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We study the scaling regime of pion electroproduction in the backward region, eN ! e0N0�. We
compute the leading-twist amplitude in the kinematical region, where it factorises into a short-distance
matrix element and long-distance dominated nucleon distribution amplitudes and nucleon to pion
transition distribution amplitudes. Using the chiral limit of the latter, we obtain a first estimate of the
cross section, which may be experimentally studied at JLab or Hermes.
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I. INTRODUCTION

In [1,2], we introduced the framework to study back-
ward pion electroproduction

 �?�q�N�p1� ! N0�p2���p��; (1)

on a proton (or neutron) target, in the Bjorken regime (q2

large and q2=�2p1:q� fixed) in terms of transition distribu-
tion amplitudes (TDAs), as well as the reaction
N�p1� �N�p2� ! �?�q���p�� in the near forward region.
This extended the concept of generalized parton distribu-
tions (GPD). Such an extension of the GPD framework has
already been advocated in the pioneering work of [3].

The TDAs involved in the description of deeply-virtual
compton scattering in the backward kinematics

 �?�q�N�p1� ! N0�p2���p�� (2)

and the reaction N�p1� �N�p2� ! �?�q���p�� in the near
forward region were given in [4].

This followed the same lines as in [5], where we have
argued that factorization theorems [6] for exclusive pro-
cesses apply to the case of the reaction ���� ! ��� in
the kinematical regime where the off-shell photon is highly
virtual (of the order of the energy squared of the reaction)
but the momentum transfer t is small. Besides, in this
simpler mesonic case, a perturbative limit may be obtained
[7] for the �? to � transition. For the �! � one, we have
recently shown [8] that experimental analysis of processes
such as �?�! �� and �?�! ��, which involve the
latter TDAs, could be carried out, e.g. the background
from the Bremsstrahlung is small if not absent and rates
are sizable at present e�e� facilities.

Whereas in the pion to photon case, models used for
GPDs [9–12] could be applied to TDAs since they are
defined from matrix elements of the same quark-antiquark
operators, this is not obvious for the nucleon to meson or
photon TDAs, which are defined from matrix elements of a
three-quark operator. Before estimates based on models
such as the meson-cloud model [13] become available, it is
important to use model-independent information coming

from general theorems. We will use here the constraints for
the proton to pion TDAs derived in the chiral limit.

The structure of this paper is the following. First, we
recall the necessary kinematics related to hard electropro-
duction of a pion as well as the definitions of the proton to
pion TDAs, which enter the description of the latter pro-
cess in the backward region. Second, we establish the
limiting constraints on the TDAs in the chiral limit when
the final-state pion is soft. Third, we calculate the hard
contribution for the process; hence, extrapolating the limit-
ing value of the TDAs to the large-� region, we give a first
evaluation of the unpolarized cross section, by restricting
the analysis of the hard part to the sole Efremov-
Radyushkin-Brodsky-Lepage (ERBL) region, where all
the three quarks struck by the virtual photon have positive
light-cone momentum fraction of the target proton.

This analysis is motivated by the experimental condi-
tions [14–16] of JLab and Hermes at moderate electron
energies. Related processes with three-quark exchanges in
the hard scattering were recently studied in [17] similarly
to what was proposed in [18].

II. KINEMATICS AND DEFINITIONS

A. The electroproduction process eP ! e0P0�0

Let us first recall the kinematics for the electron proton
collisions (see e.g. [19]). As usual, we shall work in the
one-photon-exchange approximation and consider the dif-
ferential cross section for �?�q�P�p1� ! P0�p2��0�p�� in
the center-of-mass frame of the pion and the final-state
proton (see the kinematics in Fig. 1). The photon flux � is
defined in the Hand convention to be

 � �
�em

2�2

Ee0

Ee

W2 �M2

2MQ2

1

1� �
; (3)

with Ee the energy of the initial electron in the lab frame
(beam energy), Ee0 the one of the scattered electron, W the
invariant mass of the P0�0 pair, M the proton mass, Q2 the
virtuality of the exchanged photon (Q2 � �q2 � ��pe �
pe0 �2) and � � 1�y

