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We conduct a detailed analysis of the phenomenology of two predictive seesaw scenarios leading to
quark-lepton complementarity. In both cases we discuss the neutrino mixing observables and their
correlations, neutrinoless double beta decay and lepton flavor violating decays such as �! e�. We
also comment on leptogenesis. The first scenario is disfavored on the level of one to two standard
deviations, in particular, due to its prediction for jUe3j. There can be resonant leptogenesis with
quasidegenerate heavy and light neutrinos, which would imply sizable cancellations in neutrinoless
double beta decay. The decays �! e� and �! �� are typically observable unless the SUSY masses
approach the TeV scale. In the second scenario leptogenesis is impossible. It is, however, in perfect
agreement with all oscillation data. The prediction for �! e� is in general too large, unless the SUSY
masses are in the range of several TeV. In this case �! e� and �! �� are unobservable.
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I. INTRODUCTION

The neutrino mass and mixing phenomena [1] have
provided us with some exciting hints towards the structure
of the underlying theory of flavor. In particular, based on
observations implying that the Cabibbo-Kobayashi-
Maskawa (CKM) and Pontecorvo-Maki-Nakagawa-
Sakata (PMNS) matrices are linked by a profound connec-
tion, an interesting class of models arises. The CKM matrix
is to zeroth order the unit matrix plus a small correction,
given by the sine of the Cabibbo angle, sin�C � 0:23.
Hence, in the quark sector mixing is absent at zeroth order
and the deviation from no mixing is small. To make a
connection to the lepton sector, it was noted [2] that the
deviation from maximal mixing is small. Indeed, using the
bimaximal [3] mixing scenario as the zeroth order scheme
and interpreting the observed deviation from maximal
solar neutrino mixing as a small expansion parameter,
one can write [2]

 jUe2j �
��
1
2

q
�1� ���: (1)

With current experimental information [4], we obtain �� �
0:21�0:04;0:08;0:11

�0:03;0:07;0:11, where we have inserted the best-fit values
and the 1, 2, and 3� ranges of the relevant oscillation
parameters. This number is remarkably similar to the
Cabibbo angle [2]. In fact, the so-called quark-lepton
complementarity (QLC) relation [5,6]

 �12 � �C �
�
4

(2)

has been suggested and several situations in which it can be
realized have been discussed [5–9]. In general, the PMNS
matrix is given by Uy‘ U�, where U� diagonalizes the
neutrino mass matrix and U‘ originates from the charged

lepton diagonalization. Apparently, deviations from maxi-
mal �12 as implied by Eqs. (1) and (2) can be obtained if the
neutrino mass matrix corresponds to bimaximal mixing
and the charged lepton mass matrix is diagonalized by
either the CKM or a CKM-like [10,11] matrix. The oppo-
site case, namely, bimaximal mixing from the charged
lepton sector and a CKM correction from the neutrinos,
can also be realized, which indicates two possibilities for
the approximate realization of Eq. (2).

In the present article we fully analyze the phenomenol-
ogy of these two popular scenarios, proposed in [5,6],
leading to an approximate realization of QLC within the
seesaw mechanism [12]. The two scenarios show the fea-
ture that the matrix perturbing the bimaximal mixing sce-
nario is exactly the CKM matrix and not just a CKM-like
matrix, which minimizes the number of free parameters.
We study the neutrino oscillation phenomenology, neutri-
noless double beta decay and—in the context of the see-
saw mechanism—lepton flavor violating decays such as
�! e�. We present our results of the correlations be-
tween the observables in several plots. In contrast to
many previous works, we include the full number of pos-
sible CP phases. This is a new approach particularly for the
second scenario, where bimaximal mixing arises from the
charged lepton sector. For both scenarios we comment on
the prospects of leptogenesis. We begin in Sec. II with an
introduction to the formalism required to study the observ-
ables. In Secs. III and IV we discuss the phenomenology of
the two scenarios, before we conclude in Sec. V with a
summary of our results.

II. FORMALISM

In this section we briefly introduce the required formal-
ism to analyze the QLC scenarios. First, we discuss lepton
and quark mixing before turning to lepton flavor violation,
whose connection to low energy neutrino physics is im-
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plied by the seesaw mechanism. Conclusively, the prin-
ciples of leptogenesis are outlined.

