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We present results from a simulation of quenched overlap fermions with Lüscher-Weisz gauge field
action on lattices up to 24348 and for pion masses down to � 250 MeV. Among the quantities we study
are the pion, rho, and nucleon masses; the light and strange quark masses; and the pion decay constant.
The renormalization of the scalar and axial vector currents is done nonperturbatively in the RI-MOM
scheme. The simulations are performed at two different lattice spacings, a � 0:1 fm and � 0:15 fm, and
on two different physical volumes, to test the scaling properties of our action and to study finite volume
effects. We compare our results with the predictions of chiral perturbation theory and compute several of
its low-energy constants. The pion mass is computed in sectors of fixed topology as well.
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I. INTRODUCTION

Lattice simulations of QCD at small quark masses re-
quire a fermion action with good chiral properties. Overlap
fermions [1] possess an exact chiral symmetry on the
lattice [2], and thus are well suited for this task. Fur-
thermore, overlap fermions are automatically O�a� im-
proved if employed properly [3].

Previous calculations of hadron observables from
quenched overlap fermions have been limited to larger
quark masses and/or coarser lattices due to the high cost
of the simulations [4–7]. To ensure that the correlation
functions this involves are not overshadowed by the ex-
ponential decay of the overlap operator [8], the lattice
spacing a should be small enough such that mHa� 2
for mesons and mHa� 3 for baryons, where mH is the
mass of the hadron. In addition, the spatial extent of the
lattice L should satisfy L� 1=�2f�� in order to be able to
make contact with chiral perturbation theory [9].

Over the past years we have done extensive simulations
of quenched overlap fermions [6,10,11]. Furthermore, we
have employed overlap fermions to probe the topological
structure of the QCD vacuum at zero [12] and at finite
temperature [13]. In this paper we shall give the technical
details of our calculations and present results on hadron
and quark masses and the pseudoscalar decay constant,
including nonperturbative renormalization of the scalar,
pseudoscalar, and axial vector currents. The bulk of the
simulations are done on the 24348 lattice at lattice spacing
a � 0:1 fm. Our results on the spectral properties of the

overlap operator [6] and nucleon structure functions [10]
will be reported elsewhere in detail.

The paper is organized as follows. In Sec. II we discuss
the action and how it is implemented numerically. In
Sec. III we give the parameters of the simulation. In
Sec. IV we present our results for the hadron masses and
the pseudoscalar decay constant. The latter is used to set
the scale. We compare our results with the predictions of
chiral perturbation theory, and attempt to compute some of
its low-energy constants. In Sec. V we compute the renor-
malization constants of the scalar and pseudoscalar den-
sities, as well as the axial vector current, nonperturbatively,
and in Sec. VI we present our results for the light and
strange quark masses. Finally, in Sec. VII we conclude.

II. THE ACTION

The massive overlap operator is defined by

 D �
�

1�
amq

2�

�
DN �mq (1)

with the Neuberger-Dirac operator DN given by

 DN �
�
a

�
1�

DW�������������������������������
DyW���DW���

q
�
; DW��� � DW �

�
a
;

(2)

where DW is the massless Wilson-Dirac operator with r �
1, and � 2 	0; 2
 is a (negative) mass parameter. The
operator DN has n� � n� exact zero modes, DN 0

n � 0
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with n � 1; . . . ; n� � n�, where n� (n�) denotes the
number of modes with negative (positive) chirality,
�5 0

n � � 0
n (�5 0

n � � 0
n). The index of DN is thus

given by � � n� � n�. The ‘‘continuous’’ modes �i,
DN i � �i i, satisfy � yi ; �5 i� � 0 and come in com-
plex conjugate pairs �i, ��i .

To evaluate DN it is appropriate to introduce the
Hermitian Wilson-Dirac operator HW��� � �5DW���,
such that

 DN �
�
a
�1� �5sgnfHW���g�; (3)

where sgnfHg � H=
�������
H2
p

. The sign function can be defined
by means of the spectral decomposition

 sgn fHW���g �
X
i

sgnf�ig�i�
y
i ; (4)

where �i are the normalized eigenvectors of HW��� with
eigenvalue �i. Equation (4) is not, however, suitable for
numerical evaluation. We write

 sgn fHW���g �
XN
i�1

sgnf�ig�i�
y
i � P

N
?sgnfHW���g; (5)

where

 PN? � 1�
XN
i�1

�i�
y
i (6)

projects onto the subspace orthogonal to the eigenvectors
of the N lowest eigenvalues of jHW���j, and approximate
PN?sgnfHW���g by a minmax polynomial [14]. More pre-
cisely, we construct a polynomial P�x�, such that

 

��������P�x� �
1���
x
p

��������<�; x 2 	�2
N�1; �

2
max
; (7)

where �N�1 (�max) is the lowest nonzero (largest) eigen-
value of jPN?HW���j. We then have

 sgn fHW���g �
XN
i�1

sgnf�ig�i�
y
i � P

N
?HW���P�H2

W����:

(8)

The degree of the polynomial will depend on � and on the
condition number of H2

W���, 	 � �2
max=�2

N�1, on the sub-
space f�ij�1� PN?��i � 0g.

