
Quarkonia in the deconfined phase: Effective potentials and lattice correlators

W. M. Alberico,1 A. Beraudo,1,2 A. De Pace,1 and A. Molinari1
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The Schrödinger equation for the charmonium and bottomonium states at finite temperature is solved
by employing an effective temperature-dependent potential given by a linear combination of the color-
singlet free and internal energies obtained on the lattice from the Polyakov loop correlation functions. The
melting temperatures and other properties of the quarkonium states are evaluated. The consistency of the
potential model approach with the available lattice data on the quarkonium temporal correlators and
spectral functions is explored.

DOI: 10.1103/PhysRevD.75.074009 PACS numbers: 12.38.Mh, 12.38.Gc, 25.75.Dw, 25.75.Nq

I. INTRODUCTION

The anomalous suppression of the J= production in
heavy ion collisions [1,2] was proposed a long time ago as
a possibly unambiguous signal of the onset of deconfine-
ment [3]. In Ref. [3] it was argued that charmonium
states—produced before the formation of a thermalized
quark-gluon plasma (QGP)—would tend to melt in their
path through the deconfined medium, since the binding
(color) Coulomb potential is screened by the large number
of color charges (Debye screening). This would produce an
anomalous (with respect to normal nuclear absorption)
drop in the J= yields.1

Since in hadronic collisions a sizable fraction of the
measured J= ’s comes from the decay of excited charmo-
nium states and the latter are expected to dissociate at
lower temperatures, a mechanism of sequential suppres-
sion has been proposed, with the aim of reproducing the
J= suppression pattern as a function of the energy density
reached in the heavy ion collision [10–14]. However, one
immediately faces a few theoretical problems.

First of all, it is not even clear, at present, whether a
temperature-dependent potential can describe medium
modifications of quarkonia, although there are efforts aim-
ing to derive a potential at finite temperatures from the
underlying QCD (see, e.g., Refs. [15,16]). Pragmatically,
one can follow a phenomenological approach, building an
effective model and testing it against quarkonium proper-
ties directly calculated in QCD. On the other hand, even
assuming the validity of the potential model at finite tem-
peratures, one has to tackle the problem of finding the

appropriate effective screened potential to insert into the
Schrödinger equation, as it will be discussed below.

Indeed, when the mechanism of anomalous J= sup-
pression was originally proposed, the authors employed a
schematic model for the c �c interaction. Nowadays very
precise lattice calculations of Polyakov line correlators are
available, for different numbers of light dynamical fermi-
ons [17–21]. It has been known for a long time [22] that
from these correlators it is possible to extract—in hot
QCD, as a function of the temperature and of the Q �Q
separation—the change in free energy once a Q �Q pair is
placed in a thermal bath of gluons and light quarks.

The free energy obtained in these calculations, taken in
the color-singlet channel, has been used as a temperature-
dependent potential and inserted into the Schrödinger
equation in a number of works [11,12,23,24]. Such a
choice turned out to give very low melting temperatures
for all the charmonium states: the dissociation tempera-
tures Td � 1:10Tc [12] and Td � 0:99Tc [23] were found
for the J= , all the other charmonium states melting well
below Tc.

On the other hand, since the free energy contains an
entropy contribution, it was soon realized that employing
the change in internal (instead of free) energy as an effec-
tive Q �Q potential could appear better justified [25–28].
This choice results in a more attractive potential, leading to
a melting temperature for the J= around 1:5–2Tc, the
other charmonium states ( 0 and �c) dissociating a bit
above Tc. These findings appear in agreement with
(quenched) lattice spectral function studies [29–33], at
least for what concerns the melting temperatures of char-
monia. Lattice results are starting to be available also for
the bottomonium spectral function [33–35] and for the
unquenched case [36]. They appear also able to explain
the most recent analysis of the Na50 (Pb-Pb), Na60 (In-In)
[37], and RHIC (Au-Au) [28] data on J= production,
which seems to favor a scenario in which only the excited
states of charmonium are anomalously suppressed.

Other choices for the effective potential can be found in
the literature [38–40]. In Refs. [38,39], in particular, the

1Potential model approaches give a static picture of the
behavior of charmonium in the QGP, the effects of the interac-
tion with the deconfined quarks and gluons being encoded in the
screened Q �Q interaction. Alternative pictures are available in the
literature, which attempt to predict final charmonium yields in
nucleus-nucleus collisions as arising from the interplay of
dissociation-recombination processes [4–6] or in the framework
of statistical models of hadronization [7–9].
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author argues that the internal energy obtained from lattice
data through the standard thermodynamical relation con-
tains also a gluon and light quark contribution. A subtrac-
tion procedure is constructed, leading to an effective Q �Q
potential given by a linear combination of the lattice free
and internal energies (normalized to the case with no heavy
color sources), with temperature-dependent coefficients
obtained from the QCD equation of state.

Results for the quarkonium dissociation temperatures, in
potential models based upon lattice data, appear to be
consistent with independent lattice results from spectral
functions calculations. It would be, however, desirable to
test it against other observables.

Actually, full information on the fate of the Q �Q states in
thermal equilibrium in a hot environment is encoded,
depending upon the channel one is considering, in the
meson spectral functions. The latter can be extracted
from the Euclidean temporal correlators of mesonic cur-
rents (measured on the lattice) by inverting an integral
transform. Such a task is usually achieved with a technique
referred to as maximum entropy method (MEM) [41,42]
and lattice results using this method can be found in
Refs. [29–36]. At present, from finite temperature lattice
meson spectral functions one can extract important infor-
mation on the fate of the ground state in the different
quantum number channels, concerning its position,
strength, and melting temperature. Unfortunately, no reli-
able information can be extracted so far on the excited
states, due to the difficulty of disentangling their peaks (if
any) from lattice artifacts. Although this is not a severe
limitation for charmonium studies, where one expects just
a few states to (possibly) survive after the phase transition
(J= , �c, and  0, the latter being the only excited state),
this is no longer true for the bottomonium. At the ALICE
experiment, for instance, one expects a sizable production
of b �b pairs [43]. The knowledge of the melting temperature
of the different states is then important in order to develop a
reliable model of sequential suppression to be eventually
compared with the experimental data.

