by using this identity, one can compute the suscep-
tibility also from the effective potential, by taking deriva-
tives with respect to the classical field �.

In the case of the PNJL model there are three different
classical fields ~� � �M;�; ��� that correspond to the order
parameters; the dynamical quark mass, the Polyakov loop
and its complex conjugate. Consequently, in order to com-
pute the corresponding susceptibilities from the effective
potential, the relation (4.4) must be generalized. We use the
chain rule,

 �ij �
��i

��j
�

�
��j

�W
�Ji
�
�Jk
��j

�2W
�Jk�Ji

�
�2�

��j��k

�2W
�Jk�Ji

; (4.5)

where ~J � �JM; J�; J ��� is a vector composed of the source
fields corresponding to the order parameters in ~�.

It follows from Eq. (4.5) that the susceptibilities are
obtained by inverting the matrix composed of the second
derivatives of the effective action with respect to classical
fields. Following Ref. [3], we introduce a dimensionless
matrix

 Ĉ �
Cmm Cml Cm�l
Clm Cll Cl�l
C�lm C�ll C�l �l

0
@

1
A; (4.6)

with the components

 Cmm �
1

T�

@2�

@M2 ; Cll �
1

T�3

@2�

@�2 ;

C�l �l �
1

T�3

@2�

@ ��2
; Cl�l � C�ll �

1

T�3

@2�

@�@ ��
;

Cml � Clm �
1

T�2

@2�

@M@�
;

Cm�l � C�lm �
1

T�2

@2�

@M@ ��
:

(4.7)

Through Eq. (4.5) a set of susceptibilities is defined by

 	̂ �
	mm 	ml 	m�l
	lm 	ll 	l�l
	�lm 	�ll 	�l �l

0
@

1
A; (4.8)

where 	ij is given by the inverse of Ĉ,

 	ij � �Ĉ
�1�ij i; j � fm; l; �lg: (4.9)

Here 	mm is the chiral susceptibility, as in the previous
section, while 	ll and 	�l �l are the diagonal Polyakov-loop
susceptibilities (see below). The off-diagonal terms corre-
spond to mixed susceptibilities.

In the pure gluon sector, the susceptibilities are related to
the fluctuations of the � and �� fields. Under the Z�3�
transformation ���, �3, ��3 and combinations thereof
are invariant. Thus, the off-diagonal susceptibility 	l�l is
Z�3� invariant, while the diagonal pieces 	ll;�l �l are not:

 	l�l � h ���i � h ��ih�i; 	ll � h�
2i � h�i2;

	�l �l � h
��2i � h ��i2:

(4.10)

For vanishing quark chemical potential, 	ll and 	�l �l
coincide but are not equal to 	l�l. In the low-temperature
phase, where the Z�3� symmetry is realized, the Z�3� non-
invariant components 	ll and 	�l �l are strongly suppressed.4

In the Z�3� symmetry broken phase at high temperatures,
all components of the Polyakov-loop susceptibility are
large.

We also define the average susceptibility

 �	 ll �
1
4�	ll � 	�l �l � 2	l�l�; (4.11)

which corresponds to fluctuations of the real part of the
Polyakov loop. This observable has been used in LGT
calculations to identify the position of deconfinement tran-
sition in the QCD medium.

Because of the presence of dynamical quarks in the
PNJL model, the Z�3� symmetry is explicitly broken and
the Polyakov loop is not a genuine order parameter.
Nevertheless, the fact that in LGT calculations the expec-
tation values of � and �� are strongly suppressed in the
low-temperature phase [29], suggests that the Z�3� sym-

4In purely gluonic theory, where the Z�3� symmetry is exact,
	ll and 	�l �l vanish identically in the low-temperature phase.
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metry is a useful guiding principle for constructing model
Lagrangians (see also Figs. 3 and 5).

V. SUSCEPTIBILITIES AND THE PHASE
TRANSITION IN THE PNJL MODEL

Enhanced fluctuations are characteristic for phase tran-
sitions. Thus, the exploration of fluctuations is a promising
tool for probing the phase structure of a system. The phase
boundaries can be identified by the response of the fluctu-
ations to changes in the thermodynamic parameters. In this
section we focus on the phase structure of the PNJL model
by studying the order parameter susceptibilities, defined in
the previous section.