We use the Lüscher-Weisz gauge action [15]

 S	U
 �
6

g2

�
c0

X
plaquette

1

3
Re Tr�1�Uplaquette�

� c1

X
rectangle

1

3
Re Tr�1�Urectangle�

� c2

X
parallelogram

1

3
Re Tr�1�Uparallelogram�

�
; (9)

where Uplaquette is the standard plaquette, Urectangle denotes
the closed loop along the links of the 1� 2 rectangle, and
Uparallelogram denotes the closed loop along the diagonally
opposite links of the cubes. The coefficients c1, c2 are
taken from tadpole improved perturbation theory [16]:

 

c1

c0
� �

�1� 0:4805
�

20u2
0

;
c2

c0
� �

0:033 25


u2
0

(10)

with c0 � 8c1 � 8c2 � 1, where

 u0 �

�
1

3
TrhUplaquettei

�
1=4
; 
 � �

log�u4
0�

3:068 39
: (11)

We write

 � �
6

g2 c0: (12)

After having fixed �, the parameters c1, c2 are determined.
In the classical continuum limit u0 ! 1 the coefficients c1,
c2 assume the tree-level Symanzik values [17] c1 �
�1=12, c2 � 0. The Lüscher-Weisz action suppresses un-
physical zero modes, called dislocations [18], and is per-
turbatively much better motivated than the Iwasaki and
DBW2 gauge actions [19] (in combination with overlap
fermions).

III. SIMULATION PARAMETERS

The simulations are done on lattices listed in Table I.
The scale parameter r0=a was taken from [16]. The cou-
plings have been chosen such that the 16332 lattice at � �
8:0 and the 24348 lattice at � � 8:45 have approximately
the same physical volume. This allows us to study both
scaling violations and finite size effects.

We have projected outN � 40 lowest lying eigenvectors
at � � 8:0 and N � 50 (N � 10) at � � 8:45 on the
24348 (16332) lattice. These numbers scale roughly with
the physical volume of the lattice. We used the Arnoldi
method to compute eigenvalues and eigenvectors. The
degree of the polynomial P has been adjusted such that

1=
��������������
H2
W���

q
is determined with a relative accuracy of better

than 10�7.
The mass parameter � influences the simulation in two

ways. First, it affects the locality properties [8] of the
Neuberger-Dirac operator. In Fig. 1 we show the effective
range of DN ,

 F�r� � hhmax
x
jDN�x; y�jjjjx�yjj�riyiU; (13)

TABLE I. Lattices.

� Volume r0=a

8.00 16332 3.69(4)
8.45 16332 5.29(7)
8.45 24348 5.29(7)
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with respect to the Euclidean distance

 kxk �
�X4

��1

x2
�

�
1=2
: (14)

Asymptotically, F�r� / exp���r=a�, where � depends
(among others) on �. (Numerically, � � 2�, where �
refers to the taxi-driver distance [8].) We want � to be as

large as possible, in particular, 2�� mHa (3�� mHa)
for mesons (baryons). Second, the condition number of
PN?H

2
W���, 	 � �2

max=�2
N�1, depends on � as well. In

Fig. 2 we show the � dependence of � and 	 on the
16332 lattice at � � 8:45 for N � 10. Test runs show,
however, that 	 does not decrease significantly anymore
if we increase N further. We have chosen � � 1:4, which is
a trade-off between a small condition number 	 and a large
value of �. At this value of � we find � � 1:11�1�, which
is consistent with the results obtained in [8] from the
Wilson gauge action.

The simulations are performed at the quark masses listed
in Table II. This covers the range of pseudoscalar masses
250 & mPS & 900 MeV as we shall see. The lowest quark
mass was chosen such that mPSL * 3 (L being the spatial
extent of the lattice). On all our lattices we have L�
1=�2f��.
O�a� improvement, both for masses and on- and off-

shell operator matrix elements, is achieved by simply
replacing D in (1) by [3]

 Dimp 

�
1�

amq

2�

�
D
�

1�
a

2�
D
�
�1

(15)

in the calculation of the quark propagator. Apart from the
multiplicative mass term, this amounts to subtracting the
contact term from the propagator. In the following we shall
always use the improved propagator, without mentioning it
explicitly. The eigenvalues of DN lie on a circle of radius
�=a around ��=a; 0� in the complex plane, while the
eigenvalues of the improved operator Dimp

N � DN�1�
a

2�DN�
�1 lie on the imaginary axis.

IV. HADRON MASSES AND PSEUDOSCALAR
DECAY CONSTANT

Let us now turn to the calculation of hadron masses and
the pseudoscalar decay constant. Before we can compare
our results with the real world, we have to set the scale. We
will use the pion decay constant to do so, for reasons which
will become clear later. The pion decay constant derives
from the axial vector current, which has to be renormalized
in the process.

A. Calculational details

The coefficients c1, c2 of the gauge field action are [16]
c1 � �0:169 805, c2 � �0:016 341 4 at � � 8:0 and
c1 � �0:154 846, c2 � �0:013 407 0 at � � 8:45. For

 

FIG. 2. Condition number and � on the 16332 lattice at � �
8:45 for � � 1:2, 1.3, 1.4, 1.5, and 1.6, from left to right.

TABLE II. Mass parameters.

