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The scale of fermion mass generation can, as shown by Appelquist and Chanowitz, be bounded from
above by relating it to the scale of unitarity violation in the helicity nonconserving amplitude for fermion-
anti-fermion pairs to scatter into pairs of longitudinally polarized electroweak gauge bosons. In this paper,
we examine the process t�t! W�L W

�
L in a family of phenomenologically-viable deconstructed Higgsless

models and we show that scale of unitarity violation depends on the mass of the additional vectorlike
fermion states that occur in these theories (the states that are the deconstructed analogs of Kaluza-Klein
partners of the ordinary fermions in a five-dimensional theory). For sufficiently light vector fermions, and
for a deconstructed theory with sufficiently many lattice sites (that is, sufficiently close to the continuum
limit), the Appelquist-Chanowitz bound can be substantially weakened. More precisely, we find that, as
one varies the mass of the vectorlike fermion for fixed top-quark and gauge-boson masses, the bound on
the scale of top-quark mass generation interpolates smoothly between the Appelquist-Chanowitz bound
and one that can, potentially, be much higher. In these theories, therefore, the bound on the scale of
fermion mass generation is independent of the bound on the scale of gauge-boson mass generation. While
our analysis focuses on deconstructed Higgsless models, any theory in which top-quark mass generation
proceeds via the mixing of chiral and vector fermions will give similar results.
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I. INTRODUCTION

Although the mechanism of electroweak symmetry
breaking remains a mystery, it is clear that this mechanism
must give mass to two very different classes of particles:
the electroweak gauge bosons and the fermions. In the
standard model, the scalar Higgs [1] doublet couples di-
rectly to both classes of particles [2,3]. Moreover, the
gauge and Yukawa couplings through which the Higgs
interacts, respectively, with gauge bosons and fermions
are proportional to the masses generated for those states
when the scalar doublet acquires a vacuum expectation
value. Nonetheless, in considering physics beyond the
standard model, the possibility remains that the gauge
boson and fermion masses are generated through different
mechanisms. In particular, it is possible that electroweak
symmetry breaking is transmitted to the fermions via some
intermediary physics specifically associated with fermion
mass generation.

Appelquist and Chanowitz [4] have shown1 that the tree-
level, spin-0 scattering amplitude for fermion-anti-fermion
pairs to scatter into longitudinally-polarized electroweak
gauge bosons grows linearly with energy below the scale of
the physics responsible for transmitting electroweak sym-
metry breaking to the fermions. As the amplitude must be
unitary, one can derive an upper bound on the scale of
fermion mass generation by finding the energy at which the
amplitude would grow to be of order 1=2. The rate of

energy growth is proportional to the mass of the fermions
involved. The most stringent bound, therefore, arises from
top-quark annihilation, and the bound on the scale of top-
quark mass generation is found to be of order a few TeV.2

As emphasized by Golden [6], the interpretation of the
Appelquist-Chanowitz (AC) bound on the scale of top-
quark mass generation can be problematic: longitudinal
electroweak gauge-boson elastic scattering itself grows
quadratically with energy [9–13] below the scale of the
physics responsible for electroweak gauge-boson mass
generation. As the scale of the physics responsible for
electroweak symmetry breaking is also bounded by of
order a TeV, it can be difficult to be sure that the violation
of unitarity in fermion annihilation is truly independent of
the violation of unitarity in the gauge-boson sector. The
standard model illustrates this difficulty, as in that case the
Higgs boson is responsible for restoring unitarity in both
the fermion annihilation and gauge-boson scattering
processes.

In this paper, we discuss unitarity violation and the
resulting bounds on the scale of top-quark mass generation
in the context of deconstructed Higgsless models.
Higgsless models [14] achieve electroweak symmetry
breaking without introducing a fundamental scalar Higgs
boson [1], and the unitarity of longitudinally-polarized W
and Z boson scattering [9–13] is preserved by the exchange
of extra vector bosons [15–18]. Inspired by TeV-scale [19]
compactified five-dimensional gauge theories [20–23],
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2For light fermions, the scattering of fermions into many
gauge-bosons yields a stronger result than the Appelquist-
Chanowitz bound [7,8]. For the top-quark, however, two-body
final states yield the strongest bound.
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these models provide effectively unitary descriptions of the
electroweak sector beyond 1 TeV. Deconstruction [24,25]
is a technique to build a four-dimensional gauge theory,
with an appropriate gauge-symmetry breaking pattern,
which approximates the properties of a five-dimensional
theory. Deconstructed Higgsless models [26–32] have
been used as tools to compute the general properties of
Higgsless theories, and to illustrate the phenomenological
properties of this class of models.

The simplest deconstructed Higgsless model [33,34]
incorporates only three sites on the deconstructed lattice,
and the only additional vector states (other than the usual
electroweak gauge bosons) are a triplet of vector bosons.
While simple, the three site model is sufficiently rich to
describe the physics associated with fermion mass genera-
tion, as well as the fermion delocalization [35– 42] re-
quired in order to accord with precision electroweak tests
[43–47]. It is straightforward to generalize this model to an
arbitrary number of sites [48]. In the continuum limit (the
limit in which the number of sites goes to infinity), this
model reproduces the five-dimensional model introduced
in [39].

