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The causality and/or the energy-momentum conservation constraints on the amplitudes of high energy
processes are generalized to QCD. The constraints imply that the energetic parton may experience at most
one inelastic collision (an arbitrary number of elastic collisions) and that the number of the constituents in
the light cone wave function of the projectile is increasing with the collision energy and the atomic
number.
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I. INTRODUCTION

The high energy behavior of the QCD amplitudes has
attracted a lot of attention, both experimental and theoreti-
cal. This interest is focused on the new QCD phenomena
and on a necessity to evaluate reliably the QCD effects
accompanying the new particle production. The aim of the
present paper is to study the role of the causality and the
energy-momentum conservation in the particle production
at high energies in the perturbative QCD.

These constraints are absent in relativistic quantum
mechanics, and appear only in a quantum field theory, in
particular, in the perturbative QCD (pQCD). In this paper
we establish the constraints imposed on the high energy
scattering amplitudes in the hard QCD by the causality and
by the energy-momentum conservation. The closely re-
lated constraints were studied in detail before the advent
of QCD, in the framework of the Reggeon Calculus and�3

theories, see Refs. [1–4] and references therein. However,
these constraints were mostly put aside afterwards, since
the dominance of the leading twist (LT) approximation in
hard processes at moderately small Bjorken x had made
unnecessary investigation of multiple scattering processes.

It has been understood in literature, for the review and
appropriate references see Ref. [5], that the rapid increase
with the energy of the leading twist perturbative QCD
(pQCD) amplitudes [6–12] leads to the problems with
the probability conservation for the leading twist approxi-
mation in the kinematics covered by LHC and, probably,
by the leading parton production at RHIC. Thus it seems
necessary to develop an adequate theoretical treatment of
the pQCD regime of strong interactions with a small run-
ning coupling constant to resolve the problem with the
violation of the probability conservation in the LT approxi-
mation at high energies. Recently there was a number of

attempts to generalize the Reggeon field theory to pQCD
[13–16].

In the present paper we explore the decrease of the
pQCD amplitude with the vacuum quantum numbers in
the crossed channel with the virtuality of the parton. This
observation helps to generalize to pQCD the famous S.
Mandelstam-V. Gribov [1,3,4] proof of the cancellation of
the contribution of planar diagrams into the total cross
section. The eikonal graphs due to the s-channel iteration
of the color singlet ladder exchanges form a subset of
planar graphs. Hence their contribution is cancelled out.

The complimentary constraints follow from the analysis
of the multiparticle cross-sections as determined by the
s-channel cuts of the multiladder diagrams. We shall show
that the account of the energy-momentum conservation
leads to the complimentary explanation of why the con-
tributions of the planar (in particular eikonal) diagrams are
zero in the perturbative QCD at high energies.

In order to visualize constraints derived in the paper it is
rather convenient to choose the reference frame where the
projectile is energetic but the target is at rest.

The qualitative explanation of the cancellation of the
eikonal diagrams due to the causality is that the projectile
fragments into the number of the particles that is increasing
with the energy. These particles have no time to form back
an incident particle in the intermediate states due to the
Lorenz dilatation [1].

We have mentioned above that the reasoning used in the
paper applies only to the iteration of the ladders with the
singlet color quantum numbers. In the case of the s-channel
iteration of ladders with color octet quantum numbers, the
constraints discussed above are inapplicable (see the dis-
cussion in Sec. II). The amplitudes with the octet quantum
numbers 8F in the crossed channel do not decrease with the
parton virtuality since they have the strongly off shell
intermediate state in the corresponding Feynman diagrams
relevant for the gluon reggeization in the pQCD. So the
contribution of the two gluon exchange in the negative
signature is absent in the eikonal approximation where
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all particles are on mass shell. At the same time eikonal
diagrams where ‘‘potential’’ is given by reggeized gluon
exchange are not forbidden by constraints discussed in the
paper. The reasoning based on the energy-momentum con-
servation is also inapplicable because the intercept of the
reggeized gluon is less than 1 and the amplitudes are
predominantly real.

