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We present the new analysis of the semileptonic B decays in the framework of the relativistic quark
model based on the quasipotential approach. Decays both to heavy D��� and light ���� mesons are
considered. All relativistic effects are systematically taken into account including contributions of the
negative-energy states and the wave function transformation from the rest to moving reference frame. For
heavy-to-heavy transitions the heavy quark expansion is applied. Leading and subleading Isgur-Wise
functions are determined as the overlap integrals of initial and final meson wave functions. For heavy-to-
light transitions the explicit relativistic expressions are used to determine the dependence of the form
factors on the momentum transfer squared. Such treatment significantly reduces theoretical uncertainties
and increases reliability of obtained predictions. All results for form factors, partial and total decay rates
agree well with recent experimental data and unquenched lattice calculations. From this comparison we
find the following values of the Cabibbo-Kobayashi-Maskawa matrix elements: jVcbj � �3:85� 0:15�
0:20� � 10�2 and jVubj � �3:82� 0:20� 0:20� � 10�3, where the first error is experimental and the
second one is theoretical.
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I. INTRODUCTION

The investigation of the semileptonic decays of heavy B
mesons is an important source for the determination of the
parameters of the standard model, such as Cabibbo-
Kobayashi-Maskawa (CKM) matrix elements Vcb and
Vub. They also provide valuable insight in quark dynamics
in the nonperturbative domain of QCD. Recently signifi-
cant experimental progress has been achieved in studying
exclusive semileptonic B decays (for a recent review see,
e.g., Ref. [1]). Very important information on both the
values of the total decay rates and the differential decay-
rate dependence on the momentum transfer is becoming
available. The experimental accuracy is constantly increas-
ing due to the large data accumulated at B factories. For
most decay modes experimental errors are comparable to
or already smaller than theoretical ones. Thus the accurate
extraction of the CKM matrix elements from the semi-
leptonic B decays requires an increase in the reliability and
precision of theoretical methods for determining weak
decay form factors. Main theoretical approaches for cal-
culating these form factors are lattice QCD, QCD sum
rules, and constituent quark models. Unfortunately, the
first two approaches are applicable only in limited regions:
lattice QCD gives reliable results for high values of the
square of momentum transfer from the parent to daughter
hadron q2, while QCD sum rules are suitable only for low
q2. Thus extrapolations for the full q2 region are at the
present inevitable in these methods. On the other hand,
quark models, which are not straightforwardly related to
QCD (at least this relation is not currently established),
allow to determine weak form factors in the whole kine-

matical range. To give a correct description of semileptonic
decays such models should consistently and comprehen-
sively account for relativistic effects and use the wave
functions which lead to correct meson masses. They should
also respect all the relations imposed by the symmetries of
the QCD Lagrangian arising in the heavy quark limit.

From a theoretical point of view the simplest semilep-
tonic B decays are heavy-to-heavy transitions such as B!
D���e�. The presence of the heavy quark both in the initial
and final mesons significantly simplifies the understanding
of such processes. The heavy quark limit mQ ! 1 is a
good initial approximation [2]. In this limit heavy quark
symmetry emerges substantially reducing the number of
independent characteristics which are necessary for the
description of heavy-light meson properties [3]. Mass
and spin decouple from the consideration and all meson
properties are determined by the light quark degrees of
freedom alone. This leads to symmetry relations between
form factors responsible for the heavy-to-heavy weak tran-
sitions. Thus one needs considerably less independent
functions. For the semileptonic B decay to the ground state
D��� meson all form factors can be expressed through one
Isgur-Wise function [2] which is normalized to 1 at the
point of zero recoil of the final meson. However, in reality
b and c quarks are not infinitely heavy and therefore the
corrections in inverse powers of the heavy quark mass mQ

(especially mc) are important. Heavy quark effective the-
ory (HQET) [4] is the adopted tool for a systematic expan-
sion of weak decay amplitudes in 1=mQ. The coefficients
in this expansion are functions of the velocity transfer in
the weak decay and do not depend on spin and flavor of the
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heavy quarks. These functions originate from the infrared
(nonperturbative) region of QCD and thus cannot be de-
termined from first principles of QCD at the present. It is
necessary to use some model assumptions in order to
calculate these functions. Note that notwithstanding heavy
quark symmetry violation already in the first order in
1=mQ, its remnants remain and thus HQET significantly
restricts the structure of 1=mQ corrections. E.g., in the first
order in 1=mQ for B decays to the ground stateD��� mesons
one mass parameter and four additional functions (two of
which are normalized at the zero recoil point) emerge
instead of 12 possible ones. This is the consequence of
QCD and heavy quark symmetry. Thus all models which
pretend to describe correctly weak heavy-to-heavy transi-
tions should satisfy HQET symmetry relations.

The theoretical description of exclusive semileptonic
heavy-to-light B decays, such as B! ����e�, represents
a more difficult task since the final meson contains light
quarks only. The expansion in inverse powers of the b
quark mass does not reduce the number of independent
form factors. Only relations between semileptonic and rare
radiative decays emerge in the heavy b quark limit. It is
important to note that in these decays the final light meson
has a large (compared to its mass) recoil momentum (en-
ergy) in the rest frame of the decaying B meson almost in
the whole kinematical range except the small region near
the point of zero recoil. The maximum value of recoil
momentum is of order of mb=2. Thus near this point one
can expand both in inverse powers of the heavy b quark
mass and large recoil momentum of the final light meson.
Such expansions lead to the so-called large-energy effec-
tive theory (LEET) [5], to a new symmetry, and as a result
to the form factor relations in the heavy quark and large
recoil limits [6,7]. Large values of the recoil momentum
require the completely relativistic treatment of the semi-
leptonic heavy-to-light B decays.

In our previous papers [8–10] we considered semilep-
tonic B decays to heavy D��� and light ���� mesons in the
framework of the relativistic quark model based on the
quasipotential approach. At that time taking into account
large experimental errors in the measured decay rates we
used the simple Gaussian parameterization for the meson
wave functions. Moreover, we calculated the heavy-to-
light decay form factors only at the point of maximum
recoil of the final light meson using an expansion both in
inverse powers of the heavy b quark and large recoil
momentum of the light meson. Then we employed a
Gaussian or pole parametrization of the form factors in
order to extrapolate them to the whole kinematical range.
Such substitutions and extrapolations induced significant
theoretical errors in the obtained results, but the accuracy
was sufficient compared to large experimental uncertain-
ties. Since then, as it has been already mentioned before,
the experimental accuracy improved significantly. The
main aim of this paper is to revise our previous consider-

ations of semileptonic B decays substantially increasing
the precision and reliability. This is achieved by using the
wave functions of the heavy B, D and light �, � mesons
which were obtained by calculating their mass spectra
[11,12]. The complete expressions for the heavy-to-light
decay form factors are used for calculations and the deter-
mination of their q2 dependence, thus avoiding ad hoc
parametrizations. In the following we concentrate on the
study of the relativistic effects and, for simplicity, neglect
short-distance radiative corrections [4] since their contri-
bution does not exceed the uncertainty of our calculations.