In this regard, it is clearly of importance to demonstrate
that potential model calculations are consistent with the
results obtained from the lattice spectral functions.
Although, as we shall see, definite conclusions cannot be
drawn yet, our work constitutes a promising consistency
check of the potential model, given the present status of
lattice calculations at finite temperatures.

Since the reliability of MEM to extract the spectral
functions is not fully established yet, the check of consis-
tency of the potential model has been mainly devoted to a
direct comparison with the Euclidean correlators in a num-
ber of papers [44–49]. In these works the authors, starting
from different screened potentials, calculate in a given
channel the corresponding charmonium spectral function,
which gets contributions both from bound states (as long as
they are supported by the potential) and (starting from a

threshold energy) from scattering states. Convoluting the
spectral function with a thermal kernel, they eventually
obtain the charmonium correlator along the imaginary
temporal direction. Such a quantity can then be compared
with the ones measured on the lattice. In Refs. [44–47], the
authors point out that this procedure leads to a disagree-
ment between lattice and potential model results. Hence,
they conclude that a study of the Q �Q states in the QGP in
terms of screened potentials may not be able to catch the
right physics. On the other hand, the authors of Ref. [48]
propose curing the discrepancy (at least in the pseudoscalar
channel) by keeping in the continuum part of the potential
model spectrum only the resonant contributions, i.e. by
subtracting the free gas states. We believe that this proce-
dure might be incorrect, since the evaluated correlator has
to be compared with the lattice ones, which do have a free
gas (infinite temperature) limit.

The comparison between lattice data and potential
model calculations is usually done by considering a quan-
tity constructed ad hoc, to display the temperature depen-
dence of quarkonium properties, namely, the ratio between
Euclidean correlators above and below the critical tem-
perature (see the next section). In a potential model this
ratio turns out to be very sensitive to the treatment of the
continuum, e.g. to the threshold energy. This is clearly a
problem for the calculation of correlators below the critical
temperature, since, for instance, at T � 0 the potential
model is based on confining potentials and the continuum
spectrum has to be added by hand. Second, lattice calcu-
lations appear to be dominated by artifacts due to the finite
lattice spacing right in the continuum region, leading to
unphysical peaks in the spectral functions, even in the
infinite temperature limit [36,50]. Moreover, the asymp-
totic high energy behavior, ��!� �!2, of the continuum
spectral functions is not reproduced by lattice calculations,
since the finite lattice spacing provides an ultraviolet
cutoff.

In this paper, following Refs. [26,38,39], we extract
from the lattice data for Polyakov line correlators an
effective temperature-dependent Q �Q potential and we
use it in order to understand to which extent a comparison
with mesonic temporal correlators obtained on the lattice
can be pursued. In particular, we study the effect of differ-
ent models for the continuum and we try to keep under
control the uncertainties introduced by the need of calcu-
lating correlators below Tc by employing the effective
potential derived from lattice data for T < Tc as well.

The paper is organized as follows: in Sec. II we first
briefly review the formalism of finite temperature quark-
onium spectral functions and imaginary time correlators
and then the procedure followed to extract the effective
Q �Q potential from lattice data; in Sec. III we compare the
outcome of the potential model to results from lattice
calculations, both for the spectral functions and the
Euclidean correlators; finally, in Sec. IV we summarize
and discuss our results.
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II. FORMALISM

A. Lattice correlators and spectral functions

The standard object introduced in lattice studies of
quarkonium properties at finite temperature T is the
Euclidean time correlator, defined as the thermal expecta-
tion value of a hadronic current-current correlation func-
tion in Euclidean time � for a given mesonic channel H
(see, e.g., Ref. [51], Chap. 7):

 GH��; T� � hjH���j
y
H�0�i; (1)

where jH � �q�Hq and �H � 1, �5, ��, ���5. The four
vertex operators �H correspond, respectively, to the scalar,
pseudoscalar, vector, and axial-vector mesonic channels,
which in turn, at zero temperature, correspond to the �c0

(�b0), �c (�b), J=� (�), and �c1 (�b1) quarkonium states
for the c �c �b �b� system, respectively. Although the correla-
tion functions can in general be defined for any spatial
momentum p, most lattice studies are restricted to the case
p � 0 and we shall consider, in the following, only this
case.

The correlators of Eq. (1) are directly evaluated in lattice
QCD, whereas physical observables are related to the
spectral function �H, i.e. to the imaginary part of the real
time retarded correlators. The two quantities are connected
by an integral transform

 GH��; T� �
Z 1

0
d!�H�!; T�K��;!; T�; (2)

which is regulated by the temperature kernel

 K��;!; T� �
cosh�!��� 1=2T��

sinh�!=2T�
; (3)

the energy integration extending over the whole spectrum.
Extracting the continuous spectral function from the

discrete and finite—and usually rather limited—set of
lattice data is an ill-posed problem. It has been tackled
through the application of the MEM [41,42], which ap-
pears to yield promising results, although its reliability has
yet to be confirmed.

The MEM analysis has been applied by different groups
to the c �c system, both below and above the critical tem-
perature and mainly in the quenched approximation (see,
however, Ref. [36] for a study in the presence of dynamical
fermions). The spectral functions obtained in these studies
present, schematically, similar features: a well-defined
peak in correspondence to the ground state meson in a
channel of given angular momentum (S or P wave) up to
the dissociation temperature; inability to resolve radial
excitations; presence in the highest part of the spectrum
of peaks that are associated to lattice artifacts. Actually, the
most meaningful information extracted from the lattice
spectral functions concerns the existence and mass value
of the lowest quarkonium states at a given temperature.