A. Susceptibilities at vanishing quark chemical
potential

In Fig. 13 we show the chiral and Polyakov-loop sus-
ceptibilities 	mm and 	l�l computed at � � 0 in the PNJL
model in the chiral limit. The chiral susceptibility exhibits
a very narrow divergent peak at the chiral critical tempera-
ture Tch, while the Polyakov-loop susceptibility shows a
very different behavior: the peak is much broader and the
susceptibility remains finite for all temperatures. The latter
is due to the explicit breaking of the Z�3� symmetry by the
presence of the quark fields in the PNJL Lagrangian.
Nevertheless, 	l�l still exhibits a peak structure that can
be considered as a signal for the deconfinement transition
in this model.5 The peak position of 	l�l appears at T ’
217 MeV below the chiral critical temperature Tch ’
242 MeV. Thus, in this model the deconfinement phase
transition occurs at a lower temperature than that of the
chiral phase transition. The separation between the two
peaks is roughly 25 MeV in the nonlocal model and about
8 MeV in the local model.

Another interesting feature of 	l�l is the interference with
the chiral susceptibility seen in Fig. 13. At the chiral
transition, T � Tch, there is a narrow structure in 	l�l. We
stress that this feature is not related with the deconfinement
transition, but only due to the coupling to the chiral sus-
ceptibility. Thus, for the parameters used in the model, the
deconfinement transition, signaled by the broad bump in
	l�l, sets in earlier than the chiral transition at vanishing net-
quark density.

B. Susceptibilities at a finite quark chemical potential

At finite chemical potential, there is a shift of the chiral
phase transition to lower temperatures, as shown in Fig. 7.
This is consistent with recent LGT results at finite quark
chemical potential [30]. A lowering of the deconfinement
temperature is also expected at nonzero net-quark density.
The position of deconfinement and chiral transitions can be

determined by exploring the order parameter susceptibili-
ties introduced in the previous section. With increasing
chemical potential the temperature dependence of the
Polyakov-loop expectation value is flattening and for suf-
ficiently large � it shows almost no variation with T.
Consequently, the width of the Polyakov-loop susceptibil-
ity is increasing with increasing �.

In Figs. 14 and 15 we illustrate the temperature depen-
dence of the susceptibilities for several values of the
chemical potential. With increasing � the peak position
of the chiral and Polyakov-loop susceptibilities are clearly
shifted towards lower T and approach each other as seen in
Fig. 14. At �0 ’ 185 MeV the two peaks coincide, which
indicates that the chiral and deconfinement transitions
appear at the same temperature. For �>�0 the
Polyakov-loop susceptibility 	l�l has a sharp peak at Tch

and a broad bump above Tch. A similar behavior was also
found in Ref. [3]. The peak at Tch in 	l�l is clearly due to an
interference with the chiral phase transition, while the
bump corresponds to the pseudocritical point of the decon-
finement transition. This structure is also seen in 	l�l at the
tricritical point, located at �Tc � 157; �c � 266� MeV.

 

FIG. 14 (color online). The chiral 	mm (dashed) and Polyakov
loop 	l�l (solid) susceptibilities in the chiral limit as functions of
temperature T. The lines correspond to � � 0 (right), � �
200 MeV (middle) and � � 270 MeV (left).

 

FIG. 13. The chiral 	mm (dashed line) and the Polyakov loop
	l�l (solid line) susceptibilities in the chiral limit as functions of
temperature T for � � 0.

5As noted above, a similar procedure is usually applied in LGT
studies of QCD thermodynamics.
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In the previous section we also introduced the average
susceptibility �	ll, which corresponds to fluctuations of the
real part of the Polyakov loop. In Fig. 15 the temperature
variation of �	ll for different values of the quark chemical
potential is shown. It is clear from this figure that a behav-
ior of �	ll is very similar to that of 	l�l. However, the peak
positions of the two susceptibilities differ slightly. Thus, in
the Polyakov-loop sector the determination of the transi-
tion temperature by using the susceptibilities is not unique.
Nevertheless, the differences are small, so in the following
we use 	l�l to identify the deconfinement transition tem-
perature in PNJL model.