The paper is organized as follows. In Sec. II we briefly
describe our relativistic quark model. Then in Sec. III we
discuss the relativistic calculation of the decay matrix
element of the weak current between meson states in the
quasipotential approach. Special attention is devoted to the
contributions of the negative-energy states and the relativ-
istic transformation of the wave functions from the rest to
the moving reference frame. Semileptonic B decays toD���

mesons are considered in Sec. IV using the heavy quark
expansion in 1=mQ. Leading and subleading Isgur-Wise
functions are explicitly determined as the overlap integrals
of the initial and final meson wave functions. A compre-
hensive comparison with recent experimental data is given
and on this basis the value of the CKM matrix element
jVcbj is determined. In Sec. V semileptonic B decays to �
and � are investigated. The parametrization of the calcu-
lated form factors in the whole kinematical range is given.
Total and partial decay rates are compared with recent
measurements and the value of the CKM matrix element
jVubj is extracted. Section VI contains our conclusions.

II. RELATIVISTIC QUARK MODEL

In the quasipotential approach a meson is described by
the wave function of the bound quark-antiquark state,
which satisfies the quasipotential equation [13] of the
Schrödinger type [14]

 

�
b2�M�
2�R

�
p2

2�R

�
�M�p� �

Z d3q

�2��3
V�p;q;M��M�q�;

(1)

where the relativistic reduced mass is

 �R �
E1E2

E1 � E2
�
M4 � �m2

1 �m
2
2�

2

4M3 ; (2)

and E1, E2 are the center of mass energies on mass shell
given by

 E1 �
M2 �m2

2 �m
2
1

2M
; E2 �

M2 �m2
1 �m

2
2

2M
: (3)

Here M � E1 � E2 is the meson mass, m1;2 are the quark
masses, and p is their relative momentum. In the center of
mass system the relative momentum squared on mass shell
reads
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 b2�M� �
	M2 � �m1 �m2�

2
	M2 � �m1 �m2�
2


4M2 : (4)

The kernel V�p;q;M� in Eq. (1) is the quasipotential
operator of the quark-antiquark interaction. It is con-
structed with the help of the off-mass-shell scattering
amplitude, projected onto the positive energy states.
Constructing the quasipotential of the quark-antiquark in-
teraction, we have assumed that the effective interaction is
the sum of the usual one-gluon exchange term with the
mixture of long-range vector and scalar linear confining
potentials, where the vector confining potential contains
the Pauli interaction. The quasipotential is then defined by
[15]

 V�p;q;M� � �u1�p� �u2��p�V �p;q;M�u1�q�u2��q�; (5)

with

 V �p;q;M� � 4
3�sD���k��

�
1 �

�
2 � V

V
conf�k��

�
1 �2;�

� VSconf�k�;

where �s is the QCD coupling constant, D�� is the gluon
propagator in the Coulomb gauge

 D00�k� � �
4�

k2 ; Dij�k� � �
4�

k2

�
�ij �

kikj

k2

�
;

D0i � Di0 � 0;

(6)

and k � p� q; �� and u�p� are the Dirac matrices and
spinors

 u��p� �

��������������������
	�p� �m

2	�p�

s
1
�p

	�p��m

 !

�: (7)

Here � and 
� are the Pauli matrices and spinors; 	�p� �������������������
p2 �m2

p
. The effective long-range vector vertex is given

by

 ���k� � �� �
i�
2m

���k
�; (8)

where � is the Pauli interaction constant characterizing the
long-range anomalous chromomagnetic moment of
quarks. Vector and scalar confining potentials in the non-
relativistic limit reduce to

 VV�r� � �1� "��Ar� B�; VS�r� � "�Ar� B�; (9)

reproducing

 Vconf�r� � VS�r� � VV�r� � Ar� B; (10)

where " is the mixing coefficient.
The expression for the quasipotential of the heavy quar-

konia, expanded in v2=c2 without and with retardation
corrections to the confining potential, can be found in
Refs. [15,16], respectively. The structure of the spin-
dependent interaction is in agreement with the parametri-
zation of Eichten and Feinberg [17]. The quasipotential for

the heavy quark interaction with a light antiquark without
employing the nonrelativistic (v=c) expansion for the light
quark is given in Ref. [11]. All the parameters of our model
like quark masses, parameters of the linear confining po-
tential A and B, mixing coefficient ", and anomalous
chromomagnetic quark moment � are fixed from the analy-
sis of heavy quarkonium masses [15] and radiative decays
[18]. The quark masses mb � 4:88 GeV, mc � 1:55 GeV,
mu;d � 0:33 GeV and the parameters of the linear potential
A � 0:18 GeV2 and B � �0:30 GeV have usual values of
quark models. The value of the mixing coefficient of vector
and scalar confining potentials " � �1 has been deter-
mined from the consideration of the heavy quark expansion
for the semileptonic B! D decays [8] and charmonium
radiative decays [18]. Finally, the universal Pauli interac-
tion constant � � �1 has been fixed from the analysis of
the fine splitting of heavy quarkonia 3PJ- states [15]. Note
that the long-range magnetic contribution to the potential
in our model is proportional to (1� �) and thus vanishes
for the chosen value of � � �1. It has been known for a
long time that the correct reproduction of the spin-
dependent part of the quark-antiquark interaction requires
either assuming the scalar confinement or equivalently
introducing the Pauli interaction with � � �1 [15,16,19]
in the vector confinement.

III. MATRIX ELEMENTS OF THE WEAK
CURRENT FOR b! c; u TRANSITIONS

In order to calculate the exclusive semileptonic decay
rate of the B meson, it is necessary to determine the
corresponding matrix element of the weak current between
meson states. In the quasipotential approach, the matrix
element of the weak current JW� � �f���1� �5�b, associ-
ated with b! f (f � c or u) transition, between a B
meson with massMB and momentum pB and a final meson
F (F � D��� or ����) with mass MF and momentum pF
takes the form [20]

 hF�pF�jJ
W
� jB�pB�i �

Z d3pd3q

�2��6
��FpF �p����p;q��BpB�q�;

(11)

where ���p;q� is the two-particle vertex function and
�MpM are the meson �M � B;F� wave functions projected
onto the positive energy states of quarks and boosted to the
moving reference frame with momentum pM.