However, the survival, e.g., of the J=� up to tempera-
tures around 1:5–2Tc has important consequences for the
interpretation of heavy ion experiments and it has raised
the need for a confirmation not suffering from the uncer-
tainties of the MEM analysis. A procedure has been de-
vised that makes direct use of the Euclidean correlators, by
comparing the behavior of the correlators above and below
Tc [29]. Specifically, one introduces the ratio between the
correlation function GH��; T>� of Eq. (2) at a temperature
T> > Tc and the so-called reconstructed correlator

 Grec
H ��; T>; T<� �

Z
d!�H�!; T<�K��;!; T>�; (4)

calculated using the kernel at T> > Tc and the MEM
spectral function at some reference temperature T< < Tc.
This procedure should eliminate the trivial temperature
dependence due to the kernel and differences from one in
the ratio should then be ascribed to the temperature depen-
dence of the spectral function. Furthermore, the MEM
result for �H�!; T<�—because of the larger number of
lattice sites at low temperature—is more robust. On the
other hand, at high temperature the correlator is directly
measured on the lattice, thus avoiding the extraction of the
spectral function with the MEM procedure.

Indeed, lattice studies show that the ratio GH=G
rec
H stays

around one up to the same dissociation temperatures ex-
tracted from the MEM analysis and then it departs from
one following different patterns in the different channels
[29,33].

The other approach followed in the literature in the
determination of the quarkonia dissociation tempera-
tures—which is based on the use of effective potentials
for the quarkonium systems—has reached similar conclu-
sion about the dissociation temperatures, at least when
making use of effective potentials extracted from lattice
data on Q �Q free energies at finite temperature [26,38,39].

In a potential model approach, one solves the
Schrödinger equation for a given potential, thus getting
not only the spectrum but also the wave functions of the
Q �Q pair. It is then fairly straightforward to get the corre-
sponding spectral function as the imaginary part of theQ �Q
propagator, namely

 �H�!; T� �
1

�
ImGH�!� �

X
n

jh0jjHjnij
2��!� En�

�
X
n

F2
H;n��!�Mn� � 	�!� s0�F2

H;!�s0
;

(5)

where n represents all the relevant quantum numbers (in
the second line the sum over n actually stands for both the
sum over discrete states and the integration over the con-
tinuum) and En � s0 � 
n, s0 being the continuum thresh-
old and 
n the eigenvalue associated to the state jni. In the
last line we have separated the discrete and continuum
contributions, introducing the couplings FH;n 	 h0jjHjni
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and FH;
 	 h0jjHj
i and the bound state masses Mn (a
normalization of the discrete and continuum states as
hnjn0i � �nn0 and h
j
0i � ��
� 
0�, respectively, is
understood).

Following Ref. [52] (see also Ref. [46]), one can express
the couplings in terms of the wave function at the origin for
the S-states (pseudoscalar and vector channels),

 F2
PS �

Nc
2�
jR�0�j2 and F2

V �
3Nc
2�
jR�0�j2; (6)

and in terms of the first derivative of the wave function at
the origin for the P-states (scalar and axial-vector chan-
nels),

 F2
S �

9Nc
2�m2 jR

0�0�j2 and F2
A �

9Nc
�m2 jR

0�0�j2; (7)

Nc being the number of colors and m the quark mass.
By inserting the spectral function of Eq. (5) into Eq. (2),

one gets the potential model expression for the Euclidean
correlators:
 

GH��; T� �
X
n

F2
H;nK��;Mn; T�

�
Z 1

0
d
F2

H;
K��; 
� s0; T�: (8)

Some care is necessary in dealing with the continuum part
of the spectral function. Indeed, in Eq. (8) the integration
over the excitation energy can reach pretty high values,
especially for small �’s, probing regions where the non-
relativistic dispersion relation is no longer valid. Actually,
the asymptotic relativistic spectral function�H�!� that one
gets in perturbative QCD is known to be proportional to!2

in every channel, whereas it is easy to check that the
nonrelativistic solution of the Schrödinger equation in the
free case goes like, e.g., !1=2 for the S-states. The differ-
ence is due to the different phase space and it can be
accounted for by simply renormalizing the wave function
with a phase space factor [53]. In the calculations dis-
cussed below, we will be using such wave functions,
renormalized to account for relativistic kinematical effects.

Note that in potential model calculations of the spectral
functions, a mixed representation has been sometimes
employed, with a continuum part approximated using the
perturbative QCD expression with a threshold extracted
from the effective potential [44,46]:
 

�H�!; T� �
X
n

F2
H;n��!�Mn�

�
3

8�2 !
2	�!� s0�fH�!; s0�; (9)

where the function fH is given by leading order perturba-
tive calculations [54–56] as

 fH�!; s0� �

�
aH � bH

s2
0

!2

� ���������������
1�

s2
0

!2

s
: (10)

At leading order, the coefficients �aH; bH� are �1;�1�, (1,
0), (2, 1), and �2;�3�, for the scalar, pseudoscalar, vector,
and axial-vector channels, respectively. This form for the
spectral function is affected by an obvious inconsistency
between the bound and the continuum parts of the spec-
trum. Nevertheless, in the following we make use also of
this expression in order to test the model dependence of our
results.

B. Effective potentials from lattice data

In Ref. [26] we have provided a unified parametrization
of the temperature and separation dependence of the lattice
data for the color-singlet Q �Q free energy F1 in the case of
quenched [17], 2-flavor [20], and 3-flavor [21] QCD.

In the following we employ the parametrization ob-
tained there for the case Nf � 0—since most lattice cal-
culations of Euclidean correlators are in quenched
approximation—but we shall also consider Nf � 2, since
in this case lattice data for the free energy are available to
us also at temperatures 0:76 
 T=Tc 
 1 [20], and one can
use them to study the behavior of the correlation functions
through the phase transition. We refer the reader to
Ref. [26] for a detailed description of the fitting procedure.