1�y�y2=2
(y � q:p1

pe:p1
) its linear polarization
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parameter. The five-fold differential cross section for the
process eP! e0P0�0 can then be reduced to a two-fold
one, expressible in the center-of-mass frame of the P0�0

pair, times the flux factor �:

 

d5�

dEe0d2�ed2���
� �

d2�

d2���
; (4)

where �e is the differential solid angle for the scattered
electron in the lab frame, ��� is the differential solid angle
for the pion in the P0�0center-of-mass frame, such that
d��� � d’d cos���. ��� is defined as the polar angle be-
tween the virtual photon and the pion in the latter system.’
is the azimuthal angle between the electron plane and the
plane of the process �?P! P0�0 (hadronic plane) (’ � 0
when the pion is emitted in the half plane containing the
outgoing electron, see also Fig. 1).

In general, we have contributions from different polar-
izations of the photon. For that reason, we define four
polarized cross sections, which do not depend on ’ but
only on W, Q2 and ���, d2�T, d2�L, d2�TL, and d2�TT.
The ’ dependence is therefore more explicit since

 

d2�
d���

�
d2�T

d���
� �

d2�L

d���
�

���������������������
2��1� ��

p d2�TL

d���
cos’

� �
d2�TT

d���
cos2’: (5)

As we shall show below, at the leading-twist accuracy,
the QCD mechanism considered here contributes only to
d2�T

d���
and d2�TT

d���
.

B. The subprocess �?P ! P0�0

In the scaling regime, the amplitude for �?P�p1� !
P0�p2���p�� in the backward kinematics—namely small
u � �p� � p1�

2 � �2 or cos��� close to �1—then in-
volves the TDAs T�xi; �;�2�, where xi (i � 1, 2, 3) denote
the light-cone-momentum fractions carried by participant

quarks and � is the skewedness parameter such that 2� �
x1 � x2 � x3.

The amplitude is then a convolution of the proton DAs, a
perturbatively calculable hard-scattering amplitude and the
TDAs, defined from the Fourier transform of a matrix
element of a three-quark-light-cone operator between a
proton and a meson state. We have shown that these
TDAs obey QCD evolution equations, which follow from
the renormalization-group equation of the three-quark op-
erator. Their Q2 dependence is thus completely under
control.

The momenta of the process �?P! P0� are defined as
shown in Figs. 1 and 2. The z axis is chosen along the initial
nucleon and the virtual-photon momenta and the x-z plane
is identified with the collision or hadronic plane (Fig. 1).
Then, we define the light-cone vectors p and n (p2 � n2 �
0) such that 2p:n � 1, as well as P � 1

2 �p1 � p��, � �
p� � p1 and its transverse component �T (�T:�T �
�2
T < 0), which we choose to be along the y axis. From

those, we define � in an usual way as � � � �:n
2P:n .

We can then express the momenta of the particles
through their Sudakov decomposition and, keeping the
first-order corrections in the masses and �2

T , we have

 

p1 � �1� ��p�
M2

1� �
n;

q ’ �2�
�

1�
��2

T �M
2�

Q2

�
p�

Q2

2��1� ��
2
T�M

2�

Q2 �
n;

p� � �1� ��p�
m2
� � �2

T

1� �
n� �T;

p2 ’ �2�
��2

T �M
2�

Q2 p�
�

Q2

2��1� ��
2
T�M

2�

Q2 �

�
m2
� ��2

T

1� �
�

M2

1� �

�
n� �T;

� � �2�p�
�
m2
� � �2

T

1� �
�

M2

1� �

�
n� �T:

(6)

 

p’
e

q= p−p’
e e p

2

θπ
∗

p
1

p
e

p
π

y
x

z

ϕ
θe

leptonic plane

hadronic plane

FIG. 1. (Backward) electroproduction of a pion on a proton in
the center-of-mass frame of the �? proton.
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FIG. 2 (color online). The factorization of the process �?P!
P0� into proton-distribution amplitudes, the hard-subprocess
amplitude (Mh) and proton! pion transition distribution am-
plitudes.
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The polarization vectors of the virtual photon are chosen
to be (in the P0�0 center-of-mass frame):
 

"L�q� ’
2��Q2 ��2

T �M
2�

Q3 p�
Q3

2��Q2 ��2
T �M

2�
n;

