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We study corrections to tribimaximal (TBM) neutrino mixing from renormalization group (RG)
running and from Planck scale effects. We show that while the RG effects are negligible in the standard
model (SM), for quasidegenerate neutrinos and large tan� in the minimal supersymmetric standard model
(MSSM) all three mixing angles may change significantly. In both these cases, the direction of the
modification of �12 is fixed, while that of �23 is determined by the neutrino mass ordering. The Planck
scale effects can also change �12 up to a few degrees in either direction for quasidegenerate neutrinos.
These effects may dominate over the RG effects in the SM, and in the MSSM with small tan�. The usual
constraints on neutrino masses, Majorana phases or tan� stemming from RG running arguments can then
be relaxed. We quantify the extent of Planck scale effects on the mixing angles in terms of ‘‘mismatch
phases’’ which break the symmetries leading to TBM. In particular, we show that when the mismatch
phases vanish, the mixing angles are not affected in spite of the Planck scale contribution. Similar
statements may be made for �–� symmetric mass matrices.
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I. INTRODUCTION

Neutrino mixing [1] is a consequence of a nontrivial
structure of the neutrino mass matrix. This mass matrix is
generated by the following dimension five operator:

 L 5 �
���

�
�L����L��� � H:c: (1)

Here ��� is a coupling matrix, � some high energy scale,
L� is the lepton doublet with � 2 fe;�; �g, and � is the
Higgs doublet [in the minimal supersymmetric standard
model (MSSM), � is the Higgs doublet that couples to the
up-type fermions]. After the electroweak symmetry break-
ing (h�i � v=

���
2
p
’ 174 GeV for the SM, h�i �

v sin�=
���
2
p

for the MSSM), Eq. (1) gives rise to the neu-
trino mass matrix

 �m���� � ���
h�i2

�
� �U�mdiag

� Uy���; (2)

where U is the leptonic mixing, or Pontecorvo-Maki-
Nakagawa-Sakata (PMNS), matrix in the basis in which
the charged lepton mass matrix is real and diagonal. The
neutrino masses are contained in mdiag

� �
diag�m1; m2; m3�. The value of � may be taken to be the
seesaw scale, �� 1012 GeV, where the underlying flavor
structure of the theory is implemented. However, measure-
ments take place at low scale, therefore the predictions of
any neutrino mass model have to be evolved down to low
energy through renormalization group (RG) running [2,3].

As the large majority of models is generated at a high
energy, RG effects are a generic feature.

Another guaranteed correction to the dimension five
operator in Eq. (1) is an additional operator of the same
form but with � identified as the Planck massMPl � 1:2�
1019 GeV. Since gravity does not distinguish between
flavors, the operator is expected to be flavor democratic.
The presence of such a term in the Lagrangian gives rise to
additional contributions to the neutrino mass matrix after
the electroweak symmetry is broken. While too small to be
responsible for the leading structures of the neutrino mass
matrix, those Planck scale effects can have observable
consequences as well [4–6]. In the present paper we
perform a comparative study of both renormalization and
Planck scale effects.

For this analysis we will choose one particular and very
interesting neutrino mixing scheme which is compatible
with all data, the tribimaximal mixing (TBM), defined by
[7]

 U � diag�ei�1 ; ei�2 ; ei�3�
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��
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1
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CCCCAdiag�e	i�1=2; e	i�2=2; e	i�3=2�:

(3)

Here P � diag�e	i�1=2; e	i�2=2; e	i�3=2� contains the
Majorana phases, one of which can be rephased away.
We further have an additional phase matrix Q �
diag�ei�1 ; ei�2 ; ei�3�, which is usually phased away by a
redefinition of the charged lepton fields in order to bring U
in the standard form. Because of this, the entries in Q have
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received the (possibly unfair) title ‘‘unphysical phases.’’
However a complete theory of neutrino masses, especially
like the one we are considering here which has more than
one independent operator contributing to the neutrino
mass, must be able to predict these phases. In the basis in
which the flavor democratic Planck scale contribution to
the neutrino mass matrix is completely real, the phases �i
of the TBM matrix above need not vanish. We call the
phases �i in this basis as the ‘‘mismatch phases’’ to stay
clear of the connotation of the word ‘‘unphysical.’’

TBM does by itself neither predict the Majorana or the
unphysical phases nor the magnitudes or ordering of the
neutrino masses. However, the magnitudes and ordering of
the masses as well as the values of the Majorana phases are
crucial for the size of renormalization group corrections
[8–11] and the Planck scale corrections to this mixing
scheme. Moreover, as we shall see in the course of the
paper, in the analysis of Planck scale effects on tribimax-
imal mixing even the mismatch phases turn out to be
crucial to modify any mixing angle. This is a feature
specific to TBM, having to do with the structure of the
corresponding neutrino mass matrix. In general, for a �–�
symmetric mass matrix [12], corrections to �13 � 0 and
�23 � �=4 require mismatch phases to take nontrivial
values.

