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Time-odd parton distribution functions in a Drell-Yan process are here studied by examining the
evolution of the internal statistical properties of the interacting hadrons. Time-odd functions are shown to
be a signature of the irreversible process in which a hadronic state characterized by long range correlation
properties (hadronic phase) decays to produce a cloud of independent partons (partonic phase) because of
initial/final state interactions. The relevant considered variable is the rate of increase of the entropy of the
hadronic system. This quantity is shown to be roughly equal to the decay rate of the hadronic state.
Conditions for getting a leading twist time-odd effect are established on this basis. Last, the relevant case
of a large entropy increase associated with transverse-dominated initial/final state interactions is analyzed.
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I. INTRODUCTION

The field of time-reversal odd (T-odd) distribution func-
tions in high-energy hadronic physics has known a rich
development in the last years, and these distributions
have become an essential tool in the interpretation of the
phenomenology of transverse spin and azimuthal asymme-
tries in high-energy physics, and in the design of new
experiments.

In the framework of QCD factorization the existence
was predicted long ago [1,2] of twist-3 T-odd effects. The
first T-odd leading twist distribution function was the
Sivers function [3] in 1990, followed by the Boer-
Mulders-Tangerman (BMT) function [4–6]. The Sivers
function was used to explain single spin asymmetries [7],
the BMT function to explain unpolarized Drell-Yan azi-
muthal asymmetries [6]. These phenomena could also be
interpreted via soft mechanisms [8], despite still according
with schemes that may be (qualitatively) considered
‘‘T-odd.’’ It has been recently shown [9] that in processes
like Drell-Yan where the scale of the transverse momentum
qT is independent from the hard scale Q, the twist-3 T-odd
structures predicted in [1,2] are not Q-suppressed at finite
qT , and they essentially coincide with the above quoted
leading twist T-odd distributions. That work also shows
that the details of the initial state may be of secondary
relevance when the problem of producing leading twist
T-odd distributions is addressed.

A time-reversal odd structure function, the so-called
‘‘fifth structure function,’’ was also long ago introduced
[10] and more recently modeled [11,12] in nuclear physics
to describe normal asymmetries in A�e; e0p��A� 1� quasi-
elastic scattering (for reviews see [13]). It was known [10]
that this structure function could exist in the presence of
final state interactions only, at the point that its vanishing
was suggested [11] as an experimental signature for the

onset of color transparency. The generalization of nuclear
physics experience to high-energy hadronic physics cannot
be complete for the absence of a factorization framework
in the former case. One interesting and perhaps more
general point, however, is that, although the phenomenol-
ogy of the fifth structure function is strictly related with
spin asymmetries, models for it [11,12] do not need to
involve spin-dependent interactions. Rather, the key point
is in particle flux absorption.

In QCD, leading twist T-odd distribution functions were
initially considered forbidden [14] by general invariance
principles. After an explicit mechanism was shown to
produce a nonzero T-odd distribution in a QCD framework
[15], the existence problem was systematically fixed in
Ref. [16], where Collins observed that the presence of a
link operator necessary to restore gauge invariance for the
two-point correlation function allowed for nonvanishing
T-odd distributions in QCD. These and other works [17,18]
also give conditions for having leading twist effects in
kT-dependent T-odd functions.

Models [19–23] or studies [24–29] around T-odd dis-
tribution functions have been produced and discussed by
several authors. Recently several phenomenological pa-
rametrizations of the Sivers function for quarks [30–33]
and gluons [34] have been deduced from available data
[35–38]. An old parametrization [39] of the cos�2�� asym-
metry has been translated into parametrizations [6,40] of
the Boer-Mulders-Tangerman function. Several experi-
ments aimed at the measurement of T-odd functions are
planned for the next ten years [41– 45].

In this work the problem of the existence of leading twist
T-odd functions and of their interpretation is examined
from an unusual point of view. They are supposed to
originate in a phase transition of the statistical properties
of the hadron ground state due to initial/final state inter-
actions accompanying a hard electromagnetic process.

With ‘‘phase’’ we only mean a set of collective proper-
ties enjoying a relative stability. We may name ‘‘hadronic’’*Electronic address: andrea.bianconi@bs.infn.it
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phase the initial one, and ‘‘partonic’’ phase the final one.
For having leading twist observables, the transition needs
to take place over a time range that is singular in the infinite
momentum limit.

We will here focus on the Drell-Yan process only, so
‘‘partonic distributions’’ means actually ‘‘partonic distri-
butions measured in Drell-Yan.’’ On the ground of eclipse
effects, one would expect Drell-Yan rates on nuclear tar-
gets to scale as A2=3, possibly with shadowing effects on
the shape of the measured distributions. The situation is
rather different (see [46] for a detailed compared review of
Drell-Yan proton and pion data on light to heavy targets).
Data show that hadron/nuclear matter is practically trans-
parent to individual partons, while hadronic states have a
rather short survival path in them. The partonic distribu-
tions resulting from a Drell-Yan measurement are indepen-
dent from the target mass number A from H to Pt, and the
total Drell-Yan rate is / A, while the cross sections for the
much more frequent hadronic processes resulting from the
same collisions are �A2=3 as obvious. Drell-Yan data
recover the A2=3 scaling law if the dilepton pair is on
some resonant mass like � or J= .

This suggests that any single parton is able to transport
probabilistic information on its initial state through all the
volume of a heavy nucleus. On the contrary, its initial state
wave function is well known to be destroyed within 1 fm.
To say that hadron-hadron initial state interactions cause a
transition from a hadronic to a partonic phase, destroying
the long range properties of the former, but without touch-
ing the short range ones associated with the latter, is just
another way to say the same thing with other words.1

However, this way of seeing the process will be useful in
the following. In particular, it suggests a study of the
entropy properties of the system, since any process where
long range correlations are atomized is associated with a
relevant increase of entropy. T-odd functions are here
considered as a direct signature of the hadron to parton
transition, and a quantitative measure of the time rate of
increase of the entropy.

Aweak point of the picture presented here can obviously
be the difficulty in disentangling specific effects of QCD/
strong interactions from general properties of a bound
system subject to a hard external probe.

Section II is devoted to listing a few general definitions
and relations that are systematically used in the following.

The presence of chaotic processes in association with
hard hadronic interactions is obvious at a generic level.
More specifically, however, we need to understand where
the chaotic side of these processes enters formally into
parton distribution functions, how this leads to T-odd ob-

servables, and at which conditions these observables are
leading twist. To this point Secs. III and IV are devoted. In
Sec. III the correlator is factorized into two parts. One
contains those effects like S-P interference that are specific
to the detection process, while the other one contains the
statistical properties (‘‘2-scalar correlator’’). It is shown
that the 2-scalar correlator may be decomposed with com-
pleteness in damped plane waves of the form exp��ix��
��x���, where � � P�z�, and the condition of finiteness of
��x� is shown to be a signature of leading twist T-odd
effects. In Sec. IV a review of some topics of statistical
mechanics is given, focussing, in particular, on the decay
properties of a self-correlation function, and on the corre-
spondence with the relevant quantities of the Drell-Yan
problem. The general criterion �� dS=d�� x relating the
rate of change of entropy with the hadron state decay rate �
and with the existence of T-odd leading twist effect is
qualitatively introduced.