A fermion field in a general compactified five-
dimensional theory gives rise to a tower of Kaluza-Klein
(KK) modes, the lightest of which can (under chiral bound-
ary conditions) be massless in the absence of electroweak
symmetry breaking. The lightest states can therefore be
identified with the ordinary fermions. The massive Kaluza-
Klein fermion modes are, however, massive Dirac fermi-
ons from the four-dimensional point of view.
Correspondingly, the fermions in a deconstructed
Higgsless model include both chiral and vectorlike elec-
troweak states [33,48], and generation of the masses of the
ordinary fermions in these models involves the mixing of
the chiral and vector states [37,38]. As we will demon-
strate, the scale of top-quark mass generation in these
models depends on the masses of the vectorlike fermions
(the ‘‘KK’’ modes), as well as on the number of sites in the
deconstructed lattice.

What is particularly interesting about deconstructed
Higgsless models, in this context, is that one can distin-
guish between the unitarity-derived bounds on the scales of
gauge-boson and top-quark mass generation. We will dem-
onstrate that, for an appropriate number of deconstructed
lattice sites, spin-0 top-quark annihilation to
longitudinally-polarized gauge-bosons remains unitary at
tree-level up to energies much higher than the naive AC
bound if the vectorlike fermions are light. However the AC
bound is reproduced as the mass of the vectorlike fermion
is increased. Therefore, for fixed top-quark and gauge-
boson masses, the bound on the scale of fermion mass
generation interpolates smoothly between the AC bound
and one that can, potentially, be much higher as the mass of
the vectorlike fermion varies. The unitarity bounds on
elastic scattering of longitudinal electroweak gauge bosons

in Higgsless models [49], however, depend only on the
masses of the gauge-boson KK modes. In this sense, the
bound on the scale of fermion mass generation is indepen-
dent of the bound on the scale of gauge-boson mass
generation.

While our discussion is restricted to deconstructed
Higgsless models, many models of dynamical electroweak
symmetry breaking incorporate the mixing of chiral and
vector fermions to accommodate top-quark mass genera-
tion. Examples include the top-quark seesaw model [50–
52], and models in which the top mixes with composite
fermions arising from a dynamical electroweak symmetry
breaking sector [53–55]. Indeed, the fermion delocaliza-
tion required to construct a realistic Higgsless model is
naturally interpreted, in the context of AdS/CFT duality
[56–59], as mixing between fundamental and composite
fermions [60]. As chiral-vector fermion mixing is the basic
feature required for our results, we expect similar effects in
these other models.

In the next section, to set notation and make contact with
the literature, we reproduce [6] the Appelquist-Chanowitz
bound in the electroweak chiral Lagrangian [61–65]—
which may be interpreted as a ‘‘two-site’’ Higgsless model.
In Sec. III, we introduce the n��2� site Higgsless models
that we will use for our calculations. Section IV contains
our calculations and primary results. The last section sum-
marizes our findings.

II. THE APPELQUIST-CHANOWITZ BOUND

In the standard model (SM), the helicity nonconserving
process t� �t� ! W�L W

�
L receives contributions at tree level

from the diagrams in Fig. 1. We are interested in the
behavior of the amplitude for large center of mass energy,���
s
p
� MW , mt. This allows us to expand the amplitude in

the small parameters M2
W=s and m2

t =s. Practically, this
means that we use the following leading order approxima-
tions. For the longitudinal polarization of the W gauge
boson, we use

 ��WL
’
k�WL

MW
; (1)

where k�WL
is the four-momentum of the corresponding

boson. For the spinor chain in the s channel, we use

 �v��k6 1 � k6 2��gLPL � gRPR�u� ’ mt
���
s
p

cos��gL � gR�

(2)

 

�v��k6 1 � k6 2��gLPL � gRPR�u� ’ �mt
���
s
p

cos��gL � gR�;

(3)

where k�1 and k�2 are the momenta of the outgoing bosons,
and for the spinor chain in the t channel we find

 �v�k6 2�p6 1 � k6 1�k6 1gLPLu� ’
mtt

���
s
p

2
�1� cos��gL (4)
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 �v�k6 2�p6 1 � k6 1�k6 1gLPLu� ’ �
mtt

���
s
p

2
�1� cos��gL (5)

where

 PL �
1
2�1� �5� (6)

 PR �
1
2�1� �5� (7)

are chirality projection operators, and gL and gR are chiral
electroweak coupling constants.

