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We consider the pion matrix elements of the isoscalar and isovector combinations of the vector and
tensor twist-two operators that determine the moments of the various pion generalized parton distribu-
tions. Our analysis is performed using partially-quenched chiral perturbation theory. We work in the SU(2)
and SU�4j2� theories and present our results at infinite volume and also at finite volume where some
subtleties arise. These results are useful for extrapolations of lattice calculations of these matrix elements
at small momentum transfer to the physical regime.
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I. INTRODUCTION

Generalized parton distributions (GPDs) [1–4] provide a
uniquely detailed view of the structure of hadrons, unifying
the information encoded in form-factors and parton distri-
butions, and supplementing both. Ongoing experiments at
DESY [5–7] and Jefferson Lab [8] (see Refs. [9,10] for
recent reviews) seek to learn about these fundamental
quantities in deeply-virtual Compton scattering (DVCS)
and related processes. Aspects of GPDs are also being
investigated in QCD and phenomenological models.
Since GPDs encode long distance hadronic structure,
QCD analyses of them are necessarily based on nonper-
turbative methods such as lattice QCD. These examina-
tions are complementary to the experimental efforts in that
different facets of the GPDs can be accessed. Most experi-
mental efforts are focused on the proton and either measure
the GPDs at constrained kinematics (through polarization
observables) or measure integrals of the GPDs (through
DVCS cross-sections). Lattice QCD analyses are based on
the operator product expansion and lead to information on
the lowest few Mellin moments of the GPDs which corre-
spond to nonforward matrix elements of twist-two opera-
tors. Again most studies focus on the proton [11–14], but
the GPDs of other hadrons are equally accessible in the
lattice approach (unlike in experiment). In particular, re-
cent studies by the QCDSF collaboration [15] have inves-
tigated the GPDs of the pion.

Here we investigate the vector and tensor GPDs of the
pions from the point of view of chiral perturbation theory
applied to lattice QCD, studying the quark mass and lattice
volume dependence of the meson matrix elements of twist-
two operators. Related studies of the vector GPD pion
matrix elements have been presented in Ref. [16–21],
however we extend those results to partially-quenched
chiral perturbation theory (appropriate for lattice calcula-
tions with differing sea- and valence- quark masses). We
also consider the tensor twist-two operators (also treated
recently in Ref. [22]) and include the effects of the finite

volume to which lattice simulations are necessarily re-
stricted (the Lorentz noninvariance of the lattice boundary
conditions introduces some novel issues in the resulting
extrapolation that we highlight). The finite volume calcu-
lations in partially-quenched chiral perturbation theory are
particularly relevant to the ongoing lattice calculations
reported in Ref. [15] (see [23] for earlier work in the
forward limit).

In the following section we provide our notation and
conventions for the pion GPDs and twist-two matrix ele-
ments. In Sec. III we turn to the effective field theory
description of these objects before presenting our infinite
volume results in Sec. IV, their finite volume analogues in
Sec. V, and a concluding discussion in Sec. VI. Various
aspects of the finite volume forms are relegated to the
Appendix.

II. GENERALIZED PARTON DISTRIBUTION OF
THE PION

A. Pion GPDs

The generalized parton distributions of the pions (here
we restrict our discussion to SU(2)) are defined by matrix
elements of light-cone separated bi-local currents.
Specifically, the vector GPDs HA, and the tensor GPDs,
EAT , are given by

 h�i�p0�j � 
�
�z

2n
�
�A� � u 

�
z
2n
�
j�j�p�i

�
Z 1

�1
dye�iyzu� �PHA�y; �; t�u � �P tr��i�A�j�; (1)

and

 h�i�p0�j � 
�
�z

2n
�
�Ai���u�r� 

�
z
2n
�
j�j�p�i

�
Z 1

�1
dye�iyzu� �PEAT�y; �; t�u � �Pr �� tr��i�A�j�; (2)

respectively (for simplicity, we have suppressed the gauge
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links that render these matrix elements gauge invariant).
Here the average four momentum of the incoming and
outgoing pion states is �P � 1

2 �p� p
0� and the momentum

transfer is � � p0 � p, u is a lightlike vector (u2 � 0) and
r is transverse (r � u � r � �P � 0). The GPDs are functions
of the three variables y, � � � u��

2u� �P and t � �2. Finally,
�A � �1; �A� for QCD.

B. Twist-two operators

As is evident from the forms of the GPDs, there are two
towers of local twist-two quark operators that have non-
vanishing pion matrix elements. These are given by

 O �n�
A 	 u�0

. . . u�n
O�0...�n
A � � u � ��iu �D

$

�n�A ; (3)

and

 O �n�
T;A 	 u�r	u�1

. . . u�n
O�1...�n
T;A

� � i��	u�r	�iu �D
$

�n�A : (4)

The operators O�1...�n
A and O�1...�n

T;A are of fixed twist ( �
dimension� spin) and transform irreducibly under the
Lorentz group. Matrix elements of the vector twist-two
operators in Eq. (3) give moments of the quark distribution
in the pion in the forward limit. There are also two towers
of purely gluonic operators at twist-two (see, for example,
Ref. [10]) that have nonzero pionic matrix elements. For
the purposes of our current discussion we note that the
vector case has the same transformation properties as O�n�0
above while the tensor case is beyond the scope of this
work.

These operators transform as �3; 1� 
 �1; 3� (isovector,
A � 1, 2, 3) or �1; 1� (isoscalar, A � 0) under SU�2�L �
SU�2�R rotations. The tensor twist-two operators also have
nonzero matrix elements but vanish in the forward limit
and belong to the �2; �2� 
 ��2; 2� representation of SU�2�L �
SU�2�R irrespective of the flavour index A. In the SU�4j2�
partially-quenched QCD case (where additional valence
and ghost quarks are introduced), these operators are ex-
tended by the replacement of �A by ��0, ��a and ��T in the
isoscalar-vector, isovector-vector and tensor cases. These
matrices are somewhat arbitrary [24–26], but for definite-
ness we choose:

 �� 0 � diag�1; 1; 1; 1; 1; 1�;

��3 � diag�1;�1; qj; qk; ql; qj � qk � ql�;

��T � diag�1; y; q3; q4; q5; q3 � q4 � q5�;

(5)

which reduce to the usual Pauli matrices in the QCD limit
and transform in the corresponding representations of the
enlarged flavour group.