Several interesting models giving rise to Eq. (3) have
been proposed in the literature [13]. The predictions of
TBM, sin�13 � 0 � cos2�23 and sin2�12 � 1=3, may be
compared with the current 3	 ranges of the parameters
[14]:
 

0:24 
 sin2�12 
 0:40; 	0:36 
 cos2�23 
 0:32;

j sin�13j � jUe3j 
 0:20; (4)

with best-fit values of 0.31 for sin2�12 and zero for sin�13

and cos2�23. As far as the neutrino masses are concerned,
oscillations experiments are sensitive only to the mass-
squared differences, which are measured to be
 

7:1� 10	5 eV2 
 �m2
� � m2

2 	m
2
1 
 8:9� 10	5 eV2;

1:9� 10	3 eV2 
 �m2
A � jm

2
3 	m

2
2j 
 3:2� 10	3 eV2;

(5)

with the best-fit values of �m2
� � 7:9� 10	5 eV2 and

�m2
A � 2:5� 10	3 eV2. Cosmological observations give

an upper limit on the neutrino mass of & 0:5 eV [15],
which is stronger than the limits obtained by direct
searches, 
 2:3 eV [16]. It is still unknown whether neu-
trinos enjoy a normal hierarchy (NH: m2

3 ’ �m2
A � m2

2 ’
�m2

� � m2
1), an inverted hierarchy (IH: m2

2 ’ m
2
1 ’

�m2
A � m2

3) or are quasidegenerate (QD: m2
3 ’ m

2
2 ’

m2
1 � m2

0 � �m2
A).

Many future planned/proposed experiments are geared
towards improving the precision of the mixing angles and
mass-squared differences. Since this paper deals with the

deviations of the mixing angles from the presently favored
TBM scenario, we list some of the future experimental
proposals which can be particularly suitable for this pur-
pose. The precision of sin2�12 can be considerably im-
proved by a dedicated reactor neutrino experiment
situated at �60 km corresponding to the survival proba-
bility minimum of ��e [17–19]. For instance it was shown in
[19] that with a statistics of �60 GW kiloton year and a
systematic error of 2%, sin2�12 can be measured to within
�5% at 3	. The parameter sin2�23 can be determined with
an accuracy of�10% at 3	 depending on the true value of
sin2�23 in the T2K and NOVA experiments [20,21]. In
what regards �13, the Double Chooz experiment [22] (see
also [20]) will improve the 3	 limit on jUe3j from its
current value 0.04 to 0.01 (0.006) after 2 (6) years of data
taking.

The outline of the paper is as follows: we start by
discussing the RG running of TBM analytically in
Sec. II. In Sec. III we then turn to Planck scale effects
and point out, in particular, the importance of the mismatch
phases. Both types of corrections are discussed as func-
tions of the neutrino mass and the type of ordering. A
numerical analysis and comparison of both effects is per-
formed in Sec. IV. Section V summarizes our findings.

II. RENORMALIZATION EFFECTS ON
TRIBIMAXIMAL MIXING

In this section we will study the effect of renormaliza-
tion group running of the mixing angles when at high scale
they correspond to the tribimaximal mixing.

RG effects on tribimaximal mixing have been studied
before in Refs. [23–26], but an analysis involving all
possible mass values and schemes is still lacking. We focus
here mostly on the maximal RG effects as a function of the
neutrino mass and will not conduct a detailed analysis of
the influence of the Majorana phases on the running. This
will be performed in a separate work [27].

By inserting the neutrino mixing matrix from Eq. (3) in
the definition of m� � U�mdiag

� Uy, one finds

 m��
Ae2i�1 Bei��1��2� Bei��1��3�

 1
2�A�B�D�e

2i�2 1
2�A�B	D�e

i��2��3�

  1
2�A�B�D�e

2i�3

0
B@

1
CA:

(6)

This is the most general mass matrix generating tribimax-
imal mixing. The parameters A, B and D are given by
 

A �
1

3
�2m1e

i�1 �m2e
i�2�; B �

1

3
�m2e

i�2 	m1e
i�1�;

D � m3e
i�3 : (7)

The neutrino mass matrix is subject to RG evolution. The
running of this matrix may be described via [3]

 m� ! IKI
m�I
; (8)
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where IK is a flavor independent factor arising from the
gauge interactions and fermion-antifermion loops. This
factor does not influence the mixing angles at all. The
diagonal matrix I
 is given by

 I
 � diag�e	�e ; e	�� ; e	��� ’ diag�1; 1; 1	���; (9)

where

 �� �
m2
�

8�2v2 �1� tan2�� ln
�

�
: (10)

Here we have neglected the electron and muon mass (so
that �e � �� � 0) and used e	�� ’ 1	 ��, since �� �

1. For instance, for tan� � 20 and �=� � 109, one has
�� ’ 0:0054. The results for the SM can be obtained by
replacing the factor (1� tan2�) with (	 3=2).

Note that the RG effects correspond to multiplying every
entry of the neutrino mass matrix with a real number.
Consequently, the overall phase of the entries is not af-
fected by the corrections. The corresponding ‘‘unphysical
phases’’ �1, �2 and �3 can therefore be rephased away by
a redefinition of the charged lepton fields. Hence, for the
analysis of RG effects it suffices to consider the mass
matrix

 m� �

A B B
 1

2�A� B�D�
1
2�A� B	D�

  1
2�A� B�D�

0
B@

1
CA: (11)

Obviously, if the correction to the neutrino mass matrix is
additive and not multiplicative, then the unphysical phases
will play a role. We will show in the analysis of Planck
scale effects to be presented in the next section that this
indeed is the case.