Since the t�t! W�W� amplitude is the same for each
color and only differs by a sign for the opposite helicity, we
get the largest amplitude by considering the incoming
state3

 j i �
1���
6
p �j�t1�t1�i � j�t2�t2�i � j�t3�t3�i � j�t1�t1�i

� j�t2�t2�i � j�t3�t3�i�; (8)

where the numerical subscripts (1,2, and 3) label the three
different colors. Putting the pieces together gives the scat-
tering amplitude

 

M� ! WLWL� �

���
6
p
mt

���
s
p

cos�

2M2
W

�2gtt�g�WW � gLttZgZWW

� gRttZgZWW � g2
LtbW�

�

���
6
p
mt

���
s
p

2M2
W

g2
LtbW; (9)

for
���
s
p
� MW , mt, where the electroweak couplings are

given by4

 gtt� �
2
3e; (10)

 g�WW � e; (11)

 gLttZ �
e

sin�W cos�W

�
1

2
�

2

3
sin2�W

�
; (12)

 gRttZ �
e

sin�W cos�W

�
�

2

3
sin2�W

�
; (13)

 gZWW �
e cos�W
sin�W

; (14)

 gLtbW �
e���

2
p

sin�W
: (15)

With these couplings, we find the identity

 2gtt�g�WW � gLttZgZWW � gRttZgZWW � g
2
LtbW � 0:

(16)

The remaining amplitude is, therefore,

 M �

���
6
p
mt

���
s
p

2M2
W

g2
LtbW (17)

which grows linearly with
���
s
p

for
���
s
p
� MW , mt. We note

that gLtbW � g=
���
2
p

and MW � gv=2, where g is the weak
coupling and v ’ 246 GeV is the weak scale, giving [4]

 M �

���
6
p
mt

���
s
p

v2 : (18)

We can check this using the equivalence theorem
[11,68], where one replaces the longitudinal gauge-bosons
by the corresponding ‘‘eaten’’ Nambu-Goldstone Bosons.
In this limit, the only diagram that contributes to the J � 0
amplitude is shown in Fig. 2. The leading order approx-
imations

 �v�u� ’
���
s
p

�v�u� ’ �
���
s
p

(19)

combined with the four point coupling

 gtt���� �
mt

v2 (20)

 

t+

t̄+

W +
L

W −
L

γ , Z

t+

t̄+

W +
L

W −
L

b

FIG. 1. The diagrams that contribute to the process t� �t� !
W�L W

�
L in the Higgsless SM. There are analogous diagrams for

the process t� �t� ! W�L W
�
L . Each diagram has an amplitude that

grows linearly with
���
s
p

for all energies. However, most (but not
all) of this linear

���
s
p

growth cancels when the diagrams are
summed. The remaining piece that grows linearly with

���
s
p

comes
from the t channel diagram, and it eventually surpasses the
unitarity bound. In the SM, this unitarity violation is eliminated
by the contribution of the Higgs in the s channel.

3The state we consider here differs from that chosen by [4], as
we include both combinations of incoming helicities. This state
allows us to derive a slightly stronger bound, c.f. Eq. (23).

4Our expression here differs in the sign of the term propor-
tional to g2

LtbW from that given in [4], and is correct for the top-
quark which is the T3 � �1=2 member of an electroweak
doublet. The corresponding expression in [4], which is from
[66,67], is correct for the lower member of an electroweak
doublet with T3 � �1=2.
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yield the same amplitude as in Eq. (18)

 M �

���
6
p
mt

���
s
p

v2 : (21)

Note that the potential s-channel contribution, illustrated in
Fig. 3, does not contribute in the J � 0 channel.

The J � 0 partial wave is extracted from Eq. (18) as

 a0 �
1

32�

Z 1

�1
d cos�M �

mt

�����
6s
p

16�v2 : (22)

To satisfy partial wave unitarity, this tree-level amplitude
must be less than 1=2, the maximum value for the real part
of any amplitude lying in the Argand circle. This produces
the bound

 

���
s
p

&
8�v2

mt

���
6
p � 3:5 TeV: (23)

Our result differs numerically from that given in [4], as we
include both helicity channels in Eq. (8), and bound the
amplitude by 1=2 rather than 1.5

III. THE n��2� SITE DECONSTRUCTED
HIGGSLESS MODEL

We will be studying the Higgsless model introduced in
[48], denoted the n��2� site model. As we will discuss in
Subsec. III A, the gauge sector is an SU�2�n�1 �U�1�
extended electroweak group; the label n thus denotes
how many extra SU�2� groups the model contains relative
to the standard model. The electroweak chiral Lagrangian
[61–65] can be obtained by setting n � 0 while the
Higgsless Three Site Model [33], which has one extra
SU�2� group, can be obtained by setting n � 1. This model
may be schematically represented by a ‘‘Moose’’ diagram
[69] as shown in Fig. 4. After discussing the gauge sector,
we examine the fermion sector (Subsec. III B), the ‘‘eaten
Nambu-Goldstone bosons’’ (Subsec. III C) and then the
couplings that are relevant to our calculation of t�t!
W�W�.