The local twist-two QCD operators are simply related to
those in Eqs. (1) and (2) and it follows that

 h�i�p0�jO�n�A j�
j�p�i � HA

n�1��; t��u � �P�n�1 str� ��i ��A ��j�;

(6)

 

h�i�p0�jO�n�T;Aj�
j�p�i � EAT;n�1��; t��r ���

� �u � �P�n�1 str� ��i ��A ��j�; (7)

where HA
n�1��; t� �

R
1
�1 dyy

nHA�y; �; t� and
EAT;n�1��; t� �

R
1
�1 dyy

nEAT�y; �; t�.
Discrete symmetries and the approximate isospin sym-

metry of QCD constrain the pion GPDs. Time-reversal
invariance demands HA�y; �; t� � HA�y;��; t� and
EAT�y; �; t� � EAT�y;��; t�. Under charge conjugation (C),
both the vector and tensor operator transform as [20,27]:

 CO�n�A C�1 � ��1�n�1O�n�A ; (8)

 CO�n�T;AC
�1 � ��1�n�1O�n�T;A: (9)

Using this, it can be shown that the isoscalar (A � 0)
vector matrix elements vanish for even index n � 2k and
the isovector (A � 3) vector matrix elements vanish for
odd n (additional complications arise in the SU�4j2� case).
For odd index, the isoscalar-vector matrix elements are
parametrized in terms of generalized form factors A�0�n;j
and C�0�n�1 as:
 

h�i�P0�jO�2k�1�
0 j�j�P�i � 2
ij

�Xk�1

l�0

�u � ��2l�u � �P�2k�2l

� A�0�2k;2l�t� � �u � ��2kC�0�2k �t�
�
;

(10)

while for even index, the isovector-vector matrix element
can be parametrized as:
 

h�i�P0�jO�2k�j j�
k�P�i � 2i�ijk

Xk
l�0

�u ���2l�u � �P�2k�2l�1

� A�3�2k�1;2l�t�: (11)

Similarly, parametrizations of the tensor operator matrix
elements are given by

 h�i�p0�jO�2k�1�
T;0 j�j�p�i � 2
ij

Xk
l�0

1
��
�u � �P��r � ���u ���2l

��u � �P�2k�2l�1BT;�0�2k�2;2l�t�;

(12)

 

h�i�p0�jO�2k�T;3 j�
j�p�i � 2i�i3j

Xk
l�1

1
��
�u � �P��r ����u ���2l

� �u � �P�2k�2lBT;�3�2k�1;2l�t�; (13)

for both even and odd index.
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The generalized form factors, A�A�n;k and BT;�A�n;k , are related
to the generalized parton distributions in Eq. (1) and (2) as

 

Z 1

�1
dyynH�0��y; �; t� �

Xn�1

j�0;even

��2��jA�0�n�1;j�t�

� ��2��n�1C0
n�1�t�; (14)

 

Z 1

�1
dyynH�3��y; �; t� �

Xn
j�0;even

��2��jA�3�n�1;j�t�; (15)

and

 

Z 1

�1
dyynEAT;n�1�y; �; t� �

Xn
j�0;even

�2��jBT;�A�n�1;j�t�; (16)

respectively. C�0�n�1�t� is the D-term form-factor [28].

III. EFFECTIVE FIELD THEORY

The small t behavior of the GPD form-factors can be
reliably described by the low energy effective theory of
QCD, chiral perturbation theory (�PT) [29,30]. The ex-
tensions of this to partially-quenched QCD1 (in which
valence and sea quarks have different masses as appropri-
ate for many current lattice calculations), partially-
quenched �PT (PQ�PT) [32,33], is well known and here
we simply highlight the relevant pieces of the Lagrangian
and discuss the operators that contribute to the twist-two
matrix elements. We primarily focus on a partially-
quenched theory of valence �u; d�, sea �j; l� and ghost
�~u; ~d� quarks with masses contained in the matrix

 mQ � diag�mu;md;mj;ml; m~u; m~d�; (17)

wherem~u;~d � mu;d such that the path-integral determinants
arising from the valence and ghost quark sectors exactly
cancel.

A. Lagrangian

At leading order the PQ�PT Lagrangian is given by

 L ��
f2

8 str�D��yD����f
2

4 str�mQ�y�myQ��; (18)

where the pseudo-Goldstone mesons are embedded non-
linearly in the coset field

 � � exp
�
2i�
f

�
; (19)

(under a chiral rotation, �! L�Ry) with the matrix �
given by

 � �
M �y

� ~M

� �
; (20)

and
 

M �

�u �� �uj �ul

�� �d �dj �dl

�ju �jd �j �jl

�lu �ld �lj �l

0BBBBB@

1CCCCCA; ~M �
~�u ~��

~�� ~�d

 !
;

� �
�~uu �~ud �~uj �~ul

�~du �~dd �~dj �~dl

 !
: (21)

The upper left 2� 2 block of M corresponds to the usual
valence-valence mesons, the lower right to sea-sea mesons
and the remaining entries of M to valence-sea mesons.
Mesons in ~M are composed of ghost quarks and ghost
antiquarks and are thus bosonic. Mesons in � contain
ghost-valence or ghost-sea quark-anti-quark pairs and are
fermionic. In terms of the quark masses, the tree-level
meson masses are given by

 M2
�ij
� M2

QiQj
� ��mQ�ii � �mQ�jj�; (22)

where Q � �u; d; j; l; ~u; ~d�. The decay constant is normal-
ized as f� 132 MeV. Additional terms involving the fla-
vour singlet field, str��� are not relevant here; in both
PQ�PT and �PT the singlet meson acquires a large mass
through the strong U�1�A anomaly and can be integrated
out, leading to a modified flavour neutral propagator that
contains both single and double-pole structures [34,35].

B. Twist-two operators

Twist-two operators have been studied quite extensively
in various low energy effective theories. A number of
studies have focused on pionic matrix elements of twist-
two operators [16–21] but the relevant operators also
contribute in numerous studies of nucleon matrix elements
[22,26,27,36–40] (these studies have also been extended
to the nuclear setting in Refs. [41,42]).