The peak positions of the 	mm and 	l�l susceptibilities
are used to determine the phase boundaries in the
�T;��-plane. We stress that the phase boundaries are
strongly dependent on the model parameters. In Fig. 16
we show the phase diagram for the PNJL model obtained
with the parameters from Table I. Clearly the boundary line
related with the chiral symmetry restoration, determined
by the peak in the chiral susceptibility, coincides with that
in Fig. 7, which was computed from the properties of the

dynamical quark mass. Furthermore, the phase boundary
corresponding to the deconfinement transition is identified
with the position of the broad maximum observed in 	l�l.
With these parameters the boundary lines of deconfine-
ment and chiral symmetry restoration do not coincide. As
anticipated in the discussion of Fig. 14, there is only one
common point in the phase diagram where the two tran-
sitions appear simultaneously.

Recent LGT results both at vanishing and at finite quark
chemical potential show that deconfinement and chiral
symmetry restoration appears in QCD along the similar
critical line [31]. In general it is possible to choose the
PNJL model parameters such that the critical temperatures
of chiral and deconfinement transition coincide at � � 0.
The resulting phase diagram is shown in Fig. 17; the
parameters used in the calculations are summarized in
Table III, set (b). We note that this choice of the parameters
is not unique. A shift in the position of the critical tem-
perature at � � 0 can also be obtained by changing the
T0-parameter in the effective gluon potential. Decreasing
T0 from 270 to 130 MeV results in Tch � 192 MeV, con-
sistent with recent LGT calculations [32].

From Figs. 16 and 17 it is clear that in our model there is
only a rather narrow region of finite�where the deconfine-
ment and chiral transition lines coincide. The slope of Tdec

as a function of � is almost flat, indicating that at low
temperature the chiral phase transition should appear much
earlier than deconfinement. So far there is no guidance
available from first principle LGT calculations concerning
the relation between deconfinement and chiral symmetry
restoration at large values of the chemical potential.
However, there are general arguments, that the deconfine-
ment transition should precede restoration of chiral sym-
metry (see e.g. [33,34]). In view of this, it seems unlikely
that at T ’ 0 the chiral symmetry sets in at the lower
baryon density than deconfinement. In the PNJL model,
the effective gluon potential parameters were fixed by
fitting quenched LGT calculations. Consequently, the pa-

 

FIG. 16. The phase diagram of the PNJL model in the chiral
limit. The solid (dashed) line denotes the chiral (deconfinement)
phase transition, respectively. The TCP (bold-point) is located at
�Tc � 157; �c � 266� MeV. The parameter set (a) in Table III
was used in the calculation.

 

FIG. 17. The phase diagram of the PNJL model in the chiral
limit. The solid (dashed) line denotes the chiral (deconfinement)
phase transition, respectively. The TCP (bold-point) is located at
�Tc � 15; �c � 218� MeV. The results correspond to parameter
set (b) in Table III.

 

FIG. 15 (color online). The chiral 	mm (dashed) and Polyakov
loop �	ll (solid) susceptibilities in the chiral limit as functions of
temperature T. The lines correspond to � � 0 (right), � �
200 MeV (middle) and � � 270 MeV (left).
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rameters are taken as independent on �. However, it is
conceivable that the effect of dynamical quarks can modify
the coefficients of this potential, thus resulting in
�-dependence of the parameters. Consequently, the slope
of Tdec as a function of � could be steeper.6 Therefore,
the effective Polyakov-loop potential (2.8) should,
with �-independent coefficients, be employed only for
�=T < 1.