The contributions to � come from Figs. 1 and 2. The
leading order vertex function ��1� corresponds to the im-
pulse approximation, while the vertex function ��2� ac-
counts for contributions of the negative-energy states.
Note that the form of the relativistic corrections resulting
from the vertex function ��2� is explicitly dependent on the
Lorentz structure of the quark-antiquark interaction. In the
leading order of the heavy quark expansion (mb;c ! 1) for
B! D transitions only ��1� contributes, while ��2� con-
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tributes already at the subleading order. The vertex func-
tions look like

 ��1�� �p;q� � �uf�pf����1� �5�ub�qb��2��3��pq � qq�;

(12)

and
 

��2�� �p;q�� �uf�pf� �uq�pq�
�
�1��1��

5
1�

����b �k�
	b�k��	b�pq�

��0
1V �pq�qq��V �pq�qq�

�
����f �k

0�

	f�k
0��	f�qf�

�0
1�1��1��

5
1�

�
ub�qb�uq�qq�;

(13)

where the superscripts ‘‘(1)’’ and ‘‘(2)’’ correspond to
Figs. 1 and 2, k � pf ��; k0 � qb ��; � � pF � pB;

 �����p� �
	�p� � �m�0 � �0��p��

2	�p�
:

Here [20]

 pf;q � 	f;q�p�
pF
MF
�
X3

i�1

n�i��pF�pi;

qb;q � 	b;q�q�
pB
MB
�
X3

i�1

n�i��pB�qi;

and n�i� are three four-vectors given by

 n�i���p� �
�
pi

M
; �ij �

pipj

M�E�M�

�
; E �

�������������������
p2 �M2

q
:

It is important to note that the wave functions entering
the weak current matrix element (11) are not in the rest
frame in general. For example, in the B meson rest frame
(pB � 0), the final meson is moving with the recoil mo-
mentum �. The wave function of the moving meson �F�
is connected with the wave function in the rest frame
�F0 � �F by the transformation [20]

 �F��p� � D1=2
f �R

W
L�
�D1=2

q �RWL�
��F0�p�; (14)

where RW is the Wigner rotation, L� is the Lorentz boost
from the meson rest frame to a moving one, and the
rotation matrixD1=2�R� in spinor representation is given by

 

1 0
0 1

� �
D1=2
q;c �RWL�

� � S�1�pq;c�S���S�p�; (15)

where

 S�p� �

��������������������
	�p� �m

2m

s �
1�

�p
	�p� �m

�
is the usual Lorentz transformation matrix of the four-
spinor.

The general structure of the current matrix element (11)
is rather complicated, because it is necessary to integrate
both with respect to d3p and d3q. The �-function in the
expression (12) for the vertex function ��1� permits to
perform one of these integrations. As a result the contri-
bution of ��1� to the current matrix element has the usual
structure of an overlap integral of meson wave functions
and can be calculated exactly (without employing any
expansion) in the whole kinematical range, if the wave
functions of the initial and final mesons are known. The
situation with the contribution ��2� is different. Here, in-
stead of a �-function, we have a complicated structure,
containing the potential of the q �q-interaction in the meson.

It contains also the quark energies 	q�p� �
������������������
m2
q � p2

q
,

which explicitly depend on the relative quark momentum
p. The presence of such dependence does not permit one,
in the general case, to get rid of one of the integrations in
the contribution of ��2� to the matrix element (11).
Therefore, it is necessary to use some additional consid-
erations in order to simplify calculations. The main idea is
to expand the vertex function ��2�, given by (13), in such a
way that it will be possible to use the quasipotential Eq. (1)
in order to perform one of the integrations in the current
matrix element (11) and thus express this contribution to
the decay matrix element through the usual overlap integral
of meson wave functions. The realization of this strategy
differs for the cases of heavy-to-heavy and heavy-to-light
transitions.

IV. SEMILEPTONIC B MESON DECAYS TO D
MESONS

For the description of semileptonic B decays to ground
state D mesons (heavy-to-heavy transitions) it is conve-

 

b

q̄

B

c, q

q̄

F

W

b

q̄

B

c, q

q̄

F

W

FIG. 2. Vertex function ��2� taking the quark interaction into
account. Dashed lines correspond to the effective potential V in
(5). Bold lines denote the negative-energy part of the quark
propagator.

 

b

q̄

B

c, q

q̄

F

W

FIG. 1. Lowest order vertex function ��1� contributing to the
current matrix element (11).
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nient to use the HQET parametrization for the decay
matrix elements [4]:
 

hD�v0�j �c��bjB�v�i���������������
MDMB
p � h��v� v

0�� � h��v� v
0��;

hD�v0�j �c��b�5jB�v�i � 0;

hD��v0; 	�j �c��bjB�v�i����������������
MD�MB
p � ihV"

���	��v
0
v�;

hD��v0; 	�j �c���5bjB�v�i����������������
MD�MB
p � hA1

�w� 1�	��

� �hA2
v� � hA3

v0���	� � v�;

(16)

where v�v0� is the four-velocity of the B�D����meson, 	� is
the polarization vector of the final vector meson, and the
form factors hi are dimensionless functions of the product
of four-velocities

 w � v � v0 �
M2
B �M

2
D���
� q2

2MBMD���
;

and q � pB � pD��� is the momentum transfer from the
parent to daughter meson.

In HQET these form factors up to 1=mQ are given by [4]

 

h� � �� �"c � "b�	2
1 � 4�w� 1�
2 � 12
3
; h� � �"c � "b�	2�3 �
���
;

hV � �� "c	2
1 � 4
3 �
���
 � "b	2
1 � 4�w� 1�
2 � 12
3 �

���� 2�3
;

hA1
� �� "c

�
2
1 � 4
3 �

w� 1

w� 1
���
�
� "b

�
2
1 � 4�w� 1�
2 � 12
3 �

w� 1

w� 1
� ���� 2�3�

�
;

hA2
� "c

�
4
2 �

2

w� 1
� ���� �3�

�
;

hA3
� �� "c

�
2
1 � 4
2 � 4
3 �

w� 1

w� 1
����n� �

2

w� 1
�3

�
� "b	2
1 � 4�w� 1�
2 � 12
3 �

���� 2�3
:

(17)

The calculation of the weak transition B! D��� matrix
elements using the heavy quark expansion shows that all
model independent HQET relations are satisfied in our
model. In the limit of an infinitely heavy quark all form
factors are expressed through the Isgur-Wise function [2]

 h��w� � hA1
�w� � hA3

�w� � hV�w� � ��w�;

h��w� � hA2
�w� � 0:

(18)

In our model this function is given as the overlap integral of
meson wave functions [8]