� V amq

8.00 16332 0.0168 0.0280 0.0420 0.0560 0.0840 0.1400 0.1960
8.45 16332 0.0280 0.0560 0.0980 0.1400
8.45 24348 0.0112 0.0196 0.0280 0.0560 0.0980 0.1400

 

0 5 10 15 20
r/a

1e-08

0.0001

1

F(
r)

FIG. 1 (color online). The effective range F�r� as a function of
r=a on the 16332 lattice at � � 8:45 for � � 1:4, together with
an exponential fit. The fit gave � � 1:11�1�.
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the gauge field update we use a heat bath algorithm, which
we repeat 1000 times to generate a new configuration.

The inversion of the overlap operator D is done by
solving the system of equations

 Ax � y; (16)

where A � DyD and y is the relevant source vector. We use
the conjugate gradient algorithm for that. The speed of
convergence depends on the condition number of the op-
erator A, 	�A� � �max=�min, where �max (�min) is the larg-
est (lowest) eigenvalue of A. For reasonable values of the
quark mass we have 	�A� / 1=m2

q. Thus, the number of
iterations, nD, needed to achieve a certain accuracy will
grow like nD / 1=mq as the quark mass is decreased.

The convergence of the algorithm can be accelerated by
a preconditioning method. Instead of (16) we solve the
equivalent system of equations

 ACx � Cy  ~Ax; (17)

where C is a nonsingular matrix, which we choose such
that 	� ~A� � 	�A�. Our choice is

 C � 1�
Xn
i�1

�
1

�i
� 1

�
viv

y
i ; (18)

where vi (�i) are the normalized eigenvectors (eigenval-
ues) of A. The condition number of the operator ~A is by a
factor �n�1=�1 smaller than the condition number of the
operator A, and the number of iterations in the conjugate

gradient algorithm reduces to nD / 1=
�����������������������
�n�1 �m2

q

q
, which

depends only weakly on the quark mass mq. We have
chosen n � 80, and the inversion was stopped when a
relative accuracy of 10�7 was reached. We have checked
that increasing the accuracy does not change the correla-
tion functions for all our quark masses.

In the calculation of meson and baryon correlation
functions we use smeared sources to improve the overlap
with the ground state, while the sinks are taken to be either
smeared or local. We use Jacobi smearing for source and
sink [20]. To set the size of the source, we have chosen
	s � 0:21 for the smearing hopping parameter and em-
ployed Ns � 50 smearing steps.

To further improve the signal of the correlation func-
tions, we have deployed low-mode averaging [21] in some
cases by breaking the quark propagator into two pieces,

 

Xn‘
i�1

 i�x� 
y
i �y�

�imp
i �mq

; (19)

where the sum extends over the eigenmodes of the n‘
lowest eigenvalues of Dimp

N , and the remainder. The con-
tribution from the low-lying modes (19) is averaged over
all positions of the quark sources. As the largest contribu-

tion to the correlation functions comes from the lower
modes, we may expect a significant improvement in the
regime of small quark masses. We have chosen n‘ � 40,
mainly because of memory limitations.

B. Lattice results

The calculations are based on 900–1300 gauge field
configurations at the lowest four quark masses at � �
8:0, and on 200–300 configurations elsewhere. We con-
sider hadrons only with all quarks having degenerate
masses.

1. Pion mass

To compute the pseudoscalar mass, mPS, we looked at
correlation functions of the pseudoscalar density P �
� �5 and the time component of the axial vector current
A4 � � �4�5 . In Fig. 3 we show the corresponding effec-
tive mass for our four lowest quark masses on the 24348
lattice. Local sinks are found to give slightly smaller error
bars than smeared sinks, so that we will restrict ourselves to
this case. Both correlators give consistent results. We will
use the results from the axial vector current correlator here,
because it results in a wider plateau as the pseudoscalar
correlator, in particular, at the larger quark masses. We fit
the correlator by the function A cosh�mPS�t� T=2��, where
T is the temporal extent of the lattice, over the region of the
plateau. The results of the fit are listed in Table III.

2. Rho and nucleon masses

To compute the vector meson mass, mV , we explored
correlation functions of operators Vi � � �i and V4

i �
� �i�4 (i � 1; 2; 3). We found that the operator Vi, in

combination with a local sink, gives the best signal. In
Fig. 4 we show the effective rho mass for all six quark
masses on the 24348 lattice.

 

5 10 15 20

t/a

0.2

0.3

0.4

a 
m

PS
ef

f

ma=0.0112
ma=0.0196
ma=0.028
ma=0.056
ma=0.098
ma=0.14

FIG. 3 (color online). The effective pseudoscalar mass from
the correlation function of the axial vector current A4 on the
24348 lattice at � � 8:45, using smeared sources and local sinks.
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For the calculation of the nucleon mass, mN, we used
B� � "abc 

a
�� 

bC�5 
c� (where C � �4�2) as our basic

operator, where we have replaced each spinor by  !
 NR � �1=2��1� �4� [20]. These so-called nonrelativis-
tic wave functions have a better overlap with the ground
state than the ordinary, relativistic ones. In Fig. 5 we show
the effective nucleon mass for our six quark masses on the
24348 lattice, where for the lowest three quark masses we
have employed low-mode averaging. We find good to
reasonable plateaus starting at t=a * 8. In Fig. 6 we
show, for comparison, the result obtained without low-
mode averaging. In this case the situation is less favorable.

The nucleon mass is obtained from a fit of the data by the
correlation function A exp��mNt� � B exp��mN� �T � t��,
where mN� is the mass of the backward moving baryon,
over the region of the plateau. The relative error on the
nucleon propagator is expected to grow [22] / exp	�mN �

3mPS=2�t
=
����
N
p

, N being the number of configurations, as t
increases and/or mPS decreases, and that is what we
observe.