Returning to the RG effects, the mass matrix in (11) is
generated by some mechanism at a high scale �, which
may be taken to be the typical seesaw scale �� 1012 GeV.
If the mechanism involves right-handed neutrinos, some of
them are expected to have masses above �, and we have to
assume that the threshold effects [28] do not spoil the TBM
relations till � (note that additional unknown parameters,
namely, the entries of the Dirac neutrino mass matrix
would enter the analysis). This will be a valid assumption,
for example, when the heavy right-handed neutrinos are
exactly degenerate. Anyway, the predictions of this mecha-
nism will be modified by the RG evolution to the low
energy scale � at which measurements take place. We
take � � 103 GeV, the typical scale of supersymmetry
breaking. Note that the dependence on the actual values
of the scales � and � is only logarithmic, so our results are
rather insensitive to the exact choice of scales. If the
threshold effects indeed are sizable, our results can be
considered to be only conservative estimates.

In order to study the effect of the RG corrections on the
mixing angles, we employ the strategy presented in [11] to
diagonalize the RG-corrected mass matrix and obtain sim-
ple expressions for the evolved mixing angles

 �ij ’ �
0
ij � kij�� �O��2

��; (12)

where �0
12 � arcsin

��������
1=3

p
, �0

13 � 0 and �0
23 � 	�=4. We

only quote the result [27]:

 k12 �
1

3
���
2
p
jm1 �m2e

i�2 j2

�m2
�

;

k23 � 	

�
1

3

jm2 �m3ei��3	�2�j2

m2
3 	m

2
2

�
1

6

jm1 �m3ei�3 j2

m2
3 	m

2
1

�
;

k13 � 	
1

3
���
2
p

�
jm2 �m3e

i��3	�2�j2

m2
3 	m

2
2

	
jm1 �m3e

i�3 j2

m2
3 	m

2
1

�
:

(13)

Using the additional rephasing freedom we have set �1 �
0. Note that as long as the RG evolutions of the angles are
much less than O�1�, the difference in all the mi=mj ratios
at the low and high scales is only O���� [11]. Therefore for
O���� estimates, one may use the mi values at the low
scale. In the numerical calculations we have performed, the
RG evolution of the mi [8] are also taken into account.

It may be noted that for k12 there is no dependence on the
third mass eigenstate or its Majorana phase �3. As ex-
pected, k13 and k23 are governed by the inverse of �m2

A
while k12 depends on 1=�m2

�, which renders it typically
larger. As k12 is always positive, the solar neutrino mixing
angle always increases in the MSSM and decreases in the
SM. In contrast, k23 is negative (positive) for a normal
(inverted) mass ordering. Therefore j�23j increases in the
MSSM and decreases in the SM if the neutrino mass
ordering is normal. If the ordering is inverted, j�23j de-
creases in the MSSM and increases in the SM. From �ij �
�0
ij � kij�� it follows for jkij��j � 1 that

 sin�13 ’ k13��; cos2�23 ’ 2k23��;

sin2�12 	
1

3
’

2
���
2
p

3
k12��:

(14)

In the next subsections we will discuss from these expres-
sions the features of the running for the three main types of
neutrino mass spectra: normal (NH) and inverted (IH)
hierarchy, and quasidegeneracy (QD). In order to give
numerical estimates of the extent of RG effects, we use
the best-fit values of �m2

� � 7:9� 10	5 eV2, �m2
A �

2:5  10	3 eV2, and choose the phases such that the RG
effect is maximized. Then we further choose tan� � 20 for
illustration. The results for the SM can be obtained by
replacing the factor (1� tan2�) with (	 3=2). The out-
come of a full numerical analysis is plotted in Figs. 1–3: as
we shall see, they are nicely reproduced by the analytical
estimates to be presented below.

A. Normal hierarchy

We start the estimates with the normal hierarchy.
Defining the notation
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 r �
������������������������
�m2

�=�m2
A

q
’ 0:18; (15)

we have m1 ’ 0, m2 ’ r
�����������
�m2

A

q
and m3 ’

���������������������������
�1� r2��m2

A

q
.

From Eqs. (13) and (14) we get

 j sin�13jNH ’

���
2
p

3
��jr cos��2 	 �3� � r2j

& 1:4� 10	6�1� tan2�� ���! 5:4� 10	4;

(16)

where the number indicated by the arrow is the value at
tan� � 20. Atmospheric neutrino mixing is now nonmax-
imal, the mixing angle being given by
 

�cos2�23�NH ’ 	��

�
1�

4

3
r cos��2 	 �3�

�

) j cos2�23jNH

& 1:7� 10	5�1� tan2�� ! 6:8� 10	3:

(17)

Note that �cos2�23�NH < 0. The solar neutrino mixing an-
gles increase from sin2�12 �

1
3 by

 

�
sin2�12 	

1

3

�
NH
’

2

9
�� ’ 3:0� 10	6�1� tan2��

! 1:2� 10	3: (18)

Thus, we find that for NH, the deviations of the angles from
tribimaximal values due to RG corrections are extremely
small and virtually impossible to probe. Note that all the
three deviations as plotted in the upper panels of Figs. 1–3

are independent of the value of m1 as long as m1 ������������
�m2

�

p
’ 9� 10	3 eV.