Although in past work the free energy F1 has been
directly used as an input for the Q �Q potential energy,
more recently it has been recognized that the Q �Q internal
energy U1 provides a more appropriate candidate. Since
the two quantities are connected by the well-known rela-
tion

 F � U� TS; (11)

once a suitable parametrization of the temperature depen-
dence for the free energy has been obtained, one can
subtract the entropy contribution and get the color-singlet
internal energy as

 U1 � �T2 @�F1=T�
@T

: (12)

The latter has been employed in Ref. [26] as the effective
Q �Q potential in the Schrödinger equation, getting good
agreement with the charmonium dissociation temperatures
extracted from lattice calculations of the spectral functions.

However, the use of the internal energy (12) is not fully
satisfactory yet. From the theoretical point of view, as
pointed out in Ref. [38] and thoroughly discussed in
Ref. [39], the internal energy of Eq. (12) actually contains
the sum of two contributions: the genuine Q �Q potential
energy, including the interaction of the heavy quarks with
the thermal bath of gluons (and light quarks, for Nf � 0);
but also a contribution due to the variation of the gluon
(and light quarks, for Nf � 0) internal energy in the pres-
ence of the Q �Q pair.

Also the comparison with independent lattice results
presents some shortcomings. In fact, although it is quite
successful in providing dissociation temperatures in agree-
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ment with direct lattice estimates, its asymptotic (r! 1)
value—employed to define the threshold energy entering
into the continuum part of the spectral function—turns out
to have a sharp temperature dependence around the critical
temperature. This in turn is reflected, as we shall see in the
next section, into a temperature dependence of the corre-
lation functions which is not observed on the lattice.

In this work we follow the procedure described in
Ref. [38] in order to separate the true Q �Q internal energy,

UQ �Q
1 , from the gluon and light quark contribution. The

effective potential entering into the Schrödinger equation
is defined as [F1 and U1 are the same quantities considered
in Eq. (12)]
 

V1�r; T� 	 UQ �Q
1 �r; T� �U

Q �Q
1 �r! 1; T�

� fF�T��F1�r; T� � F1�r! 1; T��

� fU�T��U1�r; T� �U1�r! 1; T��; (13)

where
 

fF�T� �
3

3� a�T�
; (14a)

fU�T� �
a�T�

3� a�T�
(14b)

and

 a�T� �
p

=3

; (15)

p and 
 being the pressure and energy density of a homo-
geneous system of quarks and gluons, respectively. These
thermodynamical quantities have been obtained in
quenched [57] and 2-flavor [58] QCD as a function of
temperature and we display in Fig. 1 the resulting ratio
(15) in the range of temperatures we are interested in. Note
that the weight functions fF and fU turn out to vary in the

range 3=4 & fF & 1 and 0 & fU & 1=4, respectively, a
fact which explains why the Q �Q potential is closer (but
not identical) to the free energy F1 than to the internal
energy U1.

The asymptotic value of the Q �Q internal energy,

UQ �Q
1 �r! 1; T�, is used to define the continuum threshold,

s0�T� � 2m�UQ �Q
1 �r! 1; T� and we compare it in Fig. 2

to the asymptotic value of the internal energy as obtained
from Eq. (12), i.e. without subtracting the gluon and light
quark contribution. The sharp variation of U1 around Tc—
which, as discussed in the next section, leads to correlation
functions in contrast with lattice calculations—is evident,

whereas UQ �Q
1 displays a much smoother transition.

The effective potential based upon UQ �Q
1 is less attractive

than the one based upon U1 (but still more attractive than
the one based upon F1), a fact which gives rise to slightly
lower dissociation temperatures. Values for the latter in
accord with the results from lattice spectral function stud-
ies can be obtained by using quark masses slightly higher
than the values of the Particle Data Group listing [59]. For
instance, in Ref. [39] dissociation temperatures compatible
with the lattice phenomenology have been found using a
charm quark mass of 1:4–1:5 GeV. Note that the lattice
free energies employed to parametrize the effective Q �Q
potential have been obtained for infinitely heavy quark
mass and that the lattice calculations of correlation func-
tions use a variety of quark masses, usually chosen in order

 

1 2 3 4 5
T/Tc

0

0.2

0.4

0.6

0.8

1

a(
T

)

FIG. 1. The ratio a�T� � 3p=
 as a function of T for Nf � 0
[57] (T � Tc, dashed line) and Nf � 2 [58] (T � 0:76Tc, solid
line).
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FIG. 2. The asymptotic values of the lattice free energy [20]
(dotted), the total internal energy of Eq. (12) (dashed), and the
Q �Q internal energy UQ �Q

1 (solid) in 2-flavor and quenched QCD.
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to reproduce the mass of the charmonium (bottomonium)
ground state.

Here we solve the Schrödinger equation using an effec-

tive quark mass defined as ~m�T� � m�UQ �Q
1 �T�=2, which,

beside improving the binding of the Q �Q pair, can be
naturally interpreted as a thermal mass. Using this defini-
tion, the continuum threshold is given as s0�T� � 2 ~m�T�.
Our choice implies that the same thermal mass is employed
both in the kinetic term of the effective Hamiltonian and
for the energy of the heavy quark at rest in the plasma. In
principle, nothing prevents these two masses from assum-
ing different values. While the threshold mass can be
extracted from the available lattice data, in order to evalu-
ate the thermal correction to the kinetic operator one
should know the momentum dependence of the heavy
quark self-energy in the QGP. Lacking the above informa-
tion, here we choose to ignore such a distinction. Note that
in a nonrelativistic QED plasma a moving test charge
receives a positive thermal correction to its mass, which
is slowly decreasing with the temperature [60]. Our choice
is in qualitative agreement with this rigorous result ob-
tained in another contest. On the other hand, it has been
argued [46] that the thermal mass should not be used in the
Schrödinger equation, since in the bound state the heavy
quarks should not feel the effect of the medium. Yet, the
quantitative differences between the two approaches are
quite moderate, well below other uncertainties present in
the problem.