We first focus on the vector operators, Eq. (3). To
perform the matching of these operators to those in �PT
it is useful to make the separation:

 O �m�
A � O�m�A;L �O�m�A;R; (23)

such that O�m�A;H � �qH ��AH�u � ���u � iD
$

�m�1qH for H � L,
R, where qL;R � ��1 �5�=2�q are the left (right)-handed
quark fields which transform as qL ! LqL and qR ! RqR
under the action of SU�4j2�L � SU�4j2�R. To construct the
EFT operators, it is useful to treat ��AL;R as a spurion field
that transform under global chiral rotations as:

 �� AL ! L ��ALL
y; ��AR ! R ��ARR

y (24)

(the spurion fields take a vacuum expectation value of ��A).
This promotion renders the QCD operators, O�m�A , invariant
under chiral rotations. For these operators to have the
correct charge conjugation properties, Eq. (12), requires
��AL;R!

C� ��AL;R�
T since �!C�T and mq!

C�mq�
T .

1We do not discuss quenched QCD in which sea quarks are
omitted as it has no connection to physical observables except in
the large Nc limit [31].
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At leading order, the EFT operators consistent with these
transformation properties are constructed from a single
insertion of �AL;R and arbitrary numbers of �/�y pairs.
The first two terms in this tower are given by:

 O �m�
A;1 �

Xm�1

k�0

�aA;1m;k str� ��A��
k����m�k�1�y��

� aA;1am;k str� ��A��
k�y���m�k�1����; (25)

 

O�m�A;2 �
Xj1�j2�j3<m�1

j1;j2;j3�0

aA;2m;j1;j2;j3
str� ��A��j1 ����j2 �y�

� ��j3 ����m�1�j1�j2�j3�y�

� ��$ �y��; (26)

where �k � �iu � @�k. Charge conjugation requires that
aA;1am;m�k�1 � aA;1m;k��1�m�1, and parity, �! �y, implies
that aA;1m;k � ��1�m�1aA;1m;m�k�1, significantly simplifying

O�m�A;1 . The second type of operator, O�m�A;2 , is not independent

of O�m�A;1 at infinite volume. If there are nonzero numbers of
derivatives on three or four coset fields (��y�), this operator
may contribute through diagram (b) in Fig. 1 below, but
will be proportional to powers of u � k where k is the
integration momentum. For even powers this will produce
overall factors of u2 which vanish; for odd powers, the
integrand will be odd and hence vanish upon integration.
Consequently, these operators only contribute in Fig. 1(b)
when all derivatives act on the external pion fields.
However using integration by parts and eliminating opera-
tors with derivatives on more than two meson fields such
terms can be rewritten in terms of O�m�A;1 . Operators involv-
ing six or more coset fields can similarly be eliminated.

Thus the final form for the vector twist-two operators we
use is:

 O �m�
A � f2

4

Xm
j�0;even

aAm�1;j����jfstr� ��A��
$m�1�j

�y�

� str� ��A�y�
$m�j�1

��g; (27)

where we find it convenient to express the result in terms of

the forward-backward derivative �
$

� ~���
 

� iu � � ~@�@
 
�

and time-reversal invariance limits the sum to even values.2

At finite volume some of the operators we have neglected
will contribute as Lorentz symmetry is no longer pre-
served. Here we ignore such terms but they result in addi-
tional complications in the extrapolation needed for lattice
data as discussed in Sec. V.

Construction of the tensor operators is similar to that of
the vector operators, however in analyzing the transforma-
tion properties of the QCD operators it is necessary to
introduce additional spurion fields, ��ALR and ��ARL, that trans-
form as ��ALR ! L ��ALRR

y, and ��ARL ! R ��ALRL
y such that

 O �m�
T;A � �qL ��ALRiu�r��

���iu �D�mqR

� �qR ��ARLiu�r��
���iu �D�mqL; (28)

is invariant under chiral rotations.
As in the vector case, there is a tower of operators at

leading order in the EFT with arbitrary odd numbers of �
and �y fields and a single insertion of ��ALR;RL consistent
with the requisite transformation properties. A similar
discussion to that above for the vector operators greatly
simplifies the structure of these operators and shows that
only the operators involving three coset fields contribute to
the single-particle matrix elements we are considering at
next-to-leading order in infinite volume. Using charge
conjugation and noting the QCD operator is antisymmetric
under the interchange u$ r, this relevant operator can be
written as:
 

O�m�T;A �
f2

2

Xm
j�0;even

bm�1;j����j

� f�� ��� str� ��Tf���y�
$m�1�j

��

� ���
$m�1�j

�y��g�

� ���� str� ��Tf���
y ��
$

�
$m�j

��

� �� ��
$

�
$m�j

�y��g� � ��$ �y�g; (29)

where �� � �ir � @�.
Unlike the vector operators, the tensor operators involve

a single set of low energy constants (LECs) because they
belong to the same chiral representation regardless of the
choice of flavour structure. In the SU(2) case, the super-
traces in the operators of Eq. (27) and (29) reduce to
ordinary flavour traces and the various matrices are now
2� 2, but the form of the operators and the LECs that
appear are otherwise unchanged.

At the next-to-leading order (NLO), O�p2�, vector and
tensor operators which will contribute at tree-level are

 

)c()b()a(

FIG. 1. One-loop diagrams contributing to the mesonic matrix
elements of twist-two operators. The filled circle denotes a
vertex from the chiral Lagrangian while the crossed circle
corresponds to the twist-two operator. Diagram (c) denotes the
wave function renormalization.

2For notational convenience, we use the same symbol to
denote both the underlying QCD operator and that in the
effective theory. Note, however, the EFT operators match not
only the leading twist QCD operators but also higher twist
operators of the same quantum numbers and also to purely
gluonic operators in the isoscalar cases [42].
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generated by combining the leading order operators above
with insertions of @2, @� . . . @� or by substitution of the
quark mass matrix mQ for a coset field, �. The explicit
forms of these operators are not required here however they
generate polynomial dependence on the quark masses and
t.

IV. INFINITE VOLUME RESULTS

At leading order, the moments of the pion GPDs receive
tree-level contributions from the operators in Eqs. (27) and
(29) above. At next-to-leading order contributions come
from tree-level insertions of the O�p2� operators discussed
above and from the one-loop diagrams involving the lead-
ing order operators shown in Fig. 1. The higher order
operators lead to polynomial dependence of the GPD
form-factors on mq �M

2 (M is a Goldstone meson
mass) and t while the loops generate nonanalytic depen-
dence on these quantities. Therefore at NLO, the vector
GPD form factors will have the form:

 A�A�m�1;j�t� � A�A�m�1;j � A
�A;a�
m�1;jM

2 � A�A;b�m�1;jt

� loop contributions; (30)

where A�A�m�1;j is the bare matrix element determined in

terms of the leading order LECs aAm�1;j, and A�A;a�m�1;j and

A�A;b�m�1;j can be expressed in terms of linear combinations of
the LECs accompanying the various NLO operators and
absorb divergences from the loop contributions (in general
this renders these terms renormalization scale dependent).
A similar expression holds for the tensor GPD form
factors.