The results for the rho and nucleon masses are listed in
Table III. Note that amV � 2� and amN � 3�, respec-
tively, are satisfied in all cases. In Fig. 7 we show an APE

 

0 5 10 15

t/a

0.3

0.4

0.5

0.6

a 
m

ρef
f

ma=0.0112
ma=0.0196
ma=0.028
ma=0.056
ma=0.098
ma=0.14

FIG. 4 (color online). The effective rho mass on the 24348
lattice at � � 8:45, using smeared sources and local sinks. The
horizontal lines indicate the fit interval as well as the value and
error of the mass.
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ma=0.14

FIG. 5 (color online). The effective nucleon mass on the 24348
lattice at � � 8:45, using smeared sources and local sinks. The
horizontal lines indicate the fit interval as well as the value and
error of the mass. The data points at the lowest three quark
masses have been computed with low-mode averaging.

TABLE III. Hadron masses and pseudoscalar decay constant. The numbers marked by � are
obtained with low-mode averaging. To convert mPS to physical units, we have used the result in
Table IV. The error on mPS in the last column is purely statistical.

� V amq amPS amV amN afPS mPS (MeV)

8.00 16332 0.0168 0.190(1) 0.643(5) 0.793(5) 0.075(1) 239(1)
0.0280 0.235(1) 0.64935) 0.821(4) 0.076(1) 295(1)
0.0420 0.281(1) 0.65923) 0.863(3) 0.078(1) 353(1)
0.0560 0.321(1) 0.669(2) 0.890(3) 0.080(1) 403(1)
0.0840 0.388(1) 0.695(3) 0.952(7) 0.082(1) 488(1)
0.1400 0.502(1) 0.751(2) 1.074(7) 0.090(1) 631(1)
0.1960 0.599(1) 0.815(1) 1.188(7) 0.097(1) 753(1)

8.45 16332 0.0280 0.212(3) 0:441�6�� 0:595�6�� 0.053(1) 396(8)
0.0560 0.289(2) 0:482�4�� 0:675�4�� 0.058(1) 545(4)
0.0980 0.384(2) 0.537(4) 0.784(7) 0.064(1) 727(4)
0.1400 0.467(2) 0.595(3) 0.886(6) 0.070(1) 883(4)

8.45 24348 0.0112 0.139(1) 0:429�6�� 0:551�12�� 0.051(1) 264(4)
0.0196 0.177(1) 0:442�6�� 0:572�11�� 0.052(1) 336(2)
0.0280 0.209(1) 0:452�3�� 0:600�10�� 0.054(1) 396(2)
0.0560 0.292(1) 0.481(3) 0.674(12) 0.058(1) 551(2)
0.0980 0.388(1) 0.538(2) 0.788(11) 0.065(1) 731(2)
0.1400 0.412(1) 0.597(1) 0.892(11) 0.071(1) 887(2)
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plot for our three lattices. At our smallest quark masses we
have mPS=mV � 0:3. The APE plot shows no scaling vio-
lations outside the error bars and no finite size effects.

3. Pion decay constant

The physical pion decay constant is given by

 h0jA4j�i � m�f�; (20)

where A� is the renormalized axial vector current, A� �

ZAA�. Using the axial Ward identity

 @�A� � 2mqP; (21)

where P is the local pseudoscalar density, and considering
the fact that mqP is a renormalization group invariant, we

obtain

 f� �
2mq

m2
�
h0jPj�i: (22)

On the lattice we consider the correlation function
 

hPs�t�Ps
0
�0�i �

1

2amPS
h0jPsjPSihPSjPs

0
j0i

� 	exp��mPSt� � exp��mPS�T � t��


 Ass
0
	exp��mPSt� � exp��mPS�T � t��
;

(23)

where the superscripts s, s0 distinguish between local (L)
and smeared (S) operators. From this we obtain [23]

 afPS �
2amq

�am��
3=2

ALS��������
ASS
p : (24)

We thus find afPS by computing ALS and ASS. In Table III
we give our results. In our notation the experimental value
of f� is 92.4 MeV.

Comparing our data on the 16332 and 24348 lattices at
� � 8:45 in Table III piece by piece, we also find no finite
size effects down to the lowest common pseudoscalar
mass.

C. Setting the scale: Pion decay constant

We will use the pseudoscalar decay constant to set the
scale. The reason is that fPS is an analytic function in m2

PS
for degenerate quark masses [24], in contrast to mV and
mN , which exhibit nonanalytic behavior. We thus expect
that fPS extrapolates smoothly to the chiral limit. In
quenched chiral perturbation theory [25,26] to NLO we
have1 [24]

 fPS � f0

�
1� 
q5

m2
PS

2�4�f0�
2

�
�O�m4

PS�: (25)

In Fig. 8 we show our data together with a quartic fit in the
pseudoscalar mass. The lattice spacing is obtained from
requiring fPS � f� � 92:4 MeV at the physical pion
mass. Using the r0=a values given in Table I, we can
convert the lattice spacing a into the dimensionful scale
parameter r0. The results of the fits are compiled in
Table IV. Note that 
q5 , f0, and r0 come out independent
of the lattice spacing within the error bars, which, once
more, indicates good scaling properties of our action. The
coefficient 
q5 turns out to be in agreement with the phe-
nomenological value of 1.83 (Lq5 � 0:001 45) reported in
[28].