III. RESULTS

In this section we use the effective potentials of Eq. (13)
to calculate spectral and correlation functions by solving
the Schrödinger equation,

 

�
�
r2

~m
� V1�r; T�

�
 "�r; T� � "�T� "�r; T�; (16)

for the Q �Q eigenvalues "�T� and the eigenfunctions
 "�r; T�. The dissociation temperatures for the lowest c �c
and b �b states are shown in Table I. Since the potential is
spin independent, the two S-states, pseudoscalar, and vec-
tor (or P-states, scalar, and axial-vector) are degenerate.

With respect to the previous findings with the full inter-
nal energy [26], one now observes a reduction of the
dissociation temperatures: in the c �c channel the ground
state melts around� 1:5–1:6Tc, whereas the excited states
already melt around the critical temperature; in the b �b
channel the ground state melts above 3Tc and the excited
states around� 1:1–1:2Tc. For comparison, in the table we
also report (in square brackets) the dissociation tempera-
tures obtained in Ref. [26] using the full internal energy, in
the cases where the same quark mass had been employed
(bottomonium for mb � 4:3 GeV).

In Figs. 3 and 4 we show the mass, M � 2m�

UQ �Q
1 �r! 1; T� � "�T�, of the lowest S-wave and

P-wave states, respectively, as a function of temperature.
We note that in the c �c channel the use of quark masses
slightly larger than the values obtained from the T � 0
phenomenology results in meson masses heavier than T �
0 potential model calculations. While the latter use quark
masses and effective potentials adjusted to fit the experi-
mental data, here we employ potentials extracted from
lattice data, which have been obtained from static (infi-
nitely heavy) quark sources. It can then be expected that
quantities directly sensitive to the input quark mass are not
well reproduced. This is an intrinsic limitation of this
approach, which should be much less relevant for the
heavier b �b system, as it could be tested as long as lattice
estimates for the b �b dissociation temperatures will be
available.

Note, however, that the more relevant point in the com-
parison to the lattice spectral functions is the temperature
dependence of the physical observables. From Figs. 3 and 4
one can see that, apart from a narrow range of temperatures

TABLE I. Spontaneous dissociation temperatures (in units of Tc) of the lowest c �c and b �b
states. The values in square brackets have been taken from Ref. [26] (see text); the ones labeled
with (*) have been obtained with a potential extrapolated beyond the temperature range of the
lattice data (T & 2Tc for Nf � 2).

Nf � 0 Nf � 2

mc � 1:4 GeV mc � 1:6 GeV mc � 1:4 GeV mc � 1:6 GeV

J= , �c 1.40 1.52 1.45 1.59
�c <1 <1 1.00 1.00
 0 <1 <1 0.98 0.99

mb � 4:3 GeV mb � 4:7 GeV mb � 4:3 GeV mb � 4:7 GeV

�, �b 2.96 [4.5] 3.18 3.9(*) [6.7(*)] 4.4(*)
�b 1.13 [1.55] 1.15 1.15 [1.63] 1.17
�0 1.12 [1.40] 1.14 1.13 [1.43] 1.15
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around Tc, the variation of the masses with T is quite
moderate, the difference between the maximum and mini-
mum values being around 150–200 MeV of the S-states
and � 100 MeV for the P-states. This, for instance,
amounts to roughly 5%–6% (2%) of the J= (�) mass.

A slight decrease of the �c mass in the range of tem-
peratures explored here has also been observed in some
lattice spectral studies [61]. Note that a more pronounced
softening of the J=� peak (here degenerate with �c) as the
temperature increases has been attributed by some authors
to the presence in the vector channel of a transport con-
tribution to the spectral function, not resolved by the MEM
procedure, but nevertheless tending to move strength to-
wards lower energies [33].

Just above Tc, one observes a slight peak in the masses
for the case of 2-flavor QCD. Note that this is the range of
temperatures where the T-dependence of the parameters
employed to fit the lattice free energies is stronger [26], so
that it might just signal the inadequacy of the parametri-
zation at the critical temperature. It is however curious that
the same behavior does not appear for Nf � 0, where the
same parametrization has been employed.

Note that the smooth temperature dependence of the
masses of the Q �Q states is strictly related to the smooth
T-dependence of the asymptotic Q �Q internal energy,

UQ �Q
1 �1; T�, obtained through the procedure described in

Sec. II B. By employing, in the definition of the bound state
mass, the total internal energy U1�1; T�, one would get
much higher (by a few GeV) masses around the critical
temperature (see Fig. 2).

Other observables can be easily calculated in the poten-
tial model. As an example, we show in Fig. 5, for the c �c
system, the square of the S-wave radial wave function,
R�0�2, and the square of the first derivative of the P-wave
radial wave function, R0�0�2, calculated in the origin. This
quantities can be related to the quarkonium decay widths
for different processes (see, e.g., Ref. [51]), such as the
leptonic decay rate of a neutral vector meson [63,64] or �
decay into pairs of pseudoscalar or vector mesons [65].

As one can see from the figure, the values of R�0� and,
particularly, of R0�0� are quite stable below Tc and very
close to the values at T � 0. Above Tc the P-wave states
have melted, whereas R�0� for the S-state drops almost
linearly up to the dissociation temperature.

A. Spectral functions

Here we would like to compare the spectral functions
calculated in the potential model to the ones extracted from
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the lattice Euclidean correlators using MEM. To make
easier a direct comparison of the spectral functions, it is
convenient to modify the potential model expression of
Eq. (5) in order to accommodate a width for the bound
states. Indeed, the width of the bound states at finite T in
the lattice spectral functions contains a contribution due to
the (possible) thermal broadening of the states and a con-
tribution due to the statistical uncertainties, the latter ap-
parently being dominant above Tc because of the limited
set of data points [33].