In the following subsections, we present results for the
various matrix elements in the SU�4j2� isospin limit case,
md � mu and ml � mj. In this limit, only the valence-
valence meson mass, Muu � M�, and the valence-sea me-
son mass, M2

uj � M2
� �

1
2


2
uj, enter. Here 
2

uj=2 is the
mass splitting between u and j quarks and results in SU(2)
are easily obtained by setting 
uj ! 0 (these results are
given in Appendix B).

A. Isoscalar-vector operators

In the partially-quenched theory, the pion matrix ele-
ments of the isoscalar-vector operators have the form

 

h��jO�m�0 j�
�i � 2�1� ��1�m�

Xm
j�0;even

a�0�m�1;j��2 �P � u�m�j�1�� � u�j � �� � u�m�1�

�
�1� ��1�m�

48f2�2 �u ���m�1
Xm

j�0;even

a�0�m�1;j

Z 1

�1
d�

�12�1� �m�1�j�
2
ujM

2
�

4M2
� � t��2 � 1�

� 3�1� �m�1�j� log
�M2

� �
1
4 t��

2 � 1�

�2

�
M2
� � log

�M2
uj �

1
4 t��

2 � 1�

�2

�

� �t��j�m� 4��2 � j�m� 8��m�1�j � 4��j�m� 2��m�1�j � 1�M2
uj � t�3�

2 � 7��
�
; (31)

for m odd and vanish for m even. Note that above and in what follows, we have suppressed analytic dependence of matrix
elements on M2

�, M2
uj and t. The first term in the braces arises from a double-pole propagator in Fig. 1(a) and gives

enhanced quark mass dependence. The QCD limit is easily obtained by setting 
uj � 0 and Muj ! M�.
Decomposing this result leads to the following structure for the GPD form factors (m odd):

 A�0�m�1;j�t� � A�0�m�1;j � A
�0;a�
m�1;jM

2
� � ~A�0;a�m�1;jM

2
uj � A

�0;b�
m�1;jt; for j � m; (32)

with no nonanalytic dependence, and (m odd)
 

C�0�m�1�t� � C�0�m�1 �
C�0�m�1

96�2f2

Z 1

�1
d�

� 12
2
ujM

2
�

4M2
� � t��2 � 1�

� 3M2
� log

�M2
� �

t
4 �1� �

2�

�2

�

� ��3�2 � 7�t� 4M2
uj� log

�M2
uj �

t
4 �1� �

2�

�2

��
� C�0;a�m�1M

2
� � ~C�0;a�m�1M

2
uj � C

�0;b�
m�1t

�
1

192�2f2

Xm
j�0;even

2j�mA�0�m�1;j

Z 1

�1
d��m�j�1

� 12
2
ujM

2
�

4M2
� � t��

2 � 1�
� 3M2

� log
�M2

� �
t
4 �1� �

2�

�2

�

� �t�3�2 � 7� � 4M2
uj � 4�m� j� 1��M2

uj �
t
4
�1� �2��� log

�M2
uj �

t
4 �1� �

2�

�2

��
; (33)
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where the LECs and the bare form-factors are related by
C�0�m�1 � �

Pm
j�0;even a

�0�
m�1;j and A�0�m�1;j � 2m�j�1a�0�m�1;j.

The �� and �0 results are identical and, with appropriate
changes in normalization, the QCD limits of these results
agree with those in Refs. [18,21] using integration by parts
and noting that

P
j;even2jA�0�m�1;j � 0 (the results for the

gravitational form-factors, A2;0�t� and C2�t�, also agree
with previous calculations [43]). In the partially-quenched

case, this form-factor leads to an enhanced divergence in
the pion gravitational radius�
2

uj=M
2
� as opposed to lnM�

in QCD.

B. Isovector-vector operators

The pion matrix elements of the isovector-vector opera-
tors have the form

 

h��jO�m�3 j�
�i � �1� ��1�m�

Xm
j�0;even

a�3�m�1;j

�
2�2 �P � u�m�j�1�� � u�j

�
1�

1

8�2f2 M
2
uj log

�M2
uj

�2

��

�
1

8�2f2 �2
�P � u��� � u�m

�
t
2

Z 1

�1
d��m�j�2 log

�M2
uj �

t
4 �1� �

2�

�2

�
� 2M2

uj log
�M2

uj

�2

���
; (34)

for even m. This leads to the following structure for the GPD form factors:

 A�3�m�1;j�t� � A�3�m�1;j

�
1�

M2
uj

8�2f2 log
�M2

uj

�2

��
� A�3;a�m�1;jM

2
� � ~A�3;a�m�1;jM

2
uj � A

�3;b�
m�1;jt; for j � m� 2; (35)

and

 

A�3�m�1;m�t� � A�3�m�1;m

�
1�

M2
uj

8�2f2 log
�M2

uj

�2

��
� A�3;a�m�1;mM

2
� � ~A�3;a�m�1;mM

2
uj � A

�3;b�
m�1;mt

�
Xm

j�0;even

2j�mA�3�m�1;j

8�2f2

�
M2
uj log

�M2
uj

�2

�
�
t
4

Z 1

�1
d��m�j�2 log

�M2
uj �

t
4 �1� �

2�

�2

��
; (36)

using a�3�m�1;j � 2j�m�1A�3�m�1;j. The �� results are related to these by factors of �1 and those in the �0 vanish. The LECs

A�3;a�1;0 and ~A�3;a�1;0 vanish by current conservation and A�3�1;0 � 1. These results can be shown to agree with Ref. [18,21] (and
earlier results in the case of the vector-isovector form-factor, A�3�1;0�t�) using integration by parts and noting the different
normalizations.