"T1
�q� � "x; "T2

�q� � "y: (7)

We also have

 W2 � �p1 � q�
2 ’
�1� ��Q2

2�
� ��2

T �M
2�; (8)

where we have kept the leading term inQ2 and the next-to-
leading one which does not vanish in the limit �! 1. This
provides us with the following relation between � and W2:

 � ’
Q2

Q2 � 2�W2 � �2
T �M

2�
; (9)

which reduces to the usual one, � ’ Q2

Q2�2W2 , when M2 and

�2
T can be neglected compared toW2 (which is not the case

in the �! 1 limit). Furthermore, we have the exact rela-
tion

 xB �
Q2

2p1:q
�

Q2

W2 �Q2 �M2 ; (10)

which gives

 � ’
xB

2� xB
: (11)

Finally, we have (neglecting the pion mass):

 �2
T �

1� �
1� �

u� 2M2 1� �

�1� ��2
�: (12)

In Ref. [1], we have defined the leading-twist proton to
pion P! � transition distribution amplitudes from the
Fourier transform of the matrix element

 h�j�ijkqi
0

��z1n��z1; z0�i0iq
j
	�z2n��z2; z0�j0jq

k0
� �z3n�

	 �z3; z0�k0kjPi: (13)

The brackets �zi; z0� in Eq. (13) account for the insertion
of a path-ordered gluonic exponential along the straight
line connecting an arbitrary initial point z0n and a final one
zin:
 

�zi; z0� 
 P exp
�
ig
Z 1

0
dt�zi � z0�n


	 A
�n�tzi � �1� t�z0��

�
; (14)

which provide the QCD-gauge invariance for such non-
local operator and equal unity in a lightlike (axial) gauge.

The leading-twist TDAs for the p! �0 transition,

Vp�
0

i �xi; �;�2�, Ap�
0

i �xi; �;�
2�, and Tp�

0

i �xi; �;�2� are de-

fined here1 as2

 4F �h�0�p��j�ijkui��z1n�u
j
	�z2n�dk��z3n�jP�p1; s1�i�

� i
fN
f�
�Vp�

0

1 �p6 C��	�N
��� � A

p�0

1 �p6 �5C��	��
5N���

� Tp�
0

1 ��p
C��	��
N��� �M�1Vp�
0

2 �p6 C��	

	��6 TN
��� �M

�1Ap�
0

2 �p6 �5C��	��
5�6 TN

���

�M�1Tp�
0

2 ��p�T
C��	�N��� �M�1Tp�

0

3 ��p
C��	

	��
�TN��� �M�2Tp�
0

4 ��p�T
C��	��6 TN����;

(15)

where �
� � 1=2��
; ��� with �p
 � p��
�
; . . . ; C is

the charge conjugation matrix and N� is the large compo-
nent of the nucleon spinor [N � �n6 p6 � p6 n6 �N � N� � N�

with N� �
�������
p�1

q
and N� �

������������
1=p�1

q
]. f� is the pion decay

constant (f� � 133 MeV) and fN has been estimated
through QCD sum rules to be of order 5:2 � 10�3 GeV2

[20]. All the TDAs Vi, Ai, and Ti are dimensionless. Note
that the first three terms in (15) are the only ones surviving
the limit �T ! 0.

III. THE SOFT-PION LIMIT

We now derive the general limit of these three contrib-
uting TDAs at �T � 0 in the soft-pion limit, when � gets
close to 1 (see also [21]). In that limit, the soft-meson
theorem [22] derived from current algebra apply [18],
which allow us to express these 3 TDAs in terms of the 3
distribution amplitudes (DAs) of the corresponding
baryon. In the case of the proton DA [20], Vp�xi�, Ap�xi�,
Tp�xi� are defined such as
 

4F �h0j�ijkui��z1n�u
j
	�z2n�dk��z3n�jP�p; s�i�

� fN�Vp�xi��p6 C��	��5N��� � Ap�xi��p6 �5C��	N��

� Tp�xi���p
C��	��

�5N����: (16)

Inspired by [18], which considered the related case of
the distribution amplitude of the proton-meson system, we
use the soft-pion theorems [22] to write
 

h�a�p��jOjN�p1; s1�i � �
i
f�
h0j�Qa

5 ;O�jN�p1; s1�i

�
igA

4f�p1:p�

X
s01

�N�p1; s
0
1�p6 ��5�

a

	 N�p1; s1�h0jOjN�p1; s
0
1�i: (17)

1The present definitions differ from those of [1] by constant
multiplicative factors and by the definition of �
�.