A width can be easily included by substituting in Eq. (5)
the delta function in the bound state sector with a Lorentz
distribution:
 

�H�!; T� �
X
n

F2
H;n

1

�
�n=2

�!�Mn�
2 � �2

n=4

� 	�!� s0�F
2
H;!�s0

; (17)

where �n represents the width of the state n.
A word of caution is in order about the calculations at

T < Tc—where we do not deal with a quark-gluon plasma,
but with a still confined system. Although the use of a
potential model for bound states is well assessed, at least at
T � 0, the interpretation of the continuum spectrum is
much more questionable. Here we shall use both the spec-
tral function calculated in perturbative QCD, as usually
done in the literature, and the one coming from the poten-
tial model, in order to get a feeling about the model
dependence of the results. We would like however to stress
that the aim of the model is to describe the physics of
quarkonia at T > Tc and that calculations in the confined
phase are done in order to discuss the lattice results for the
correlation functions, which are mainly available in the

literature as ratios of functions above and below Tc (see
Secs. II A and III B). In potential model calculations, the
reconstructed correlators have been usually considered at
zero temperature [46,48,49], adding to the bound state
contribution—calculated with a phenomenological confin-
ing potential—the perturbative QCD continuum. This
choice obviously poses another problem of consistency
(besides the one, already mentioned, of the consistency
between the bound and the continuum spectra), since
above Tc one is using a lattice-derived potential and at T �
0 a phenomenological (fitted to the data) one. Incidentally,
the phenomenological parameters of the T � 0 potential
adopted in the above works (i.e., the coefficients of the
Coulomb and linear terms) turn out to be quite different
with respect to the ones employed in normalizing the free
energies at short distances [20]. The use, also below Tc, of
lattice-derived potentials should give one a feeling about
these model dependencies.

In Fig. 6 we display the c �c spectral function for the
S-states for quenched and unquenched QCD, both below
and above Tc (since we neglect the hyperfine spin-spin
interaction the J= and �c states are degenerate and the
corresponding spectral functions differ for trivial factors).
In the left-hand panels, we employ—for the continuum
part of the spectral function—the solution of the
Schrödinger equation [Eq. (17), see the discussion in
Sec. II A], whereas in the right-hand panels we employ
the perturbative expression [see Eq. (9)]. In all cases a
width �n � 100 MeV has been used for the discrete states.
Here and in the following calculations, we employ mc �
1:6 GeV and mb � 4:7 GeV for the quark mass.

In this figure, one can note a marked peak of constant
strength and almost fixed position below Tc, corresponding
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to the J= state, and a second smaller peak, corresponding
to its first radial excitation. Above Tc only the ground state
peak survives and its position moderately moves (consis-
tently with the mild mass shift displayed in Fig. 3),
whereas its strength is gradually decreasing as one ap-

proaches the dissociation temperature. There is no signifi-
cant difference between Nf � 0 and Nf � 2.

Above Tc the bound state peak is clearly visible espe-
cially in the right-hand panels, where the perturbative
continuum spectral function has been employed. The con-
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tinuum contribution calculated from the Schrödinger equa-
tion, on the other hand, shows a resonant part when the
bound state energy is approaching zero and this resonant
contribution tends to dominate over the bound state peak
(see Fig. 7, where, as an example, the spectral function at
T � 1:4Tc is magnified around the threshold energy, sep-
arating the bound state and continuum contributions).

In order to show more clearly the evolution of the bound
state above Tc—and to make easier a comparison with the
lattice results—we display in Fig. 8 only the bound state
part of the S-wave spectral function using a larger effective
width, comparable to the one of the lattice charmonium
spectral functions calculated in Refs. [29,33] (Nf � 0) and
[36] (Nf � 2). As one can see the pattern as a function of

the temperature for the position of the bound state appears
to be similar to the lattice results.

The temperature dependence of the strength of the peak,
instead, seems to differ from the lattice outcome. In
Refs. [29,33], the S-wave spectral functions have also
been extracted at various temperatures using the same
number of data points, in order to compare results affected
by the same statistical uncertainties: at least for the pseu-
doscalar state (the vector channel being more uncertain) it
has been found that the spectral function maintains its
strength up to 1:5Tc. This result is, of course, affected by
large errors and also depends upon the reliability of the
MEM procedure. On the other hand, the potential model
calculation yields a practically constant strength up to Tc
and then a practically linear decrease, as it could be in-
ferred also from Fig. 5.

In Fig. 9 we show the spectral function for the P-states in
the case of unquenched QCD, using, for illustration, a
width of 100 MeV (again, we neglect hyperfine splitting
of scalar and axial-vector states). The continuum contribu-
tion in the left panel comes from solving the Schrödinger
equation, in the right panel from the perturbative calcula-
tion. Also in this channel one can note, below Tc, a marked
peak of constant strength and approximately fixed position,
corresponding to the �c state. No bound states are present
above Tc: the peak appearing in the left panel at T �
1:05Tc is actually a resonance in the continuum contribu-
tion. Also the narrow peaks visible at higher energy for
T < Tc are embedded in the continuum. The situation of
the P-wave lattice spectral functions is less clear, since this
channel is much harder to study on the lattice. All the
studies [29,33,36] of the c �c system observe a strong modi-
fication of the spectral functions above Tc and this is
usually interpreted as a signature of dissociation of the
P-wave states. However, above Tc some strength is ob-
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served at very low energies, especially in the scalar chan-
nel, well below the expected continuum threshold and
there is no physical explanation for these findings.

Finally, in Fig. 10 we display the bound state part of the
S- and P-wave spectral functions for b �b states, in the range
of temperatures studied in Refs. [34,35]. The � state
appears to be stable both in position and strength over
the whole range of temperatures, whereas the �b state
gets strongly modified approaching the dissociation tem-
perature (see Table I). The stability in the position of the �
and the dissociation of the �b at a temperature T 

1:1–1:2Tc is in accord with the results from lattice calcu-
lations; the latter, however, are still preliminary and one
cannot draw from them any conclusion about the evolution
of the strength with T. We do not show the continuum part
of the spectrum, since it is very similar to the charmonium
case.