 

FIG. 7 (color online). APE plot on the 24348 lattice at � �
8:45 (�) and on the 16332 lattices at � � 8:0 (�) and � � 8:45
(4), together with the experimental value ( � ).
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FIG. 6 (color online). The same as the previous figure, but for
the lowest three quark masses without using low-mode averag-
ing.

1Here and in the following we shall adopt the notation 
i �
128�2Li, 
i (Li) being the familiar (conventional) Gasser-
Leutwyler coefficients [27]. The superscript q stands for
quenched.
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D. Comparison with chiral perturbation theory

We shall now compare our results for the pseudoscalar,
vector meson, and nucleon masses with the predictions of
chiral perturbation theory and attempt to extrapolate the
lattice numbers to the chiral limit.

1. Pion mass

We plot the pseudoscalar masses as a function of the
quark mass in Fig. 9. Quenched chiral perturbation theory
[25] predicts in the infinite volume [24,29]
 

m2
PS

mq
� A

�
1�

�
��

2

3

q�y

�
�lny� 1�

�

�
�2
q8 � 


q
5� �


q�
3

�
y
�
� � � � (26)

with

 y �
Amq

�2
�

(27)

where A � 2�=f2
0, � being the ‘‘bare quark condensate,’’

and �� denotes the scale at which the 
i’s are being
evaluated. The traditional value is �� � 4�f0, which we
will also adopt here. For the parameter � chiral perturba-
tion theory predicts [25,26]

 � �
�2

0

48�2f2
�
; (28)

with �2
0  m2

0 �m
2
 � 2m2

K � �870 MeV�2. This gives
� � 0:183. The parameters f0 and 
q5 are known from
our fit of fPS and are given in Table IV.

A much sought after quantity is the parameter �. Though
unphysical, it would be a great success of the calculation,
and of quenched chiral perturbation theory as well, if �
turned out to be in agreement with the predicted value. We
shall try to determine � directly from the data. Let us write

 z �
m2

PS

�2
�
; w �

m2
PS

mq
(29)

and introduce the effective � parameter

 ��1
eff � 1�

lnz0w� lnzw0

w� w0
; (30)

where z, z0 andw,w0, respectively, are adjacent data points.
It is easy to see that

 lim
mq!0

�eff � �: (31)

In Fig. 10 we show �eff as a function of the quark mass. In
the case of our high statistics run on the 16332 lattice at
� � 8:0, we are able to extrapolate �eff to the chiral limit.
We obtain � � 0:18�4�, in agreement with the prediction of
quenched chiral perturbation theory. On the 24348 lattice at
� � 8:45, our current statistics does not allow such an
extrapolation. But the data for �eff are consistent with the
predicted value of �.

The Witten-Veneziano formula [30] relates �2
0 to the

topological susceptibility

 

FIG. 9 (color online). Chiral extrapolation of the pseudoscalar
mass on the 24348 lattice at � � 8:45 (�) and on the 16332
lattice at � � 8:0 (�). The curves show the fits for 
q� � 0.

TABLE IV. The pion decay constant.

� V af0 
q5 a (fm) f0 (MeV) r0 (fm)

8.00 16332 0.073(1) 1.5(4) 0.157(3) 92(1) 0.58(2)
8.45 24348 0.049(1) 1.9(4) 0.105(2) 91(2) 0.56(2)

 

FIG. 8 (color online). Chiral extrapolation of the pseudoscalar
decay constant on the 24348 lattice at � � 8:45 (�) and on the
16332 lattice at � � 8:0 (�).
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 �t �
hQ2i

V
; (32)

whereQ is the topological charge and V the lattice volume.
The result for � is

 � �
1

8�2f4
�
�t; (33)

which suggests that the pseudoscalar mass depends on the
topological charge jQj. This turns out to be indeed the case.
In Fig. 11 we show the pseudoscalar mass for various
charge sectors, where the charge Q is given by the index
� ofDN . We observe a strong increase of � with increasing
jQj, and contrary to the findings in [31], we do not expect
the effect to go away in the limit V !1, �t fixed. It would
be interesting to search other quantities for a jQj depen-
dence as well.

Let us now turn to the fit of (26) to the data. Knowing f0

and 
q5 , this leaves us with four free parameters. Because
our data do not allow an uncorrelated fit of all four pa-
rameters, we have to make a choice and fix one of them.
We consider two cases. In the first case we fix 
� at 0,
while in the second case we fix � at its theoretical value of
0.183. The results of both fits are compiled in Table V,
where we have omitted the heaviest mass point at � �
8:00. The numbers shown in italics are the numbers that we
fixed. It is not expected that A scales. Assuming � � 0:183
and taking f0 from Table IV, we obtain a3� � 0:0039�1� at
� � 8:0 and a3� � 0:001 38�5� at � � 8:45, respectively.
We shall return to � and the fit function (26) when we
compute the renormalized chiral condensate and quark
masses. Combining the results on both lattices, we obtain
aq8 � 1:5�4� for � � 0:183. This is to be compared with
[29] a8 � 0:8�4� in full QCD. In Fig. 9 we compare the fits
with the data.