2In the following, we shall use the notation F 
 �p:n�3	R
1
�1�jdzje

i�kxkzkp:n.
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The second term, which takes care of the nucleon pole
term, does not contribute at threshold and will not be
considered in the following.

For the transition p! �0, Qa
5 � Q3

5, and O � u�u	d�.
Since the commutator of the chiral charge Q5 with the
quark field  (�a being the Pauli matrix)

 �Qa
5 ;  � � �

�a

2
�5 ; (18)

the first term in the right-hand side of Eq. (18) gives three
terms from ��5u��u	d�, u���5u�	d�, and u�u	��5d��.
The corresponding multiplication by �5 [or ��5�T when it
acts on the index 	] on the vector and axial structures of
the DA [Eq. (16)] gives two terms which cancel and the
third one, which remains, is the same as the one for the
TDA up to the modification that on the DA decomposition,
p is the proton momentum, whereas for the TDA one, p is
the light-cone projection of P, i.e. half the proton momen-
tum if one neglects the pion one. This introduces a factor 2
in the relations between the 2 DAs Ap and Vp and the 2

TDAs Vp�
0

1 and Ap�
0

1 , which is canceled though by the
factor one half in Eq. (18).

To what concerns the tensorial structure multiplying Tp,
the three terms are identical at leading-twist accuracy and

correspond to the structure multiplying Tp�
0

1 , this gives a
factor 3. We eventually have the soft limit for our three
TDAs at �T � 0:

 Vp�
0

1 �x1; x2; x3; 1;M
2� � Vp

�
x1

2
;
x2

2
;
x3

2

�
;

Ap�
0

1 �x1; x2; x3; 1;M2� � Ap
�
x1

2
;
x2

2
;
x3

2

�
;

Tp�
0

1 �x1; x2; x3; 1;M2� � 3Tp
�
x1

2
;
x2

2
;
x3

2

�
:

(19)

Note the factor 1
2 in the argument of the DA in Eq. (19).

Indeed, for the TDAs, the xi are defined with respect to p
[see e.g. F 
 �p:n�3

R
1
�1�jdzje

i�kxkzkp:n] which tends to
p1

2 when �! 1. Therefore, they vary within the interval
��2; 2�, whereas for the DAs, the momentum fractions are
defined with respect to the proton momentum p1 and vary
between 0 and 1.

Our results are comparable to the ones for the proton-
pion DAs obtained in [17]. Finally, it is essential to note
that these limiting values are not zero, unlike for some
GPDs. Hence, we find it reasonable to conjecture that these
expressions give the right order of magnitude of the TDAs
for quite large values of � (say �  0:5) in a first estimate
of cross sections.

IV. HARD-AMPLITUDE CALCULATION

At leading order in �s, the amplitude M
s1s2

for
�?�q; �P�p1; s1� ! P0�p2; s2��

0�p�� reads

 

M
s1s2
� �i

�4��s�
2
���������������
4��em

p
f2
N

54f�Q4

�
�u�p2; s2�"6 ���5u�p1; s1�|��������������������{z��������������������}

Ss1s2

Z 1��

�1��
d3x

Z 1

0
d3y

�
2
X7

��1

T� �
X14

��8

T�

�
|�����������������������������������{z�����������������������������������}

I

� "��
�T;� �u�p2; s2���
� � g
���5u�p1; s1�|���������������������������������������{z���������������������������������������}
S0s1s2

Z 1��

�1��
d3x

Z 1

0
d3y

�
2
X7

��1

T0� �
X14

��8

T0�

�
|�����������������������������������{z�����������������������������������}

I 0

�
; (20)

where the coefficient T� and T0� (� � 1; . . . ; 14) are func-
tions of xi, yj, �, and �2 and are given in Table (I). In
general, we have 21 diagrams: we have not drawn 7 others
which differ only to the 7 first ones by a permutation
between the u-quark lines 1 and 2. The symmetry of the
integration domain and of the DAs and TDAs with respect
to the changes x1 $ x2 and y1 $ y2 therefore tells us that
they give the same contributions as the 7 first diagrams.
They are accounted for by a factor 2 in the last equation.