In Sec. V the previous arguments are made more precise
and specific. First, a criterion is given to somehow formal-
ize the breaking of a long range correlation, i.e. to establish
a borderline between long and short range correlations.
Then, the relevant phase space entering the definition of
entropy for long range and short range states is focussed.
Initial state interactions causing the breaking are divided
into two classes (single and multiple event processes) that
are separately examined.

Section VI is devoted to a more restricted group of
processes. Let A��� and A��� be the ‘‘blobs’’ graphically
associated with factorization-separated areas of the full
process. A peculiar side of linking T-odd effects with
entropy changes is that it is natural to build models where
an arbitrarily large increase of the entropy of A��� takes
place in the absence of large energy exchanges between
A��� and A���. Hard exchanges of transverse momentum
between A��� and A���may trigger large energy transfers
among degrees of freedom all belonging to A��� alone.
This is relevant since hadron-hadron interactions associ-
ated with large energy exchanges between the hadrons are
statistically suppressed at large energies. So it is fair to
imagine effective initial state interactions to be dominated
by exchange of transverse momentum. In addition, energy
conservation allows for a more precise calculation of the
phase space and of the entropy.

II. SOME GENERAL DEFINITIONS AND
NOTATIONS

We consider a Drell-Yan process taking place between
two colliding hadrons with momenta P and P0. The parton
we will examine in the following is a quark belonging to
the former hadron.

To select leading twist terms, we will use the infinite
momentum limit P� ! 1, for P� measured in the center
of mass frame of the two colliding hadrons. In other words,
�P� P0�2 � P�P0� is arbitrarily large in this limit.

1The words ‘‘partonic phase’’ do not refer specifically to
quark-gluon states like those studied in the physics of heavy
ion collisions (see e.g. [47] and references therein). They refer
more generically to any hadron state where long range correla-
tions are not present.
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We name A��� and A��� those areas of the process/
diagram associated with factorization-separated kinemati-
cal processes. The area of our interest is A���, where the
relevant components are and k� (momentum) and z�
(spacetime). All those fields whose momentum component
p� is O�P�� belong to A���. We will ignore completely
what happens inside A���. We will however consider 4-
momentum exchanges between A��� and A���, poten-
tially undermining factorization.

The relevant process considered in this work is the one
corresponding to the traditional cut amplitude associated
by second order unitarity to the inclusive hadronic distri-
bution functions:

In this process a hole is created in a hadron state by
extracting a quark/antiquark in a point z0�, the ‘‘hadron�
hole’’ set propagates through real states only, and in z00� the
hole is filled and the original hadron state is restored by
reinserting the quark in its place. During the propagation,
the hole is subject to a gauge restoring field according to
Ref. [16]. We will sometimes speak of ‘‘quark interac-
tions’’ actually meaning ‘‘quark hole interactions.’’2

The extracted quark has momentum k� with light cone
k� � xP� and negligible k�. The impact parameter ~zT is
the space vector conjugate to ~kT . The spacetime displace-
ment of the hole from z0� to z00� is z� � z0� � z

00
� �

�z�; z�; ~zT� � �z�; 0; ~zT�. The fourth coordinate z� plays
no role and is not explicitly reported in the following.

Any relevant distribution function q�x� is the Fourier
transform with respect to z� and zT of a correlation func-
tion g�z�; ~zT�. Leading twist effects are naturally selected
by writing the Fourier transform with respect to the scaled
variables x and �:

 � � P�z�; (1)

 q�x; ~kT� � P�
Z
e�ixP�z�eikTzTg�z�; ~kT�dz�d ~kT

�
Z
e�ix�eikTzTG��; zT�d�: (2)

G��; zT�, �, x, etc. will be named ‘‘scaled’’ quantities,
g�z�; zT�, z�, k�, etc. ‘‘nonscaled’’ ones. The range of
useful values of � remains finite �1=x when P� ! 1.
So in this limit the function G��� does not need to be
singular in the origin to produce a nonzero q�x�. So, in
most of the following the discussion is in terms of the
scaled quantities. On the other side, it will be useful some-
times to get back to the nonscaled z� representation to
evidentiate singularities.

In all cases, g or G are here assumed as complex
numbers and not matrix objects, so they must be read as
a projection of the spinor correlation matrix gij over a
suitable operator, e.g. ��. The �� projection is the most
comfortable one, since it selects simultaneously the main
unpolarized quark distribution and the Sivers T-odd func-
tion. To get the former one needs to sum over opposite
transverse polarization states, to get the latter one takes the
difference, so e.g. in this case G means G� �G�. More in
general, G must be read as a linear combination of corre-
lator projections, suitable to project interference terms
between even and odd angular momemtum waves.

For simplicity of the discussion we will assume that the
transverse angular dependence is factorized in the correla-
tor:

 G��; ~zT� � G��; zT�GA�ẑT�; (3)

 q�x; ~kT� � q�x; kT�qA�k̂T�: (4)

In general, for a given hadron spin along x̂
we have a double partial wave sum G�z�; 0� 	P
L;M;L0gL;L0YL;M��x;�x�YL0�0�. Equations (3) and (4) refer

to one term only in the sum.
In Eq. (3) the former term will be named the 2-scalar

correlator, the latter the ‘‘angular’’ correlator. The word
‘‘2-scalar’’ only refers to 2-dimensional transverse rota-
tions, not to general spacetime properties. Distribution
functions are defined factorizing k̂T-dpendence out of
them, so they are in q�x; kT�. Despite in general we have
a double sum of partial wave contributions, for the follow-
ing discussion one term (clearly an interference term be-
tween different angular momenta) is quite enough.

The role of the angular parts is discussed in next section.
Apart for that section, in the rest of the paper the discussion
regards the 2-scalar correlator and distributions only, and
the word 2-scalar is omitted. Since in the 2-scalar correla-
tor the explicit presence of zT and kT is often not necessary,
we just write G��� and q�x� in all the relations where kT is
not explicitly needed.

III. IMAGINARY PART OF THE 2-SCALAR
CORRELATOR

Having defined q�x; ~kT� as the Fourier transform of an
amplitude that is projected on intermediate real states only,
q�x; ~kT� is the imaginary part of a complex amplitude, and
as such it is real. Since however only q�x; ~kT� is bound to be
real, we may have

 q�x; ~kT� 	 Re
q�x; kT��Re
qA�k̂T��

� Im
q�x; kT�� Im
qA�k̂T��: (5)

Clearly, if q�x; kT� represents a single partial wave con-
tribution to the full distribution, only one of the two terms
in the right-hand side will be nonzero. For an angular even-

2E.g., in spectator models the hole path starts from the quark-
photon vertex, runs backwards along the quark propagator up to
the hadron-quark-diquark vertex, follows the diquark across the
cut up to the other hadron-quark-diquark vertex, and next a quark
propagator up to the other photon-quark vertex.
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odd interference term, the nonzero one should be the
imaginary-imaginary one. Since this statement is not com-
pletely free from ambiguity, I take it as a simplifying
assumption. Looking for T-odd contributions, we will fo-
cus on this term.