B. Inverted hierarchy

Turning to the inverted hierarchy, using m2 ������������������������
m2

3 ��m2
A

q
and m1 �

����������������������������������������
m2

3 � �1	 r
2��m2

A

q
, it follows

from Eqs. (13) and (14) that

 j sin�13jIH ’
m3�����������
�m2

A

q
���
2
p

3
��j cos��2 	 �3� 	 cos�3j

& 2:6� 10	7

�
m3

10	3 eV

�
�1� tan2��

! 1:0� 10	4

�
m3

10	3 eV

�
: (19)

Thus in the inverted hierarchy, the value of sin�13 gener-
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FIG. 2 (color online). Maximal generated value of the initially
vanishing quantity j cos2�23j as a function of the smallest
neutrino mass for the normal (upper panel) and inverted (lower
panel) mass ordering. In the MSSM the sign of cos2�23 is
negative (positive) for normal (inverted) ordering. The signs
are reversed in the SM.
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mass ordering.
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ated through RG evolution is proportional to m3, as can be
seen in the lower panel of Fig. 1. The atmospheric neutrino
mixing angle is given by

 �cos2�23�IH ’ �� ’ 1:4� 10	5�1� tan2��

! 5:4� 10	3; (20)

which is independent of m3 as long as m3 �
�����������
�m2

A

q
’

0:05 eV. The dependence on the Majorana phases is in-

troduced only at order m3=
�����������
�m2

A

q
. As alluded to before, in

case of a normal ordering we have �cos2�23�NH < 0, while
for an inverted ordering �cos2�23�IH > 0, i.e., RG effects
increase j�23j from its original TBM value of �=4 for a
normal hierarchy and decrease it for an inverted hierarchy.
In the SM the effects have the opposite sign. Finally, the
solar neutrino mixing angle increases for the MSSM and
reads

 

�
sin2�12 	

1

3

�
IH
’

4��

9r2 �1� cos�2�

& 3:9� 10	4�1� tan2�� ! 0:15: (21)

Even though Eq. (12) is strictly speaking no longer valid
for such large values of j�ij 	 �0

ijj, the above result indi-

cates that the running of the solar neutrino mixing angle
can be dramatic, namely, up to 10�. This will be confirmed
in Sec. IV, where we will present figures quantifying the
maximal RG effect, which are obtained by numerically
solving the RG equations from Ref. [8].

The leading term in Eq. (21) is suppressed when�2 ’ �.
The measured value of j�12 	 �

0
12j< 4� (or sin2�12 	

1
3 


0:07) at 3	 suggests that the observed value of �12 can be
used to constrain the values of the absolute neutrino
masses, the Majorana phase �2 and tan� in IH [23,27].
In contrast to this, sin�13 and cos2�23 are too small to be
observable.

C. Quasidegeneracy

Finally, we shall consider running for quasidegenerate
neutrinos. The RG running for QD is always the largest:
indeed, the deviation of angles from their tribimaximal
values grows quadratically with the common mass scale
m0. Using m2

0 � �m2
A for the approximations and choos-

ing m0 � 0:2 eV for illustration, it follows that

 j sin�13jQD ’

���
2
p

3
��

m2
0

�m2
A

j cos��2 	 �3� 	 cos�3j

& 2:0� 10	4�1� tan2�� ! 0:08: (22)

Thus, testable values of �13 up to 5� may be generated.
Turning to atmospheric mixing, one finds
 

�cos2�23�QD ’ �
2

3
��

m2
0

�m2
A

�3� 2 cos��2	�3� � cos�3�

) j cos2�23jQD

& 8:0� 10	4�1� tan2�� ! 0:32; (23)

where the	 sign is for normal ordering and the� sign for
inverted ordering. The running is maximal when all the
Majorana phases vanish. The value of �23 can deviate from
its maximal value by up to 10�. This deviation is currently
restricted by experiments to j�23 	 �

0
23j< 10� at 3	.

Therefore, more accurate future measurements of �23 can
be used to put bounds on m0, �2 and �3 [27]. The value of
�2 may be restricted to �2 ’ � from the �12 measurements
as we shall see next: the solar mixing angle can deviate
strongly from its tribimaximal value:

 

�
sin2�12 	

1

3

�
QD
’

4

9
���1� cos�2�

m2
0

�m2
�

’ 3:0� 10	3�1� tan2���1� cos�2�:

(24)

Since the maximum value of the quantity �sin2�12 	
1
3� can

be 0.67 one can obtain a condition1 for the validity of the
analytic expressions as �m0=eV� tan� & 4. At large tan�,
the quantity �12 can be too large to be accommodated by
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FIG. 3 (color online). Maximal generated value of the initially
vanishing quantity jsin2�12 	 1=3j as a function of the smallest
neutrino mass for the normal (upper panel) and inverted (lower
panel) mass ordering. The sign of (sin2�12 	 1=3) is always
positive in the MSSM and always negative in the SM.

1The same comments as given after Eq. (21) apply here.
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the data, unless �2 ’ �. This simplifies the predictions for
the other two angles:

 j sin�13j
�2��
QD ’

2
���
2
p

3
��

m2
0

�m2
A

j cos�3j

& 2:0� 10	4�1� tan2�� ! 0:08; (25)

 j cos2�23j
�2��
QD ’ 2��

m2
0

�m2
A

��������1	
1

3
cos�3

��������
& 5:4� 10	4�1� tan2�� ! 0:22; (26)

with the sign of cos2�23 negative (positive) for normal
(inverted) mass ordering. Note that sin�13 can be zero if
�3 � �=2, whereas cos2�23 is always nonzero.

Another phenomenological implication of �2 ’ � and
quasidegenerate neutrinos is that the effective mass hmi �
j
P
U2
eimij governing neutrinoless double beta decay [29]

takes its minimal possible value:

 hmi�2��
QD ’ m0 cos2�12 (27)

in the �13 ! 0 limit. The same formula with m0 replaced

by
�����������
�m2

A

q
is valid for an inverted hierarchy and �2 ’ �,

which suppresses the running also in this case [see
Eq. (21)].