Let us stress here once again that our results apply only
to the quantum field theory at sufficiently high energies,
but not to the quantum mechanics or the low energy field
theory. The main difference between the quantum mechan-
ics and the quantum field theory is in the absence of
particle creation. In the quantum mechanics one iterates
the predominantly real amplitudes arising due to the one-
particle (one-photon, one -gluon) exchange and obtains the
solution of the problem; the high energy projectile scatter-
ing off the static center. On the contrary, in the high energy
quantum field theory one has to iterate not the one-particle
exchange diagrams, but the ladders in order to obtain the
leading order (LO) and the next to leading order (NLO)
terms that are logarithmically increasing with the energy.
These terms are predominantly imaginary. It is in this case
that the eikonal expansion fails. Formally, the reason why
the eikonal expansion fails in the field theory is that the
QFT amplitudes decrease with the invariant masses more
rapidly than 1=M2, contrary to the relativistic quantum
mechanics where the potential does not depend on the
virtuality.

It follows from the above discussion that the sufficiently
energetic projectile parton may undergo at most one in-
elastic collision, thus strongly constraining the Feynman
diagrams relevant for the high energy processes. This
observation is particularly important for resolving the
challenge with the probability conservation in the small
x-processes. In particular, we show that the wave function
of the energetic parton relevant for the n-ladder exchange
must contain at least n constituents (contrary to the eikonal
approximation, where a number of constituents is always
one).

The cancellation of the contribution of the eikonal dia-
grams to the total cross-section has been found also in
Refs. [17–20]. These papers were focused on the general-
ization of the AGK cutting rules [21] to the pQCD and did
not analyze the constraints due to the causality and the
energy-momentum conservation, in particular, because the
LO BFKL approximation does not respect the energy-
momentum conservation.

We find that the nonplanar diagrams that take into
account the bremstrahlung in the initial state and diffrac-
tion in the intermediate states dominate in the impact
factors.

The organization of the paper is the following. In Sec. II
we explain how the account of the causality leads to the
cancellation of the planar (eikonal) diagrams in QCD. In
Sec. III we discuss the constraints on the Feynman dia-

grams due to the energy-momentum conservation. In par-
ticular we explain that all the s-channel cuts of the eikonal
diagrams are zero. Thus the nonzero contributions to the
multiladder exchange of the amplitudes arise entirely due
to the nonplanar diagrams for the impact factor (the
Mandelstam cross diagrams). In Sec. IV we discuss the
generalizations of the Mandelstam cross diagrams. The
conclusions are given in the Sec. V. In the appendices we
review some known properties of the high energy ampli-
tudes, that are rarely discussed in the literature, in order to
make the paper self-contained. In Appendix A we remind
the reader of the Mandelstam-Gribov arguments and their
derivation in the field theory. In Appendix B we review
briefly the definition and the properties of the impact-
factors.

II. THE PLANAR DIAGRAMS AND THE
CAUSALITY FOR THE HIGH ENERGY

PROCESSES

Historically, the eikonal approximation in the theoretical
description of the photon(hadron)-nucleus collisions at
large energies the eikonal (the Gribov-Glauber) approxi-
mation is one of the most successful phenomenological
approaches [22–24]. The eikonal approximation gives the
legitimate solution of the Schrodinger, Dirac and Klein-
Gordon equations describing the interaction of a suffi-
ciently energetic particle with a statical source. However,
in the beginning of the sixties, long before the advent of
QCD, it had been understood that the exchange of double
Pomerons, even with the intercept ��t � 0� � 1, rapidly
decreases with the energy if the impact factors are domi-
nated by the planar (and, in particular, eikonal) diagrams,
(see Fig. 1). This result follows from the analytic properties
of the amplitude (causality) and decrease of the amplitude
with the virtuality of a colliding particle [1,3,4]. Thus the
eikonal approximation, while is useful tool in the quantum
mechanics fails in the quantum field theory.

 

color singlet color singlet

a a’

FIG. 1. Eikonal blob for the exchange of the two color singlet
ladders in QCD.
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Under the influence of the evident phenomenological
success of the eikonal approximation in the description of
the hadron-nucleus collisions this approximation is often
used in gauge theories as an attempt to cure the rapid
increase of the amplitudes with the energy and to restore
the probability conservation (see e.g. Refs. [25,26] for a
review of some recent eikonal-based models in QCD). The
standard form of the eikonal models is [2,27–30]
 

�T � 2
Z
d2b�1� exp��a�s; b���

�E �
Z
d2b�1� exp��a�s; b���2

�inel �
Z
d2b�1� exp��2a�s; b���;

(2.1)

where�T ,�E,�inel are the total, elastic and inelastic cross-
sections, respectively, and a�s; b� is an eikonal phase for a
given impact parameter ~b, calculated perturbatively.