A. Neutrino masses, lepton and quark mixing

The two scenarios leading to QLC are set within the
framework of the seesaw mechanism for neutrino mass
generation [12]. In general, one has the Lagrangian

 L � 1
2

�NRMRNc
R �

�‘Rm‘‘L � �NRmD�L; (3)

where NR are the right-handed Majorana singlets, ‘L;R the
left- and right-handed charged leptons, and �L the left-
handed neutrinos. The mass matrix of the charged leptons
is m‘, mD is the Dirac neutrino mass matrix, and MR the
heavy right-handed Majorana neutrino mass matrix. As

MR � mD, Eq. (3) leads to an effective neutrino mass
matrix at low energies, defined as

 m� � �mT
DM

�1
R mD � U��m

diag
� Uy� ; (4)

where U� transforms m� to mdiag
� , with the neutrino masses

m1;2;3 as diagonal entries. When diagonalizing the charged
lepton mass matrix as m‘ � V‘m

diag
‘ Uy‘ , we can rotate

�L ! Uy��L, ‘R ! Vy‘ ‘R, and ‘L ! Uy‘ ‘L. From the
charged current term, which is proportional to �‘L���L,
we thus obtain the PMNS matrix

 U � Uy‘ U�; (5)

which we parametrize as

 U �
c12c13 s12c13 s13e�i	

�s12c23 � c12s23s13e
i	 c12c23 � s12s23s13e

i	 s23c13

s12s23 � c12c23s13ei	 �c12s23 � s12c23s13ei	 c23c13

0
B@

1
CAdiag�1; ei
; ei���	��; (6)

where we have used the usual notations cij � cos�ij, sij �
sin�ij. We have also introduced the Dirac CP-violating
phase 	 and the two Majorana CP-violating phases 

and � [13]. The oscillation parameters can be expressed
by two independent mass squared differences, �m2

	 �
m2

2 �m
2
1 and �m2

A � jm
2
3 �m

2
1j, as well as three mixing

angles, whose exact values are a matter of intense research
projects [1]. Their current best-fit values and their 1, 2, and
3� ranges are according to Ref. [4]:

 

�m2
	 � �7:9

�0:3;0:6;1:0
�0:3;0:6;0:8� 
 10�5 eV2;

sin2�12 � 0:31�0:02;0:06;0:09
�0:03;0:05;0:07;

�m2
A � �2:2

�0:37;0:7;1:1
�0:27;0:5;0:8� 
 10�3 eV2;

sin2�23 � 0:50�0:06;0:14;0:18
�0:05;0:12;0:16;

sin2�13 < 0:012 �0:028; 0:046�:

(7)

The present best-fit value for sin2�13 is 0 and there is no
information on any of the phases.

Turning to the quark sector, the CKM matrix is [14]

 V �
1� 1

2�
2 � A�3��� i
�

�� 1� 1
2�

2 A�2

A�3�1� �� i
� �A�2 1

0
B@

1
CA

�O��4�: (8)

In analogy to the PMNS matrix it is a product of two
unitary matrices, V � VyupVdown, where Vup (Vdown) is as-
sociated with the diagonalization of the up-(down-)quark
mass matrix. As reported in [15] the best-fit values as well
as the 1, 2, and 3� ranges of the parameters �, A, ��, �
 are

 

� � sin�C � 0:2272�0:0010;0:0020;0:0030
�0:0010;0:0020;0:0030;

A � 0:809�0:014;0:029;0:044
�0:014;0:028;0:042;

�� � 0:197�0:026;0:050;0:074
�0:030;0:087;0:133;

�
 � 0:339�0:019;0:047;0:075
�0:018;0:037;0:057;

(9)

where �� � ��1� �2=2� and �
 � 
�1� �2=2�. Effects
caused by CP violation are always proportional to a
Jarlskog invariant [16], defined as

 JCP � �ImfVudVcsV�usV�cdg ’ A
2�6 �


� �3:1�0:43;0:82;1:08
�0:37;0:74;0:96� 
 10�5: (10)

The leptonic analogue of Eq. (10) is

 Jlep
CP � ImfUe1U�2U

�
e2U

�
�1g

� 1
8 sin2�12 sin2�23 sin2�13 cos�13 sin	; (11)

where we have also given the explicit form of Jlep
CP with the

parametrization of Eq. (6). There are two additional invar-
iants, S1 and S2 [17], related to the Majorana phases:

 

S1 � ImfUe1U
�
e3g and S2 � ImfUe2U

�
e3g; (12)

which have no analogue in the quark sector.