Alternatively, one may fit the low-lying pseudoscalar
masses by the resummed expression [26] m2

PS=mq �

Ay��=�1���. A fit to the lowest three data points gives � �
0:17�2� on the 16332 lattice at � � 8:0 and � � 0:12�2� on
the 24348 lattice at � � 8:45, respectively.

 

FIG. 11 (color online). The pseudoscalar mass on the 16332
lattice at � � 8:0 for jQj � 0; . . . ; 9, from left to right. The data
have been displaced horizontally. The true quark masses are
indicated by the arrow at the bottom rim of the figure. The curve
is from Fig. 9.

TABLE V. The pion mass.

� V aA � 
q� 
q8 �2=dof

8.00 16332 1.0(1) 0.34(7) 0.0 1.4(6) 0.8
1.46(2) 0.183 0.8(2) 1.5(2) 1.3

8.45 24348 1.22(4) 0.16(2) 0.0 1.3(2) 1.0
1.15(2) 0.183 �0:2�1� 1.4(4) 0.8

 

FIG. 10 (color online). The parameter �eff on the 16332 lattice
at � � 8:0 together with a linear fit (top panel) and on the 24348
lattice at � � 8:45 (bottom panel), as a function of the average
quark mass �mq � �mq �m0q�=2.
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2. Rho mass

In Fig. 12 we plot the vector meson masses as a function
of the pseudoscalar mass, where we have used the results of
Table IV to convert the lattice numbers to physical values.
Quenched chiral perturbation theory predicts [32]

 mV � CV0 � C
V
1=2mPS � CV1m

2
PS � C

V
3=2m

3
PS � � � � ; (34)

where mPS is the lattice pseudoscalar mass as described by
(26). The coefficient CV1=2 is expected to be negative, so that
the chiral limit is approached from below. Our data show
no indication of a cubic term, and so we shall drop that. The
results of a quadratic fit in the pseudoscalar are given in
Table VI. Our high statistics run at � � 8:0 indeed gives a
negative value for C1=2, but perhaps of lower magnitude
than expected [32], while at � � 8:45 our statistics is not
high enough to make any statement. The fits are shown in
Fig. 12. One might think that at the lighter quark masses
one is seeing the lowest two-pion state instead of the rho. In
Fig. 12 we also show the energy of two pseudoscalar
mesons at the lowest nonvanishing lattice momentum,2

jpj � 2�=�aL�, assuming the lattice dispersion relation
to hold. We see that the lowest two-pion energy lies well
above the vector meson mass because of the finite size of
our lattice.

3. Nucleon mass

We plot the nucleon masses as a function of the pseu-
doscalar mass in Fig. 13. Quenched chiral perturbation

theory predicts [33]

 mN � CN0 � C
N
1=2mPS � CN1 m

2
PS � C

N
3=2m

3
PS � � � � ; (35)

where

 CN1=2 � �
3
2�3F�D�

2��: (36)

Assuming the tree-level values F � 0:50 and D � 0:76,
we expect CN1=2 � �2:58�. For the theoretical value � �
0:183 this would give CN1=2 � �0:47. Of course, F and D
may be different in the quenched theory. In the Nc ! 1
limit, for example, F=D � 1=3 giving CN1=2 � 0. Again,
our data show no indication of a cubic term, and we shall
drop that here as well. The results of a quadratic fit in the
pseudoscalar mass are given in Table VII. At � � 8:0 we
find some evidence for nonanalytic behavior, but with a
positive coefficient CN1=2. The fits are shown in Fig. 13.

 

(
)

( )

FIG. 13 (color online). Chiral extrapolation of the nucleon
mass on the 24348 lattice at � � 8:45 (�) and on the 16332
lattice at � � 8:0 (�), together with the experimental value ( � ).
The curves show the fits.

TABLE VII. The nucleon mass.

� V CN0 (GeV) CN1=2 CN1 (GeV�1)

8.00 16332 0.87(2) 0.4(1) 0.6(1)
8.45 24348 0.90(7) 0.3(3) 0.6(2)

 

(
)

( )

FIG. 12 (color online). Chiral extrapolation of the vector me-
son mass on the 24348 lattice at � � 8:45 (�) and on the 16332
lattice at � � 8:0 (�), together with the experimental value ( � ).
The solid curves show the fits. The dashed curve in the top left
corner shows the energy of the state of two pseudoscalar mesons.

TABLE VI. The rho mass.

� V CV0 (GeV) CV1=2 CV1 (GeV�1)

8.00 16332 0.82(1) �0:18�5� 0.61(5)
8.45 24348 0.79(2) �0:05�7� 0.48(6)

2Note that the pions in the rho are in a relative p wave.
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Figure 13 corroborates once more that it is important to
have data at small quark masses to reliably extrapolate to
the chiral limit. For example, a linear extrapolation of data
limited to mPS * 500 MeV, as exercised in many previous
quenched calculations, would result in a 10%–20% larger
nucleon mass at the physical pion mass.

To sum up, we find a typical behavior for quenched
QCD, with some results (e.g. mN) apparently being in
reasonable agreement with the experimental value, while
others (e.g. mV) show a disagreement. Both mV and mN
scale, within the error bars, with the inverse lattice spacing
set by the pion decay constant f�.