 ��w� �

�������������
2

w� 1

s
lim
mQ!1

Z d3p

�2��3
��D

�
p� 2	q�p�

�

�������������
w� 1

w� 1

s
e�

�
�B�p�; (19)

where e� � �=
�������
�2
p

is the unit vector in the direction of
� � MDv0 �MBv. In order to fulfill the HQET relations
(17) in the first order of the heavy quark 1=mQ expansion it
is necessary to set �1� "��1� �� � 0, which leads to the
vanishing long-range chromomagnetic interaction. This
condition is satisfied by our choice of the anomalous
chromomagnetic quark moment � � �1. To fulfill the
HQET relations at second order in 1=mQ it is necessary
to set " � �1 [8]. This gives an additional justification,
based on the heavy quark symmetry and heavy quark
expansion in QCD, of the choice of the characteristic
parameters of our model. In the infinitely heavy quark
mass limit the wave functions of initial �B and final �D

heavy mesons coincide. As the result the HQET normal-
ization condition [4]

 ��1� � 1

is exactly reproduced. The first order Isgur-Wise functions
are given by [8]

 �3�w� � � ���mq�

�
1�

2

3

w� 1

w� 1

�
��w�;


1�w� � ��
w� 1

w� 1
��w�;


2�w� � �
1

32

��

w� 1
��w�;


3�w� �
1

16
��
w� 1

w� 1
��w�;

(20)

where the HQET parameter �� � M�mQ is equal to the
mean energy of a light quark in a heavy meson

 

�� � h"qi ’ 0:56 GeV:

The functions 
1 and 
3 explicitly satisfy normalization
conditions at the zero recoil point [21]

 
1�1� � 
3�1� � 0;

arising from vector current conservation.
In Figs. 3–5 we plot the Isgur-Wise functions calculated

with numerical wave functions determined in the process
of their mass calculations [11]. Near the zero recoil point of
the final meson w � 1 the Isgur-Wise function can be
written as
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 ��w� � 1� �2�w� 1� � c�w� 1�2 � � � � ; (21)

where �2 � �	d��w�=dw
w�1 ’ 1:04 is the slope and c �
�1=2�	d2��w�=d2w
w�1 ’ 1:36 is the curvature of the
Isgur-Wise function. The slope �2 can be compared to
the recent quenched lattice QCD evaluation [22]: �2 �
0:83�15�24

�11�22. Note that both the slope and curvature of the
calculated Isgur-Wise function satisfy all known lower
bounds (see Ref. [23] and references therein).

The differential semileptonic decay rate B! Dl �� for
the massless leptons is given by [4]

 

d�

dw
�

G2
F

48�3 jVcbj
2M3

D�w
2 � 1�3=2�MB �MD�

2F2
D�w�;

(22)

where GF is the Fermi constant, and the form factor FD�w�
is defined by

 FD�w� �
�
h��w� �

1� r
1� r

h��w�
�
; r �

MD

MB
: (23)

Near the zero recoil point the form factor FD�w� has the
following expansion

 FD�w� � FD�1�	1� �D�w� 1� � cD�w� 1�2 � � � �
;

(24)

where the value of FD�1�, calculated by using the unex-
panded in 1=mQ expressions (A1)–(A3) of Ref. [9], is
equal to

 FD�1� � 0:966: (25)

Quenched lattice QCD calculations [24] give the value
FD�1� � 1:058� 0:016� 0:03�0:014

�0:005, while Ref. [25] pre-
dicts FD�1� � 0:98� 0:07.

The slope of the form factor FD�w� at zero recoil w � 1
in our model

 �2
D � �

1

FD�w�
dFD�w�
dw

��������w�1
� 0:88; (26)

is in good agreement with experimental values �2
D �

0:76� 0:16� 0:08 [26] and �2
D � 0:69� 0:14 [27], ob-

tained by using the linear fit of the data. The curvature of
the form factor FD�w� is equal to cD � 	1=�2FD�1��
�
	d2FD�w�=d2w
w�1 ’ 0:75.

In Fig. 6 we compare the results of our model for the
product FD�w�jVcbj with the recent experimental data of
CLEO [26] and Belle [27]. It is seen that the form factor
FD�w� dependence onw in our model is in good agreement
with measurements. The combined fit of CLEO
(FD�1�jVcbj � 0:039� 0:002) and Belle (FD�1�jVcbj �
0:041� 0:003) data leads to the value of the product of
the form factor and CKM matrix element

 FD�1�jVcbj � 0:040� 0:002:
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FIG. 5 (color online). The first order functions �
2�w�= ��
(bold line) and 
3�w�= �� (solid line).
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FIG. 4 (color online). The first order functions �3�w�= �� (bold
line) and 
1�w�= �� (solid line).
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FIG. 6 (color online). Comparison of experimental data and
predictions of our model for the product FD�w�jVcbj. Dots
represent CLEO data [26] and diamonds show Belle data [27].
Solid lines are predictions of our model for jVcbj � 0:044, 0.039,
0.034 (from top to bottom, respectively).
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FIG. 3 (color online). The Isgur-Wise function ��w�.
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Using our prediction (25) for the form factor FD�1� we find
the value of CKM matrix element

 jVcbj � 0:0415� 0:0020: (27)

The differential semileptonic decay rate B! D�l �� is
defined by [4]

 

d�

dw
�

G2
F

48�3 jVcbj
2�MB �MD� �

2M3
D�

������������������
�w2 � 1�

q
�w� 1�2

�

�
1�

4w
w� 1

1� 2wr� � r�2

�1� r��2

�
F2
D� �w�;

r� �
MD�

MB
; (28)

where the form factor FD� �w� is given by

 FD� �w� � hA1
�w�

�������������������������������������������������������
~H2
��w� � ~H2

��w� � ~H2
0�w�

1� 4w
w�1

1�2wr��r�2

�1�r��2

vuut : (29)

The helicity amplitudes ~Hj�w�

 

~H ��w� �

��������������������������������
1� 2wr� � r�2
p

1� r�

�
1

�������������
w� 1

w� 1

s
R1�w�

�
;

~H0�w� � 1�
w� 1

1� r�
	1� R2�w�
r

(30)

are expressed through form factor ratios

 R1�w� �
hV�w�
hA1
�w�

; R2�w� �
hA3
�w� � r�hA2

�w�

hA1
�w�

:

(31)

In the limit mQ ! 1, R1 � R2 � 1 due to spin-flavor
symmetry [4]. Taking into account of 1=mQ corrections
breaks down this symmetry relation. In our model using
unexpanded in 1=mQ formulas for the form factors [9] we
get the following expressions near the zero recoil point
w � 1

 

hA1
�w� � 0:918	1� 0:86�w� 1� � 0:72�w� 1�2� �� �
;

FD� �w� � 0:918	1� 0:66�w� 1� � 0:17�w� 1�2� �� �
;

R1�w� � 1:39� 0:23�w� 1� � 0:21�w� 1�2� �� � ;

R2�w� � 0:92� 0:12�w� 1� � 0:07�w� 1�2� �� � : (32)