In the partially-quenched theory, isospin is not a good quantum number (the SU�4j2� adjoint matrices are given in
Eq. (5)) and the odd-m matrix elements are also nonzero. These take the form (�� and �0 are identical to the ��)

 

h��jO�m�3 j�
�imodd �

�1� ��1�m�

8f2�2 �qj � qk�
Xm

j�0;even

a�3�m�1;j

�
�u � ��m�1

24

Z 1

�1

d�
�j

�8�2�j � 3��2 � 1��m�1�M2
�


4
uj

�4M2
� � t��

2 � 1��2

�
24��j � �m�1�M2

�

2
uj

4M2
� � t��

2 � 1�
� log

�M2
� �

1
4 t��

2 � 1�

�2

�
G�M�� � log

�M2
uj �

1
4 t��

2 � 1�

�2

�
G�Muj�

�

� ��u ���m�1 � �2 �P � u�m�1�j�u ���j�
�
log

�
M2
�

�2

�
M2
� � log

�M2
uj

�2

�
M2
uj

��
; (37)

where G�M� � �t�3�2 � 7��j � t��j�m� 4��2 � j�m� 8��m�1 � 4��j � �j�m� 2��m�1�M2�. Note that this
matrix element vanishes in the QCD limit and the sea-isospin limit where qj � �qk, in which foreseeable lattice
calculations would be performed. Consequently, we do not present the form-factors that result.

C. Tensor operators

For m odd, the matrix elements of the tensor operator are given by:
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h��jO�m�T j�
�i � 8�1� ��1�m� �P � ur ��

Xm
j�0;even

bm�1;j�2 �P � u�m�j�u ���j
�
�1� y�

�
1�

M2
uj

12�2f2 log
�M2

uj

�2

��

�
1

48f2�2

�
2�3�q3 � q4� � 5�1� y�� log

�M2
uj

�2

�
M2
uj � 3 log

�
M2
�

�2

�
��2�q3 � q4�

� �1� y��M2
� � �1� y�


2
uj�

��
; (38)

which simplifies considerably in the QCD limit. These matrix elements vanish if the charge matrix is isovector in both the
sea and valence sectors. Matrix elements in the �� and �0 are identical.

For m even, the matrix elements are given by

 

h��jO�m�T j�
�i � 2�1� y� �P � ur ��

Xm
j�0;even

bm�1;j

�
�4�u ���j��p � u�m�j� 2�2 �P � u�m�j� ��p��� � u�m�j�

�

�
1�

M2
uj

12�2f2 log
�M2

uj

�2

�
�

1

48f2�2

�
3 log

�
M2
�

�2

�
�M2

��
2
uj� � 10 log

�M2
uj

�2

�
M2
uj

��

�
�u ���m

16f2�2

Z 1

�1
d��4M2

uj� t��
2� 1��

��
1��

2

�
m�j
� 2�m�j�

�
1��

2

�
m�j

�
log

�M2
uj�

1
4 t��

2� 1�

�2

��
;

(39)

vanishing in the isoscalar case. The �� matrix elements differ by an overall sign and the �0 matrix elements vanish.
The results in Eqs. (38) and (39) are easily converted into the various GPD form factors. For m odd,

 BTm�1;j�t� � BT;�0�m�1;j

�
�1� y�

2

�
1�

M2
uj

8�2f2 log
�M2

uj

�2

�
�
M2
� � 


2
uj

16�2f2 log
�
M2
�

�2

��
�
q3 � q4

16�2f2 M
2
uj log

�M2
uj

�2

�

�
q3 � q4

16�2f2 M
2
� log

�
M2
�

�2

��
� BT;�a�m�1;jM

2
� � ~BT;�a�m�1;jM

2
uj � B

T;�b�
m�1;jt; (40)

for all j. Here BT;�0�m�1;j � 8 2m�j��bm�1;j (m odd).
While for m even,

 BTm�1;j�t� � BT;�0�m�1;j
1� y

2

�
1�

1

16�2f2

�
�M2

� � 

2
uj� log

�
M2
�

�2

�
� 2M2

uj log
�M2

uj

�2

���
� BT;�a�m�1;jM

2
� � ~BT;�a�m�1;jM

2
uj

� BT;�b�m�1;jt; (41)

for j < m, and
 

BTm�1;m�t� � BT;�0�m�1;m

1� y
2

�
1�

1

16�2f2

�
�M2

� � 

2
uj� log

�
M2
�

�2

�
� 2M2

uj log
�M2

uj

�2

���

�
1� y

32f2�2

Xm
j�0;even

BT;�0�m�1;j

Z 1

�1
d��M2

uj �
t
4
��2 � 1��

�
�
2

�
m�j

log
�M2

uj �
1
4 t��

2 � 1�

�2

�

� BT;�a�m�1;mM
2
� � ~BT;�a�m�1;mM

2
uj � B

T;�b�
m�1;mt; (42)

where

 BT;�0�m�1;j � �8��

� Xm
k�0;even

m� k
j� k

� �
2k�jbm�1;k

� 2m�jbm�1;j

�
(m even) is the leading order result for the form-factor. In
the QCD limit, these result reproduce those of Ref. [22]
[Eqs. (106) and (128) therein]. As these results are insen-
sitive to the sea-quark charges, these form-factors can be
calculated in lattice QCD without disconnected quark
loops.
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V. FINITE VOLUME EFFECTS

The space-time lattices used in numerical simulations
are of finite extent by necessity, and consequently, lattice
results differ from those of the physical (infinite volume)
world even at the physical quark masses.3 For sufficiently
large volumes, these effects can be incorporated into the
effective field theory approach, allowing infinite volume
results to be extracted from the finite volume (FV) lattice
simulations. Here we shall consider a hyper-rectangular
box of dimensions L3 � T with T � L as appropriate for
most current lattice calculations. Imposing periodic bound-
ary conditions on mesonic fields leads to quantized mo-
menta k � �k0; ~k�, ~k � 2�

L
~j � 2�

L �j1; j2; j3� with ji 2 Z,
but k0 treated as continuous. On such a finite volume,
spatial momentum integrals are replaced by sums over
the available momentum modes. This leads to modifica-
tions of the infinite volume results presented in the pre-
vious section; the various functions arising from loop
integrals are replaced by their FV counterparts. In a system
where M�L� 1, finite volume effects are predominantly
from Goldstone mesons propagating to large distances
where they are sensitive to boundary conditions and can
even ‘‘wrap around the world’’.4 Since the lowest momen-
tum mode of the Goldstone propagator is� exp��M�L� in
position space, finite volume effects will behave as a
polynomial in 1=L times this exponential provided no
multiparticle thresholds are reached, that is for t < 4M2

�.
For t � 4M2

�, volume effects that are polynomial in inverse
powers of L are expected, however for realistic lattice
calculations, such momentum transfers are too large to
be described in �PT and we neglect the resulting compli-
cations in our analysis.