A leading twist T-odd effect manifests itself in a finite
Im
q�x; kT��. Let us make this point more precise, follow-
ing the scheme adopted in Ref. [12], and suppose that some
of the Fourier components of a T-evenG��� are substituted
by damped waves

 eix� ! eix����; (6)

where � in general depends on x. In other words, the
integration path is shifted from the real axis and the
Fourier transform becomes a Laplace transform. For the
Laplace transform general theorems exist, but here we
would like to rely on physics first, and demonstrate that
the above waves are a proper and complete set of eigen-
functions for a decomposition of G���.

The above damped waves correspond to a nonconserved
decaying probability at increasing times, and are eigen-
functions of a Hamiltonian operator that enjoys two rele-
vant properties:

(i) It is non-Hermitian and so it does not respect time
inversion symmetry.

(ii) It is invariant for �-translations.
In addition, we must notice that the above damped

waves are the only possible eigenfunctions for a Hamil-
tonian that satisfies both (i) and (ii).

An amplitude G��0; �00� describing the hole propagation
under the action of the gauge restoring field is not invariant
for �-translation, so it depends on both �0 and �00 and not on
their difference � only. Its Fourier transform depends on
two x values corresponding to the incoming and outcoming
momenta.

Since by definition only x-diagonal states may be
present in a distribution function, these states must be
eigenstates of a �-homogeneous and non-Hermitian
Hamiltonian. Non-Hermiticity depends on the fact that it
includes the gauge restoring field, but at the same time it
excludes those eigenstates that, because of this field, do
exist and contain violation of x-conservation.

Let us define Ĥtrue as the true full Hamiltonian including
the gauge restoring field. fFg is the full set of eigenstates of
Ĥtrue, and F � fXCg � fXNCg, where fXCg is the set of
x-conserving states and fXNCg its complementary. The
Hamiltonian Ĥ that one is really using is the projection
of Htrue on fXCg and such a projection is well known to
have complex energy eigenvalues (all the theory of the
nuclear optical potential is based on this fact and presents
close analogies with what is discussed here, see e.g. [48]).
On the other side, the projection is by definition x-diagonal
and so invariant for �-translations.

Summarizing, G��� describes the hole propagation ac-
cording to a Hamiltonian that is (i) non-Hermitian,

(ii) �-homogeneous. For these reasons it must admit a
complete decomposition in states of the above form Eq. (6)

 G��� �
Z 1

0
dx0eix�G�x0� !

Z 1

0
dx0eix

0����G�x0�: (7)

The Fourier transform of each damped wave with re-
spect to exp��ix�� introduces the factor

 

1

x� i�
(8)

with imaginary part 2�=��2 � x2� into the Fourier trans-
form of the 2-scalar correlator. The ratio of the imaginary
to the real part is �=x.

The damping � must be finite: an infinitesimal damping
of plane waves is normally assumed to avoid convergency
problems without introducing T-odd effects. In the infinite
momentum limit k� � xP�, P� ! 1, this requirement is
rather strong, since it implies that in the nonscaled space-
time we have a damped wave exp�ixP�z� � �z�� with
infinite �. This is however necessary, since the Fourier
transform exp��ixP�z�� effectively probes regions of
size �z� � 1=xP�, and within this z� range the damping
is negligible unless � is O�xP��.

So, the condition for a leading twist effect, largely used
in the following, is

 ��x� � x; for P� ! 1 (9)

equivalent to � 	 O�xP��.
On the contrary, a finite � (! �� 1=P�) allows for a

finite T-odd effect as far as P� is finite. In other words, one
gets a higher twist effect.

As above observed, q�x; ~kT� must be real, so in Eq. (5)
Im
q�x; kT�� must combine with a nonzero Im
qA�k̂T��. In
all the models known to the author, T-odd properties be-
come observable in interference terms between odd and
even waves of orbital angular momentum. Typically, be-
tween S and P waves.

To avoid ambiguities, we remark that in the scheme
adopted in this work, two kinds of interference effects
have relevance:

(i) interference between continuous sets of states (due
to initial state interactions) producing an imaginary
part in the Fourier transform of the 2-scalar
correlator,

(ii) interference between a few well-identified angular
waves, producing an imaginary part in the Fourier
transform of the angular correlator.

Missing one of the two, T-odd effects are not observable.
Without interference terms the angular correlator is even
with respect to ~zT , so its Fourier transform is real. A well-
chosen interference between even and odd angular waves,
quantized with respect to the ŷ axis, may imply the simul-
taneous presence of a zx-even and a zx-odd term in GA�~zT�.
This produces both a real and an imaginary part in the
~kT-Fourier transform of GA�~zT�.
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IV. NONADIABATIC DECAY OF A
SELF-CORRELATION FUNCTION

A. Irreversibility

In the physics of the strong and electromagnetic inter-
actions, no phenomena exist that may cause, at the funda-
mental level, a time asymmetry. This situation is con-
versely quite common when from the fundamental level
one passes to (i) systems where a huge number degrees of
freedom are involved, (ii) systems where some degree of
freedom is hidden in a non-Hermitian Hamiltonian,
(iii) degrees of freedom whose time frequency spectrum
is continuous. The first class is a special case of the last one
since strict irreversibility is obtained when the number of
degrees of freedom tends to infinity. The second class also
is a special case of the last one, since a non-Hermitian
Hamiltonian has complex energy eigenvalues, implying a
finite width for energy levels. So we will adopt the last and
most general definition (seemingly introduced by N. S.
Krilov, see [49] for a later recollection of his works in
English) of an irreversible process.

B. Fok-Krilov theorem

In nonrelativistic quantum mechanics the decay of a
self-correlation function can be present when a system A
described by a stationary wave function  o�x; t� starts
interacting with another system B, its wave function
 �x; t� deviates from the  o form and loses its previous
stationarity properties. It can be generically written as a
sum over eigenstates of the full Hamiltonian (including
interactions) with eigenvalues E. If the sum is over a
continuous E set, the self-correlation function

 C�t� 	
Z
dx ��x; t� o�x; 0� (10)

is a decaying function of t for t! 1. Otherwise, the
correlator is periodic (Fok-Krilov theorem [50], see e.g.
Ref. [51] for a simple introduction).

The meaning of the self-correlation function is just the
overlap of a state with itself at a later time. If the correlator
decays, it means that the evolved wave function has no
resemblance with its initial form. Clearly, T-odd processes
are associated with decaying correlators and irreversible
processes.

C. Entropy

When a previously discrete energy spectrum fEong is
turned continuous, we may define a new fictitious set
fEng of energy levels such that any En is a function of
Eon and the correspondence is one to one. Then we may
write the true continuous energy eigenvalues E in the form
E � En � a�En�1 � En�, 0  a  1. Evidently, a new de-
gree of freedom associated with the continuous variable a
is now present. The energy shift Eon ! En is by definition

adiabatical and reversible as far as the populations of Eon

andEn are equal. When a large fraction of the initial energy
has been transferred to E levels not coinciding with anyEn,
the process is not reversible anymore.