A. Gauge-boson sector

The gauge group of the n��2� site model, as illustrated
in Fig. 4, is

 G � SU�2�0 �
Yn
j�1

SU�2�j �U�1�n�1 (24)

where SU�2�0 is represented by the left-most circle and has
coupling g; the gauge groups SU�2�j are represented con-
secutively by the internal circles and have a common
coupling6 ~g; and U�1�n�1 is represented by the dashed
circle at the far right and has coupling g0. The coupling ~g
is taken to be much larger than g, so we expand in the small
quantity

 x � g
~g: (25)

We also find it convenient to define the parameters

 t � g0

g �
s
c (26)

where s2 � c2 � 1. In the continuum limit, n!1, this
model reduces to the one described in [39].

The horizontal bars in Fig. 4 represent nonlinear sigma
models �j which break the gauge symmetry down to
electromagnetism

 G! U�1�EM (27)

giving mass to the other 3�n� 1� gauge bosons. To leading
order, the effective Lagrangian for these fields is

 

t+

t̄+

π +

π −

FIG. 3. This diagram, corresponding to s-channel Z-boson
exchange in the equivalence-theorem limit, does not contribute
to the J � 0 partial wave scattering amplitude for the process
t� �t� ! ���� in the Higgsless SM.

 

t+

t̄+

π +

π −

FIG. 2. The diagram that contributes linear growth in
���
s
p

to the
process t� �t� ! ���� in the Higgsless SM, where we have
used the equivalence theorem to replace the longitudinally-
polarized gauge-boson by the corresponding eaten Goldstone
Bosons. There is an analogous diagram for the process t� �t� !
����.

5One may obtain a slightly stronger upper bound by consid-
ering an isosinglet, spin-0, final state (I � J � 0) of gauge-
bosons [5]. This amounts to a reduction in the value of the upper
bound in Eq. (23) by a factor of

��������
2=3

p
� 0:8.

6Common couplings for the ‘‘internal’’ SU�2� groups corre-
sponds to a continuum model with spatially independent gauge-
coupling [39]. Qualitatively, our results do not depend on this
assumption and should apply in any case in which the mass of
the W-boson is much less than that of the first gauge-boson KK
mode.
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 L D� �
f2

4
Tr
�X

j

�D��j�
yD��j

�
(28)

where

 D��j � @��j � igjWj;��j � igj�1�jWj�1;� (29)

with g0 � g, gj � ~g and gn�1 � g0. The nonlinear sigma-
model fields may be written

 �j � ei2�j=f; (30)

in terms of the Goldstone bosons (�j) which become the
longitudinal components of the massive gauge bosons. The
�j and Wj are written in matrix form and are

 �j �
1
2�

0
j

1��
2
p ��j

1��
2
p ��j � 1

2�
0
j

 !
(31)

 Wj;� �
1
2W

0
j;�

1��
2
p W�j;�

1��
2
p W�j;� � 1

2W
0
j;�

 !
(32)

 Wn�1;� �
1
2W

0
n�1;� 0

0 � 1
2W

0
n�1;�

 !
: (33)

The mass matrices of the gauge bosons can be obtained
by going to unitary gauge (�j ! 1). For the neutral gauge
bosons, we find

 M2
n �

~g2f2

4

x2 �x 0 0 	 0 0
�x 2 �1 0 	 0 0
0 �1 2 �1 	 0 0
	 	 	 	 	 �1 0
0 0 0 	 �1 2 �xt
0 0 0 	 0 �xt x2t2

0
BBBBBBBB@

1
CCCCCCCCA

(34)

while the matrix M2

 for the charged gauge bosons is M2

n
with the last row and column removed.

The photon is massless and given by the wavefunction

 v� �
e
~g�

1
x ; 1; 	 	 	 ; 1;

1
xt� (35)

where

 

1
e2 �

1
g2 �

n
~g2 �

1
g02
: (36)

After diagonalizing the gauge-boson mass matrices, we
find that the other masses and wavefunctions are given, at
leading order in x, by the following expressions. The mass
and wavefunction of the light W boson are

 MW0 �
~gfx

2
����������������
�n� 1�

p (37)

 v0
W0 � 1 (38)

 vjW0 �
n� j� 1

n� 1
x (39)

where the superscript 0 refers to the left-most SU�2� group
on the moose while the superscript j � �1 . . . n� refers to
the SU�2� gauge groups on the interior of the moose. The
masses and wavefunctions of the charged KK modes are

 MWk �
~gf���

2
p

����������������������������������
1� cos

�
k�
n� 1

�s
(40)

 v0
Wk �

�x������������������
2�n� 1�

p cot
�

k�
2�n� 1�

�
(41)

 vjWk
�

������������
2

n� 1

s
sin
�
jk�
n� 1

�
: (42)

Likewise, the mass and wavefunction of the light Z boson
are

 MZ0 �
~gfx

2c
����������������
�n� 1�

p (43)

 v0
Z0 � c (44)

 vjZ0 �
c�n� 1� � j=c

n� 1
x (45)

 vn�1
Z0 � �s; (46)

where superscript n� 1 refers to the U�1� group. The
masses and wavefunctions of the neutral KK modes are