The aim of this section is to show that the eikonal
approximation breaks down in QCD for sufficiently high
energies. We show that the eikonal iterations of the ampli-
tude with the vacuum quantum numbers in the crossed
channel (e.g. the BFKL,DGLAP ladders) rapidly decrease
with the energy. We discuss two complimentary reasons for
the cancellation of the planar diagrams: one is the general-
ization to QCD of the Mandelstam [1,3,4] cancellation as
the consequence of the causality, another is the impossi-
bility to satisfy the energy-momentum conservation con-
straints for the planar (eikonal) graphs for the particle
production. The dominant contribution is given by the
nonplanar diagrams.

The cancellation of the eikonal diagrams was first
proved in the �3 theory and generalized to the reggeon
calculus, (see Appendix A for a short review of the proof).
The origin of this cancellation is that in a field theory,
contrary to the quantum mechanics, there exists the particle
creation. As a result, for sufficiently high energies the
amplitude is dominated by the exchange of the ladders.
The eikonal representation breaks down because a the
parton cannot have more than one inelastic scattering
(i.e. one attachment to the ladder exchange). More intui-
tively, the ladder creation means the creation of a large
number of particles, while the two ladder iteration in the
QFT means these particles after being created, then come
together into the same configuration after finite time. This
clearly looks implausible.

In this section we somewhat generalize the causality
(Mandelstam-Gribov) reasoning explaining such a
cancellation.

Let us extend the Mandelstam-Gribov argument to
QCD. Our starting point is a two body collision at high
energies as given by the single-ladder exchange. Such
construction arises in the LO and NLO logarithmic ap-
proximations in pQCD. In this case it is legitimate to
neglect the longitudinal momentum transfer and the de-

nominators in the propagators in the ladder are�r2
t where r

is the momentum transverse to momenta of colliding par-
ticles in the line of the ladder (see Fig. 2). Then the
calculation leads to the simple form for the collision am-
plitude A(s,t) [2,31]
 

A�s; t� �
Z
d2kd2k0�1�pA; k; q� k�

� f�s; k; q� k; k0; k0 � q��2�pB; k0; q� k0�;

(2.2)

where f depends in pQCD on the s-channel energy squared
s, and on the transverse momenta k, k� q, k0, k0 � q, t �
�q2

t . The �1;2 are the impact factors describing the upper
and lower blobs in the Feynman diagrams of Fig. 2. These
impact factors (see Appendix B for a short review of the
impact factor formalism) as the consequence of the domi-
nance of the single gluon polarization in the propagator of
the exchanged gluon [1] have the form

 �1 �
Z
dM2�1=s2�p�Bp

�
Bf��

�
Z
dM2k�t �q� k��t f��=�M

2�2 (2.3)

where M2 is the square of the mass of the diffractively
produced state. In the last equation one uses the Ward
identities and the two body kinematics. We use the
Sudakov parametrization for the momentum of the ex-
changed gluon: k � �pA � �pB � kt. If the function f
has the form of the Regge pole exchange
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FIG. 2. One-ladder exchange in QCD.
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 f� s���q
2
t �F�kt; k

0
t; qt�; (2.4)

the amplitude acquires the form

 A�s; t� � s��t�G�t�: (2.5)

In the pQCD the leading singularity is the Regge cut, not a
pole as in the�3 or the Reggeon field theory. Nevertheless,
the one ‘‘ladder’’ exchange amplitude can be written as

 A�s; t� � R�t���s; t� (2.6)

where
 

R�t� �
Z
ds12

Z
ds34d2ktd2k0t�1�s12; kt; qt � kt�

� F�kt; k
0
t; qt��2�s34; k

0
t; k
0
t � qt�: (2.7)

Here ��s; t� is the function calculable in pQCD. The de-
pendence on the momenta kt running in the ladder is
factorized in the Particle-Particle-Reggeon (PPR) vertex
[12,32].

Let us now proceed to the evaluation of two ladder
exchange (Fig. 3). The general expression for the 2-
’’Reggeon’’ exchange amplitude can be obtained similarly
 

A�s; t� �
Z
d2rtd

2ktd
2r0d2ud2u0d�sd�s�1�pA; r; k; q; u�

��2�pB; r
0; k0; q; u0�

� f1�r; r
0; k; s1�f2�q� k; u; u

0; s2�: (2.8)

Here f1 and f2 are the functions corresponding to the two
exchanged ladders, s1 and s2 are their invariant energy
squared in the s-channel. For the eikonal diagrams s1 �

s2 � s while for the Mandelstam cross s1; s2 	 s, and�����
s1
p
�

�����
s2
p
�

���
s
p

(see below). The vectors r, u, r0, u0 are
the momenta that propagate through these 2 ladders. The
impact factors �1, �2 correspond now to the 6-point blobs.
We made as above a Sudakov expansion: u � �upA �
�upB � ut, r � �rpA � �rpB � rt, k � �kpA � �kpB �
kt.