The finite volume effects in the diagrams of Fig. 1(b) and
1(c) arising from the operators that contribute at infinite
volume are well known. However the effects in Fig. 1(a)
are made more complicated by the nontrivial numerator
structure of the integral/sum and the requisite details for
their evaluation are given in Appendix A. The final forms
for the finite volume versions of our results are given
below. In most cases, these replacements of spatial mo-
mentum integrals by sums would complete the calculation
of finite volume effects. However for the GPD form-
factors, there are additional complications that arise from
operators whose contributions vanish in infinite volume but
which give nonzero contributions at finite volume. To see
this, we concentrate on the vector case and reconsider the
operator in Eq. (26) (note there is some redundancy of
terms in this operator). Naı̈vely, this operator would con-

tribute through diagram (b) in Fig. 1. As discussed in
Section III, there is no contribution at infinite volume as
each of the pion fields coming from this operator must have
a nonzero number of derivatives acting on it. Combining
u2 � 0 (or equivalently, the definite Lorentz transforma-
tion properties of the twist-two, spin-n, operators) and the
symmetric range of integration, terms with derivatives in-
side the loop in Fig. 1(b) give no contribution.

In the finite volumes discussed here, Lorentz symmetry
(or O(4) symmetry in Euclidean space as relevant in lattice
calculations) is explicitly broken by the imposition of the
boundary conditions (in a L3 � T periodic box, arbitrary
Lorentz boosts do not leave the system invariant). As a
result, the arguments used to discard the operators in
Eq. (26) break down ( 1

L3

R
dq0

P
~q
�u:q�2

�q2�m2�j
� 0 at finite

volume) and their contributions, which must vanish as L!
1, need to be incorporated to correctly describe finite
volume lattice calculations. Consequently, one must in-
clude the functional dependence arising from operators
such as those in Eq. (26) in any fit to lattice data and
determine the relevant combinations of the aA;2m;j1;j2;j3

as
well as the aAm�1;j before discarding the former (we have
no interest in these LECs for the matrix elements we want
to extract, however they would contribute in more compli-
cated matrix elements such as two pion matrix elements of
twist-two operators) in extracting the infinite volume re-
sult. In general this is a very intricate task as the functional
dependence produced by these operators in the contribu-
tion of Fig. 1(b) to the matrix element of O�m�A is

 

Xn
l�2;even

�n;lu�1
. . . u�l

Z
dk0

1

L3

X
~k

k�1 . . . k�l � tr

k2 �m2 (43)

where the parameters �n;l are linear combinations of those
that enter in Eq. (26).5 However for the low moments (m<
4) that are accessible in current lattice calculations, these
subtractions can be performed.

A number of additional aspects of Lorentz symmetry
violation at finite volume are worth noting. Firstly, these
effects did not contribute in the nucleon twist-two matrix
elements at finite volume at NLO [26], but will contribute
at higher orders in the chiral expansion in a similar way as
they enter here. We also note that moments of distribution
amplitudes (given by meson to vacuum matrix elements of
related quark-bilinear operators) will suffer from similar
complications at finite volume and the absence of non-
analytic quark mass dependence at NLO found in Ref. [20]
at infinite volume will not persist. Secondly, as shown in
Ref. [45], no new operators can appear at finite volume
otherwise their LECs would necessarily depend on L�1, an
infrared scale. In the case described above, the operator is

3Lattice artifacts from the discretization of space-time also
influence lattice results. We do not discuss these here and assume
a continuum extrapolation has been performed.

4In principle, finite volume effects can also be computed for
M�L� 1 but ��L� 1 where mesonic zero-modes become
enhanced [44–46]. These calculations are beyond the scope of
this work.

5Care must to be taken to define a suitable regularization
prescription.
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present both at finite volume and infinite volume, but does
not contribute to the matrix elements we consider in the
latter case. A final related effect of the finite volume is that
Lorentz symmetry can no longer be used to decompose the
matrix elements of the twist-two operators. At finite vol-
ume, additional structures that violate Lorentz symmetry
can appear in the decomposition of the matrix elements in
Eqs. (10)–(13).6 The form factors of such terms vanish as
L! 1 and we ignore them here but care must be taken to

correctly extract the form-factors in Eqs. (10)–(13) without
pollution from these additional Lorentz noninvariant form-
factors.

Finite volume matrix elements

With the preceding remarks in mind, the finite volume
versions of the results of the previous section are given by
the following matrix elements:

 

h��jO�m�0 j�
�imodd

FV � 2�1� ��1�m�
Xm

j�0;even

a�0�m�1;j

�
��2 �P � u�m�1�j�u � ��j � �u ���m�1�

�
�u � ��m�1

3f2

�
�2�2M2

� � 

2
uj � 2t�Kuj

0;0;0;0;0 � 3M2
��K

uu
0;0;0;0;0 � 


2
uj�K

uu1
0;0;0;0;0 � K

uu2
0;0;0;0;0��

� 4�Kuj
0;0;0;1;0 � K

uj
0;1;0;0;0� �

Xm�1�j

k�0

m� 1� j

k

 !
2k�u � ���k��2�2M2

� � 

2
uj � 2t�Kuj

k;0;0;0;0

� 3M2
��K

uu
k;0;0;0;0 � 


2
uj�K

uu1
k;0;0;0;0 � K

uu2
k;0;0;0;0�� � 4�Kuj

k;0;0;1;0 � K
uj
k;1;0;0;0��

��
; (44)

 

h��jO�m�3 j�
�imeven

FV � 2�1� ��1�m�
Xm

j�0;even

a�3�m�1;j

�
�2 �P � u�m�1�j�u ���j

�
1� 2

f2Ju;j

�

� 2
f2

Xm�1�j

k�0

m� 1� j

k

 !
2k�u � ��m�1�k�Kuj

k;0;0;1;0 � 2Kuj
k;0;1;0;0�

�
; (45)