V. NONPERTURBATIVE RENORMALIZATION

We shall now turn to the determination of the renormal-
ization constants ZS, ZP, and ZA of the scalar and pseudo-
scalar densities and the axial vector current, respectively,
which we will need in order to compute the renormalized
quark mass. We shall employ the RI0-MOM scheme [34].
Our implementation of this method is described in [35].

We consider amputated Green functions, or vertex func-
tions, �O, with operator insertion O � S, P and A4 in the
Landau gauge. Defining renormalized vertex functions by

 �RO�p� � Zq����1ZO����O�p�; (37)

where � is the renormalization scale, we fix the renormal-
ization constants by imposing the renormalization condi-
tion

 

1

12
Tr	�RO�p��

�1
O;Born
jp2��2 � 1: (38)

That is, we compute the renormalization constants from

 Zq����1ZO���
1

12
Tr	�O�p���1

O;Born
jp2��2

 Zq���
�1ZO����O�p�jp2��2 � 1 (39)

with �S;Born � 1, �P;Born � �5, and �A;Born � �4�5.
The renormalization constant of the axial vector current

can be directly determined from the axial Ward identity

 ZA �
2mqhP�t�P�0�i

h@4A4�t�P�0�i
: (40)

The wave function renormalization constant Zq can thus be
obtained from �A and ZA, Zq��� � ZA�A. In Fig. 14 we
plot ZA. We find that the right-hand side of (40) is inde-
pendent of t, except for the points close to source and sink,
as expected. We extrapolate ZA linearly in amq to the chiral
limit, as shown in Fig. 15. The final results are given in
Table VIII. The corresponding fully tadpole improved
(FTI) perturbative numbers [19] are ZA � 1:358 at � �
8:0 and ZA � 1:303 at � � 8:45. They lie 15%–8% below
their nonperturbative values.

Note that the renormalization constants depend strongly
on the choice of gauge field action [19]. This is confirmed

by nonperturbative studies. The Iwasaki action appears to
give a noticeably larger value for ZA [36], albeit on coarser
lattices, while the value of the plaquette action lies signifi-
cantly below one at comparable couplings [37].

Let us now turn to the calculation of �S�p�, �P�p�, and
�A�p�. We denote the expressions at finitemq by ��p;mq�.
Strictly speaking, �S�p;mq� and �P�p;mq� cannot be

 

0 5 10 15 20

t

1.36

1.38
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1.42

Z
A

(t
)

ma=0.0112
ma=0.0196
ma=0.0280
ma=0.0560
ma=0.0980
ma=0.1400

FIG. 14 (color online). The renormalization constant ZA on the
24348 lattice at � � 8:45.

 

FIG. 15. Chiral extrapolation of ZA on the 24348 lattice at � �
8:45, together with its value in the chiral limit (�).

TABLE VIII. The renormalization constant of the axial vector
and the scalar current.

� V ZA ZRGI
S

8.0 16332 1.59(1) 1.18(2)
8.45 16332 1.41(1) 1.02(1)
8.45 24348 1.42(1) � � �
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extrapolated to the chiral limit. Because of the zero modes,
both �S�p;mq� and �P�p;mq� diverge / 1=m2

q. This is an
artefact of the quenched approximation. On top of that,
�P�p;mq� receives a contribution / �=�mqp2�. This term
is due to spontaneous chiral symmetry breaking [35,38].
We thus expect the following dependence on the quark
mass:

 �S�p;mq� �
CS1�p�

�amq�
2 � C

S
3�p� � C

S
4�p�amq; (41)

 �P�p;mq� �
CP1 �p�

�amq�
2 �

CP2 �p�
amq

� CP3 �p� � C
P
4 �p�amq;

(42)

 �A�p;mq� � CA3 �p� � C
A
4 �p�amq; (43)

neglecting terms of O�m2
q�. This behavior is indeed shown

by the data. In Fig. 16 we plot �S�p;mq�, �P�p;mq�, and
�A�p;mq� for three different momenta, together with a fit
of (41)–(43) to the data. We identify �S�p�, �P�p�, and
�A�p� with CS3�p�, C

P
3 �p� , and CA3 �p�, respectively, from

which we derive

 ZS��� �
�A���
�S���

ZA; ZP��� �
�A���
�P���

ZA: (44)

We expect ZS��� � ZP��� due to chiral symmetry. To test
this relation, we plot the ratio �S=�P in Fig. 17. We find
good agreement between ZS and ZP for all momenta. In the
following we shall make use of a combined fit of �S�p;mq�

and �P�p;mq�, in which we set CS3�p� � CP3 �p�.
We are finally interested in ZS in the MS scheme at a

given scale �. To convert our numbers from the RI0-MOM
scheme, in which we were working so far, to the MS
scheme, we proceed in two steps. In the first step we match
to the scale invariant RGI scheme,

 ZRGI
S � �RI0-MOM���ZS���; (45)

and in the second step we evolve ZRGI
S to the targeted scale

in the MS scheme,

 ZMS
S ��� � �MS����1ZRGI

S : (46)

The matching coefficients �RI0-MOM��� and �MS��� are
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FIG. 16. Chiral extrapolation of �S (top panel), �P (middle
panel), and �A (bottom panel) on the 16332 lattice at � � 8:45
for some representative momenta p � �n1; n2; n3; n4� in units of
2�=aL (n1; n2; n3) and �=aL (n4).
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FIG. 17. The ratio �S���=�P��� as a function of � on the
16332 lattice at � � 8:45.