This irreversibility can be quantified by the increase of
the total entropy S. As a rough estimate, an added continu-
ous degree of freedom plays a role if the total entropy
increases by about one Boltzmann constant unit kb, since in
the presence of n independent degrees of freedom, each
associated with an effective phase space �i we have S	
kB log�

Q
�i=h�	kB

P
log��i=h��nkBhlog��=h�i where

h is the Planck’s constant and hlog��=h�i is an average
phase space (since now, we will use h=2� 	 kB 	 1, and
not write these constants explicitly anymore). ‘‘Effective’’
phase space means that this phase space is at least poten-
tially able to get energy within the time scale for the
process interesting us.

So, �S� 1 may be considered a signature of the corre-
lator decay, and a condition for a T-odd process to be
present. This neither guarantees that the effect is a leading
twist one, nor that its magnitude makes it observable. So
this condition must be made more precise.

In addition, the entropy must be defined for the relevant
cases interesting us. The entropy of a slowly evolving
system is defined as the entropy of an equilibrium system
instantaneously assuming the same configuration. For a
quickly evolving and open system a general definition of
entropy is often specific and largely heuristic (see e.g. [52–
54]) since the general Boltzmann’s definitions S 	 log���
or equivalently S 	 �

P
pi log�pi� face the problem of

what must be meant by phase space � or subset probability
pi.

D. Time scale and nonadiabaticity

In practical applications, the time scale of the process is
important: if the process is slow enough, the evolution is
quasiadiabatic, and relevant entropy increase may be
meaningless since it takes place over a time range that is
too large to influence our experiment: If �0 is the time
required for reaching �S� 1, and � is the relevant time
scale for the considered process, �S��� � �=�0. If �=�0 �
1, �S��� � 1.

So, the condition for the irreversibility of a process to
play a role is �S��� * 1, or equivalently

 

dS
dt

*
1

�
: (11)

E. Hard inelastic collisions

Writing Eq. (10) in the interaction form

 C�t� 	
Z
dx �o�x; t� exp

�
�i

Z
Vdt

�
 o�x; 0�; (12)

the similarity between the time-dependent self-correlation
function C�t� and the correlation function entering the
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definition of a partonic distribution function [16] is evi-
dent, with the gauge link operator substituting the interac-
tion operator.

In a light cone formalism t is substituted by a light cone
variable and the Hamiltonian by the corresponding con-
jugate light cone momentum. Since here we focus on the
A��� area of the factorized diagram, z� and k�, or equiv-
alently � and x, play the role of time and energy.

Because of the Fourier transform exp��ix��, �-ranges
�1=x are relevant in the problem. So, in our case the
parameter � of Eq. (11) becomes 1=x.

The condition dS=dt * 1=� becomes

 

dS
d�
	 O�x�; for P� ! 1; (13)

or more simply, for the relevant valence region

 

dS
d�

* 1; for P� ! 1: (14)

If dS=d� is e.g. 0.05 this will not create problems (but
perhaps lead to too small asymmetries to be detected). The
point is that we need a visibly finite limit for dS=d� at
infinite P�.

When expressed in terms of nonscaled variables,
Eq. (14) means dS=dt� P�, so it is a singular condition
for P� ! 1. If, however, this singularity is not present, we
have entropy increase (that in a highly inclusive interaction
is obvious) but at a rate that becomes adiabatic for P� !
1. In other words, we have a higher twist process, i.e. a
process that contains an intrinsic finite time decay scale �
and is only visible up to a hardness scale P� & 1=�.

A comparison of Eq. (9) with Eq. (13) suggests that we
have to expect

 

dS
d�
� �: (15)

The parameter � and the entropy S have been discussed, up
to now, as unrelated variables. In specific contexts we will
show later that they are normally related by equations that
imply the previous Eq. (15).

F. Action of a probabilistic perturbation on a pure state

In the following we will often consider (partially) proba-
bilistic processes destroying an initially pure quantum
state. A relevant point is although the action of this per-
turbation produces a chaotic set of states, the evolution of
the initial state is not chaotic. For an extensive and rigorous
consideration of this problem in nuclear physics see
Ref. [48]. At the simple level interesting us we may ob-
serve that e.g. a plane wave exp��ipz� describing a parti-
cle crossing homogeneous nuclear matter is converted into
a damped wave exp��ipz� z=L�. Despite that the damp-

ing factor exp��z=L� is normally estimated by means of
probabilistic considerations, the wave exp��ipz� z=L� is
a coherent overlap of plane waves

R
dkf�k� exp��ikz�with

f�k� relevant over a range �k� 1=L.

V. BREAKING OF A LONG RANGE
CORRELATION

A point that is peculiar to this work is the hypothesis that
the breaking of a long range correlation is able to cause
relevant short range modifications of the quark propaga-
tors. In other words, the � in Eq. (9) represents the inverse
lifetime of a long range hadronic state.

To avoid misunderstandings, we stress that short range
processes are here considered decisive, but their main role
is to destroy long range correlations. The author cannot
exclude that they also influence short range correlations. It
is more difficult to imagine processes where a correlation
extending to a spacetime scale L is destroyed by a mecha-
nism with a similar spacetime scale L0 � L. Also at intu-
ition level, such a mechanism is able to change the
underlying structure, but not to introduce stochasticity
within a range L00 & L0 � L.

Apart from the above general considerations, this choice
is born from experimental data, and from an analysis of
available theoretical models.

A. Propagation of partonic and hadronic states through
hadronic matter

As already discussed in the introduction section, for the
Drell-Yan case there is full evidence that the average free
path of parton distributions in nuclear matter is much
longer than the corresponding path for hadronic states.
This leads to two slightly paradoxical conclusions:

(i) Short range correlations are softer than long range
ones, when decay properties in hadronic matter are
considered.

(ii) � is destroyed while j�j2 survives during crossing
hadronic matter.

The former statement just translates the quoted experi-
mental fact that both partonic distributions and their nor-
malization seem to be reasonably untouched by nuclear
matter. The second statement is necessary not to give up
with the idea that parton distribution functions reproduce
intrinsic, interaction independent, steady properties of the
hadron structure.

Putting the above pieces together into a physical picture,
we may imagine the full process through 3 stages (the real
inclusive process, not the one of the unitarity diagram):

(A) Long before the interaction, the wave function de-
scribing a single hadron has stationary features, and
axial isotropy around the spin axis. We may speak
of the ‘‘hadronic phase.’’

(B) Hadron-hadron interactions start filtering the differ-
ent components of the initial state. Stationarity of
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these components is lost, and they are projected
onto a set of short range states that may be consid-
ered stationary in the crossed hadronic medium.

(C) The initial hadron coherent state is reduced to a
cloud of individual partons easily diffusing through
the hadronic/nuclear matter. Several probabilistic
features of the initial state are still present, but
fast time evolution is over. We may speak of the
‘‘partonic phase.’’

Seen this way, the evolution is similar to the sublimation
of a piece of solid matter passing through a high-
temperature region. In the following we will not appeal
to this picture anymore since, as observed above, we work
on the imaginary part of the forward amplitude and not
directly on the inclusive process. However this picture is
useful to understand the role that is here attributed to long
range correlations.