In Figs. 18 and 19 we show further diagonal and off-
diagonal components of the susceptibility 	̂ (4.8) at� � 0.
In this case the diagonal components 	ll and 	�l �l coincide.
These are the Z�3� noninvariant susceptibilities for � and
��. These components are suppressed in the low-
temperature phase, where the Z�3� symmetry is (approxi-
mately) restored. Around T ’ Tdec the 	ll;�l �l show a rapid
drop, associated with the crossover transition, where the
expectation values � and �� grow rapidly. In the high-
temperature phase 	ll;�l �l are not necessarily suppressed
since the Z�3� symmetry is explicitly broken there. The
off-diagonal susceptibilities 	ml � 	m�l are also suppressed

in the low-temperature phase and show a clear peak at Tch

due to an interference with the chiral phase transition.
These susceptibilities are noninvariant under both the
Z�3� and chiral symmetries. Hence, they are suppressed
well below the transition, where the Z�3� symmetry is
restored and vanish above Tch, in the chirally symmetric
phase.

An alternative way to determine the deconfinement and
chiral transition temperatures, by locating the maximum of
the temperature derivative of the corresponding effective
condensate, has been discussed in the literature (see e.g.
Ref. [13]). The temperature derivatives of the condensates
can be expressed as combinations of the susceptibilities
with some T- and �-dependent coefficients, as shown in
Eq. (B3). Consequently, in general the deconfinement
pseudocritical temperature obtained with this method
does not agree with that obtained from the peak position
of the corresponding susceptibilities. Only if the phase
transitions are relatively sharp and the susceptibilities
show narrow structures can one expect that the transition
temperatures determined using the different prescriptions
coincide. In Fig. 20 we show the derivatives of order the
parameters at � � 0 for different values of T0.

In Ref. [5] the peak positions in the derivatives of the
Polyakov loop and of the chiral order parameter coincide.
Indeed, in the local version of the PNJL model with T0 �
270 MeV we reproduce this result, as illustrated in Fig. 20.
However, for a slightly different value of T0, the positions
of the two peaks split. The parameters in the Polyakov-loop
sector were fixed from the lattice data in the heavy quark
mass limit. This corresponds to a transition temperature
T0 � 270 MeV in the pure gauge theory. In the presence of
dynamical quarks the transition temperature drops, thus it
is not excluded that the value of T0 may depend on Nf (see
footnote 2). With T0 � 210 MeV, the local PNJL model
yields a splitting of the peaks in the derivatives of the
Polyakov loop and the chiral condensate. Thus, the loca-
tions of the pseudocritical points are strongly dependent on
the model parameters. In the nonlocal PNJL model con-
sidered in this work, there is no coincidence between the
peak positions and the peak of @�

@T is located at a lower
temperature than that of @M

@T for all values of T0 &

300 MeV, as illustrated in Figs. 20(a) and 20(c). We note
that in the nonlocal PNJL model the chiral transition
temperatures obtained, on the one hand, from the deriva-
tive of the order parameter and, on the other hand, from the
corresponding susceptibility are almost identical. Thus, at
least in the chiral limit, the two methods for identifying the
chiral transition, are equivalent. However, for the Polyakov
loop, the difference is �10 MeV at � � 0.

C. Effective potential constraints

As shown in Fig. 18, 	ll is negative in a broad tempera-
ture range above Tch. This is in disagreement with recent
lattice results, where 	ll is always positive in the presence

 

FIG. 18. The diagonal 	ll � 	�l �l susceptibility in the chiral
limit as a function of temperature T for � � 0.

 

FIG. 19. The off-diagonal 	ml � 	m�l susceptibility in the chi-
ral limit as a function of temperature T for � � 0.

6Such a modification was explored in Ref. [35] where explicit
�- and Nf-dependence of T0 is extracted from the running
coupling constant �s, using the argument based on the renor-
malization group.
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of dynamical quarks [31]. Furthermore, the relation of the
Polyakov-loop susceptibility with the free energy of static
quarks is also incompatible with negative values of 	ll. A
possible origin of this behavior could be the approximation
to the effective Polyakov-loop potential used in the
Eq. (2.8).

The 	ll susceptibility can be related to the screening
masses mr and mi of the real and imaginary part of the
Polyakov-loop correlation functions [36]:

 	ll �
1

m2
r
�

1

m2
i

: (5.1)

In Ref. [36] the ratio

 

mi

mr
’ 3 (5.2)

was found in the vicinity to the critical temperature. This
result is qualitatively consistent with the perturbative cal-
culation [37]. From Eqs. (5.1) and (5.2) it is clear that the
resulting 	ll should be positive at T � Tc.