B. Lepton flavor violation

The seesaw mechanism explains the smallness of neu-
trino masses, but due to the extreme heaviness of the right-
handed Majorana neutrinos a direct test is not only chal-
lenging, but presumably impossible. Nonetheless a recon-
struction of the seesaw parameter space is possible in
supersymmetric (SUSY) scenarios. While being extremely
suppressed when mediated by light neutrinos [18], lepton
flavor violating (LFV) decays such as �! e� depend in
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the context of SUSY seesaw on the very same parameters
responsible for neutrino masses and can be observable in
this case [19]. The size and relative magnitudes of the
decays are known to be a useful tool to distinguish between
different models. In this work we will focus on models
where SUSY is broken by gravity mediation, so-called
mSUGRA models. In this case there are four relevant
parameters, which are defined at the GUT scale MX,
namely, the universal scalar massm0, the universal gaugino
mass m1=2, the universal trilinear coupling parameter A0

and tan�, which is the ratio of the vacuum expectation
values of the uplike and downlike Higgs doublets. For the
branching ratios of the decays �! e�, �! e�, and �!
�� one can obtain in the leading-log approximation [19]

 

BR�li ! lj�� ’
��li ! e� ���

�total�li�

3

em

G2
Fm

8
Sv

4
u

�
3m2

0 � A
2
0

8�2

�
2


 j� ~myDL ~mD�ijj
2tan2�: (13)

Here vu � v sin� with v � 174 GeV, mS represents a
SUSY particle mass, and L � 	ij lnMX=Mi, with Mi the
heavy Majorana masses and MX � 2
 1016 GeV. Note
that the formulas relevant for lepton flavor violation and
leptogenesis have to be evaluated in the basis in which the
charged leptons and the heavy Majorana neutrinos are real
and diagonal. In this very basis we have to replace

 mD ! ~mD � VTRmDU‘; (14)

where VR diagonalizes the heavy Majorana mass matrix
via MR � V�RM

diag
R VyR . The current limit on the branching

ratio of �! e� is 1:2
 10�11 at 90% C.L. [20]. A future
improvement of 2 orders of magnitude is expected [21]. In
most parts of the relevant soft SUSY breaking parameter
space, the expression

 m8
S ’ 0:5m2

0m
2
1=2�m

2
0 � 0:6m2

1=2�
2 (15)

is an excellent approximation to the results obtained in a
full renormalization group analysis [22]. In order to sim-
plify comparisons of different scenarios, it can be conve-
nient to use ‘‘benchmark values’’ of the SUSY parameters.
We choose both pints and slopes of the Snowmass Points
and Slopes (SPS) values [23] displayed in Table I.

In this context it might be worth commenting on renor-
malization aspects of the QLC relation (see also [6]). The
running of the CKM parameters can always be neglected.
However, the case of a large tan� * 10 in the minimal
supersymmetric standard model (MSSM) can imprint siz-
able effects on the neutrino observables, if the neutrino
masses are not normally ordered. In our analysis, this
would affect only the SPS point 4, when the neutrinos
have an inverted hierarchy or are quasidegenerate.

It proves useful to consider also the ‘‘double’’ ratios,

 R�21=31� �
BR��! e� ��
BR��! e� ��

’
j� ~myDL ~mD�21j

2

j� ~myDL ~mD�31j
2
;

R�21=32� �
BR��! e� ��
BR��! �� ��

’
j� ~myDL ~mD�21j

2

j� ~myDL ~mD�32j
2
;

(16)

which are essentially independent of the SUSY parameters.