It is necessary to note that the behavior of the form factor
hA1
�w� predicted by our model agrees, in general, with the

parametrization [28] in the whole kinematical range. On
the other hand, the expansion of the form factor ratios R1

and R2 is close to the QCD sum rule results [4]. Lattice
QCD calculation [29] gives the value of hA1

�1� �
0:9130�0:0238�0:0171

�0:0173�0:0302. Our result for the difference of the
slope parameters

 �2
A1
� �2

D� � 0:20

is in agreement with previous calculations 0.21 [25] and
0.17 [30]. Comparing Eqs. (26) and (32) we find the value
of the slope difference

 �2
A1
� �2

D � �0:02;

which coincides with the one found in Ref. [30].
In Table I we give our predictions for R1�1�, R2�1� and

for the slope of the form factor hA1
and available experi-

mental data [31–34]. Our results for R1 and R2 agree well
with the data. The calculated slope �2

hA1
is within experi-

mental error bars for the values obtained by using a linear
fit. Comparison of our predictions for the product
FD� �w�jVcbj with the experimental data from CLEO [31],
Belle [33], and BABAR [32] is given in Fig. 7. In general
there is good agreement between the calculated form factor
behavior and available experimental data. The values of the
productFD� �1�jVcbj, obtained by using our form factors are
compared in Table I with the ones based on the parame-
trization of the form factor hA1

from Ref. [28]. Our model
leads to the values of the product FD� �1�jVcbj approxi-
mately 10%–15% lower than the values obtained using
the parametrization [28]. A combined fit of all above
mentioned experimental data in the framework of our
model gives

TABLE I. Comparison of our model predictions for the ratios R1�1�, R2�1�, the slope of the form factor hA1
for w � 1, and values of

the product FD� �1�jVcbj with experimental data.

Our CLEO [31] BABAR [32] Belle [33] DELPHI [34]

R1 1.39 1.18(30)(12) 1.396(60)(44)
R2 0.92 0.71(22)(7) 0.885(40)(26)
�2
hA1

0.86 n 0.91(15)(6)a n 0.79(6)a n 0.81(12)a 1.39(10)(33)b

1.61(9)(21)b 1.145(59)(46)b 1.35(17)b

FD� jVcbj 0.0343(12) n 0.0360(20)c n 0.0328(5)c n 0.0315(12)c 0.0377(11)(19)b

0.0431(13)(18)b 0.0376(3)(16)b 0.0354(19)(18)b

aLinear fit of experimental data.
bFit using the form factor hA1

parametrization [28].
cFit using form factor predictions of our model.
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 FD� �1�jVcbj � 0:0343� 0:012:

Using our value of FD� �1� � hA1
�1� � 0:918 (see (32)) we

get

 jVcbj � 0:0375� 0:0015: (33)

The theoretical results for the ratios R1�1�, R2�1� and their
derivatives R01�1�, R

0
2�1� are confronted in Table II. In

general there is a reasonable agreement both for the form
factor ratios and their slopes. Our values are very close to
the ones found using HQET and QCD sum rules [4].

By integrating the expressions for the differential decay
rates (22) and (28), we get predictions for the total decay
rates in our model

 ��B! Dl�� � 9:48jVcbj
2 ps�1;

��B! D�l�� � 24:9jVcbj2 ps�1:
(34)

Taking mean values of lifetimes [37]: �B0 � 1:530�
10�12 s and �B� � 1:671� 10�12 s, we find

 BR �B0 ! D�l��� � 14:5jVcbj
2;

BR�B� ! D0l��� � 15:8jVcbj2;

BR�B0 ! D��l��� � 38:0jVcbj
2;

BR�B� ! D�0l��� � 41:3jVcbj2:

(35)

The comparison of theoretical and experimental branching
ratios [37] leads to the following values of the CKM matrix
element jVcbj:
 

BR�B0 ! D�l���exp � 0:0214� 0:0020

jVcbj � 0:038� 0:002;

BR�B� ! D0l���exp � 0:0215� 0:0022

jVcbj � 0:037� 0:002;

BR�B0 ! D��l���exp � 0:0544� 0:0023

jVcbj � 0:038� 0:001;

BR�B� ! D�0l���exp � 0:065� 0:005

jVcbj � 0:040� 0:002;

(36)

which are in good agreement with each other and with
values (27) and (33), found from the form factor analysis.
Thus the averaged jVcbj over all presented experimental
measurements of semileptonic decays B! De� and B!
D�e� is equal to

 jVcbj � 0:0385� 0:0015 (37)

in good agreement with PDG [37]

 jVcbj � 0:0409� 0:0018 �exclusive�:

V. SEMILEPTONICBDECAYS TO LIGHT MESONS

The matrix elements of weak current JW governing the
weak B decays to the light pseudoscalar meson (P � �) is
parametrized by two invariant form factors. It is convenient
to use the following decomposition:
 

hP�pF�j �q��bjB�pB�i � f��q2�

�
p�B �p

�
F �

M2
B�M

2
P

q2 q�
�

�f0�q
2�
M2
B�M

2
P

q2 q�; (38)

where q � pB � pF; MB is the B meson and MP is the
final pseudoscalar meson mass.

The corresponding matrix elements for the weak B
decays to the light vector meson (V � �) can be parame-
trized by four form factors:

 hV�pF�j �q��bjB�pB�i �
2iV�q2�

MB �MV
	����	��pB�pF�;

(39)

TABLE II. Comparison of theoretical predictions for the ratios
R1�1�, R2�1�, and their derivatives R01�1�, R

0
2�1�.

Ref. R1�1� R01�1� R2�1� R02�1�

Our 1.39 �0:23 0.92 0.12
[30] 1.25 �0:10 0.81 0.11
[25] 1.27 �0:12 0.80 0.11
[4] 1.35 �0:22 0.79 0.15
[35] 1.15 0.94
[36] 1.01(2) 1.04(1)
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FIG. 7 (color online). Comparison of experimental data and
predictions of our model for the product FD� �w�jVcbj. Dots show
CLEO data for B� ! D�0l��, triangles—CLEO data for B0 !
D��l�� [31], diamonds—Belle data [33], squares—BABAR
data [32]. Solid lines show predictions of our model for jVcbj �
0:044, 0.039, 0.034 (from top to bottom, respectively).
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hV�pF�j �q���5bjB�pB�i � 2MVA0�q2�
	� � q

q2 q�

� �MB �MV�A1�q2�

�

�
	�� �

	� � q

q2 q�
�

� A2�q
2�

	� � q
MB �MV

�

�
p�B � p

�
F �

M2
B �M

2
V

q2 q�
�
;

(40)

where MV and 	� are the mass and polarization vector of
the final vector meson. At the maximum recoil point (q2 �
0) these form factors satisfy the relations:

 f��0� � f0�0�;

A0�0� �
MB �MV

2MV
A1�0� �

MB �MV

2MV
A2�0�:

For massless leptons form factors f0 and A0 do not con-
tribute to the semileptonic decay rates. However they give
contributions to the nonleptonic decay rates in the factori-
zation approximation. Note that this parametrization is
completely equivalent to the one of HQET (16), and cor-
responding form factors can be easily expressed through
each other.