In Ref. [36] the screening masses mr and mi were
calculated with an effective potential that has the same
polynomial form as used in Eq. (2.8) but with different
values of the parameters. With the values given in Table II
effective Polyakov-loop potential (2.8) yields

 mi < mr; (5.3)

which implies a negative value of 	ll at Tc.
From this discussion it is clear that the behavior of 	ll

depends crucially on the parameters used in the Polyakov-
loop potential. Thus, the constraints from Z�3� symmetry

and from the lattice results for the equation of state, are not
sufficient to warrant physically acceptable susceptibilities.

Recently an improved effective potential with
temperature-dependent coefficients has been suggested
[13]
 

U��; ��;T�

T4 � �
a�T�

2
���� b�T�

� ln�1� 6 ���� 4��3 � ��3� � 3� ����2�;

(5.4)

where

 a�T� � a0 � a1

�
T0

T

�
� a2

�
T0

T

�
2
; b�T� � b3

�
T0

T

�
3
:

(5.5)

The polynomial in � and ��, used in (2.8), is replaced by a
logarithmic term, which accounts for the Haar measure in
the group integral [3]. The parameters in (5.4) were fixed to
reproduce the lattice results for pure gauge QCD thermo-
dynamics and for the behavior of the Polyakov loop. These
parameters are summarized in the Table IV.

In Fig. 21 we show the 	ll susceptibility calculated with
the potential of Eq. (5.4). It is clear from this figure that the
improved potential yields positive values for the Polyakov-
loop susceptibilities. In addition the peak positions of the
	ll and 	l�l susceptibilities almost coincide if the effective
Polyakov-loop potential is parametrized as in Eq. (5.4).
The phase diagram calculated with an improved potential,
shown in Fig. 22, is similar to that obtained with the
previous choice of the Polyakov-loop interactions,

 

FIG. 20. Derivatives of the dynamical quark mass @M=@T (dashed) and the Polyakov loop @�=@T (solid) in the chiral limit as
functions of temperature T for � � 0.
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Fig. 16. This is also the case for the susceptibilities 	mm
and 	l�l which have the same qualitative structure for both
effective potentials.

VI. SUMMARY AND CONCLUSIONS

We have explored the thermodynamical properties and
the critical behavior of a system that exhibits an invariance
under Z�3� and chiral transformations. As a model we have
use an extension of the NJL model for quarks with three
colors and two flavors, which are coupled to an effective
gluon field described by the Polyakov loop. In this model
(the PNJL model) a nonlocal interaction instead of the
pointlike four-fermion couplings is employed. The PNJL
model exhibits two essential features of QCD: a sponta-
neous chiral symmetry breaking and a ‘‘confinement’’-like
property. Furthermore, due to the symmetries of the
Lagrangian, the PNJL model belongs to the same univer-
sality class as that expected for QCD. Thus, such a model
can be considered as a testing ground for the critical
phenomena related to the breaking of the global Z�3� and
chiral symmetries.

Within the PNJL model, we discussed the phase diagram
and the order of the phase transition, using mean-field
dynamics for different values of the parameters. The prop-
erties of thermodynamic quantities related with the quark
degrees of freedom, like the quark number density and
susceptibility, were analyzed in the vicinity of the chiral
and deconfinement transitions.

We introduced susceptibilities related with the three
different order parameters in this model, and analyzed their
properties and their behavior near the phase transitions. We
have shown that there are as many as nine susceptibilities
that can be used to identify the phase structure of the
model. In particular, for the quark-antiquark and chiral
density-density correlations we have discussed the inter-
play between the restoration of chiral symmetry and de-
confinement. We argued that in the actual formulation of
the PNJL model a coincidence of the deconfinement and
chiral symmetry restoration is accidental.