 MZk �
~gf���

2
p

����������������������������������
1� cos

�
k�
n� 1

�s
� MWk (47)

 v0
Zk �

�x������������������
2�n� 1�

p cot
�

k�
2�n� 1�

�
(48)

 vjZk �

������������
2

n� 1

s
sin
�
jk�
n� 1

�
(49)

 

0 1 2 n n + 1

FIG. 4. Moose [69] diagram of the n��2� site model. Each
solid (dashed) circle represents an SU�2� (U�1�) gauge group.
Each horizontal line is a nonlinear sigma model. Vertical lines
are fermions, and diagonal lines represent Yukawa couplings.
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 vn�1
Zk �

������������
2

n� 1

s
��1�kx
t
��n� 1�a1 � b1� (50)

 a1 �
��1�k

4�n� 1�
csc2

�
k�

2�n� 1�

��
��1�k sin

�
k�
n� 1

�

� t2 sin
�
kn�
n� 1

��
(51)

 b1 �
�1

2
cot

�
k�

2�n� 1�

�
: (52)

We note that the W gauge-boson mass is given by

 MW � MW0 
gf

2
������������
n� 1
p �

gv
2
; (53)

and, hence, we have the relation

 f �
������������
n� 1
p

v: (54)

The ratio of the W and Z mass is

 

MW

MZ
�
MW0

MZ0
�

1

c
(55)

identifying c with cos�W at leading order in x.
The ratio ofMW to the mass of the first KK modeMW1 is

 

MW

MW1

�
x�����������������������������������������������

2�n� 1��1� cos� �n�1��
q (56)

which relates x to the mass ratio MW=MW1
for a given n at

leading order. From this we see that expansion in x is
justified as long as MW1

� MW .

B. Fermion sector

The vertical lines in Fig. 4 represent the fermionic fields
in the theory. The vertical lines below the circles represent
the left chiral fermions while the vertical lines above the
circles are the right chiral fermions. Each fermion is in a
fundamental representation of the gauge group to which it
is attached and a singlet under all the other gauge groups
except U�1�n�1. The charges underU�1�n�1 are as follows:
If the fermion is attached to an SU�2� then its charge is 1=3
for quarks and�1 for leptons. If the fermion is attached to
U�1�n�1 its charge is twice its electromagnetic charge: 0
for neutrinos, �2 for charged leptons, 4=3 for up type
quarks and �2=3 for down type quarks.

The fermions attached to the internal sites (1 � j � n)
are vectorially coupled and are, thus, allowed Dirac
masses. We take these masses to be common, and denote
them byMF. The symmetries also allow Yukawa couplings
of fermions at adjacent sites using the nonlinear sigma
fields. We have assumed a very simple form for these
couplings, inspired by an extra dimension [70] and repre-
sented by the diagonal lines in Fig. 4. For simplicity, we
take the mass parameter for all the diagonal Yukawa

links—except for the two at the ends of the diagram—to
be MF, the same as the Dirac mass, corresponding to a
massless fermion in a five-dimensional model. The
Yukawa links on the ends are taken to be suppressed by
factors of �L on the left end and �R on the right end. All
together, the masses of the fermions and the leading order
interactions of the fermions and nonlinear sigma fields are
given by

 L  � � �MF

�
�L � L0�0 R1 �

X
j

� Lj Rj

�
X
j

� Lj�j R;j�1 � � Ln�R�n R;n�1 � H:c:
�

(57)

where the value of �L is the same for all fermions, while �R
is a diagonal matrix which distinguishes flavors [33,48].
For example for the top and bottom quark we have

 �R �
�Rt 0
0 �Rb

� �
: (58)

The fermion-mass matrix can be diagonalized by per-
forming unitary transformations on the left- and right-
handed fermions separately. To leading order in �L;R we
find the following masses and wavefunctions for the light-
est fermion, F0, in a given tower (which we associate with
an ordinary standard model fermion)

 MF0
� MF�L�Rf (59)

 v0
LF0
� 1 (60)

 vjLF0
� �L (61)

 vjRF0
� �Rf (62)

 vn�1
RF0
� 1 (63)

while the expressions for the heavier states, Fk, are

 MFk � 2MF cos
�
�n� k� 1��

2n� 1

�
(64)

 v0
LFk
�

�L���������������
2n� 1
p tan

�
�n� k� 1��

2n� 1

�
(65)

 vjLFk �
2��1�j���������������
2n� 1
p sin

�
2j�n� k� 1��

2n� 1

�
(66)

 vjRFk �
��1�n�k�j�1 2���������������

2n� 1
p sin

�
2�n� j� 1��n� k� 1��

2n� 1

�
(67)
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 vn�1
RFk
�
��1�k�Rf���������������

2n� 1
p tan

�
�n� k� 1��

2n� 1

�
: (68)

For small �L, we see that the left-handed component of the
lightest fermion in each tower is primarily located at site
0 —and the flavor-universal factor �L controls the amount
of fermion ‘‘delocalization’’ along the moose. Likewise,
the right-handed component is primarily located at site n�
1, and the flavor-dependent quantities �Rf control the de-
gree of delocalization. Since the amplitude for t�t!
W�W� scattering will depend on the values of �L and
�Rt , we need to evaluate these quantities; we will start with
�L and then use it to constrain �Rt .