In this section we calculate semileptonic decay rates of
the heavy B meson into light meson, B! ����e�. The
final meson in these decays contains light quarks �u; d; s�
only, thus in contrast to decays to heavy D mesons, con-
sidered previously, the application of the expansion in
inverse powers of the final active quark is not justified.
The calculation of the contribution of the vertex function
��1� (12) to the decay matrix element of the weak current
(11) can, as it was already in detail discussed above, be
carried out exactly, due to the presence of �-function, and
does not require any expansion. The calculation of the
contribution ��2� is significantly more difficult, since the
expansion only in inverse powers of the heavy b-quark
mass from the initial B meson retains the dependence on
the relative momentum in the energy of the final light
quark. Such dependence does not allow one to perform
one of the integrals in the decay matrix element (11) using
the quasipotential equation. However the final light meson
has a large (compared to its mass) recoil momentum (� �
pF � pB, j�maxj � �M2

B �M
2
F�=�2MB� � MB=2�

2:6 GeV) almost in the whole kinematical range except
the small region near q2 � q2

max (j�j � 0). This also
means that the recoil momentum of the final meson is large
with respect to the mean relative quark momentum jpj in
the meson (� 0:5 GeV). Thus one can neglect jpj com-

pared to j�j in the final light quark energy 	q�p� �� ���������������������������������
m2
q � �p���2

q
, replacing it by 	q��� �

�������������������
m2
q ��2

q
in

expressions for the ��2� contribution in accord with the
large-energy expansion (see Introduction). This replace-
ment removes the relative momentum dependence in the
energy of the light quark and thus permits to perform one
of the integrations in the ��2� contribution using the quasi-
potential equation. Note that the relatively small value of
this contribution, related to its proportionality to the bind-
ing energy in the meson, and its predictable momentum
dependence allow us to extrapolate it to the whole kine-
matical range. The numerical analysis (see below) shows
that such extrapolation induces insignificant uncertainties
in the final results for decay rates.

It is convenient to consider semileptonic decays B!
��;��e� in the Bmeson rest frame. Then calculating decay
matrix elements it is necessary to take into account the
relativistic transformation (14) of the final meson wave
function from the rest frame to the moving one with the
momentum �. Applying the method described above, we
find expressions for the decay matrix element and deter-
mine the corresponding form factors. They have the fol-
lowing structure:

(a) B! � transitions

 f��q2� � f�1�� �q
2� � "fS�2�� �q

2� � �1� "�fV�2�� �q2�;

(41)

 f0�q2� � f�1�0 �q
2� � "fS�2�0 �q2� � �1� "�fV�2�0 �q2�;

(42)

(b) B! � transitions

 V�q2� � V�1��q2� � "VS�2��q2� � �1� "�VV�2��q2�;

(43)

 A1�q
2� � A�1�1 �q

2� � "AS�2�1 �q2� � �1� "�AV�2�1 �q2�;

(44)

 A2�q
2� � A�1�2 �q

2� � "AS�2�2 �q2� � �1� "�AV�2�2 �q2�;

(45)

 A0�q2� � A�1�0 �q
2� � "AS�2�0 �q2� � �1� "�AV�2�0 �q2�;

(46)

where expressions for f�1��;0, fS;V�2��;0 , A�1�0;1;2, AS;V�2�0;1;2 , V�1�, and
VS;V�2� are rather cumbersome and can be found in the
appendix to Ref. [10]. The subscripts ‘‘(1)’’ and ‘‘(2)’’
correspond to Figs. 1 and 2, S and V denote scalar and
vector potentials of the q �q-interaction. Let us remind that
the mixing coefficient " of vector and scalar confining
potentials is equal to �1 in our model. Note that form
factors (41)–(46) in the limit of the infinitely heavy b quark
mass and large recoil of the final light meson explicitly
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satisfy all symmetry relations [6,7] imposed by the large-
energy effective theory.

In order to increase the precision and reliability of our
calculations compared to our previous consideration [10]
we do not perform a further expansion of form factors in
inverse powers of the heavy quark mass. Moreover, the q2

dependence of form factors is explicitly determined by
these formulas and thus no ad hoc parametrization is
necessary. We also use the numerical wave functions found
in the meson mass spectrum calculations [11,12] instead of
trial (Gaussian) wave functions used in Ref. [10]. To check
the precision of the extrapolation of the form factors in the
region of small recoil of the final light meson (� � 0,
q2 � q2

max) we perform the additional consideration of
form factors in this region. In this analysis the simplifying

substitution of the light quark energy 	q�p� �
������������������
p2 �m2

q

q
by the on-shell center of mass energy Eq � �M2 �m2

Q �

m2
q�=�2M� (3) in the contribution of the vertex function ��2�

is used. Such a replacement is valid in the small region
around the zero recoil point. As a result in this point one
gets expressions for the form factors similar to the formu-
las given in the appendix of Ref. [38] with obvious sub-
stitutions. Such calculation showed that the obtained
values of form factors for semileptonic decays B!
��;��e� as well as their slopes at zero recoil q2 � q2

max

are in good agreement with the results found from the
extrapolation of Eqs. (41)–(46). The deviations are less
than 1% confirming the reliability of such extrapolation
and of final results which are based on it.

The semileptonic B! ��;��e� decay form factors in
our model can be approximated with good accuracy by the
following expressions [35]:

(a) F�q2� � f��q
2�, V�q2�, A0�q

2�

 F�q2� �
F�0�

�1� q2

~M2��1� �1
q2

M2
B�
� �2

q4

M4
B�
�
; (47)

(b) F�q2� � A1�q
2�, A2�q

2�

 F�q2� �
F�0�

�1� �1
q2

M2
B�
� �2

q4

M4
B�
�
; (48)

where ~M � MB for A0 and ~M � MB� for all other form
factors; the values F�0� and �1;2 are given in Table III. The
difference of fitted form factors from the calculated ones
does not exceed 1%.

In Table IV we give a comparison of the predictions for
the form factors of semileptonic decays B! ��;��e� at
maximum recoil point q2 � 0, calculated in our model
with the results of light cone QCD sum rules (LCSR)
[39– 41], the quark model (QM) [35], using relativistic
dispersion relations and two recent lattice QCD (LQCD)
calculations [42,43] with dynamical light quarks. Note that

our new results for form factors at this point coincide with
previous calculations [10] within errors caused by the
Gaussian parametrization of the heavy-light meson wave
functions used in Ref. [10]. In Ref. [44] a model indepen-
dent constraint for the product jVubjf��0� � �7:2� 1:8� �
10�4 was obtained using the soft-collinear effective theory
and B! �� data, which for their final value of jVubj
yields f��0� � 0:227� 0:047.