To summarize our findings for the Q �Q spectral func-
tions, we can state that the bound state part of the potential
model spectrum appears to be consistent with the lattice
results as far as the evolution with T of the position of the
c �c and b �b states is concerned. On the other hand, both the
evolution of the bound state strength and the shape of the
continuum contribution—either perturbative or calculated
in the potential model—show major differences from the
lattice outcome.

B. Correlation functions

As we have already mentioned above, the reliability of
the MEM procedure is still under discussion. In order to
reveal the temperature dependence of the spectral function,
it has been proposed to consider the ratio between the

Euclidean correlator at a given temperature and the recon-
structed correlator, which contains the spectral function at
a reference temperature (see Sec. II A).

In lattice calculations, this has been done using as a
reference temperature both some finite T < Tc [29] and
T � 0 [33]. In potential model calculations, the spectral
function at T � 0—modeled as in Eq. (9) by using a
phenomenological potential for the bound states and the
perturbative QCD contribution for the continuum states—
has been employed so far as a reference [46,49]. However,
such a spectral function is not only affected by the incon-
sistency between the bound and the continuum states, but it
also strongly depends upon the threshold energy s0, which
has to be treated as a parameter. Moreover, employing, for
the continuum contribution in the confined phase, the
perturbative QCD spectral function is at least problematic.
Here we try to remove the first two sources of uncertainties
by employing the spectral functions calculated from the
lattice-generated potential at T < Tc. Of course, the prob-
lem of interpretation of the continuum spectrum is still
there, but, as we shall see below, it is probably inessential.

In Fig. 11 we display the ratio GH=Grec
H for the pseudo-

scalar and scalar charmonium states at different tempera-
tures, using the reconstructed correlator at T � 0:75Tc.
Both the continuum spectra generated by solving the
Schrödinger equation (left panels) and by using the pertur-
bative expressions (right panels) are employed.

Let us first analyze the ratio at T < Tc. Here it turns out
to be always very close to 1, not only for the case shown in
the figure, but over the whole range of temperatures avail-
able to us (0:75< T=Tc < 1). It strongly resembles the
ratio of the correlators measured on the lattice [29]: even
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the small decrease at large �’s in the scalar channel seems
to be correctly reproduced. Note that this outcome simply
reflects the temperature independence of the spectral func-
tions below Tc, as it was apparent in Fig. 6. This evolution
with the temperature in our model stems from the mild
dependence upon T of both the effective potential and the
threshold energy, which, in turn, is due to the procedure of
subtraction of the gluon and light quark contributions from
theQ �Q internal energy (see Sec. II B). The same quantities
calculated using directly the internal Q �Q energy as the
effective potential would yield a strong T dependence al-
ready below Tc (see, e.g., Fig. 2).

Above Tc, the ratio in the pseudoscalar channel looks
qualitatively similar to the one measured on the lattice
[29,33]—at variance with the result of Refs. [46,49]—
but there are important differences. In the lattice results,
the ratio remains close to 1 up to the dissociation tempera-
ture and then it gradually decreases; here, the departure

from one occurs as soon as the temperature grows beyond
Tc and reflects the rapid change in the threshold energy
visible in Fig. 2. After that, the smooth change in the
threshold energy and the reduction of the bound state
strength as T increases give rise to the moderate decrease
of GH=G

rec
H observed in Fig. 11.

In the scalar channel the situation is rather different: the
ratio calculated using the perturbative continuum grows
above one and then drops down, whereas in the case of the
potential model continuum it is always lower than one.
Both results are at variance with the lattice ones, where the
ratio is uniformly growing with �. The reason for the
different behavior employing either the perturbative or
the ‘‘interacting’’ continuum can be reconducted to the
presence, in the latter case, of a strong resonance just above
the threshold at T < Tc (see Fig. 9).

As one can see, differences in the outcome from the
different models employed here and in other works [46,49]
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can in general be understood in terms of differences in the
treatment of the continuum contribution to the spectral
functions (its form and/or the threshold energy). Hence,
the ratio GH=G

rec
H appears to be a sensitive observable in

discriminating among different models. However, so far no
model calculation has been able to reproduce the lattice
results for every channel.

In order to understand the reason for this discrepancy,
we display in Fig. 12 the spectral functions (divided by!2)
in the pseudoscalar and scalar channels at a fixed tempera-
ture. In the same plots we also show (dot-dashed lines) the
factors !2K��;!; T� by which the spectral function
�H�!; T�=!

2 should be multiplied in order to get the
integrand yielding the Euclidean correlator of Eq. (2).

The factors !2K��;!; T� are shown for two values of �,
namely, a small one—where the ratio GH=Grec

H goes to one
both in lattice measurements and in model calculations—
and a large one—where the effects of temperature on the
ratio are stronger.

As one can see from the figure, at small �’s the weighting
factor !2K is a rather smooth function covering a wide
range of energies and the corresponding correlator gives,
roughly speaking, a measure of the total strength associ-
ated to the spectral function. On the other hand, for large
values of � the weighting factor !2K is a rapidly dropping
function of the energy, selecting only the low energy part of
the spectral function (this is, of course, a nice feature for
discriminating among different models).

 

0.6

0.7

0.8

0.9

1

1.1
G

/G
re

c

0.90 Tc

1.10 Tc

1.40 Tc

2.00 Tc

0 0.1 0.2 0.3 0.4 0.5
τ (fm)

0.8

0.9

1

1.1

1.2

1.3

G
/G

re
c

0 0.1 0.2 0.3 0.4 0.5
τ (fm)

η
c

χ
c

FIG. 11. Ratio GH=G
rec
H for the pseudoscalar (upper panels) and scalar (lower panels) charmonium states (Nf � 2) at different

temperatures, using the reconstructed correlator at T � 0:75Tc, as a function of the Euclidean time �. In the left panels the continuum
part of the spectrum comes from the solution of the Schrödinger equation, in the right panels from the perturbative expression.