The integrals in Eq. (20) are understood with two delta-
functions insuring momentum conservation:

 

Z
d3x 


Z
dx1dx2dx3��2�� x1 � x2 � x3� (21)

and

 

Z
d3y 


Z
dy1dy2dy3��1� y1 � y2 � y3�: (22)

The expression in Eq. (20) is to be compared with the
leading-twist amplitude for the baryonic form factor [20]
 

M / �i �u�p2�"6 ��u�p1�
�2
sf2

N

Q4

Z 1

0
d3x

Z 1

0
d3y

	

�
2
X7

��1

Tp��xi; yj; �; t� �
X14

��8

Tp��xi; yj; �; t�
�
: (23)

The factors Tp� are very similar to the T� obtained here.

V. CROSS SECTION ESTIMATE FOR
UNPOLARIZED PROTONS

When � is large, the ERBL region covers most of the
integration domain. This corresponds to the emission of
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TABLE I. 14 of the 21 diagrams contributing to the hard-scattering amplitude with their associated coefficient T� and T0�. The seven
first ones with u-quark lines inverted are not drawn. The crosses represent the virtual-photon vertex.

� T� T0�

1
 

u(y1)

u(y2)

d(y3)d(x 3)

u(x 2)

u(x 1) �Qu�2��
2��Vp�

0

1 �Ap�
0

1 ��Vp�Ap��4Tp�
0

1 Tp�2
�2
T

M2T
p�0

4 Tp�

�2��x1�i��
2�x3�i���1�y1�

2y3

�Qu�2��2��V
p�0

2 �Ap�
0

2 ��Vp�Ap��2�Tp�
0

2 �Tp�
0

3 �Tp�
�2��x1�i��

2�x3�i���1�y1�
2y3

2
 

u(y1)

u(y2)

d(y3)d(x 3)

u(x 2)

u(x 1)
0 0

3
 

u(y1)

u(y2)

d(y3)d(x 3)

u(x 2)

u(x 1) Qu�2��2�4T
p�0

1 Tp�2
�2
T

M2T
p�0

4 Tp�

�x1�i���2��x2�i���x3�i��y1�1�y1�y3

Qu�2��2�2�T
p�0

2 �Tp�
0

3 �Tp�
�x1�i���2��x2�i���x3�i��y1�1�y1�y3

4
 

u(y1)

u(y2)

d(y3)d(x 3)

u(x 2)

u(x 1) �Qu�2��2��V
p�0

1 �Ap�
0

1 ��Vp�Ap��
�x1�i���2��x3�i���x3�i��y1�1�y1�y3

�Qu�2��2��V
p�0

2 �Ap�
0

2 ��Vp�Ap��
�x1�i���2��x3�i���x3�i��y1�1�y1�y3

5
 

u(y1)

u(y2)

d(y3)d(x 3)

u(x 2)

u(x 1) Qu�2��2��V
p�0

1 �Ap�
0

1 ��Vp�Ap��
�x1�i���2��x3�i���x3�i��y1�1�y2�y3

Qu�2��2��V
p�0

2 �Ap�
0

2 ��Vp�Ap��
�x1�i���2��x3�i���x3�i��y1�1�y2�y3

6
 

u(y1)

u(y2)

d(y3)d(x 3)

u(x 2)

u(x 1)
0 0

7
 

u(y1)

u(y2)

d(y3)d(x 3)

u(x 2)

u(x 1) �Qd�2��2�2�V
p�0

1 Vp�Ap�
0

1 Ap��
�x1�i���2��x3�i��2y1�1�y3�

2

�Qd�2��2�2�V
p�0

2 Vp�Ap�
0

2 Ap��
�x1�i���2��x3�i��2y1�1�y3�

2

8
 

u(y1)

u(y2)

d(y3)d(x 3)