C. Leptogenesis

Since we will also comment on the possibility of lepto-
genesis in the QLC scenarios, we will summarize the key
principles of this mechanism. An important challenge in
modern cosmology is the explanation of the baryon asym-
metry 
B ’ 6
 10�10 [24] of the Universe. One of the
most popular mechanisms to create the baryon asymmetry
is leptogenesis [25]. The heavy neutrinos, whose compara-
tively huge masses govern the smallness of the light neu-
trino masses, decay in the early Universe into Higgs bosons
and leptons, thereby generating a lepton asymmetry, which
in turn gets recycled into a baryon asymmetry via non-
perturbative standard model processes. For recent reviews,
see [26]. In principle, all three heavy neutrinos generate a
decay asymmetry, which can be written as (summed over
all flavors)
 

"i �
1

8�v2
u

1

� ~mD ~myD�ii

X
j�i

Imf� ~mD ~myD�
2
jig



�����
xj
p

�
2

1� xj
� ln

�
1� xj
xj

��
;

"1 ’ �
3

8�v2
u

1

� ~mD ~myD�11

X
j�2;3

Imf� ~mD ~myD�
2
j1g
M1

Mj
;

(17)

where xj � M2
j =M

2
i . This is the general form of "i and the

limit for "1 in case of M3 � M2 � M1. Note that the
decay asymmetries depend on ~mD ~myD, which has to be
compared to the dependence on ~myD ~mD governing the
LFV decays. In the case M3 � M2 � M1 only "1 plays
a role, and dedicated numerical studies [26,27] have shown
that, in the case of the MSSM and a hierarchical spectrum

TABLE I. SPS Benchmark values for the mSUGRA parame-
ters according to Ref. [23]. The values of m0, m1=2 and A0 are in
GeV. The slope for point 1a (2, 3) is m0 � �A0 � 0:4m1=2

(m0 � 2m1=2 � 850 GeV, m0 �
1
4m1=2 � 10 GeV) with varying

m1=2.

Point m0 m1=2 A0 tan�

1a 100 250 �100 10
1b 200 400 0 30
2 1450 300 0 10
3 90 400 0 10
4 400 300 0 50
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of the heavy Majorana neutrino masses, successful thermal
leptogenesis is only possible for

 m1 & 0:1 eV and M1 * 109 GeV: (18)

However, it can occur in certain models that the lightest
heavy neutrino mass is smaller than the limit of 109 GeV
given above. We will encounter a scenario like this in the
next section. There are three possible ways to resolve this
problem:

(i) the decay of the second heaviest neutrino can in
certain scenarios generate the baryon asymmetry.
Flavor effects [28,29] are important in this respect;

(ii) if the heavy Majorana neutrinos are quasidegenerate
in mass, the decay asymmetry can be resonantly
enhanced, as has been analyzed in [30]. This re-
quires some amount of tuning;

(iii) nonthermal leptogenesis, i.e., the production of
heavy neutrinos via inflaton decay [31]. This pos-
sibility is a more model dependent case and com-
plicates the situation, as the reheating temperature,
the mass of the inflaton, and the corresponding
branching ratios for its decay into the Majorana
neutrinos need to be known.

Let us comment a bit on the first case: the expression for
the decay asymmetry Eq. (17) has been obtained by sum-
ming over all flavors in which the heavy neutrino decays.
Recently, however, is has been realized that flavor effects
on leptogenesis can have a significant impact on the sce-
nario [28,29]. The decay asymmetry for the decay of the
heavy neutrino in a lepton of flavor 
 � e, �, � has to be
evaluated individually and the wash-out or distribution for
each flavor has to be followed individually by its own
Boltzmann equation. However, the bound on the lightest
heavy neutrino mass M1 is essentially the same as in the
‘‘summed over all flavors’’ approach. In addition, the
decay asymmetry in this approach can be enhanced by at
most one order of magnitude. What will be interesting for
our purpose is that if M1 � 109 GeV the second heaviest
neutrino with massM2 can in principle generate the baryon
asymmetry [29], as long as the wash-out by the lightest
heavy neutrino is low. We will discuss this in more detail in
Sec. III C.