QUARKONIA IN THE DECONFINED PHASE: EFFECTIVE . . . PHYSICAL REVIEW D 75, 074009 (2007)

074009-13



The discrepancy with the lattice results can be under-
stood by comparing, e.g., Fig. 12 with Fig. 17 (pseudosca-
lar case) and Fig. 19 (scalar case) of Ref. [33]. In the
pseudoscalar case, at T � 2Tc no bound state is present
in our potential model calculation. The lattice estimates at
this temperature show a strong dependence upon the de-
fault model used to extract the spectral function, yielding
either a significant change with respect to T � 0 (see
Fig. 17 of Ref. [33]) or almost no temperature dependence.
In any case, the small reduction ( � 5%) observed in the
ratio of correlators is due to (moderate) differences be-
tween the T � 0 and T � 2Tc spectral functions at ener-
gies & 10 GeV, which are dominated by the lowest energy
peak visible in Fig. 17 of Ref. [33]. Our potential model
calculation (solid line in Fig. 12) also presents a peak (a
resonance in the continuum spectrum)—at variance with
the perturbative QCD spectrum (dashed line)—and this
explains the similar behavior ofGH=Grec

H in our calculation
and on the lattice.

In the scalar case, on the other hand, there are no
resonances in the potential model calculation and no
strength is present at low energy ( & 4 GeV)—whereas
some strength appears at low energy in the lattice result
(Fig. 19 of Ref. [33])—and this explains the different
behavior of GH=Grec

H for this channel in our calculation
and on the lattice.

We would like to stress that this explanation for the
discrepancy between potential model and lattice correla-
tors does not rely upon the MEM-based lattice spectral
functions, which have been used only to illustrate our
argument. For instance, the exact lattice spectral function
in the scalar channel at T � 1:16Tc may not have the form
of the MEM-based ones, but it must have, in the low energy

region, more strength than the T � 0 spectral function in
order to yield a correlator twice as large as the recon-
structed one (Fig. 11 of Ref. [33]).

This analysis—together with the direct comparison of
the lattice and potential model spectral functions done in
the previous section—shows that the discrepancies be-
tween the two approaches are mostly located in the con-
tinuum part of the Q �Q spectrum. Indeed, in this energy
domain, the lattice spectral functions (which provide use-
ful information on the properties of the ground state) suffer
strong limitations, due to the inability of resolving excited/
resonant states, the presence of unphysical peaks related to
lattice artifacts, and the bad asymptotic high energy be-
havior. Note, in particular, that the presence of unphysical
peaks is not related to the MEM procedure, since they
appear also in the infinite temperature limit [50]. Hence,
the ratioGH=Grec

H may not be a good candidate to check the
consistency of the two approaches (potential models vs
lattice studies).

IV. SUMMARY AND CONCLUSIONS

We have given a comprehensive treatment of quarkonia
at finite temperature, within the framework of a potential
model. We have constructed an effective Q �Q potential as a
linear combination of the finite temperature Q �Q internal
and free energies—in order to separate the genuine Q �Q
energy from the gluon and light quark contributions—and
we have used as input theQ �Q free energies obtained on the
lattice from Polyakov loop correlators.

The effective potential that we have obtained yields
dissociation temperatures for the c �c and b �b systems that
are in agreement with estimates based on independent
lattice studies of Euclidean correlators and spectral func-
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tions. Specifically, we have found that in the charmonium
system only the ground S-wave states (J= and�c) survive
up to � 1:5–1:6Tc, all the other states melting around the
critical temperature or below; in the bottomonium system,
again only the ground S-wave states (� and �b) survive
up to temperatures * 3Tc, while �b and �0 melt around
� 1:1–1:2Tc.

In order to gain deeper insight into the comparison of
results based upon the potential model and lattice studies,
we have also calculated the c �c and b �b spectral functions
over a wide range of temperatures. To test the model
dependence of the results, two models for the continuum
spectrum have been employed: one using the interacting
solution of the Schrödinger equation and one using the
perturbative QCD spectrum. The evolution with the tem-
perature of the mass of the bound states has been found in
good agreement with the lattice results, while the
T-dependence of the strength of the bound states agrees
only below Tc. Above Tc the lattice-based spectral func-
tions show little temperature dependence of the bound state
strength, whereas in the potential model—where the
strength is proportional to the coupling F2

H—the latter
drops almost linearly. On the other hand, the continuum
spectrum in the two approaches shows no resemblance at
any temperature.

We have also calculated in the potential model the Q �Q
Euclidean correlators, since these quantities are directly
measured on the lattice and are not affected by the uncer-
tainties inherent to the procedure of extraction of the lattice
spectral functions. We have found good agreement with the
lattice results in the pseudoscalar channel and not in the
scalar one: we have shown that the agreement or disagree-

ment between potential model and lattice in the correlators
is not driven by the bound state contributions, but by the
continuum spectrum. Since the latter is known to be
strongly affected by artifacts due to the finite size of the
lattice, the ratio of Euclidean correlators, GH=Grec

H , does
not appear to be appropriate for a test of potential models
vs lattice calculations.

At the present stage, the only substantial conflict be-
tween potential model and lattice predictions for quark-
onium properties at finite temperature seems to be in the
T-dependence of the bound state strength from the critical
temperature up to the melting point, i.e. a progressive drop
in the potential model and—presumably, since lattice
results are available only for a few temperatures—a rapid
change at the dissociation point in the spectral studies on
the lattice. Lattice results for the Q �Q spectral functions
above Tc, however, are still affected by uncertainties re-
lated to the MEM procedure and by large statistical errors
and new measurements with better statistics will probably
put this outcome on firmer grounds. On the other side, one
has to gain deeper insight into the connection of the
potential model with the underlying QCD at finite tem-
perature, not only to provide a solid and rigorous basis for
the model, but also in order to extend its applicability (e.g.,
by including an imaginary part to describe the thermal
broadening of the quarkonium states).
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