III. PLANCK SCALE EFFECTS ON
TRIBIMAXIMAL MIXING

In this section we will discuss the implications of Planck
scale physics on tribimaximal mixing. The existence of the
Planck scale implies the presence of higher dimensional
nonrenormalizable interactions, among which the follow-
ing dimension five operator is of interest for neutrino
physics:

 L Gr �
���
MPl
�L����L��� � H:c: (28)

The coupling matrix ��� will be assumed to be flavor
democratic, since gravity does not distinguish between
flavors. After electroweak symmetry breaking the above
operator leads to a contribution to the low energy neutrino
mass matrix m� ! m� � �m� of the form
 

�m� � �

1 1 1

1 1 1

1 1 1

0
BB@

1
CCA � ��

with � ’
h�i2

MPl
’ 2:5� 10	6 eV:

(29)

The implications of such a correction to m� have been
noted and analyzed for instance in Refs. [4–6]. With � ’

2:5� 10	6 eV�
�����������
�m2

�

p
, it would appear that only neg-

ligible corrections to the mixing phenomena can be ex-
pected. However, as will be seen later in this section, the
Planck scale effects on �12 are governed by �m0=�m2

�,

which can be substantial for quasidegenerate neutrinos.
Moreover we stress that the presence of such a term is
expected on general grounds and its implications are there-
fore model independent. In order to consider all possible
corrections to a given mixing scheme, the perturbation (29)
has to be included.

Note that the Planck scale contribution to the neutrino
mass matrix, �m�, has all its elements real only with a
specific choice of the phases of the flavor eigenstates. In
this basis, the so-called ‘‘unphysical’’ phases of the TBM
matrix [see Eq. (3)] need not vanish. These ‘‘mismatch
phases’’—the phases �i in this particular basis—turn out
to be crucial in the context of the tribimaximal mixing,
since without them there would be no effect on the mixing
angles at all. To show this, consider the neutrino mass
matrix giving rise to TBM in the absence of the �1;2;3. It
is given in Eq. (11) and can be written as:
 

m� �
m1

6
ei�1

4 	2 	2

 1 1

  1

0
BB@

1
CCA�m2

3
ei�2

1 1 1

 1 1

  1

0
BB@

1
CCA

�
m3

2
ei�3

0 0 0

 1 	1

  1

0
BB@

1
CCA: (30)

The neutrino with mass m2 has a flavor democratic con-
tribution to the total mass matrix. This is exactly the flavor-
blind form that the Planck scale contribution �m� in
Eq. (29) possesses. Hence, adding �m� to Eq. (30) is
equivalent to a simple redefinition of m2 as

 m2e
i�2 ! m2e

i�2�1� �e
	i�2�; (31)

where � � 3�=m2 � 1. Hence, only the value of the
second neutrino mass and its corresponding Majorana
phase are modified, while the mixing angles and the other
masses remain unchanged: with � ’ 2:5� 10	6 eV and
m2 � 8:4� 10	3 eV, it holds that � & 8:9� 10	4 and
the effect on m2 and on the mass-squared differences is at
most of the order of 0.1%.

However, in general the situation is different since the
most general mass matrix giving rise to TBM, as given in
Eq. (6), contains the phases �i. The new addition of a
flavor democratic small perturbation to the neutrino mass
matrix cannot be compensated anymore by a redefinition
of m2e

i�2 . This is because it is not possible to write m� in
terms of the individual masses as in Eq. (30), i.e., the
elements of the matrix multiplying m2e

i�2 are complex
numbers. The corrections to TBM from the Planck scale
effects are then nontrivial,2 and henceforth we shall con-

2It has been noted [30] that the tribimaximal mixing scenario
and Quark-Lepton Complementarity scenarios [31], which link
the Cabibbo-Kobayashi-Maskawa and PMNS matrices, generate
basically the same sin2�12. We remark here that the quark-lepton
complementarity scenarios will be affected by Planck scale
effects even if the phases �i vanish.
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sider this general scenario. Note that though the vanishing
of the mismatch phases is a special case, it may be relevant
while postulating symmetries at the high scale that govern
the structure of the mass terms.

We would like to make a few remarks at this stage:
(i) The so-called unphysical phases, that are usually

absorbed in the phases of charged leptons while
constructing the leptonic mixing matrix, indeed are
not well-defined outside the context of a theory of
neutrino masses. However, a complete theory of
neutrino masses has to predict the magnitudes and
phases of all the terms in the neutrino mass matrix,
and hence in the mixing matrix U from Eq. (3), once
a choice for the phases of neutrino flavor eigenstates
has been made. Such a choice has been made while
writing the real democratic matrix �m� in Eq. (29).
Hence it should not be surprising that some of the
predictions of the theory—like the values of the
mixing angles—do indeed depend on the mismatch
phases.