B. Breaking of long range correlations in spectator
models

The breaking of a long range correlation is a common
point to several of the above quoted models for T-odd
functions.

In particular we may consider spectator models [20–23]
as an example.

In these models, long range correlations are introduced
and tuned [55] by (i) form factors with soft cutoffs,
(ii) unicity, compactness, and stability of the spectator
state, (iii) quark/spectator masses. T-odd functions may
then be obtained via inclusive production/exchange of
extra particles, that break long range correlations.

In the absence of extra production mechanisms, a spec-
tator or a quark may correlate two vertexes over a distance
��� 1=�, if a form factor with soft cutoff � is present in
one of the vertexes or in both. Typically this means ���
1, since this is what is needed to produce a valencelike
x-distribution with size �x� 1=��� 1.

When production/exchange of stable extra particles with
pointlike vertex (e.g. gluons) is added to the basic spectator
model, this introduces hard components in the quark or
spectator propagator. These propagators must begin or end
in a soft vertex, but the hard components cannot be reab-
sorbed by this vertex. So the projection of the initial
hadronic state jPi onto the final state hPj is suppressed
by this evolution.

This suppression is equivalent to the previously dis-
cussed breaking of long range correlations. A similar pat-
tern is also present in [19], where long range parameters
are introduced by a bag model. If the extra particles are
unstable or associated with further vertex form factors, the
basic features of the hadron model may play a minor role
and the relevant long range correlations may be those
associated with these fields. But the general working prin-
ciple is not different, if the introduced parameters (inverse
lifetime, cutoffs) do not overcome a few hundred MeVs.

C. Hard scale loops and the Fock-Krilov theorem

In general, the reason why a loop going up to a hard
scale Q destroys long range correlations is a peculiar
application of the quoted Fock-Krilov theorem. A long
range correlation is associated to a soft cutoff � on some
momentum component k (e.g. kT) of the set of particles
crossing the cut, in the unperturbed diagram. When a
factorization breaking exchange introduces a loop, mo-
menta through this loop go up to Q� �. So the loop
decomposes any wave packet into a set of components with
momentum p, each with p & Q. These components propa-
gate with a different phase, so the initial wave packet shape
is soon lost. The decomposition is coherent, so sooner or
later the wave packet will acquire again a shape that is
similar to the original one. Introducing the quantum state
size hwe see that this time is finite since the decomposition
is not really continuous. If howeverQ� �, the number of
p-states available for each given k-state is very large, and it
is proper to assume that the loop variable is continuous.
This, however, means that the time needed to reform the
original wave packet is infinite.

At a qualitative level the increase of phase space (asso-
ciated with an increase of entropy) associated with this
loop is of magnitude �Q=��n, where n is a number of order
unity.

This argument, however, breaks down when the ratio
�=Q is not � 1. In this case the preloop set of states
composing the wave packet has the same extension of
the in-loop one. This suggests that adding further loops
would not change enormously the effect obtained via a
single hard loop. If in addition we select peculiar initial
states characterized by a hard scale (x very close to 1, or
qT �Q), decorrelation effects are suppressed. The case
x � 1 is obvious, since we are selecting final states where
decorrelation has not taken place at all. The large-qT case
deserves more discussion.

D. Large transverse momenta

In Drell-Yan at large enough qT the electromagnetic
probe is not testing initial state features, but features of
the hard interactions themselves. As a consequence it is
possible to calculate T-odd effects [9] in a fully perturba-
tive scheme. As a further consequence, any correlation-
destroying process is acting on a state that is short ranged
�1=qT also in the absence of factorization breaking inter-
actions. So the real increase of phase space associated with
an added factorization breaking loop is �Q=qT�n, not
�Q=��n as above stated. On the ground of the previous
discussion, for qT ! Q we expect a suppression of T-odd
effects. This means that in Eqs. (8) and (9) � will not be
O�1� or O�x� at large qT �Q.

In Ref. [9] the transition from the soft-qT to the hard-qT
regime is considered, by including real gluon emission
already in diagrams where factorization breaking loops
are absent. For small qT the extra gluon is soft, and
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although it enters the K-factor, it does not destroy the
coherent features of the initial state. In this case the addi-
tion of a factorization breaking loop has the consequences
described in the previous two subsections. For large qT �
Q the soft features of the initial state are destroyed by the
hard radiated gluon. In other words, also in diagrams with
no factorization breaking interactions, initial state soft
cutoffs play no role.

So, in the case of the models considered in the previous
subsections V B and V C, and for small qT we may speak of
‘‘soft to hard’’ transition. In the case of large qT we may
speak of ‘‘hard to hard’’ transition, with no decorrelation.
This reflects in a qT-suppression of the effect at large qT , as
predicted in [9].

E. Soft cutoffs

Let a variable Y be connected with the quark hole
motion. It may represent the quark transverse momentum,
or be related with gluons radiated by this quark, and so on.

Let Y have a maximum ‘‘soft’’ cutoff Y < YM in its
initial state. Let the quark hole undergo events associated
with initial/final state interactions,3 that we simply name
‘‘events.’’

We assume that most events lead to Y < YM (soft
events), but for a small and finite fraction of events Y �
YM (‘‘hard’’ events).

To avoid ambiguities, we stress that in the following we
will speak of soft and hard events referring, in both cases,
to initial/final state interactions that accompany the elec-
tromagnetic Drell-Yan hard event, not to the electromag-
netic event itself.

The meaning of the soft cutoff is a sharp way to repre-
sent a reasonable upper cutoff for all fields and degrees of
freedom that may play a role in the hadron state when
P� ! 1. The assumption is that if Y < YM the hadron is in
its ground state, if Y > YM it is in some excited state, and if
Y � YM it is fragmenting. Since the relevant correlation
function is defined as hPj . . . jPi, i.e. as a correlation op-
erator sandwiched between equal hadron states, if some
internal degree of freedom largely overcomes its soft cutoff
the projection on the final hPj state is very small. We may
imagine some relevant cases: (i) YM coincides with the
vacuum expectation value for Y, (ii) YM is assigned by the
uncertainty principle (e.g. for kT we have max�kT� �
1=Rhadron), (iii) YM is an infrared cutoff.

A relevant point is that

 S � 0; for Y < YM: (16)

Indeed, as just observed, as far as the soft variables are
inside their soft cutoffs the considered state is a quantum
fluctuation of the hadron ground state.

F. Single and multiple step processes: hard and
stretching events

A series of events may determine a transition of the
bound hadronic state to the continuum. We expect that
the entropy is then increased by some units (or more),
and correspondingly that some more degrees of freedom
have appeared. This may take place within a single or a
multiple scattering scheme.