The q2 form factor dependence is plotted in Figs. 8 and
9. In Fig. 8 we also show recent lattice results for the form
factors f��q2� and f0�q

2� [42,43]. It is clearly seen from
this figure that the behavior of the form factor f��q2�
agrees with lattice computations within errors, while our
form factor f0�q

2� lies somewhat lower than lattice data. In
this figure we also show the LCSR result for the value of
form factors at q2 � 0 [39]. It agrees with our model
prediction within errors.

We can also check the consistency of the obtained q2

behavior of the form factor f� by comparing its calculated
value at q2

max with model independent results of chiral
perturbation theory (ChPT). For the pion recoil energy
E� �m� ChPT predicts [44]

 f��q2�E��� �
gfBMB

2f��E� �MB� �MB�

�
1�O

�
E�
�

��
;

(49)

where g� 0:5 is B�B� coupling [44], the decay constant
fB is equal to 189 MeV in our model [45]. The first
corrections scale as E�=�, where �� 600 MeV is the
mass splitting to the first radially excited 1� state above
the B�. Substituting these values one gets the following
prediction [44]

 f��q2
max� � 10:38� 3:63; (50)

which is in agreement with our model result f��q2
max� �

10:9.
On the other hand, the form factor f0 in the soft-pion

limit p! 0 and m2
� ! 0 is related to the ratio of the B and

� decay constants [39,46]

 f0�q
2
max� �

fB
f�
: (51)

This relation with the above values of the decay constants

TABLE III. Form factors of semileptonic decays B!
��; ��e� calculated in our model. Form factors f��q2�, V�q2�,
A0�q

2� are fitted by Eq. (47), and form factors A1�q
2�, A2�q

2� are
fitted by Eq. (48).

B! � B! �
f� f0 V A0 A1 A2

F�0� 0.217 0.217 0.295 0.231 0.269 0.282
�1 0.378 �0:501 0.875 0.796 0.54 1.34
�2 �0:41 �1:50 0 �0:055 0 0.21
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gives the result f0�q
2
max� � 1:45 again in good agreement

with the prediction of our model f0�q
2
max� � 1:36.

The differential semileptonic decay rates can be ex-
pressed in terms of these form factors by

(i) B! Pe� decay (P � �)

 

d�

dq2 �B! Pe�� �
G2
F�3jVqbj2

24�3 jf��q
2�j2: (52)

(ii) B! Ve� decay (V � �)

 

d�

dq2 �B! Ve�� �
G2
F�jVqbj2

96�3

q2

M2
B

�jH��q
2�j2

� jH��q
2�j2 � jH0�q

2�j2�; (53)

where GF is the Fermi constant, Vqb is the CKM matrix
element (q � u),

 � � j�j �

����������������������������������������������������������
�M2

B �M
2
P;V � q

2�2

4M2
B

�M2
P;V

vuut :

Helicity amplitudes are given by the following expressions

 H��q
2� �

2MB�

MB �MV

�
V�q2� 

�MB �MV�
2

2MB�
A1�q

2�

�
;

(54)

 

H0�q2� �
1

2MV

�����
q2

p �
�MB �MV��M2

B �M
2
V � q

2�A1�q2�

�
4M2

B�2

MB �MV
A2�q2�

�
: (55)

The decay rates in transversally and longitudinally po-
larized vector mesons are defined by

 

d�L
dq2 �

G2
F�jVqbj

2

96�3

q2

M2
B

jH0�q
2�j2; (56)
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FIG. 9 (color online). Form factors of the semileptonic decay
B! �e�: V�q2� is plotted by the solid line, A1�q2�—by the bold
line, A2�q

2�—by dashed line, and A0�q
2�—by long-dashed line.

 

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

q2

FIG. 8 (color online). Form factors of the semileptonic decay
B! �e� in comparison with lattice calculations: f��q2� is
given by the upper plot (our), squares (FNAL) [42], diamonds
(HPQCD) [43]; f0�q

2� is given by the lower plot (our), stars
(FNAL) [42], triangles (HPQCD) [43]. The LCSR value for from
factors at q2 � 0 is plotted by a circle [39].

TABLE IV. Comparison of theoretical predictions for the form factors of semileptonic decays
B! ��;��e� at maximum recoil point q2 � 0.

f��0� V�0� A0�0� A1�0� A2�0�

Our 0.217 0.295 0.231 0.269 0.282
LCSR [39,40] 0.258(31) 0.323(29) 0.303(28) 0.242(24) 0.221(23)
LCSR [41] 0.25(5) 0.32(10) 0.24(8) 0.21(9)
QM [35] 0.29 0.31 0.29 0.26 0.24
QM [10] 0.20(2) 0.29(3) 0.26(3) 0.31(3)
LQCD(FNAL)[42] 0.23(2)
LQCD(HPQCD)[43] 0.27(5)
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d�T
dq2 �

d��
dq2 �

d��
dq2

�
G2
F�jVqbj2

96�3

q2

M2
B

�jH��q
2�j2 � jH��q

2�j2�: (57)

Integration over q2 of these formulas gives the total rate of
the corresponding semileptonic decay. These rates are
presented in Table V. In this table we also give the values
of the partial decay rates integrated over two intervals q2 <
16 GeV2 and q2 > 16 GeV2 in comparison with the evalu-
ations of LCSR in the first interval and LQCD in the second
interval [47]. This is related to the fact that the predictions
of these approaches are reliable only in the above men-
tioned regions. The results presented in Table V show that
our calculations agree well with the lattice evaluations,
while our values are somewhat lower than LCSR ones
which have relatively large errors. Note that our model
gives the ratio of semileptonic B decay rates into � meson
with longitudinal polarization to the corresponding rate
with transverse polarization �L=�T � 0:46.

Using mean lifetimes of B mesons [37]: �B0 � 1:530�
10�12 s and �B� � 1:671� 10�12 s, we find

 BR �B0 ! ��l��� � 8:34jVubj2;

BR�B� ! �0l��� � 4:47jVubj
2;

BR�B0 ! ��l��� � 20:1jVubj2;

BR�B� ! �0l��� � 10:7jVubj2:

(58)

Comparison of these predictions with experimental data
[37] leads to the following values of jVubj:
 

BR�B0 ! ��l���exp � �1:36� 0:15� � 10�4

jVubj � �4:04� 0:25� � 10�3;

BR�B� ! �0l���exp � �7:4� 1:1� � 10�4

jVubj � �4:07� 0:30� � 10�3;

BR�B0 ! ��l���exp � �2:3� 0:4� � 10�4

jVubj � �3:38� 0:30� � 10�3;

BR�B� ! �0l���exp � �1:24� 0:23� � 10�4

jVubj � �3:39� 0:33� � 10�3:

(59)

Decays of the neutral and charged B mesons give very
close results for jVubj, while the averaged values of jVubj,
extracted form the decay B! �e� are approximately 16%
lower than corresponding values, found from the decay

B! �e�. Note that the recent CLEO [48] measurement of
the decay branching ratio BR�B0 ! ��l���exp � �2:91�
0:54� � 10�4 gives jVubj � �3:81� 0:35� � 10�3 which
is close to the one extracted from the B! �e� decay.