The invariant masses are s��1;2 � �pA � r�
2 � �rs1,

s34 � �pA � u�
2 � �us2, �pA � k�2 � �s. In the two

body kinematics the integration d4k factorizes between
the upper and the lower blobs, like in �3 theory. Using
d� � dsa=s, d� � dsb=s we obtain that the amplitude of
the two-reggeon exchange is given by
 

A�s; t� �
Z
d2rtd

2utd
2kt

Z
dsa�1�pA; u; r; k; q; sa�

�
Z
d2r0d2u0d2k0

Z
dsb�2�pB; u0; r0; k0; q; sb�

� f1�r; r0; k; s1�f2�q� k; u; u0; s2� (2.9)

For high energies the functions fi have the form of the
product of s1;2 in some power and the function depending
only on the transverse components of the vectors. In par-
ticular, the dependence on the invariant masses s12, s34, sa
and s012, s034, sb is factorized between the blobs like in the
case of the �3 theory. Then we can use the Mandelstam
reasoning (see Appendix A). For example, the integral over
sa still has the same analytical properties as the 4-point
blob. The corresponding integration contour is depicted in
Fig. 4 and is the same for the QCD and for�3 theory. Then
one can deform the contour of the integration into the
complex plane due to the absence of the left cut for for
arbitrary planar diagrams for whom the spectral density
�s;u in the Mandelstam representation of the amplitude �s;u
is zero (in particular for eikonal diagrams). The only
remaining point is that in the eikonal diagram we have
1=sa dependence due to a single particle exchange. The
additional dependence on 1=sa 
 1=M2 of the blob fol-
lows from the dependence of the ladder on the invariant
mass.
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FIG. 3. Two ladder exchange in QCD
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FIG. 4. The integration over the invariant masses. For the QCD
case m � 0, and the integration contour can cross the x axis also
to the right from the origin.
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In the case of the Reggeon field theory this dependence
is�1=�M2���t with��0� � 1 [33], meaning that the impact
factor decreases faster then 1=sa as a function of the
invariant mass. The similar dependence on the inavariant
mass is valid in the perturbative QCD for the exchange of
the color singlet ladder.

Indeed, let us consider the color singlet pQCD ladder
amplitude for the case of two different invariant massesQ2

and M2. This amplitude is the weak function of M2 in the
area M2 �Q2. However, if M2 >>Q2 this amplitude
decreases with M2. In particular, amplitude of DIS eval-
uated at small x within the DGLAP approximation is

 � 1=�Q2 �M2�n

where n� 3=4 [34]. Similar behavior is expected for color
singlet Generalized Parton Distributions (GPD) within the
DGLAP approximation. Remember that at the achievable
small x and Q2 pQCD amplitudes evaluated within the
NLO DGLAP and NLO BFKL approximations are rather
close [11,12].

In contrast to the pre QCD approaches which conven-
iently assumed the fast decrease of any amplitudes with
M2, the pQCD gives two different patterns. The amplitude
with the color octet quantum numbers in the crossed chan-
nel does not depend on M2 for s � M2 at least within the
leading logarithmic approximation. This is because the
virtuality of the interacting parton in the ladder is 	 s.
Therefore such an amplitude does not decrease with the
virtuality of a parton. Besides the color octet amplitude is
predominantly real and decreases with the energy, so the
analysis of the multiparticle states through s- channel cuts
is unreliable in this case.

The above proof also makes clear why the eikonal
expansion is valid in quantum mechanics, as it was men-
tioned in the introduction. Indeed, for the one-particle
exchange, contrary to the ladder exchange, the impact
factor decreases like 1=M2 at most, and the contour of
Fig. 4 cannot be deformed, even if the left cut is absent.