If this process is dominated by a single hard event, we
need the final phase space of this single event to contain
more degrees of freedom than the initial one. This can be
obtained in several ways: (i) by infinitely expanding the
phase space of an existing degree of freedom; (ii) by
producing some new particle (that is a subclass of the
previous case, since the associated phase space expands
from zero to a finite value); (iii) for the case of an initially
discrete set of values, by filling each range Yn–Yn�1 with
an infinite set of new accessible values (that again is a
subclass of (i)). So, essentially a single step process is
dominated by an infinite expansion of the phase space.4

In a multistep process associated with a large number of
uncorrelated events, it may be sufficient to have a regular
increase of the phase space associated with a given variable
at each step. This will lead to an exponential increase of the
phase space with the event number, and the effect on S is
still an increase of some units. In this case we speak of
‘‘stretching events’’ instead of ‘‘hard events.’’

Single and multiple step processes are separately exam-
ined in the following. Hybrid features do normally appear,
e.g. when a hard scattering leads to a multiparticle produc-
tion, or when in a multiparticle production we may radiate
a few hard particles and several soft ones as well. So the
above two sets of processes should be considered just as
opposite limits for a continuum of possibilities. In these
limits approximations may be applied making statistical
analysis easier.

In the format given by Ref. [16] and widely adopted as a
formal framework for adding the effects of initial state
interactions to partonic distributions, the gauge link factor
incorporates interactions in a continuous and abstract form.
So there is no difference in principle between the two
classes of events. The problem rises when the gauge factor
is expanded in a perturbative scheme, and one needs to
decide whether low order diagrams, or a full resummation
scheme, have more relevance.

For a specific model it may be easier to discuss low order
perturbative schemes. Sometimes, however, resummation
is hidden, in form factors, in finite widths for propagators,
in the use of no-event probabilities. E.g. the factor
exp����� used in several places of this work is a quasi-

3E.g., in a spectator model a gluon production from a quark
propagator is an initial state interaction, a gluon production from
a diquark line is a final state interaction.

4If the phase space is evaluated in classical sense, i.e. without
counting the finite volume h of each state. This is justified since
we reach quasiclassical situations, where h may be neglected.
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classical all-order resummation of uncorrelated similar
events.

G. Single scattering/radiation scheme:
real and effective degrees of freedom

In the limit P� ! 1, in the presence of a hard exchange
of energy or transverse momentum between the
factorization-separated areas of the diagram A��� and
A���, a large amount of energy can be reversed on a set
of soft variables fYig belonging to A���. As above antici-
pated, we may select three typical situations, that actually
are specializations of the first one.

We use a single variable Y to represent a combination of
all the involved ones. E.g., it may be their total energy.
Y < YM in soft conditions.

If hard events may lead to a value for Y distributed in a
reasonably uniform way within a range �Y with
�Y=YM !1 for P� ! 1, and if hard and soft events
coexist, we need two continuous variables a and y to
describe the final state.

Let inf�z� be a monotonously increasing function of z
that is infinite for infinite z and positive for z > 1. log�z�, z,
or exp�z� are all good functions of this kind.

We define

 Y � aYM � yYM inf�P��; 0  a; y  1: (17)

In the limit P� ! 1 we have
(i) soft events: a has a precise value between 0 and 1,

y � 0.
(ii) hard events: 0  y  1, a may be arbitrarily as-

signed within 0 and 1.

For hard events a would be infinite if we had defined Y 	
aYM without introducing y. So, the joint presence of soft
and hard events (i.e. of Y values ranging over two infinitely
different scales of magnitude) implies the effective open-
ing of a new degree of freedom.

When the soft cutoff coincides with the vacuum expec-
tation for Y, we may roughly speak of a ‘‘new turned on’’
degree of freedom. In this case we may simply define:

 Y � Yvacuum � yYo; y� 1; (18)

where the constant Yo keeps y dimensionless. This is a
special case of the previous definition, with YM �
1= inf�P�� and the soft phase space reduced to unity.

Another case is the one of a variable with a discrete set
of eigenvalues Yn below the cutoff, and a continuous set
over the cutoff. If the number of discrete eigenvalues is
finite this case is equivalent to the previous one. If it is
infinite we may map them one to one into a set of discrete
Y0n eigenvalues spanning all the final state space. Then we
may define

 Y � Y0n � y�Y0n � Y0n�1�; 0< y< 1: (19)

Other cases that one may imagine may be reduced to the
discussed ones. In all cases one sees that a new continuous
variable y has been introduced.

One important remark: In the previous cases two dimen-
sion scales are selected for the same set of events.
Separating the associated phase space into 2 degrees of
freedom a and y shows that, despite appearances, the final
phase space is not infinitely large. It only has a different
dimension. Since the two final degrees of freedom are
roughly independent, we have S� log���a���y�� �
S�a� � S�y�, where ��a� and ��y� are the phase spaces
associated with each variable. The former quantity is zero
because of Eq. (16), and the latter is �1.5

H. dS=d� in a single scattering/radiation scheme

Let us first consider a single scattering center in the unit
volume. For the probability W of transitions of both soft
and hard kinds, we have

 W 	 Wsoft �Whard � jMj2���a� � n��a; y��

� jMj2���a� � n��a�	y�; (20)

 	y � ��a; y�=��a�: (21)

In the previous relations n is the relative fraction of hard
to soft scattering centers. ‘‘Scattering centers’’ means par-
tons in A��� potentially able to cause one of the required
processes. ��a� and ��a; y� are the phase space associated
with soft transitions and hard transitions, respectively. jMj2

is an average soft transition probability to a single final
state. The corresponding jMhardj

2 factor for hard transitions
is supposed to differ mainly for selection rules (included in
n) and for conservation rules (included in the phase space).
So what remains in jMj2 is supposed to be similar for soft
and hard transitions.

We need to be inclusive with respect to the initial values
of the soft variable a, so the overall transition probability
must be divided by the soft phase space ��a�. So we have

 W 	 Wsoft �Whard � jMj2�1� n	y� � jMj2�tot

� jMj2 exp�S�: (22)

The previous equation may be considered as the defini-
tion of entropy that is relevant here: the logarithm of the
number of all the final states that directly determine the rate
of hard interactions of the quark hole, starting from a soft
state.

This excludes all those processes that are present but
have scarce relation with the quark hole line. With the
above definition of useful phase space, we have S 	 0
for soft final states, as previously required. Of course,
deciding what must be counted in the relevant phase space

5It may be much smaller or much larger, but neither zero nor
infinite; its precise value depends on our ability in distinguishing
different y values within a distance 
y; then S�y� 	 � log�
y�.
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is a matter of taste, but this problem is present in the
calculation of any inclusive reaction rate in hadron physics.