Precision electroweak corrections provide a useful
source of constraints on the parameters of Higgsless mod-
els. While custodial symmetry generally keeps the tree-
level value of �� � �T sufficiently small, satisfying the
bounds on S at tree level requires some degree of fermion
delocalization [35–42]. In a general Higgsless model, one
can calculate the ‘‘ideal delocalization’’ profile of a fer-
mion along the moose that guarantees S and other precision
corrections will vanish at tree level. However, the
n��2�-site model studied here and in [48] has been sim-
plified such that the light fermion profile is strictly flat on
the interior of the moose (c.f. Eqs. (60)–(63)), rather than
being ‘‘ideal’’. We therefore quantify the relationship be-
tween delocalization (�L) and S in this model by studying a
particular experimental observable.

The coupling gWe� between the W, electron and
electron-neutrino is well-measured and lies close to the
SM value. One may parameterize the deviation in this
coupling from the SM value as

 gWe� � gWe�SM
�1� aS� bT � cU� (69)

where a, b and c are O��� parameters. We have already
noted that custodial symmetry makes T small in this model
and U is generally suppressed relative to both S and T.
Hence, the largest corrections are due to S

 gWe� ’ gWe�SM
�1� aS�: (70)

We can ensure S ’ 0 at tree level by requiring gWe� in the
n��2�-site model to be the same as in the standard model.
An explicit calculation of gWe� in this model, which re-
quires expanding the wavefunctions, masses, and cou-
plings to order �2

L and order x2, yields [48]

 gWe�n � gWe�SM

�
1�

n�n� 2�

6�n� 1�
x2 �

n
2
�2
L

�
: (71)

Therefore, the condition

 �2
L �

n� 2

3�n� 1�
x2 (72)

causes S to vanish at tree-level. Using Eq. (56) this is
equivalent to

 �2
L �

2

3
�n� 2�

�
1� cos

�
�

n� 1

��
M2
W

M2
W1

; (73)

in terms of physical masses. Here again, note that �L is
small so long as MW � MW1

.
Finally, the parameter �Rf can be determined by taking

the ratio of the masses of the light fermion and the first KK
mode

 

MF0

MF1

�
�L�Rf

2 cos� n�2n�1�
: (74)

Since we know �L, this gives a prediction for �Rf in terms
of physical masses

 �Rf �

���
6
p

cos� n�2n�1����������������������������������������������
�n� 2��1� cos� �n�1��

q MF0

MF1

MW1

MW
: (75)

For all flavors except the top quark, this parameter is tiny;
at leading order, we therefore set �Rf � 0 for all the light
fermions. The size of �Rt affects �� at one loop; compari-
son of the experimental bounds on �� with the value
calculated in Higgsless models [33,48] shows that �Rt
must also be relatively small. In what follows, we therefore
keep only the leading terms in �Rt .

C. Goldstone boson sector

We will perform the computation of the process t� �t� !
W�L W

�
L in the n��2� site model using the equivalence

theorem. We must, therefore, determine the wavefunction
of the Goldstone bosons associated with (eaten by) the
massive gauge bosons. This is determined by the mixing
between the two given in Eq. (28). To find the mixing, we
expand the nonlinear sigma-model field �j and keep the
terms linear in both the gauge bosons (Wj) and the
Goldstone bosons (�j). After these manipulations,
Eq. (28) becomes
 

L�W � �i
~gf
2

�
f@��0; xW

�
0 �W

�
1 g

�
Xn�1

j�1

f@��j;W
�
j �W

�
j�1g

� f@��n;W
�
n � xtW

�
n�1g

�
(76)

from which we may read off the wavefunctions for the
charged Goldstone bosons as

 v�0��
k
�

1

N�
k
�xv0

Wk
� v1

Wk
� (77)

 v�j��
k
�

1

N�
k
�vjWk

� vj�1
Wk
� (78)
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 v�n��
k
�

1

N�
k
vnWk

(79)

where theN�k are normalization factors. Note that Nambu-
Goldstone boson components are associated with the links
rather than the gauge groups: the superscript [0] refers to
the left-most link, the superscript [n] refers to the right-
most link, and the superscripts [j] range from 1 through n-1
and denote the interior links of the Moose. The wave-
functions for the neutral Goldstone bosons are similar

 v�0�
�0
k
�

1

N�0
k

�xv0
Zk
� v1

Zk
� (80)

 v�j�
�0
k
�

1

N�0
k

�vjZk � v
j�1
Zk
� (81)

 v�n�
�0
k
�

1

N�0
k

�vnZk � xtv
n�1
Zk
�; (82)

but include a contribution from the Zk wavefunction on the
U�1� site.