In this paper we, however, are interested in the ampli-
tude with the vacuum quantum numbers, where the vir-
tuality of the interacting parton is�

����
Q
p

21. Here Q2
1 is the

order of the maximum between Q2 and M2. In this kine-
matics, Q2 � M2, Q2

1 �M
2. Then the amplitude with the

vacuum quantum numbers in the crossed channel for the
scattering of a parton is approximately proportional to
�1=M2�S�M2=Q2

1�, where S is the Sudakov form factor.
Similar dependence is valid for the amplitude for the
scattering of the dipole. Thus we have an additional M2

dependence for the eikonal diagrams. Such a decrease is
sufficient to justify the deformation of the contour of
integration in Fig. 4 in the case of the planar diagrams.
We have proved that in the multiRegge kinematics the 2-
reggeon eikonal exchange amplitude is zero. The same
arguments can be used for the multi- eikonal exchanges
in the multiregge kinematics.

Note that in the proof it was essential to use Ward
identities k�f� � 0 for the impact factor. It is known
[35] that such form of the Ward identities is valid for the
amplitudes where only one gluon is off mass shell, i.e. for a
sum of all permutations of the gluon lines in the dipole. We
also expect Ward identities to hold when only color singlet
exchanges are considered, as in eikonal diagrams (see i.e.
Fig. 1).

We can estimate the range of energies where the reason-
ing discussed in this paper applies. In fact, there are several
relevant QCD regimes, depending on the problem under
consideration.

In the deep inelastic scattering the one-ladder contribu-
tion is dominant in the whole kinematical region of x. The
one-ladder (leading twist) contribution breaks down at x�
10�5 [36], and the multiladder contributions become domi-
nant. The area where the eikonal models fall under scrutiny
is somewhere in the middle of this interval, i.e. x� 10�3,
where the multiladder contributions first appear. Our re-
sults show that the eikonal contribution should be zero.

III. CONSTRAINTS DUE TO THE ENERGY-
MOMENTUM CONSERVATION

In the previous chapter we concluded that the eikonal
contribution is zero if all the ladders are color singlets. In
this chapter we shall argue that these results can be derived
also from the requirement of the energy-momentum con-
servation. We shall first review the constraints due to
energy-momentum conservation in �3 theory and then
extend this reasoning to QCD. We shall see that the con-
straints due to energy-momentum conservation are some-
times even stronger than the Mandelstam one leading to the
cancellation not only of the eikonal diagrams but also of all
cut eikonal diagrams.

Let us start first from the �3 theory, from the eikonal
graph of Fig. 5. This graph corresponds to the amplitude of
the multiparticle creation resulting from the s-channel cut
of the two ladder diagram. Then a total square of the
energy of the created particles is 2s, while the initial energy
is s. Thus the initial parton releases in the two consequent
scatterings the double of initial energy. Evidently as the
consequence of the energy-momentum conservation law
the contribution of this graph should be zero.

Note that the nonconservation of the energy by the cut
eikonal diagrams is well known for the hadron-nucleus
collision for some time [29,37,38]. However, while a pre-
scription has been suggested how to include by hand the
energy conservation law into the eikonal diagrams [38],
this suggestion has no justification in the perturbation
theory (cf. discussion in Ref. [39]).

Let us recall that the s-channel cut diagrams carry addi-
tional information as compared to the imaginary part of the
total amplitude of the two body scattering. The s-channel
cut amplitudes are relevant for the multiparticle cross-
sections [21]. Indeed, if the average number of particles
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created in one reggeon exchange is � �n, then the contribu-
tion of the multiladder exchanges leads to the processes in
which the number of particles produced is a multiple of �n.
The cross-section of the creation of n �n particles is domi-
nated by the diagrams with n cut ladder exchanges. In other
words the energy conservation law must be fulfilled sepa-
rately for the diagrams with n cut ladders for each n.
However for n cut ladders initiated by planar diagrams
the square of invariant energy of the particles created is
ns, while the original energy is s, the energy conservation
law is violated and all the cut diagrams are zero. The
related reasoning is to check that the momentum sum
rule is violated [21].

The above reasoning can be directly translated to QCD
without any changes since the imaginary parts of the
ladders are significantly larger than the real parts in QCD,
within both in the BFKL and DGLAP approximations.
This means, that the contribution of eikonal diagrams
with the NLO BFKL and DGLAP ladders is zero.

Let us note here that the energy-momentum conserva-
tion prohibits radiation of more than one inelastic ladder by
a single parton. On the other hand the parton can have an
arbitrary number of elastic rescattering on the target, since
such rescatterings do not change the energy of the ener-
getic parton.