(ii) The argument presented here regarding the vanishing
of Planck scale effects on all three mixing angles and
the masses m1;3 with vanishing mismatch phases is
specific to the TBM scenario, where the mass matrix
includes a flavor-blind term. However, similar results
based on symmetries can be obtained in more gen-
eral cases. For example, TBM mixing is a special
case of �–� symmetry of the mass matrix, which
implies the form (including the mismatch phases)
[12]:

 m�–�
� �

Ae2i�1 Bei��1��2� Bei��1��3�

 De2i�2 Eei��2��3�

  De2i�3

0
B@

1
CA;

(32)

where A, B, D, E define �12, the neutrinos masses
and Majorana phases. Because of the equality of the
e� and e� elements, as well as of the �� and ��
elements, maximal atmospheric mixing and vanish-
ing Ue3 results. Note now that the Planck scale
contribution �m� from Eq. (29) is also �–� sym-
metric. Hence, adding �m� to the �–� symmetric
matrix in case of vanishing �1;2;3 will keep the total
mass matrix �–� symmetric and the values Ue3 �
cos2�23 � 0 will not be changed. In order for the
Planck scale effects to change the values of these
angles the mismatch phases are required not to
vanish.

(iii) The net order of magnitude of Planck scale effects
should stay the same even if we take the elements of
the democratic matrix �m� from Eq. (29) to be O�1�,
and not necessarily exactly equal.

Now we will consider the general case of all possible
phases in the neutrino mass matrix and study the resulting
effect of the Planck scale contribution for the mixing

angles in case of TBM. Towards this end, we follow the
formalism of [5] to calculate the deviations of the mixing
angles from their TBM values. We use the shorthand
notation

 Mij � ��UT�U�ij; (33)

such that Mij incorporates all the�i dependence and a part
of the �i dependence. In general, the elements of Mij are
O���. To a good approximation, the mass-squared differ-
ence m2

3 	m
2
1 does not change due to the Planck scale

effects. In this limit one finds that [5]

 �Ue3 ’
X
i�1;2

Uei

�
<�Mi3�

m3e
i�3 	mie

i�i
	 i

=�Mi3�

m3e
i�3 �mie

i�i

�
;

(34)

 �U�3 ’
X
i�1;2

U�i

�
<�Mi3�

m3e
i�3 	mie

i�i
	 i

=�Mi3�

m3e
i�3 �mie

i�i

�
:

(35)

These quantities can be related to the Planck-corrected
mixing angles after electroweak symmetry breaking
through

 j sin�13j � j�Ue3j; (36)

 cos2�23 � 1	 2sin2�23 ’ 1	 2jU�3 � �U�3j
2

’ 	2
���
2
p
j�U�3j cos��3; (37)

where ��3 is the relative phase between U�3 and �U�3.
We see that the deviation from maximal atmospheric neu-
trino mixing can go in either direction.

We can estimate the size of the Planck scale contribution
to be at most of the order �=�m3 	m1� for j�Ue3j and
j�U�3j. For neutrinos with a normal hierarchy andm1 � 0,

this quantifies to �=
�����������
�m2

A

q
’ 6� 10	5, and is thus negli-

gibly small. An inverted hierarchy with m3 � 0 gives the
same result. The largest effect can be expected for quasi-
degenerate neutrinos, in which case the corrections are at
most of order �m0=�m2

A ’ 5� 10	4. We have inserted
here for illustration a value of m0 � 0:4 eV for the com-
mon mass scale. Note that the corrections here are propor-
tional to m0, as opposed to m2

0 in the case of the RG
running.

The modifications of the mixing angles depend on the
values of the Majorana phases (as for radiative corrections)
but, in particular, also on the mismatch phases. The full
expressions for Eqs. (34) and (35) are rather lengthy and
not very instructive. An example we give is for the normal
hierarchy, in which case one can roughly estimate
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j�Ue3j ’
���
2
p ��������sin

�
�2 	�3

2

��������� ������������
�m2

A

q and

j�U�3j ’
j sin��2 	�3�j���

2
p

������������
�m2

A

q : (38)

The Majorana phases appear only at O�r�=
�����������
�m2

A

q
�. These

expressions show explicitly that for vanishing mismatch
phases �i the corrections to the mixing angles vanish.

As in the case of the radiative corrections, the correc-
tions to the mixing angles �ij are approximately inversely
proportional to the mass-squared difference �m2

ij, and
therefore one may expect a more sizable correction to
�12 than to �13 and �23. The contribution from the Planck
scale to Ue2 is [5]
 

�Ue2 ’
Ue1

�m2
�

�<�M12�jm1 �m2ei�2 j

	 i=�M12�jm1 	m2e
i�2 j�; (39)

where there is only one term because for TBM Ue3 � 0
holds before the Planck scale effects are included. Note
that in the above expression, the mi and �i are defined
before the Planck scale effects are switched on, whereas
�m2

� is taken to be after the Planck scale effects are
switched on. If �m2

� does not change much due to the
Planck scale effects, then jm1 �m2ei�2 j=�m2

� ’ 1=jm1 �
m2e

i�2 j and �Ue2 could be written in the same form as the
expressions for �Ue3 and �U�3. For the analytical esti-
mates, we will assume that this is the case. The numerical
analysis in the next section will not make this assumption.
However, the expressions obtained here are quite close to
the full result.

Since sin�12 ’ jUe2 � �Ue2j, the quantity in Eq. (39)
can be related to the deviation of the solar mixing angle via

 sin 2�12 	 1=3 ’ jUe2 � �Ue2j
2 	 1=3

’
2���
3
p j�Ue2j cos�e2; (40)

where �e2 is the relative phase between Ue2 and �Ue2. The
deviation can thus have either sign as in the case of the
atmospheric neutrino mixing angle.