These wavefunctions are particularly simple for the
lightest modes, the W and Z: they are flat

 v�l��
0
�

1������������
n� 1
p � v�l�

�0
0

(83)

with the same value on all links [l � 0 . . . n] of the Moose.

D. Couplings

To obtain the couplings of the Goldstone bosons to the
fermions, we start from Eqn. (58), expand the nonlinear
sigma-model fields, and plug in the eigenmode wavefunc-
tions we have just derived. Doing this, we find

 gLtFk� � �i

���
2
p
MF

f

�
�Lv

0
Ltv

1
RFk
v�0�� �

X
i

viLtv
i�1
RFk
v�i��

� �RbvnLtv
n�1
RFk

v�n��

�

� ��1�k
i
���
2
p
MF�L���������������

2n� 1
p

�n� 1�v
tan

�
�n� k� 1��

2n� 1

�
(84)

 

gRtFk� � �i

���
2
p
MF

f

�
�Lv0

LFk
v1
Rtv
�0�
� �

X
i

viLFkv
i�1
Rt v

�i�
�

� �RtvnLFkv
n�1
Rt v

�n�
�

�

�
i
���
2
p
MF�R���������������

2n� 1
p

�n� 1�v
tan

�
�n� k� 1��

2n� 1

�
(85)

 gtt���� �
MF

f2

�
�Lv

0
Ltv

1
Rt�v

�0�
� �2 �

X
i

viLtv
i�1
Rt �v

�i�
� �2

� �RtvnLtv
n�1
Rt �v

�n�
� �2

�
�

mt

�n� 1�v2 : (86)

Here we have denoted the lightest fermions (previously
denoted F0) by t and b, as appropriate, while leaving the
corresponding KK modes as Fk (which, to leading order in
�L;R, have the same properties for all quarks). Note that the
four point vertex has an extremely simple form, and van-
ishes in the limit n! 1.

IV. UNITARITY BOUNDS ON t �t! WLWL

The diagrams that contribute at tree level to t� �t� !
W�L W

�
L are shown in Fig. 5. We are again interested in

the behavior at large energies, so we expand in the small
parameters M2

W=s and m2
t =s; we also include all colors and

both helicity polarizations in a coupled-channel analysis
(Eq. (8)). The calculation is most easily performed using
the equivalence theorem [11,68]. Again, as in the SM (see
Fig. 3), the potential s-channel diagrams do not contribute
to the J � 0 amplitude, and the only diagrams that con-
tribute are shown in Fig. 6. The scattering amplitude aris-
ing from the diagrams in Fig. 6 is

 M �
�����
6s
p �

gtt���� �
X
k

MFkgLtFk�gRtFk�
t�M2

Fk

�
(87)

where the couplings are given in Eqs. (84)–(86).

 

t+

t̄+

W +
L

W −
L

γ , Z, Z k

t+

t̄+

W +
L

W −
L

b, Fk

FIG. 5. The diagrams that contribute to the process t� �t� !
W�L W

�
L in the n��2� site Higgsless model. There are analogous

diagrams for the process t� �t� ! W�L W
�
L . As in the SM, most of

the linear growth in
���
s
p

will cancel. All the persisting linear
growth in

���
s
p

comes from the t channel diagrams.
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The J � 0 partial wave can be extracted as

 a0 �
1

32�

Z 1

�1
d cos�M

�

���
6
p

16�

�
gtt����

���
s
p
�
X
k

gLtFk�gRtFk�g
� ���

s
p

MFk

��
(88)

where

 g�x� � 1
x ln�1� x2�: (89)

This partial wave must be less than 1=2 to maintain uni-
tarity, giving a bound on

���
s
p

and/or MF1
. We have plotted

this bound in Figs. 7 and 8 for n � 0; 1; 2; 	 	 	 ; 10; 20; 30
and 1. The n � 0 bound corresponds to the original AC
bound of Eq. (23).

We see from these figures that there are two important
domains corresponding to different ranges of values for
MF1

. In the first domain, where MF1
& 4:5 TeV, we find

that unitarity can be satisfied up to very large energies. In
this limit, we find that the t channel diagram becomes
irrelevant and the process is controlled by the four point
vertex (Fig. 6). For the lowest fermion masses, MF1

�

4:5 TeV, we find

 a0 ’

�����
6s
p

mt

16�v2�n� 1�
&

1

2
(90)

which gives the bound

 

���
s
p

& �n� 1�3:5 TeV: (91)

In this ‘‘low’’ KK fermion-mass region, unitarity is valid to
approximately (n� 1) times the AC bound.

In the second domain, where MF1
> 4:5 TeV, we find

that, for all n, unitarity breaks down at a value of
���
s
p

given
approximately by the AC bound (Eq. (23)) In Figs. 7 and 8,
we see that at MF1

� 4:5 TeV, the curves corresponding to
small n approach the n � 0 curve, while the curves for
large n turn back on themselves, defining a wedge-shaped

 

2 3 4 5 6
MF1 TeV

5

10

15

20

25

s
T

eV

0

10 20 30 ∞ = n

FIG. 8 (color online). Expanded view of low
���
s
p

region of
Fig. 7.