III. FIRST REALIZATION OF QLC

The first framework in which our analysis is set is the
following:

(i) we assume the conventional seesaw mechanism to
generate the neutrino mass matrix m� �
�mT

DM
�1
R mD. Diagonalization of m� is achieved

via m� � U��m
diag
� Uy� and U� produces exact bimax-

imal mixing;
(ii) the PMNS matrix is given by U � Uy‘U�, where U‘

corresponds to the CKM matrix V. This can be
achieved in some SU�5� models, in which m‘ �

mT
down, where mdown is the down-quark mass matrix.

Hence, Vdown � V. Consequently, the up-quark
mass matrix mup is real and diagonal;

(iii) in some SO�10� models it holds that mup � mD. It
follows that the bimaximal structure of m� origi-
nates from MR, which is diagonalized by MR �

V�RM
diag
R VyR .

This scenario has been outlined already in [5,6]. Note that
only U‘ � V is required for the low energy realization of
QLC and that the relation m‘ � mT

down will not be required
to calculate the branching ratios of the LFV decays or the
baryon asymmetry. It is known that m‘ � mT

down is not
realistic for the first and second fermion generation. More
‘‘realistic’’ scenarios have been analyzed in Refs. [8,32], in
which the relation m‘ � mT

down is modified by the Georgi-
Jarlskog factor [33]. However, in this case the neutrinos
cannot be diagonalized by a bimaximal mixing matrix,
because a too large solar neutrino mixing angle would
result. Consequently, the minimality of the scenarios is
lost, and the QLC relation �12 � �C � �=4 turns out to
be just a numerical coincidence. Therefore, following most
of the analyses in Refs. [5–7], we assume that there is a
particular structure on the mass matrices in which mixing
depends only weakly on the mass eigenvalues.

With the indicated set of properties, we can express
Eq. (5) as

 U � VyUbimax; (19)

with Ubimax corresponding to bimaximal mixing, which
will be precisely defined in Eq. (21). Moreover, Eq. (14)
changes to

 ~mD � VTRmDV

)

�
~myD ~mD � Vy diag�m2

u; m2
c; m2

t �V for LFV;
~mD ~myD � VTRdiag�m2

u; m
2
c; m

2
t �V

�
R for 
B:

(20)

In the above equation we have given the two important
matrices ~mD ~myD and ~myD ~mD describing leptogenesis and
the branching ratios of the lepton flavor violating pro-
cesses. Note, however, that for the latter we have for now
neglected the logarithmic dependence on the heavy neu-
trino masses, cf. Eq. (13).

A. Low energy neutrino phenomenology

The matrix diagonalizing m� is called U� and corre-
sponds to a bimaximal mixing matrix:

 U� � Ubimax � P� ~UbimaxQ�

� diag�1; ei�; ei!�

1��
2
p 1��

2
p 0

� 1
2

1
2

1��
2
p

1
2 � 1

2
1��
2
p

0
BB@

1
CCAdiag�1; ei�; ei��:

(21)
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We have included two diagonal phase matrices P� and Q�.
It has been shown in Ref. [11] that this is the most general
form if all ‘‘unphysical’’ phases are rotated away. We have
in total five phases, one phase inU‘ � V and four phases in
U�. Note that Q� is ‘‘Majorana-like’’ [11], i.e., the phases
� and � do not appear in neutrino oscillations, but con-
tribute to the low energy Majorana phases. Multiplying the
matrices of Eq. (8) and (21) yields for the oscillation
parameters:
 

U � Uy‘ U� � VyUbimax

)

8>>>>>>><
>>>>>>>:

sin2�12 �
1
2�

���
2
p cos��O��3�;

jUe3j �
���
2
p �O��3�;

sin2�23 �
1
2� �A cos�!��� � 1

4��
2 �O��4�;

Jlep
CP �

�
4
��
2
p sin��O��3�:

(22)