If initially m1 � 0 (normal hierarchy), one can estimate

j�Ue2j & �=
�����������
�m2

�

p
’ 3� 10	4. An inverted hierarchy

leads to a larger correction, j�Ue2j & 2�
�����������
�m2

A

q
=�m2

� ’

4� 10	3. Hence, in contrast to the corrections to �13 and
�23, the deviation of solar neutrino mixing from 1=3 is
sensitive to whether neutrinos are normally or inversely
ordered. For quasidegenerate neutrinos it follows from
Eq. (39) that j�Ue2j ’ �m0=�m2

� ’ 10	2, where we
have again used m0 � 0:4 eV. With m2

0 � �m2
�, we can

write

 j�Ue2j ’
2

3
���
3
p

�m0

�m2
�

j2 cos2�01 	 cos2�02 � cos��01 ��
0
2�

	 cos2�03 � cos��01 ��
0
3� 	 2 cos��02 ��

0
3�j;

(41)

where �0i � �i 	 �2=4. This quantity, as it should, van-
ishes for �1;2;3 � 0. The function of the �1;2;3 inside the
j . . . j above has a maximal value of ’ 6:36 and therefore
j�Ue2j & 2:5�m0=�m2

� ’ 0:03 for m0 � 0:4 eV. Thus,
with the maximal deviation being sin2�12 	

1
3 ’

�2=
���
3
p
�j�Ue2j it follows that the deviation of �12 from its

TBM value due to Planck scale effects can be up to 10% or
2� –3�. Moreover, as shown in Eq. (40), this deviation can
be in either direction depending on the relative phase �e2,
which in turn depends on the Majorana phases�i as well as
on the mismatch phases �i.

If we now want to incorporate both the RG as well as the
Planck scale effects on �12, the predictions are thus un-
certain by 2� –3� in the absence of any knowledge of the
�i. This would relax some of the constraints onm0, �2 and
tan� that have been obtained in the literature by requiring
the angles at the low scale to be compatible with the
experiments. To be more quantitative, the maximal devia-
tion from the initial value of �12 � arcsin

��������
1=3

p
for a nor-

mal ordering is below 0.1� for m1 < 0:02 eV. For
m1 � 0:1 eV the change can be up to 0.6� and then it
increases linearly with the neutrino mass, for instance 3�

for m1 � 0:5 eV. If neutrinos are inversely ordered, the
change is up to 0.3� even for a vanishing m3, and starts to
increase linearly with the neutrino mass form3 * 0:01 eV.
If radiative corrections are used to set constraints on the
parameters, then one should take this uncertainty into
account, which would weaken the corresponding limits.

One might wonder at this point whether one can gen-
erate successful phenomenology starting with bimaximal
neutrino mixing [32], i.e., with Planck scale contributions
perturbing an initial3 sin2�12 �

1
2 . We checked numeri-

cally that in order to obey the current 3	 limit of sin2�12 

0:4, neutrinos should be heavier than 1.4 eV, i.e., in conflict
with the already very tight neutrino mass limits from
cosmology. Since the RG effects tend to increase �12,
even their addition cannot salvage the scenario.

IV. NUMERICAL RESULTS AND DISCUSSION

In Figs. 1–3 we show the maximal possible values of the
initially vanishing quantities j sin�13j, j cos2�23j and
jsin2�12 	

1
3 j generated from RG effects and from Planck

scale effects, as a function of the smallest neutrino mass for
normal and inverted mass ordering. The figures for MSSM
and SM are generated by numerically solving the RG
equations in the small �13 limit [8]. We have chosen in

3See also [6] for a discussion on Planck scale effects on
bimaximal mixing.
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case of the MSSM tan� � 20 and tan� � 5. The relative
magnitude of the deviations between these two cases
should be �1� 52�=�1� 202� ’ 0:065, which is confirmed
by the plot. Also given in the plots are the maximal RG
effects in the SM. As far as the mixing angles are con-
cerned, for all practical purposes the results for SM can be
obtained from the ones of MSSM with tan� � 20 by
multiplying them with j�	3=2�=�1� 202�j ’ 0:0037. We
also indicate the present 3	 bounds on the mixing
parameters.

The RG running in SM is found to be very small. Even
for values of m0 in the QD regime the running stays within
the present 3	 limit for all three quantities. For MSSM the
running is much stronger, especially for higher values of
tan� and in the QD regime. For jsin2�12 	

1
3 j there is a

plateau at �0:67 in the QD regime which corresponds to
the maximum possible deviation of 2=3 in this quantity. As
we are plotting the absolute values of the observables, we
stress again that sin2�12 	

1
3 is always larger than zero in

the MSSM. The same holds for cos2�23 in case of a
inverted ordering, whereas for a normal ordering cos2�23

is negative. For the SM the signs are reversed. For the
inverted ordering and small masses (m3 & 0:01 eV), the
deviation sin2�12 	

1
3 is roughly 2 orders of magnitude

larger than that for the normal ordering.
Note that since we show the maximal effects, the RG

running beyond the 3	 limits in the figure does not imply
that the corresponding neutrino mass values are ruled out.
Rather, it implies that the Majorana phases can be con-
strained if the neutrino masses lie in the corresponding
range.

The figures also show the maximal possible values of the
above three quantities j sin�13j, j cos2�23j and jsin2�12 	
1
3 j due to Planck scale effects. They were obtained by
numerically diagonalizing a mass matrix leading to TBM
to which a flavor-blind Planck perturbation was added. It is
to be noted that the values of cos2�23 and sin2�12 	

1
3 are

symmetric about zero: depending on the values of the
Majorana phases �i and the mismatch phases �i, the
Planck-corrected values of mixing angles can go in either
direction. Thus these effects can either replenish or deplete
the RG effects. The minimum values of the three quantities
plotted in the figure can be zero for suitable choices of the
phases �i and �i.