We found that, within the mean-field approximation and
with the present form of an effective gluon potential the
correlations of the Polyakov loops in the quark-quark
channel show an unphysical behavior, being negative in a
broad parameter range. This behavior was traced back to
the parametrization of the Polyakov-loop potential. We
argued that the Z�N�-invariance of this potential and the
fit to lattice thermodynamics in the pure gluon sector is not
sufficient to provide correct description of the Polyakov-
loop fluctuations in the presence of quarks in a medium.
We note, however, that the improved potential of Ref. [13]
yields a positive, i.e. physical, 	ll, in qualitative agreement
with the LGT results.
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APPENDIX A: FUNCTIONAL INTEGRAL AND
PARTITION FUNCTION OF THE MODEL

The Polyakov loop L is a complex 3� 3 matrix and can
be diagonalized as in Eq. (2.7). Thus, the thermodynamic
potential (2.15) is a functional of complex variables.
However, as a physical observable the imaginary part of
� must vanish. In this appendix we show that this indeed
happens. We follow the method that has been used in the
context of a strong coupling QCD and the matrix model
[38,39].

 

FIG. 21. The diagonal 	ll � 	�l �l susceptibility in the chiral
limit as a function of temperature T for � � 0. The effective
Polyakov-loop potential (5.4) was used.

 

FIG. 22. The phase diagram of the PNJL model in the chiral
limit. The solid (dashed) line denotes the chiral (deconfinement)
phase transition, respectively. The TCP (bold-point) is located at
�Tc � 164; �c � 271� MeV. The parameter set (a) given in
Table III was used in the calculations.
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We start with the partition function,

 Z �
Z

D D � DL�’;’0�eS� ; � ;L�; (A1)

with the action S being divided into three pieces:

 S� ; � ; L� �
Z �

0
d�

Z
d3xL� ; � ; L�

� Sg�L� � Sq� ; � ; L� � Sint� ; � �: (A2)

The Polyakov loop effective potential U is included in Sg.
It is quite transparent that the pure gluon part is real. Thus,
we focus only on the quark part Sq. Performing the func-
tional integral over fermion fields one gets,

 Zq �
Z

DL�’;’0�DetD�’;’0�; (A3)

where D denotes the Dirac operator

 D�’;’0� � p6 �M� �0��� iA4�: (A4)

Summing up the Matsubara frequencies, p0 � i!n �
i�2n� 1��T the partition function is obtained as

 

lnZq �
Z

DL�’;’0�
X
n

Z d3p

�2��3
Tr lnD�’;’0�

� 2Nf
Z

DL�’;’0�
Z d3p

�2��3

� �Trc ln�1� L�’;’0�e��E
���
�

� Trc ln�1� Ly�’;’0�e��E
���
��; (A5)

taking the trace over color, flavor and Dirac variables in the
above equation the imaginary part I of lnZq is proportional
to

 I�M;�; ��;T;�� �
Z

DL�’;’0�
Z d3p

�2��3

�
tan�1

�
3 Im��1� e�E

���=T�e�E
���=T

1� 3 Re��1� e�E
���=T�e�E

���=T � e�3E���=T

�

� tan�1

�
�3 Im��1� e�E

���=T�e�E
���=T

1� 3 Re��1� e�E
���=T�e�E

���=T � e�3E���=T

��
; (A6)

where ’ and ’0 dependence were suppressed and Re� �
Re �� and Im� � �Im �� were used. Now let us replace the
variables ’, ’0 with ’! �’ and ’0 ! �’0. The SU(3)
Haar measure DL�’;’0� is unchanged under these re-
placements while Im� changes its sign. Therefore, the
first and second terms are separately odd under the change
of group variables and vanish after the integration.

The thermal expectation values of complex � and �� are
evaluated as
 

h�i �
1

Z

Z
DL�’;’0�eSg�Sint �Rezq  Re�� Imzq  Im��;

h ��i �
1

Z

Z
DL�’;’0�eSg�Sint �Rezq  Re�� Imzq  Im��;

(A7)
with

 Z �
Z

DL�’;’0�eSg�Sint �Rezq � i Imzq�: (A8)

It is clear from Eq. (A6) that the imaginary part of the
potential vanishes at � � 0. Thus, the difference between
h�i and h ��i comes only from the nonvanishing Imzq at

finite�. This can be also seen in the matrix model for color
SU(3) symmetry [39].