Assuming that relevant values for S and n	y are & 1,

 eS � 1� S � 1� n	y; (23)

 Whard � WsoftS; S � n	y: (24)

If we consider events taking place with continuity along
a � path, the previous equations need to be modified:

 

dW
d�
	

�
dW
d�

�
soft
�

�
dW
d�

�
hard
�

�
dW
d�

�
soft
�1� S�: (25)

If with dWsoft=d� we mean the full set of processes that
leave a soft state untouched after a unitary path �� 	 1,
we may approximate it with 1 (since scattering and no-
scattering events are not distinguishable). Then n (the
relative number of hard to soft scatterers) must be sub-
stituted by dn=d�, where dn=d� is the total absolute
number of hard scatterers per unitary ��, and conse-
quently S! dS=d�:

 

�
dW
d�

�
hard
�
dS
d�
; (26)

 

dS
d�
�
dn
d�
	y: (27)

Now, the probability for the set of soft states suffers
unitarity loss:

 j �x; Y < YM; ��j
2 � j �x; Y < YM; 0�j

2e�2��; (28)

since for the overall flux we have dN=N 	
�dWhard=d��d�, and dWsoft does not contribute to the de-
cay. So we get the relation between dS=d� and � whose
approximate form (Eq. (15)) was guessed in Sec. IV:

 � 	
1

2

dS
d�

(29)

and

 

dS
d�
� x (30)

that selects leading twist T-odd effects.
Equation (27) suggests that a finite dS=d� may be

reached more than one way:
(1) Both dn=d� and 	y finite for P� ! 1.
(2) dn=d�! 1 and 	y ! 0 for P� ! 1.
When � is converted to the nonscaled variable z�, the

less singular case may be the latter, since a unit � corre-
sponds to an infinite z� range, and a finite 	y implies
infinite energy being acquired by Y in the limit P� ! 1.
However, in this limit it is quite natural to have to do with
singularities.

In any case, both the above schemes are single scattering
schemes, meaning that a quark hole flux moves in a me-

dium with several potential scatterers, but one event is
sufficient for the destruction of the ground hadron state.

I. Stretching events and multiple scattering/radiation
schemes for dS=d�

A further scheme is given by multiple uncorrelated
scattering/radiation events.

A known example of this kind that could be generalized
to our problem is a classical particle undergoing multiple
scattering against randomly distributed spheres [49]. Then
Y could be the angular deviation of the quark from the
hadron direction. Next, this class of processes includes
relevant cases like radiation of gluons/mesons by a quark
line. Then fYig may be the set of kinematic variables of the
radiated particles.

In a multiple scattering/radiation case, hardness is
reached as a cumulative effect of several events that may
be individually soft. This obliges us to modify the defini-
tion of dn=d�.

Let us redefine Y in such a way that it has the dimension
of an action or, if a unitary cubic box has been assumed as
normalization volume, of a momentum. We scale y �
Y=YM, with y that is soft (< 1) at the very beginning,
but may reach any value during the evolution driven by
initial/final state interactions. If the values of y at a certain
time are randomly distributed within a mean quadratic
fluctuation, y��y, the phase space that we may associate
to y is a simple power m of �y. Consequently,

 S � m log��y�; m� 1: (31)

Instead of defining dn=d� as a density of scattering
centers for hard events, we define now dn=d� as a density
of scattering centers for ‘‘stretching events.’’ A stretching
event is defined by the condition:

 

�y0

�y
� 1� �y; �y > 0; for P� ! 1; (32)

where �y is the mean quadratic spread for y values before
the event, and �y0 the same after it. The phase-space factor
�y includes in itself the total probability of scattering in the
presence of a single scattering center.

In several problems, �y > 0 is valid at finite P�, but it is
lost in the P� ! 1 limit. As an example we take y as the
scattering angle in Rutherford scattering. Assuming an
upper cutoff on the impact parameters zT < zmax, we
have �y > 0 for finite P�, but �y ! 0 in the P� ! 1
limit.6

Assuming that a finite set of events respect the stretching
condition, we may define S as

 S 	 log��Y=�Yo�; (33)

6If no upper limit is assumed for zT the average scattering
angle is zero at any energy.
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where �Yo is a soft initial value. With this definition S is
proportional to the number of scattering events. Using all
quantities referring to one � unit, and neglecting the pre-
cise value of m in Eq. (31),

 

dS
d�
� log��y���	1 	 log
�yo�1� �y��dn=d���

	
dn
d�

log�1� �y�: (34)

Assuming a small �y we have

 

dS
d�
�
dn
d�
�y: (35)

In the hadron ground state we have S � 0, as a result of
having neglected log��Yo� in Eq. (34). To estimate the
relation between � and dS=d� we may use the known trick
of considering a set of j independent emissions in a range �
as Poisson-distributed with respect to j, and then
exp��2��� is identified as the probability of no emission.
In the Poisson distribution this is exp��!1�, where !1 is
the probability of a single emission. Since here with ‘‘emis-
sion’’ we mean a process with an increase of phase space,
we may identify �1� �y�dn=d� with the probability of an
emission of whatever kind in a unit � range, and �ydn=d�
with the probability for a ‘‘useful’’ emission only, since the
other processes do not change the initial situation. So

 exp��2��� � exp
�
��y

dn
d�
�
�
	 exp

�
�
dS
d�
�
�
: (36)

So, again we have �� dS=d� and consequently the
requirement dS=d�� x. In addition �y plays a similar
role as 	y in the single scattering scheme.

Also in this case we may have two possibilities:
(1) Both dn=d� and �y finite for P� ! 1.
(2) dn=d�! 1 and �y ! 0 for P� ! 1.

VI. T-ODD FUNCTIONS IN ENERGY-
CONSERVING SCHEMES

In the title of this section ‘‘energy conserving’’ means
that initial/final state interactions do not exchange energy
between factorization-separated areas of the diagram. This
is a natural consequence of relating T-odd effects with
entropy nonconservation in A���. Entropy may increase
also in energy-conserving systems. Since O�P�� energy
exchanges are statistically suppressed in hadron-hadron
collisions at high energies, the relevance of this possibility
is evident.

As observed in Sec. III, T-odd functions describe the loss
of flux due to events where x is not conserved in the
propagation of the quark hole, with finite x� x0 for P� !
1. Since the colliding hadron is a stationary system if
undisturbed, x nonconservation takes place because of
hard interactions between A��� and A���. We must, how-

ever, distinguish between two very different classes of hard
events:

(1) Energy nonconserving events: O�P�� energy ex-
changes take place between A��� and A���, and
the lost energy is not returned.

(2) Events where the hard interaction between A��� and
A��� is mainly transverse: it does not transfer rele-
vant amounts of energy between the two, and only
acts as a ‘‘trigger’’ for relevant energy exchanges
between degrees of freedom all belonging to A���.
In particular, energy is transferred from x to varia-
bles that consequently overcome the soft cutoff.

In this section, we focus on events of the latter kind.
These necessarily increase the entropy of A��� and corre-
spond to what, in classical mechanics, is energy degrada-
tion: energy is transferred from ‘‘mechanical’’ to
‘‘internal’’ degrees of freedom (from collective, ordered,
translation, and rotation motion to thermal or chemical
energy). Since the macroscopic dynamical evolution is
associated with mechanical degrees of freedom only, en-
ergy degradation is equivalent to an energy nonconserva-
tion. In our problem, the mechanical degrees of freedom
are � (conjugated to x), and the quark transverse motion as
far as kT remains within soft limits.

The above requirement of energy conservation inside
A��� puts limits to the size of the final state phase space
and allows for some approximate estimate.

A. Soft and hard cutoffs on the phase space

Specializing the assumptions of the previous Sec. V, we
may assume that in A��� we have, for any given x, a set of
m variables Y1; Y2; . . .Ym that in the hadron ground state
satisfy one or more soft cutoffs of the form f�Y1; Y2; . . .�<
fM. In particular this set contains ~kT satisfying k2

x � k
2
y &

�2
T , with �T of magnitude 1 GeV/c. The set fYig � Y only

includes those degrees of freedom that may exchange
energy with the quark hole within a time Rhadron=P�.