IV. THE MANDELSTAM CROSS

We have explained that the eikonal iteration of the
ladders gives zero in QCD. The obvious question is what
is the dominant contribution. The simplest diagram that

gives nonzero 2-ladder contribution is Mandelstam cross
diagram of Fig. 6 [4]. The contribution of this cut can be
easily derived in �3 theory, one just takes into account that
the energy is split between the two ladders. One has [1]

 A�s; t� � �i=4�
Z
d2ktN

2
		1
�kt; qt�
	
	s

	�	1�1: (4.1)

Here the squared energy parameters of the ladders are
different for 2 ladders

 s1 � �s; s2 � �s� (4.2)

and 
	 � ��exp��i�	� 1�= sin��	�,

 N		1
�
Z
ds1d2ktg1g1

1�
	
1 �1� �1�

	1=�:::::�: (4.3)

In the same way one can easily derive the contribution of
the Mandelstam cross in the case of QCD. The answer is
 

A�s; t� � �i=4�
Z d2kt
�2��2

Z d2ut
�2��2

�1�s; �; �; kt; ut�

��2�s; �; �; kt; ut�f1��s; kt�f2��s; ut�

� ���� �� 1�: (4.4)

Here �� � � 1, and the energy conservation law is ful-
filled automatically. Evidently the contribution of the
Mandelstam cross is nonzero. Moreover, one cannot add
additional ladders to Mandelstam cross without increasing
the number of constituents in the s-channel. Indeed, con-
sider the diagrams of Fig. 7. It is easy to show using the
arguments of the previous chapters that all these diagrams
are equal to zero. The simplest nonzero diagrams with the
three ladder exchange are the so called nested diagrams

 

FIG. 5. Cut eikonal graph and energy-momentum conserva-
tion.

 

s

t

FIG. 6. The Mandelstam cut diagram.
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[40]. These diagrams have 3 constituents in the intermedi-
ate state.

We conclude, that at high energies there is no universal
impact factor that can be iterated. For n-ladder diagram to
be nonzero, one needs to have at least n constituents in the
wave function of the energetic projectile in the s-channel,
i.e. not more than one ladder can be attached to a given
line.

V. CONCLUSION

We have shown that the cancellation of the planar (in
particular eikonal) diagrams found within the Reggeon
Calculus by S. Mandelstam is valid in QCD also for the
s-channel iterations of the color singlet ladder exchange.
As a consequence the restriction by eikonal diagrams leads
to the decrease with the energy of the shadowing effects
which is the artifact of the eikonal approximation. The
account of the energy-momentum constraints leads to the
same conclusion. Moreover, the application of these con-
straints to the analysis of the iteration in the s-channel of
the amplitudes evaluated within DGLAP approximation
shows that such iterations are also decreasing as powers
of energy. To obtain nonzero exchange by n ladders, inci-
dent parton should develop configuration of n constituents
long before the collision. In other words, any given con-
stituent can participate in the ladder exchange at most
once.

The challenging question is how to take into account the
nonplanar graphs, in particular, those generated by the
Mandelstam crosses. At sufficiently large energies we
showed that the number of exchanged ladders and there-
fore the number of constituents in the wave function of the
incident particles is increasing with the energy, cf. Ref. [5].
The generalization of Gribov Reggeon Calculus [1] to the
pQCD regime of strong interaction with the small coupling
constant may lead to the solution of this problem.

Our considerations show that the application of the
eikonal (Gribov-Glauber) approximation for the dipole
interactions with a target have problems with causality
and energy-momentum conservation. As a result one needs
a different approximation in the reggeonlike approaches to
the behavior of the QCD, when it approaches the black disk
limit and the LT approximation breaks down.
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APPENDIX A: THE EIKONAL DIAGRAMS
CANCELLATION IN THE �3 THEORY

In this Appendix we briefly review the Mandelstam -
Gribov explanation of the cancellation of the planar (eiko-
nal) graphs in the �3 theory. We shall follow the very
transparent derivation of this cancellation given in the
Gribov’s lectures [1], since such derivation can be directly
generalized to QCD.