u(x 2)

u(x 1)
0 0

9
 

u(y1)

u(y2)

d(y3)d(x 3)

u(x 2)

u(x 1) �Qu�2��2��V
p�0

1 �Ap�
0

1 ��Vp�Ap��4Tp�
0

1 Tp�2
�2
T

M2T
p�0

4 Tp�

�2��x1�i��2�x2�i���1�y1�
2y2

�Qu�2��2��V
p�0

2 �Ap�
0

2 ��Vp�Ap��2�Tp�
0

2 �Tp�
0

3 �Tp�
�2��x1�i��2�x2�i���1�y1�

2y2

10
 

u(y1)

u(y2)

d(y3)d(x 3)

u(x 2)

u(x 1) �Qu�2��2��V
p�0

1 �Ap�
0

1 ��Vp�Ap��4Tp�
0

1 Tp�2
�2
T

M2T
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2
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2��Vp�

0

2 �Ap�
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three quarks of positive light-cone-momentum fraction off
the target proton. Therefore it is legitimate to approximate
the cross section only from the ERBL region. As a con-
sequence, the integration on the momentum fractions con-
tained in the TDAs between �1�� and 1�� [see
Eq. (20)] can be converted into one between 0 and 1 by a
change of variable and can be carried out straight-
forwardly.

On the other hand, we have at our disposal a reasonable

estimation of the TDAs Vp�
0

1 , Ap�
0

1 , and Tp�
0

1 in the large-�
region and for vanishing �T thanks to the soft-pion limit
(see Sec. III). As a consequence, we have all the tools
needed for a first evaluation of the unpolarized cross
section for �?P! P0�0 for large � and when �2

T is
vanishing.

The differential cross section for unpolarized protons in
the proton-pion center-of-mass frame is calculated as usual
from the averaged-squared amplitudes, jMij

2 (i � T, L,
TT, LT):

 

d�i
d���

�
1

64�2W2

���������������������������������������
�p�:p2�

2�m2
�M

2�
p
�����������������������������������
�p1:q�2�M2Q2�

p jMij
2

’
W2�M2

64�2W2
���������������������������������������������������������
�W2�M2�Q2�2�4W2M2

p jMij
2: (24)

The jMij
2 are obtained from squaring and summing (re-

spectively, averaging) M
s1s2

over the final (respectively,
initial) proton helicities with given appropriate combina-
tions of the photon helicity  [19]. The expression of
M

s1s2
are obtained from Eq. (20).

For vanishing �2
T , the spinorial structure Ss1s2

 �u�p2; s2�"6 ���5u�p1; s1� (25)

only survives. To obtain jMTj
2, we square the latter and

sum over the proton helicities and the transverse polar-
izations of the photon, it gives a factor 2�1���Q2

� . On the
other hand, jMLj

2, vanishes at the leading-twist accuracy,
as in the nucleon-form-factor case. The same is true for
jMLTj

2 and jMTT j
2 since the x and y direction are not

distinguishable when �2
T is vanishing.

Contrariwise, if we wanted to consider the spinorial
structure S0s1s2

—arising when �2
T � 0—

 "��
�T;� �u�p2; s2���
� � g
���5u�p1; s1�; (26)

jMTTj
2, and thus d�TT

d���
, would not be zero and the cross

section would show a cos2’ dependence.
The remaining part still to be considered is now entirely

contained in the factor I of Eq. (20) for which we need to
choose parametrizations for the DAs and the TDAs. For the
sake of coherence, we shall choose the same parametriza-
tion for both. Since the asymptotic limit [23] Vp�xi� �
Tp�xi� � ’as � 120x1x2x3 and A�xi� � 0 is known to give
a vanishing proton form factor and the wrong sign to the
neutron one, we shall not use it.

Note, however, that the isospin relations between the

TDAs Vp�
0

1 , Ap�
0

1 , and Tp�
0

1 differ from those between the
DAs; the factor 3 in Eq. (19) clearly illustrates this fact.
Therefore, whereas the asymptotic limit choices give a
vanishing proton form factor due to a full cancellation
between the 14-diagram contributions, the resulting ex-
pression will not vanish here even for the asymptotic
DAs and TDAs derived in the soft limit.