Let us compare both the effects:
(i) sin�13: the Planck scale effects can be larger than the

RG effects in the SM unless the neutrino masses are
above roughly 0.3 eV. Recall that the Planck correc-
tions for QD neutrinos are proportional to m0,
whereas the RG corrections are proportional to m2

0.
For a normal ordering the Planck scale effects are
always less than the maximal correction of tan� �
20 but can exceed the corrections for tan� � 5 if
m1 & 0:01 eV. For an inverted ordering Planck scale
effects can exceed the corrections for tan� � 20 �5�

if m3 & 0:0005�0:01� eV;
(ii) j cos2�23j: the Planck scale effects can be larger than

the RG effects in the SM unless the neutrino masses
are above roughly 0.1 eV. They are always less than
the maximal correction of tan� � 20 and tan� � 5;

(iii) jsin2�12 	
1
3 j: the Planck scale effects can be larger

than the RG effects in the SM unless the neutrino
masses are above roughly 0.5 eV. They are always
below the maximal correction of tan� � 20 and can
exceed the corrections for tan� � 5 if neutrinos are
normally ordered and m1 & 0:01 eV.

V. CONCLUSIONS AND SUMMARY

We have studied the renormalization group and Planck
scale corrections to neutrino mixing angles in the tribimax-
imal mixing scenario. Both these corrections need to be
included while comparing the low energy neutrino mixing
data with any postulated high scale mixing scenario.

We give approximate expressions for the values of mix-
ing angles at low scale starting from tribimaximal mixing
at high scale for NH, IH and QD scenarios with RG
running in the SM and the MSSM. We also plot the
maximum RG effects as a function of the smallest neutrino
mass for these scenarios. We find that in the SM the RG
running has a negligible effect on the mixing angles. In the
MSSM with large tan�, while NH still gives unobservably
small deviations for all the mixing angles, IH is capable of
generating significant running for �12. In fact, matching �12

with the data requires constraining the Majorana phases
and tan� already at the present stage. For the QD scenario
the running for all the three cases can be strong. The
running depends crucially on the values of the Majorana
phases and the neutrino mass scale: the corrections in the
QD scenario grow as m2

0. Precision measurements of neu-
trino mixing angles in future experiments should be able to
put further constraints on the mass scale and Majorana
phases if one assumes the TBM scenario.

For the Planck scale effect we assume a flavor demo-
cratic dimension five operator at the Planck scale that
contributes to the neutrino mass after electroweak symme-
try breaking. We show that the corrections to the mixing
angles can be quantified in terms of the ‘‘mismatch
phases’’ �i, which are the values of the so-called unphys-
ical phases in the basis we have chosen. Because of the
special structure of the neutrino mass matrix giving rise to
tribimaximal mixing, nonzero values of these phases are
required for any Planck effect on the mixing angles and the
masses m1 and m3. In general, if Planck scale effects are
added to a �–� symmetric mass matrix then corrections to
vanishing Ue3 and maximal �23 are only possible if the
unphysical phases have nontrivial values.

In the most general case when the mismatch phases are
nonvanishing, the Planck scale effects make the otherwise
vanishing quantities sin�13, cos2�13 and sin2�12 	

1
3 grow

almost linearly with the neutrino mass scale m0 for quasi-
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degenerate neutrinos. The effects are in general largest for
�12. Even with a large value of O�eV� for the neutrino
masses, sin�13 and cos2�23 hardly exceed 10	3, and hence
are virtually impossible to probe experimentally. However,
deviations of sin2�12 from 1=3 can be sizable, of the order
of 0:1�m0=eV�. Deviations of a few degrees are thus al-
lowed when neutrinos are quasidegenerate. This deviation
is larger than the resolution of the future precision �12

experiments, and can be measured.
An interesting possibility, though hardly realizable in

practice, is the following: suppose one has measured devi-
ations from tribimaximal mixing and knows the values of
the Majorana phases and possibly of tan�. In this case any
additional correction beyond the RG effects to the mixing
angles will stem from the Planck scale effects. As these
depend on the mismatch phases, one could in principle
extract some information on these phases. Moreover, if
supersymmetry is not realized in nature, then the RG
running is suppressed but the Planck scale effects can
nevertheless inflict a sizable perturbation to the solar neu-
trino mixing angle, which can help us get a handle on these
phases.

In the case of the RG running, the signs of the correction
to the mixing angles are predictable. For example in
MSSM, �12 always increases from its high scale value,
whereas j�23j increases (decreases) for normal (inverted)

hierarchy. In the case of the Planck scale effects, the sign of
cos2�23 and sin2�12 	 1=3 depends on all of the phases
present, including the mismatch phases which will need a
complete theory of neutrino masses for their prediction.
Therefore the Planck scale effects can either enhance or
compensate the RG running. Constraining neutrino pa-
rameters due to running might therefore be not as straight-
forward as is usually done. If the neutrino mass is 0.5
(0.2) eV, then the modification from Planck scale effects
to �12 can be nearly 3� (1�), which would weaken the
constraints. Note that such a relaxation of constraints is
applicable not only for TBM, but for any neutrino mixing
scenario.
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