 

h��jO�m�3 j�
�imodd

FV �
�1� ��1�m�

3f2 �qj � qk�
Xm

j�0;even

a�3�m�1;j

�
�u � ��m�1���2M2

� � 

2
uj � 2t�Kuj

0;0;0;0;0 � 2�M2
� � t�K

uu
0;0;0;0;0

� 3M2
�


2
uj�K

uu1
0;0;0;0;0 � K

uu2
0;0;0;0;0 � 


2
ujK

uu3
0;0;0;0;0� � 2�Kuj

0;0;0;1;0 � K
uu
0;0;0;1;0 � K

uj
0;1;0;0;0 � K

uu
0;1;0;0;0��

�
Xm�1�j

k�0

m� 1� j

k

 !
2k�u ���m�1�k���2M2

� � 
2
uj � 2t�Kuj

k;0;0;0;0 � 2�M2
� � t�Kuu

k;0;0;0;0

� 3M2
�
2

uj�K
uu1
k;0;0;0;0 � K

uu2
k;0;0;0;0 � 


2
ujK

uu3
k;0;0;0;0� � 2�Kuj

k;0;0;1;0 � K
uu
k;0;0;1;0 � K

uj
k;1;0;0;0 � K

uu
k;1;0;0;0��

� 6�2�j�m�1� �P � u�m�1�j�u ���j � �u � ��m�1��Ju;j � Ju;u�
�
; (46)

 

h��jO�m�T j�
�imeven

FV � 2�1� y� �P � ur ��
Xm

j�0;even

BT�0�m�1;j

��
�u ���j� �P � u�m�j

�
1�

1

f2 �Lu;u

2
uj � 2Ju;j � Ju;u�

�

�
16�1� y�

f2

Xm
j�0;even

bm�1;j

�
�r � ��u � ��j�Kuj

m�1�j;0;0;1;0 � 2Kuj
m�1�j;0;1;0;0�

� �u � ��j�1�Kuj
m�j;0;0;1;1 � 2Kuj

m�j;0;1;0;1� �
Xm�j
k�0

m� j

k

 !
�2k�1 � 1��u ���m�k

� �r � ��Kuj
k�1;0;0;1;0 � 2Kuj

k�1;0;1;0;0� � u � ��Kuj
k;0;0;1;1 � 2Kuj

k;0;1;0;1��

�
; (47)

and

6In the EFT analysis of the matrix elements under consideration, such terms do not appear until higher orders (two-loops) in the
chiral expansion, but even to the order we work, form-factors acquire dependence on j ~uj2.
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h��jO�m�T j�
�imodd

FV � 8r � �
Xm

j�0;even

�2 �P � u�m�1�j�u � ��jbm�1;j

�
�y� 1�

�
1�

1

f2 �2Ju;j � Ju;u � 

2
ujLu;u�

�

�
2

f2 �q3 � q4��Ju;j � Ju;u�
�
�

16�u ���m

3f2

Xm
j�0;even

bm�1;j

Xm�j
k�0

�
m� j

k
�2k�u ����k

�

�
u � ���2M2

� � 
2
uj � 2t�Q34K

uj
k;0;0;0;1 � 2Q34K

uj
k;0;0;1;1 � 2Q34K

uj
k;1;0;0;1 �M

2
��Q34K

uj
k;0;0;0;1

�Q00
34K

uu
k;0;0;0;1 � 3�q3 � q4�
2

uj�K
uu1
k;0;0;0;1 � K

uu2
k;0;0;0;1� � 3Q0

34

4
ujK

uu3
k;0;0;0;1� � 2Q0

34��tK
uu
k;0;0;0;1

� Kuu
k;0;0;1;1 � K

uu
k;1;0;0;1�� � r ����2M2

� � 

2
uj � 2t�Q34K

uj
k�1;0;0;0;0 � 2Q34K

uj
k�1;0;0;1;0

� 2Q34K
uj
k�1;1;0;0;0 �M

2
��Q34K

uj
k�1;0;0;0;0 �Q00

34K
uu
k�1;0;0;0;0 � 3�q3 � q4�


2
uj�K

uu1
k�1;0;0;0;0

� Kuu2
k�1;0;0;0;0� � 3Q0

34

4
ujK

uu3
k�1;0;0;0;0� � 2Q0

34��tK
uu
k�1;0;0;0;0 � K

uu
k�1;0;0;1;0 � K

uu
k�1;1;0;0;0��

�
; (48)

where Q34 � 1� y� q3 � q4, Q0
34 � 1� y� q3 � q4

and Q00
34 � 1� y� 2q3 � 2q4. Note that the entire last

sum in the above expression vanishes identically at infinite
volume.

Here

 Ja;b �
Z dq0

2�
1

L3

X
~q

i

q2 �M2
ab � i�

;

La;b �
Z dq0

2�
1

L3

X
~q

i

�q2 �M2
ab � i��

2 ;

(49)

and
 Kfg
i;a;b;c;d �Kf;g;1;1

i;a;b;c;d; Kfg1
i;a;b;c;d �Kf;g;2;1

i;a;b;c;d;

Kfg2
i;a;b;c;d �Kf;g;1;2

i;a;b;c;d; Kfg3
i;a;b;c;d �Kf;g;2;2

i;a;b;c;d;

(50)
where
 

Kf;g;n1;n2
i;a;b;c;d ��i

Z dq0

2�
1

L3

X
~q

�
�u � q�i�q2�a�p � q�b�q ���c�q � r�d

�q2�M2
fg� i��

n1��q���2�M2
fg� i��

n2

(51)
which in turn is simply represented in terms of the func-
tions appearing in Appendix A.

Since the external momenta p � �P� �=2, �, u and r
occur in the various integrals/sums, it is not possible to
decompose these matrix elements into form-factors with-
out specifying to a particular m.

VI. DISCUSSION

The results for the quark mass and volume dependence
of the moments of the pion GPDs presented above are
useful in extrapolating lattice data at small t in the chiral
regime (the range of volumes and pion masses for which
the chiral expansion is convergent) to the physical world.
Although subtleties not seen in simpler quantities arise at
finite volume that complicate the extraction of the infinite
volume results for the twist-two matrix elements, we have
outlined a procedure by which the extrapolation can be
performed reliably. The knowledge of the meson GPDs
that can be obtained by combining our results with lattice
calculations will be useful in comparison to, and as a
complement to, experiment.
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APPENDIX A: FINITE VOLUME FUNCTIONS

The functions used in our results at finite volume can be
built from the following basic structure

 J
i1...i	
�;n1;n2

�m1; m2;�;L� � �i
Z dq0

2�
1

L3

X
~q

q2�
0 ~qi1 . . . ~qi	

�q2 �m2
1 � i��

n1��q� ��2 �m2
2 � i��

n2

� �
1

L3��n1���n2�

Z 1

0
dx
X
~k

@n1�n2�1

@kn1�n2�1
0

�
k2�

0
~ki1 . . . ~ki	

�k0 � k̂0�
n1�n2

�
k0�k̂0

; (A1)

where

JIUNN-WEI CHEN, WILLIAM DETMOLD, AND BRIAN SMIGIELSKI PHYSICAL REVIEW D 75, 074003 (2007)