The soft cutoff will translate, in particular, in a soft
cutoff for the total energy associated with Y:

 

X
E�Yi� � E�Y� & fM: (37)

Since the total energy E�x� � E�Y� is conserved, in the
hadron ground state at large P�, also the longitudinal
energy E�x� may ordinarily fluctuate within this soft limit:

 E�x� � E�x0� � �x� x0�P� & fM; (38)

so obviously soft events do not break x-conservation in the
large P� limit.

Hard events break the soft cutoff. We assume that they
lead to a reasonably nonzero distribution for the final
values of Y up to a hard cutoff:

 E�Y� & FM�x�> fM: (39)
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So, for soft events we have the phase space

 x� x0 <
fM
xP�

(40)

and for hard events we have the phase space

 

fM
P�

< x� x0 <
FM
xP�

(41)

that can be simply approximated by

 x� x0 <
FM
xP�

: (42)

We also limit our discussion to the cases where

 x� x0 � x: (43)

This means that 1=x and 1=x0 are interchangeable in the
right-hand side of the above equations. Clearly this is valid
as far as FM � xP� for P� ! 1, and x is not too close to
zero.

The total phase space x0  x for one given x in the case
of soft/hard events is

 ��EM; x� 	
Z x

0

dx0

x0
Z
E�Y�<EM

dm��Y�

�
x� x0 �

E�Y�
x0

�
;

(44)

where EM is the maximum for E�Y�, i.e. either fM or FM.
We may evidentiate

 dm��Y� � dE�Y�dm�1��y� (45)

with

 yi �
E�yi�
EM

; (46)

 Z
dm�1��y� � 
E�y��m�1

Z


�
1�

X
yi

�
f�x; y�

Y
i

dyi

� v�x�
E�y��m�1; (47)

where f�x; y� is supposed to be reasonably flat through all
them� 1 above defined phase space, and to depend slowly
on x as v�x�. Assuming

 

x� x0

x
& 1=P� (48)

(that is obvious but at very small x values) from the joint
conditions x 	 x0 � E�Y�=xP� and E�Y�<EM we have:
 Z x

0

dx0

x0


�
x� x0 �

E�Y�
xP�

�
� P�

Z x

x��
dx0

� 
�P�x�x� x
0� � E�Y��;

� 	
EM
xP�

; (49)

and with some algebra

 ��EM; x� 	 v�x�
EmM
m
: (50)

Taking into account that we have neglected the lower cut-
off in the calculation of the hard phase space (Eq. (41) has
been approximated by Eq. (42)),

 

�hard

�soft
	

��FM; x�
��fM; x�

� 1 �
�
FM
fM

�
m
� 1: (51)

In a single scattering scheme this may be identified with
	y of Eq. (21). In dS=d� also dn=d� appears, where this
number is the density of scattering centers able to trigger
the energy redistribution process.

As interesting limiting cases, we may imagine two
situations:

(i) FM=fM close to 1, large mdn=d�: a multiparticle
production, or anyway a redistribution of energy
among a large number of degrees of freedom.

(ii) Large FM=fM, small mdn=d�: a single particle
radiation or anyway few involved degrees of
freedom.

B. Large number of degrees of freedom

If an average m is fixed we have

 �FM=fM�m � �1� 
�m � �1�m
�; 
� 1; (52)

 

dS�x�
d�

� 
m
dn
d�
: (53)

Otherwise, if m is Poisson-distributed, we may work as
in the multiple scattering case (the two situations are now
equivalent), and get the same results with the factor 1� �y
of Eq. (32) substituted by 1� 	yjm	1:

 

dS�x�
d�

� 

dn
d�
: (54)

In both cases dS=d� is proportional to the relative excess
of released energy 
 	 �FM � fM�=fM times the average
number of new particles produced per unitary � path. The
soft cutoff is linearly present in 
.

C. Single particle production

We neglect the ‘‘1’’ factor in Eq. (51).
In this case also single particle production in constituent

or spectator models may enter, but then the previous treat-
ment of the phase-space ratio must be corrected. Now the
number of degrees of freedom is limited, and one needs to
specify which ones play a role and where.

In a spectator model the effective number of degrees of
freedom that can be associated with the initial state is
roughly 2�, where j1=Q2j� is the asymptotic electromag-
netic hadron form factor as it would result when calculated
within the considered model. In a spectator model like
the one of [55] this power law derives from form factors
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in the hadron-quark-diquark vertexes of the kind �k2 �

m2
q�
a=jk2

T � �
2jb.

If e.g. the diquark emits a gluon, the only degrees of
freedom that may break softness are the two components of
the recoiling diquark ~k0T . These are soft-limited by the final
vertex form factor. As observed above, they are effectively
treated as if they were 2� instead of two. On the other side,
the effects of the vertex form factors disappear in the
asymmetries, where form factors appear both in the nu-
merator and in the denominator.

So in T-odd distributions we have

 	y / �
�2�: (55)

As a result, T-odd distributions are�1=�m with relevant
m factors.

In asymmetries, on the other side, we only have

 	y / ��2 (56)

as one may expect on the ground of the previous counting
rule (see e.g. [22]).

This suggests that, despite in a hidden way, in models
with this scaling law (asymmetry �1=�2) gluons ex-
changed between factorization-separated areas of the dia-
gram mainly carry transverse momentum.

As observed in Sec. V, at large qT , � must be substituted
by qT . In addition, the power law must be reconsidered
taking into account the number of poles constraining the
real number of added degrees of freedom (see Ref. [9]).

VII. CONCLUSIONS

The initial state interactions affecting a Drell-Yan pro-
cess have been reanalyzed. Assuming, on an experimental
ground, that they cause a transition from a hadronic to a
partonic phase, nonzero leading twist T-odd distribution
functions have been shown to be closely associated to this
phase transition.

A parallelism has been established between the time-
dependent self-correlation function describing the time
evolution of a state in an interacting quantum system,
and the light cone correlator from which a distribution
function is extracted via Fourier transform exp�ix��. The
decay of the correlator is associated with entropy increase.

We have derived in a heuristic way the condition
dS=d�� x. If it is respected in the infinite momentum
limit, a leading twist T-odd structure is present in the
correlator and it may be made detectable. In particular,
the correlator is a sum of decaying functions of the kind
exp
�ix�� ��x���, and �� dS=d�.

Some general schemes for single and multiple scatter-
ing/radiation have been examined arriving, in each case, to
relations of the kind � � dS=d� � 	dn=d�, where 	 is
the relative gain of phase space associated with a single
interaction event, and dn=d� the density of scattering
centers along the quark path.

Last, we have examined the special situation where the
initial state interactions do not exchange energy between
the two hadrons. For this case, that is likely to dominate
initial state interactions in high-energy Drell-Yan, the en-
tropy increase rate dS=d� has been estimated, in the op-
posite cases of single and multiple radiation.
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