 

2 4 6 8 10
MF1 TeV

10

20

30

40

50

s
T

eV

0

10

20 30 ∞ = n

FIG. 7 (color online). The scale where unitarity breaks down in
the helicity nonconserving channel in the n��2� site model.
Unitarity is valid in the region below and to the left of a given
curve. The bottom-most curve is for n � 0 and is the AC bound.
The line directly above the bottom one is for n � 1 and corre-
sponds to the Three Site Model. The line directly above that is
for n � 2 and so on until n � 10. The line above that is for n �
20, the line to the right of that is for n � 30 and the line to the
right of that is the continuum limit (n! 1). We find that
unitarity breaks down if either E is large or MF1

is large. If
MF1

is large, then unitarity breaks down for
���
s
p

very close to the
AC bound. On the other hand, if MF1

& 4:5 TeV, unitarity can
be valid in this process to very high energies, with the precise
value depending on the number of sites n.

 

t+

t̄+

π +

π −

t+

t̄+

Fk

π +

π −

FIG. 6. Diagrams contributing to unitarity violation at high
energies in the process t� �t� ! ����. There are analogous
diagrams for the process t� �t� ! ����. The top diagram grows
linearly with

���
s
p

for all energies, whereas the bottom diagrams
only grow with

���
s
p

up to MFk , after which they fall off as 1=
���
s
p

.
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area in which unitarity is always violated starting at
���
s
p

of
order a few TeV.

To understand why MF1
� 4:5 TeV is the fermion-mass

value at which the theory crosses from the first to the
second domain, we consider what happens as n! 1. In
this limit, the four point vertex disappears and we are left
with the partial wave amplitude

 lim
n!1

a0 �
2
���
6
p
MF1

mt

�4v2

X
k

��1�k�1

�2k� 1�2
g
� ���

s
p

�2k� 1�MF1

�
:

(92)

This sum is dominated by the first KK mode (k � 1). Thus,
to locate the left-most edge of the wedge-shaped area in the
�
���
s
p
;MF1� plane where unitarity is violated, we need only

keep the first KK fermion mode

 lim
n!1

a0�k � 1� �
2
���
6
p
MF1

mt

�4v2 g
� ���

s
p

MF1

�
: (93)

The function g�
���
s
p
=MF1

� determines the shape of this
bound. It is maximized for

���
s
p
� 2MF1 and gives the upper

limit of MF1
,

 MF1
&

�4v2

2
���
6
p
mt ln�5�

� 4:25 TeV; (94)

if we want this amplitude to be unitary up to very high
scales. Including the higher fermion KK modes changes
this upper bound only slightly, to �4:5 TeV. Note that, in
the continuum limit, the scattering amplitude does not
grow at asymptotically high energies—a property ensured
by various sum-rules satisfied by the couplings [71,72].
Nonetheless, as illustrated in Figs. 7 and 8, the properly
normalized spin-0 coupled-channel amplitude exceeds the
unitarity bound for various ranges of

���
s
p

and MF1.
While our work demonstrates that the bound on the scale

of fermion mass generation is independent of the bound on
the scale of gauge-boson mass generation in these models,
the physical significance of the fermion-mass-generation
bound depends on the ‘‘high-energy’’ (UV) completion

which underlies the n��2� site model. The simplest pos-
sible UV completion is one in which each of the nonlinear
sigma-model link theories is replaced by a linear Gell-
mann-Levy sigma model. In this case, the strength of the
adjacent site couplings in Eq. (57) is determined by a
dimensionless Yukawa coupling of order MF=f. The
large-MF limit, therefore, corresponds to large Yukawa
coupling. In this case, the bound on MF is expected to be
related to the triviality bound on the corresponding Yukawa
coupling [66,67,73].

V. SUMMARY

In this paper we have examined upper bounds on the
scale of top-quark mass generation in viable deconstructed
Higgsless models. These bounds are derived from the scale
at which unitarity is violated in the helicity nonconserving
amplitude for top-anti-top pairs to scatter into pairs of
longitudinally-polarized electroweak gauge bosons. We
have shown that the scale of unitarity violation in this
process depends on the mass of the additional vectorlike
fermion states that occur in these theories and, in this
sense, the scale of fermion mass generation is separate
from that of gauge-boson mass generation. For sufficiently
light vector fermions, and for a deconstructed theory with
sufficiently many lattice sites (that is, sufficiently close to
the continuum limit), we have shown that the Appelquist-
Chanowitz bound on top-quark mass generation is substan-
tially weakened, while the bound is recovered as one
increases the mass of the vectorlike fermions. Our results
are expected to apply to any model in which top-quark
mass generation occurs, in part, through mixing between
chiral and vector fermions.
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