074003-10



 k̂ 0 �

������������������������������������������������������������������������������������������������������������������
j ~kj2 � 2�1� x� ~k � ~�� �1� x�j ~�j2 � xm2

1 � �1� x�m
2
2

q
;

after performing the energy integral by contour integration.
As an example, we find that
 

Kab
j;0;0;0;1 �

Xbj=2c

k�0

��1�j�k�1�u2k�1
0 ~ui1 . . . ~uij�k�1r0J

i1;...;ij�k�1

k�1;1;1

� u2k
0 ~ui1 . . . ~uij�k ~rij�k�1J

i1;...;ij�k�1

k;1;1 �: (A2)

It is possible to write down a general expression for the
multiple derivative in Eq. (A1)7 but since we only require
fn1; n2g � f1; 1g, f1; 2g, f2; 1g, f2; 2g, it is easier to present
each case explicitly. This leads to
 

J
i1...i	
�;1;1 �m1;m2;�;L���

�2��1�

4L3

�
Z 1

0
dxI

i1...i	
3
2��
��1�x� ~�;M�; (A4)

 

J
i1...i	
�;1;2 �m1; m2;�;L� � �

�4�2 � 8�� 3�

8L3

Z 1

0
dx�1� x�

� I
i1...i	
5
2��
��1� x� ~�;M�; (A5)

 J
i1...i	
�;2;1 �m1; m2;�;L� � �

�4�2 � 8�� 3�

8L3

�
Z 1

0
dxxI

i1...i	
5=2����1� x�

~�;M�;

(A6)

 

J
i1...i	
�;2;2 �m1;m2;�;L���

�8�3�36�2�46��15�

16L3

�
Z 1

0
dxx�1�x�I

i1...i	
7=2����1�x�

~�;M�;

(A7)

where M � x�1� x�j ~�j2 � xm2
1 � �1� x�m

2
2 and

 Ii1...in
	 � ~z;m� 	

X
~q

qi1 . . . qin

�j ~q� ~zj2 �m2�	
: (A8)

These sums can then be further simplified using the recur-
rence identity

 

Ii1...in
	 �~z; m� � �

1

2�	� 1�

dIi1...in�1
	�1

dzin
� zinIi1...in�1

	 �~z; m�

! ��1�n
Xn
k�0

X
P

P �@i1z . . .@ikz zik�1 . . . zin�

� I	�k�~z;m�; (A9)

where P denotes a permutation of the orderings of the
partial derivatives, @iz �

@
@zi , and the zi’s, and the sum is

over all such permutations. The remaining momentum
sums have scalar summands and are simple to evaluate
using the results of Ref. [47] and the tracelessness condi-
tion. Divergences can be regulated using Epstein-Hurwitz
zeta-function techniques [48].

APPENDIX B: QCD FORM-FACTORS

For easy reference, the nonvanishing, infinite volume
form-factors in the SU(2) theory are given here.

In the vector-isoscalar case for m odd,

 

A�0�m�1;j�t� � A�0�m�1;j � �A
�0;a�
m�1;j �

~A�0;a�m�1;j�M
2
� � A

�0;b�
m�1;jt;

for j � m; (B1)

and

 

C�0�m�1�t� � C
�0�
m�1�

C�0�m�1

96�2f2

Z 1

�1
d���3�2� 7�t� 7M2

��

� log
�M2

��
t
4 �1��

2�

�2

�
� �C�0;a�m�1�

~C�0;a�m�1�M
2
�

�C�0;b�m�1t�
1

192�2f2

Xm
j�0;even

2j�mA�0�m�1;j

�
Z 1

�1
d��m�j�1

�
t�3�2� 7� � 7M2

�

� 4�m� j� 1�
�
M2
��

t
4
�1��2�

��

� log
�M2

��
t
4 �1��

2�

�2

�
: (B2)

In the vector-isovector case for m even,

 

A�3�m�1;j�t� � A�3�m�1;j

�
1�

M2
�

8�2f2 log
�
M2
�

�2

��
� �A�3;a�m�1;j �

~A�3;a�m�1;j�M
2
� � A

�3;b�
m�1;jt;

for j � m� 2; (B3)

and

7We may use the well known formula of Faà di Bruno

 

dn

dxn
g�f�x�� �

Xn
k1�0

. . .
Xn
kn�0

n!
�n�
Pn
i�1 iki�Qn

i�1 ki!
dKg�f�t��
df�t�K

�
Yn
i�1

�
f�i��t�
i!

�
ki
; (A3)

where K �
Pn
i�1 ki.
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A�3�m�1;m�t� � A�3�m�1;m

�
1�

M2
�

8�2f2 log
�
M2
�

�2

��
� �A�3;a�m�1;m �

~A�3;a�m�1;m�M
2
� � A

�3;b�
m�1;mt

�
Xm

j�0;even

2j�mA�3�m�1;j

8�2f2

�
M2
� log

�
M2
�

�2

�

�
t
4

Z 1

�1
d��m�j�2 log

�M2
� �

t
4 �1� �

2�

�2

��
:

(B4)

Finally in the isoscalar tensor case for m odd
 

BTm�1;j�t� � BT;�0�m�1;j

�
1�

3M2
�

16�2f2 log
�
M2
�

�2

��
� �BT;�a�m�1;j �

~BT;�a�m�1;j�M
2
� � B

T;�b�
m�1;jt; (B5)

while in the isovector tensor case for m even,

 

BTm�1;j�t� � BT;�0�m�1;j

�
1�

M2
�

16�2f2 log
�
M2
�

�2

��
� �BT;�a�m�1;j �

~BT;�a�m�1;j�M
2
� � B

T;�b�
m�1;jt; (B6)

for j < m, and

 

BTm�1;m�t��B
T;�0�
m�1;m

�
1�

M2
�

16�2f2 log
�
M2
�

�2

��

��BT;�a�m�1;m�
~BT;�a�m�1;m�M

2
��B

T;�b�
m�1;mt�

1

16f2�2

�
Xm

j�0;even

BT;�0�m�1;j

Z 1

�1
d�

�
M2
��

t
4
��2�1�

�

�

�
�
2

�
m�j

log
�M2

��
1
4t��

2�1�

�2

�
: (B7)
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