Recently significant progress has been achieved in the
experimental determination of the differential decay B!
��;��e� rate dependence on q2. CLEO [48,49], BABAR
[50–52], and Belle [53] measured partial decay rates in
relatively narrow intervals of q2. In Figs. 10 and 11 we
present the comparison of our model predictions for partial
branching ratios of B! ��;��e� decays with experimen-
tal data. Plotting histograms in Figs. 10(a)–10(c), 11(a),
and 11(b) we used the value of jVubj, extracted from the
total rate in the corresponding experiments. It is clearly
seen that our predictions agree well with almost all data for
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FIG. 10 (color online). Comparison of theoretical predictions
for partial decay rates with experimental data: (a)–
(c) �1=�tot��

R
�q2 �d��B! �e��=dq2�dq2� � 104 from

Refs. [48,50,53]; (d), (e) �BR�B! �e��=BR�B! �e�� from
Refs. [51,52], respectively. Lower histograms on (a), (b) and
diamonds are theoretical and experimental values for decays of
the charged B meson B� ! �0e��. All other histograms and
squares are theoretical predictions and experimental data for
decays of the neutral B meson B0 ! ��e��.

TABLE V. Comparison of theoretical predictions for the rates of semileptonic decays B! ��; ��e� (in jVubj2 ps�1).

� �q
2<16 GeV2

�q
2>16 GeV2

Decay Our LCSR FNAL HPQCD Our LCSR Our FNAL HPQCD
[39] [42] [43] [39] [42] [43]

B! �e� 5.45 7.74(2.32) 6.24(2.12) 6.03(1.94) 3.68 5.44(1.43) 1.77 1.83(50) 1.46(35)
B! �e� 13.1 10.5 2.60
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decays of neutral as well as charged Bmesons. Using these
experimental data on partial and total semileptonic B!
��;��e� decay rates it is possible to extract averaged
values of jVubj:

 B! �e� jVubj � �4:02� 0:10� � 10�3;

B! �e� jVubj � �3:33� 0:20� � 10�3;
(60)

which are in good agreement with the ones, extracted from
averaged total decay rates (59).

Finally, averaging over all above mentioned experimen-
tal data we get the value of jVubj in our model

 jVubj � �3:82� 0:20� � 10�3 (61)

in good agreement with PDG [37]

 jVubj � �3:84�0:67
�0:49� � 10�3 �exclusive�:

VI. CONCLUSION

We calculated weak decay form factors and decay rates
of different semileptonic B decays. Decays both into heavy
D��� and light ���� mesons were considered.

First, it was shown that our relativistic quark model
gives a reliable description of the heavy-to-heavy semi-
leptonic transitions B! D���l�. All model independent
HQET relations are reproduced. The model allows to ex-
press corresponding leading and subleading order Isgur-
Wise functions through overlap integrals of meson wave
functions. These wave functions were determined previ-
ously in the process of the meson mass spectrum calcula-

tions. From the comparison with the experiment and
predictions of other theoretical approaches it follows that
our model correctly reproduces the q2 behavior of form
factors. Calculated decay rates and branching fractions are
in good agreement with data and give very close values of
the CKM matrix element jVcbj extracted from different
decay processes.

Second, the form factors of the heavy-to-light semilep-
tonic B decays were calculated. The consideration was
done with the systematic treatment of all relativistic ef-
fects, which are very important for such transitions.
Particular attention was paid to the inclusion of negative-
energy contributions and to the relativistic transformation
of the meson wave function from the rest to the moving
reference frame. The q2 dependence of the form factors
was explicitly determined without using any ad hoc as-
sumptions. The validity of the form factor extrapolation,
which is necessary only within the small region near the
point of zero recoil of the final light meson, was cross-
checked by an additional calculation of the form factor
values in this particular point. The decay form factors are
again given by the overlap integrals of the B and �, �
meson wave functions, which are known from the previous
calculations of the meson mass spectra. The q2 behavior of
the form factors is in agreement with both unquenched
lattice QCD calculations and predictions of light cone
QCD sum rules within the ranges of the validity of these
approaches. All this significantly improves the reliability
of the obtained results. The comprehensive comparison of
the predictions with recent experimental data both on total
and partial decay rates allowed the extractions of the CKM
matrix element jVubj which values are rather close in
different decay channels.

The evaluation of the theoretical uncertainties represents
an important problem. Unfortunately, it is not easy to
estimate them in the framework of the adopted approach.
The theoretical errors within the model, which come from
the neglected higher order terms in the 1=mQ expansion for
heavy-to-heavy transitions and from the form factor ex-
trapolation in the region of zero recoil for heavy-to-light
transitions, can be easily estimated and are less than 3%.
The main difficulty is related to the uncertainty of the
quark model itself. However, our previous experience in
calculating a vast set of different properties of hadrons
within our model indicates that such uncertainties should
not exceed 5%.1 Therefore, adding these errors in quad-
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FIG. 11 (color online). Comparison of theoretical predictions
for partial decay rates with experimental data: (a),
(b) �1=�tot��

R
�q2 �d��B! �e��=dq2�dq2� � 104 from

Refs. [49,53]; (c) �BR�B! �e��=BR�B! �e�� from
Ref. [51], respectively. Lower histograms on (b) and diamonds
are theoretical and experimental values for decays of the charged
B meson B� ! �0e��. All other histograms and squares are
theoretical predictions and experimental data for decays of the
neutral B meson B0 ! ��e��.

1The model parameters were fixed in previous studies through
fitting the experimental data. The integrated quantities such as
semileptonic decay rates are much less sensitive to the variation
of the model parameters than such quantities as hadron masses
which are measured with considerably higher accuracy. Thus
even the limited variation of these parameters, permitted by the
description of hadron masses, will give significantly smaller
contributions to the decay-rate and CKM matrix-element un-
certainties compared to the ones mentioned above.
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rature we find for the CKM matrix elements the following
final values in our model:

 jVcbj � �3:85� 0:15� 0:20� � 10�2;

jVubj � �3:82� 0:20� 0:20� � 10�3;
(62)

where the first error is experimental and the second one is
theoretical. Since the presented determination of jVcbj and
jVubj is model dependent we do not pretend that this

determination is more reliable than others (e.g. the lattice
one or from QCD sum rules).
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