Yet, we shall rather consider the more reasonable
choices of Chernyak and Zhitnitsky [20] (noted CZ) based
on an analysis of QCD sum rules.

� T� T0�
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TABLE I. (Continued)
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Therefore, we take for the DAs:

 Vp�xi� � ’as�11:35�x2
1 � x

2
2� � 8:82x2

3 � 1:68x3 � 2:94�;

Ap�xi� � ’as�6:72�x2
2 � x

2
1��;

Tp�xi� � ’as�13:44�x2
1 � x

2
2� � 4:62x2

3 � 0:84x3 � 3:78�;

(27)

and for the limiting value of the TDAs

 

Vp�
0
�
’as
8

�
11:35

4
�x2

1� x
2
2� �

8:82

4
x2

3�
1:68

2
x3� 2:94

�
;

Ap�
0
�
’as
8

�
6:72

4
�x2

2� x
2
1�

�
;

Tp�
0
�

3’as
8

�
13:44

4
�x2

1� x
2
2� �

4:62

4
x2

3�
0:84

2
x3� 3:78

�
:

(28)

With this choice, we get the following analytic result
valid at large values of �:

 

d�
d���

�������������
�

0:389�em�
4
sf

4
N�

3�W2 �M2�

f2
�W2

������������������������������������������������������������
�W2 �M2 �Q2�2 � 4W2M2

p 6:11	 107�1� ��2�2��4��� 0:63�2��� 0:65�2

�Q2 �W2 �M2��Q2 � 2�W2 �M2��2
: (29)

The algebraic factors come from the DA and TDA parame-
trization [Eqs. (27) and (28)]. For � � 0:8, we have the Q2

dependence of d�
d���
j����� shown in Fig. 3 for �s � 0:4.

Our lack of knowledge of the TDAs unfortunately pre-
vents us from comparing our results with existing data
[14]. Indeed these data at Q2 � 1 GeV2 are mostly in the
resonance region (W < 1:5 GeV) except for the large W
tail of the distribution, which however correspond to small
values of the skewedness parameter (� < :3). We thus need
a realistic model for the p! � TDAs at smaller values of
� before discussing present data. The issue is more favor-
able at higher energies, where higher values of � can be
attained above the resonance region, as for instance at
HERMES and with CEBAF at 12 GeV [24]. Our calcula-
tion of the cross section, in an admittedly quite narrow
range of the parameters, can thus serve as a reasonable
input to the feasibility study of backward pion electro-
production at CEBAF at 12 GeV, in the hope to reach the
scaling regime, in which we are interested.

The corresponding results for the asymptotic choice are
3 orders of magnitude smaller. This shows how sensitive
the amplitude is with respect to nonperturbative input of
the DAs. This has to be paralleled with the perfect cancel-
lations in the proton-form-factor calculation in this limit.

The breaking of the isospin relations for the TDAs prevents
some of these cancellations, but the full cross section is still
shrunk down, whereas the CZ choice gives a much larger
contribution as expected.

VI. CONCLUSION

Hard-exclusive electroproduction of a meson in the
backward region thus opens a new window in the under-
standing of hadronic physics in the framework of the
collinear-factorization approach of QCD. Of course, the
most important and most difficult problem to solve, in
order to extract reliable precise information on the p!
� transition distribution amplitudes from an incomplete set
of observables such as cross sections and asymmetries, is
to develop a realistic model for the TDAs. This is the
subject of nonperturbative studies such as, e.g., lattice
simulations. We have derived the limit of these TDAs
when the pion momentum is small and we have provided
a first estimate of the cross section in the kinematical
regime which should be accessed at JLab at 12 GeV.

This estimate, which is unfortunately reliable only in a
restricted kinematical domain, also shows an interesting
sensitivity to the underlying model for the proton DA.
Beside information about the pion content in protons
through the TDAs, backward pion electroproduction is
therefore also likely to bring us information about the
proton DAs themselves.

Finally, it is worthwhile to note that the analysis pre-
sented here could be extended easily to ep! e0n��,
ep! e0�0��, ep! e0���0, ep! e0����� and simi-
lar reactions with a neutron target, for which data also can
be expected [25].
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