APPENDIX B: DERIVATIVES OF EFFECTIVE
CONDENSATES

In this appendix we summarize the derivatives of effec-
tive condensates with respect to � and T. Taking the
�-derivatives in the coupled gap equations (2.18), (2.19),
and (2.20) one gets
 

@M
@�
�
T
�

�
A���M 	mm �

T
�
A���� 	ml �

T
�
A�����

	m�l

�
;

@�

@�
�

T

�2

�
A���M 	ml �

T
�
A���� 	ll �

T
�
A�����

	l�l

�
;

@ ��

@�
�

T

�2

�
A���M 	m�l �

T
�
A���� 	l�l �

T
�
A�����

	�l �l

�
;

(B1)

where 	ij are defined in Sec. IV and the functions A��� are
introduced as

 

A���M � �
6Nf
T3

Z d3p

�2��3
Mpf2�p�

Ep

�
e�E

���=T

�g����2
f�� 4 ��e�E

���=T � 3�1� ����e�2E���=T � 4�e�3E���=T � ��e�4E���=Tg

� � ��;�;���
�
;

A���� �
6Nf
T3

Z d3p

�2��3

�
e�E

���=T

�g����2
f1� 3 ��e�2E���=T � 2e�3E���=Tg �

e�2E���=T

�g����2
f2� 3 ��e�E

���=T � e�3E���=Tg

�
;

A�����
� A���� �

��;�;���:

(B2)
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The required temperature derivatives of order parameters are directly obtained from the gap equations as

 

@M
@T
�
T
�

�
A�T�M 	mm �

T
�
A�T�� 	ml �

T
�
A�T���
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�
;

@�

@T
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T
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A�T�M 	ml �

T
�
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T
�
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	l�l

�
;

@ ��

@T
�

T

�2

�
A�T�M 	m�l �

T
�
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T
�
A�T���

	�l �l

�
;

(B3)

where the functions A�T� are defined as
 

A�T�M � �
6Nf
T4

Z d3p

�2��3
Mpf2�p�

Ep

�
e�E

���=T

�g����2
E���f�� 4 ��e�E

���=T � 3�1� ����e�2E���=T � 4�e�3E���=T � ��e�4E���=Tg

� � ��;�;���
�
;

A�T�� �
T
2

@b2

@T
���

6Nf
T4

Z d3p

�2��3

�
e�E

���=T

�g����2
E���f1� 3 ��e�2E���=T � 2e�3E���=Tg

�
e�2E���=T

�g����2
E���f2� 3 ��e�E

���=T � e�3E���=Tg

�
�

18Nf
T3

Z d3p

�2��3

�
e�E

���=T

g���
�
e�2E���=T

g���

�
;

A�T���
� A�T�� �

��;�;���:

(B4)

APPENDIX C: PARAMETERS USED IN THE PNJL MODEL THERMODYNAMICS

The compilation of parameters used in the model calculations is given in the following tables:

TABLE I. Set of parameters for the NJL sector [19]. The parameters of nonlocal NJL model
were fixed for � � 10.

Input f� � 92:4 MeV m� � 135 MeV M � 335 MeV

Nonlocal NJL model � � 684:2 MeV GS�2 � 4:66 m0 � 4:46 MeV
Local NJL model � � 625:1 MeV GS�2 � 4:38 m0 � 5:31 MeV

TABLE II. Set of parameters for the Polyakov-loop effective
potential [5].

a0 a1 a2 a3 b3 b4

6.75 �1:95 2.625 �7:44 0.75 7.5

TABLE III. Set of parameters in the chiral limit used in this
work and the resultant phase transition temperatures. � was fixed
to be � � 10.

Set (a) Set (b)

� � 684:2 MeV � � 684:2 MeV
GS�2 � 4:66 GS�2 � 4:05
T0 � 270 MeV T0 � 225 MeV
Tch�� � 0� � 242 MeV Tch�� � 0� � 180 MeV
Tdec�� � 0� � 217 MeV Tdec�� � 0� � 180 MeV

TABLE IV. Set of parameters for the improved Polyakov-loop
effective potential [13].

a0 a1 a2 b3

3.51 �2:47 15.22 �1:75
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