Let us write the expression for Fig. 8 , that describes the
scattering in the �3 theory due to the exchange of two
particles/reggeons in the t-channel. The blob A may be, for
example, the diagram that corresponds to the eikonal in-
teraction, a planar box diagram, or a Mandelstam cross.
Suppose that as a function of the invariant mass s1 �
�p1 � k�

2 the blob A decreases faster than s1. Let us use
the Sudakov variables

 k � �qp02 � �p01 � kt; (A1)

 t � q2 � q2
t � s�q�q � q2

t ; (A2)

 s1 � �p1 � k�2 � �s; s2 � �p2 � k�2 � ��s:

(A3)

Since the amplitudes A�si� fall rapidly with increasing si,
the essential values of s1;2 are of the order of�2 where� is
the mass of the particles. Then �;�� s, and for the
product of particle propagators in Fig. 8 we have

 

1

k2 �m2

1

�q� k�2 �m2 � 1=���s� k2
t �m2�1=���� �q���� �q�s� �q� k�2t �m2�

� 1=�m2 � k2
t �1=�m2 � �q� k�2t �: (A4)

 

s

t

FIG. 7. Adding ladder to Mandelstam cut diagram.
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The full amplitude B corresponding to Fig. 8 can be rewritten as

 B � �i=4s�
Z
�d2kt�=�2��

21=��m2 � k2
t ��m

2 � �k� q�2t �
Z

�
ds1=�2�i�A�s1�

Z
�
ds2=�2�i�A�s1�: (A5)

The integration contour is given in Fig. 4. It has evidently a
cut in the s-channel starting from the mass of the first
intermediary 2-particle state s � �2m�2 � 4m2. In the
negative axis the cut in the s1 plane starts from t. Since
the function A as a function of s1 falls rapidly, we can
deform the contour. The integral will actually be zero if the
left cut is absent. Indeed, in this case we can close the
integral to the left cut, and it will be zero. As it is well
known, the left cut corresponds to the nonzero Mandelstam
double spectral density �su�s; t�, i.e.

 ImA � �1=��
Z
�su�s0; t�ds0=�s0 � s�: (A6)

It is clear that the diagram that corresponds to the eikonal
has no double spectral density—it is a tree diagram. In the
same way the planar diagrams have no double spectral
density �su. The simplest diagram with the nonzero spec-
tral density that contributes to the 2-particle exchange is a
Mandelstam cross [4] of Fig. 6.

In quantum mechanics, or in the quantum field theory
for not so high energies, when the dominant contribution to
scattering comes from single particle exchange the blobs
do not decrease with si. So it is impossible to deform the
contour of integration to 1. This is why eikonal approxi-

mation is applicable in the framework of the quantum
mechanics.

Let us now consider what happens when the dominant
contribution to the scattering amplitude comes from ladder
exchange. For the case of the�3 theory S. Mandelstam and
V. Gribov substituted the one-particle exchange by the
reggeon. The key is that the reggeon form factor has addi-
tional dependence on s1, as it was proved for this theory by
Mandelstam [3], and this dependence is 1=s1. After the
substitution of the particles by the ladders, due to the
invariant mass decrease of the reggeon form factors, the
blob amplitude decreases now faster than 1=s1 and the
eikonal graph (as well as all planar diagrams for which
�su � 0) is zero. The two ladder contribution decreases
with the energy, contrary to the naive expectation that it
rises as s2��t�, where s��t� corresponds to the single-ladder
exchange. We conclude that the planar (eikonal) contribu-
tion is decreasing as a function of energy for �3 theory.

APPENDIX B: THE IMPACT FACTORS

In this Appendix we shall briefly remind the reader the
definition and the properties of impact-factors. The rele-
vant formalism was developed by Cheng and Wu (see
Ref. [2] and references therein and by Gribov, Lipatov
and Frolov, [31], who studied the asymptotic behavior of
the diagram of Fig. 8 in QED. The main result of
Refs. [2,31] relevant for us is that the scattering amplitude
with the exchange of vector particles of Fig. 8 also factor-
izes into the product of denominators of propagators in the
intermediate states and two factors (so called impact-
factors) that dependent only on the left and right blobs in
the diagram separately. For completeness let us summarize
here their beautiful proof. Indeed, let us once again use the
Sudakov expansion for k. Suppose the blocks that corre-
spond to left and right blobs are f1�1�2 and f2�1�2

.
Suppose also that these blocks do not increase as functions
of invariant masses s1 � �p1 � k�

2, �p2 � k�
2 � s2. Then

the relevant areas of integration are

 s1 ���s� k
2
t �m

2; �p2 � k�
2 � s�� k2

t �m
2;

(B1)

then for the photon propagator denominators we see that
they are equal to k2

t ; �q� k�
2
t . Since the calculation is

gauge invariant, we can use the Feynman gauge and then
the amplitude has the factorized form

 

P

P

A

B

k q−k

1

2

FIG. 8. Two particle and two-reggeon exchange in s-chanel in
the �3 theory.
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 B � �i�1=�2��4��1=2�

�
Z
d2kt��1�1

��2�2
�1�1�2

�kt; p1��2;�1�2
�kt; p2�

(B2)

where

 ��1�2
�
Z 1
�1

f1;2
�1�2
�s1;2; kt; Q�: (B3)

Here s1 � �s�, s2 � s�. Let us rewrite the Eq. (B2) in a
more convenient form. In order to do it, we can use the
observation by Gribov, that for high energies the main
contribution comes from the so called nonsense asymptotic
states. The nonsense state of two virtual photons is a state
where the total spin projection in the direction of motion in
the center of mass (c.m.s.) reference frame of the t-channel
is equal to two. In the physical region of the s-channel it is
possible to prove (see Ref. [31] for details) that for the light
cone components of the vector polarization of a photon are

 e� � p1

��������
2=s

p
; e� � p2

��������
2=s

p
: (B4)

For each of the photons the propagator can be written as

 ��� � k�k�=k2� � e��e�� � e�� e�� � e0
�e0

� (B5)

where e0 is the longitudinal polarization vector of the
photon in the t-channel,

 e0 � �1=
�����
k2

p
��0; 0; j ~kj; k0�: (B6)

Then in the relevant integration area all of the external
invariants of blocks 1 and 2 are of order m2, i.e. �i � 1,
�i �m

2=s, kit �m for block 1 and �i � 1; �i �
m2=s; kit �m for block 2. Hence all virtual momenta in
block 1 have long components along the vector p1 in the
block 1 and those in 2 along the vector p2. Therefore the
largest contribution proportional to s in the equation for
propagator will be given by the term e�� � e

�
� as compared

to the term e0
�e0

� � 1, and e�� e�� � 1=s

 ��� � k�k�=k
2� � e��e

�
� � �2=s�p2�p1�: (B7)

We then obtain the explicit dependence of the amplitude B
of Fig. 3 on s in the almost factorized form

 F � �i�s=4�
Z
d2kt

1

k2
t � 
2

�
1

�q� k�2t � 

2 �1�kt; Q��2�kt; Q� (B8)

where
 

�1�kt; q� � �2=s
2�
Z 1
�1
�ds1=�2���f

1
�1�2
�s1; kt; q�p2�1

p2�2

�2�kt; q� � �2=s2�
Z 1
�1
�ds2=�2���f2

�1�2
�s1; kt; q�

� p2�1
p2�2

(B9)

We reproduced, in order to be self-contained, the first step
of the GFL derivation. In fact, it is straightforward to
obtain Eq. (B9) even simpler, just from the Gribov analysis
of the vector particle exchange for high energies with the
vertex ���p; q�. Then it is shown in Ref. [1] that the
dominant contribution to the amplitude is due to the non-
sense state and then the diagram can be written as a product
of s-independent vertices, scalar particle propagator and s.
From this we can straightforward obtain the result (B9).
Now we can use the Ward identities

 k�1
f�1�2

1;2 � k�1
f�1�2

1;2 : (B10)

These Ward identities can be rewritten as

 

��p2 � kt��1
f1
�1�2

� ���p2 � q� kt��2
f1
�1�2

� 0

��p1 � kt��1
f2
�1�2
� ���p2 � q� kt��2

f2
�1�2
� 0:

(B11)

Accordingly, we can rewrite the expression for the ampli-
tude of Fig. 8 with the exchange of two vector particles in a
fully factorized form (B7), with the impact factors being

 

�1�kt; Q� � �2=s
2�
Z 1
�1
�ds1=�2���f

1
�1�2
�s1; kt; Q�

� k1�1
�Qt � k2t�21�

�2�kt; Q� � �2=s2�
Z 1
�1
�ds2=�2���f2

�1�2
�s1; kt; Q�

� k2�1
�Q� k�2t�2

:

(B12)

We have the amplitude for the exchange of vector particles
and for external particles with arbitrary spins, in the fac-
torized form, like in the above treatment of �3 theory. One
of the reasons we reproduced here the main points of [31],
was to show that the proof is extended without any changes
into pQCD. Indeed, all the points in the proof can be
directly transferred to QCD except two. First, the Ward
identities that were used in QED are not the same as in
QCD. In order for Ward identities in QCD to become of
practical use at most one external line must be out of mass
surface-the condition fulfilled in the present case. Really
all particles within ladder are on mass shell in the case of
the amplitude of the positive signature. Therefore the cross
section is determined by the amplitudes where only one
gluon is off the mass shell.
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