HADRON SPECTRUM, QUARK MASSES, AND DECAY . . . PHYSICAL REVIEW D 75, 073015 (2007)

073015-11



known perturbatively to four loops [39]. In Fig. 18 we
show ZRGI

S . The result is not quite independent of the scale
parameter � as it should be, but shows a linear decrease in
�2 for � * 2 GeV. We attribute this behavior to lattice
artefacts of O�a2�2�. Indeed, the slope of ZRGI

S at our two
different � values scales like a2 to a good approximation.
We thus fit the lattice result by

 ZRGI;LAT
S � C0 � C1�a��

2 (47)

and identify the physical value of ZRGI
S with C0. The results

are given in Table VIII. The four-loop value for �MS
S ���

has been given in [40]. At� � 2 GeV it is �MS
S �2 GeV� �

0:721�10�. The error is a reflection of the error of �MS. The
nonperturbative result at � � 8:45 is in good agreement
with ZFTI;RGI

S from [19].

VI. CHIRAL CONDENSATE AND QUARK MASSES

Having determined the renormalization constant of the
scalar density, we may now compute the renormalized
chiral condensate and light and strange quark masses.

Let us first consider the chiral condensate h �  i. Strictly
speaking, h �  i is not defined in the quenched theory due to
the presence of a logarithmic singularity in the chiral limit.
Nevertheless, we may identify �h �  i with � and assume
that � renormalizes like (the finite part of) the scalar
density. In the MS scheme at � � 2 GeV we then have

 h �  iMS�2 GeV� � �ZMS
S �2 GeV��: (48)

Taking � from our second fit in Table V, where we have
fixed � to its theoretical value 0.183, this leads to the
results in Table IX. The lower number at the larger � value
is in reasonable agreement with phenomenology and other
quenched lattice calculations [41]. A better way to deter-
mine � is by means of the spectral density [42,43], which
we will address in a separate publication [44].

Let us now turn to the evaluation of the quark masses.
We shall assume (26) with 
q� � 0 as the basic functional
form for the relation between the quark masses and the
pseudoscalar mass:

 m2
PS � Xmq � Ymq lnmq � Zm2

q: (49)

For nondegenerate quark masses, ma
q and mb

q, chiral per-
turbation theory gives the result

 �mab
PS�

2 � X
�ma

q �m
b
q

2

�
� Y

�ma
q �m

b
q

2

�

�

�ma
q lnma

q �mb
q lnmb

q

ma
q �mb

q
� 1

�
� Z

�ma
q �mb

q

2

�
2

(50)

with no new parameter. In fact, (50) reduces exactly to (49)
in the limit ma

q ! mb
q. We fit (49) to our data to determine

the coefficients X, Y, and Z. The light quark mass, m‘ �
�mu �md�=2, is then found from

 m2
�� � Xm‘ � Ym‘ lnm‘ � Zm2

‘; (51)

while we compute the strange quark mass from

 

m2
K� �m

2
K0

2
� X

�
m‘ �ms

2

�
� Y

�
m‘ �ms

2

�

�

�
m‘ lnm‘ �ms lnms

m‘ �ms
� 1

�

� Z
�
m‘ �ms

2

�
2
: (52)

The results are given in Table X. The renormalized quark
masses are obtained from

TABLE IX. The chiral condensate.

� V h �  iMS�2 GeV�

8.0 16332 �	324�8� MeV
3

8.45 24348 �	296�11� MeV
3
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FIG. 18 (color online). The scale invariant renormalization
constant ZRGI

S on the 16332 lattice at � � 8:0 (�) and � �
8:45 (�).

TABLE X. The unrenormalized and renormalized quark masses.

� V m‘ (MeV) ms (MeV) mMS
‘ �2 GeV� (MeV) mMS

s �2 GeV� (MeV)

8.0 16332 6.3(1) 203(4) 3.8(1) 124(3)
8.45 24348 5.3(3) 160(5) 3.8(2) 114(4)
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 mR
q � Zmmq (53)

and ZS � 1=Zm given in Table VIII. In Table X we state the
final results in the MS scheme at� � 2 GeV. Our findings
are in good agreement with other nonperturbative calcu-
lations of the quark masses in the quenched approximation
[4,5,40,45].

VII. CONCLUSIONS

The extrapolation to the chiral limit has been a major
challenge in lattice QCD. We have shown that with using
overlap fermions it is possible to progress to small quark
masses. Here we have simulated pion masses down to
m� � 250 MeV on both of our lattices. We have made
an attempt to compute the low-energy constants of
quenched chiral perturbation theory, with some success.
Our results turn out to be consistent with the predicted and/
or phenomenological values. To fully exploit the potential
of overlap fermions at small quark masses, one will, how-
ever, need a statistics of several thousand independent
gauge field configurations.

The pion mass was found to depend on the topological
charge jQj at small quark masses. No such behavior was
found for the pseudoscalar decay constant, but a similar
effect is expected to show up in the chiral condensate [42].

Overlap fermions, in combination with the Lüscher-
Weisz gauge field action, show good scaling properties

already at lattice spacing a � 0:15 fm, owing to the fact
that they are automatically O�a� improved, on shell and off
shell. This helps to reduce the large numerical overhead in
the algorithm.

The calculations performed in this paper test many of the
ingredients needed for a simulation of full QCD, and thus
provide a lesson for future applications.
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