Apparently, Eq. (22) generates correlations between the
observables. The solar neutrino mixing parameter depends
on the CP phase �, which originates from the neutrino
sector and is to a very good approximation the phase
governing leptonic CP violation in oscillation experi-
ments. Note that, in order to have solar neutrino mixing
of the observed magnitude, the phase has to be close to zero
or 2�. Approximately, at 3� it should be below �=4 or
above 7�=4. The smallest solar neutrino mixing angle is
obtained for � � 0 and the prediction for sin2�12 is

 sin 2�12 * 0:334 �0:333; 0:332; 0:331�: (23)

This value of sin2�12 * 0:33 has to be compared to the
experimental 1� (2�) limit of sin2�12 � 0:33 �0:37�,
showing a small conflict. Note that, for the numerical
values, as well as for the generation of the plots, which
will be presented and discussed in the following, we did
not use the approximate expressions in Eq. (22), but the
exact formulas.1 Besides the phases, we also vary the
parameters of the CKM matrix in their 1, 2, and 3� ranges
(though, in particular, the error in � is negligible), and also
fix these parameters to their best-fit values. Even for the
best-fit values of the CKM parameters, there results a range
of values, which is caused by the presence of the unknown
phases� and!. To a good approximation, jUe3j is the sine
of the Cabibbo angle divided by

���
2
p

, leading to a sharp
prediction of jUe3j

2 � 0:0258. Varying the phases and the
CKM parameters, we find a range of

 jUe3j � 0:1607�0:0058;0:0069;0:0083;0:0096
�0:0059;0:0068;0:0080;0:0091; (24)

where we took the central value �=
���
2
p
� 0:1607. Recall

that the 1� (2�) bound on jUe3j is 0.11 (0.17). Therefore,

the prediction for jUe3j is incompatible with the current 1�
bound of jUe3j and even quite close to the 2� limit. The
experiments taking data in the next 5 to 10 years [34] will
have to find a signal corresponding to nonvanishing jUe3j
in order for this particular framework to survive. Leptonic
CP violation is in leading order proportional to � sin�,
which is five orders in units of � larger than the JCP of the
quark sector. If the neutrino sector conserved CP, one
would obtain Jlep

CP �
1
8A
�

4, which is still two orders of
� larger than the JCP of the quark sector. If V was equal to
the unit matrix, which corresponds to bimaximal mixing in
the PMNS matrix, Jlep

CP would be zero. There is an interest-
ing ‘‘sum-rule’’ between leptonic CP violation, solar neu-
trino mixing, and jUe3j:

 sin2�12 ’
1
2� jUe3j cos� ’ 1

2

�������������������������������������
jUe3j

2 � 16�Jlep
CP�

2
q

:

(25)

Overall, the experimental result of sin2�12 ’ 0:31 implies
large cos�, and therefore small sin�, leading to small CP
violating effects even though jUe3j is sizable. Atmospheric
neutrino mixing stays very close to maximal and due to
cancellations sin2�23 �

1
2 can always occur. If cos�!�

�� � 1, then sin2�23 takes its minimal value. We have
seen above that the observed low value of the solar neutrino
mixing angle requires � ’ 0, so that ! ’ 0 is implied
when �23 is very close to maximal. The minimal and
maximal values of sin2�23 are given by
 

sin2�23 � 0:445 �0:444; 0:443; 0:442� and

sin2�23 � 0:531 �0:532; 0:533; 0:534�: (26)

Probing deviations from maximal mixing of order 10%
could be possible in future experiments [34]. In Fig. 1 we
show the correlations between the oscillation parameters
which result from the relation U � VyUbimax in Eq. (22).
We plot Jlep

CP, �, and sin2�23 against sin2�12, as well as
sin2�23 against jUe3j. We also indicate the current 1, 2, and
3� ranges of the oscillation parameters. This shows again
that solar neutrino mixing is predicted to be close to its 1�
bound and jUe3j even close to its 2� bound.

Now we turn to the neutrino observables outside the
oscillation framework and comment on the consequences
for neutrinoless double beta decay. The two invariants
related to the Majorana phases are

 S1 �
�
2

sin��� �� �
�2

2
���
2
p sin��O��3�;

S2 �
�
2

sin��� �� �� �
�2

2
���
2
p sin��� �� �O��3�:

(27)

As expected, the two phases � and � in Q� only appear in
these quantities. According to the parametrization of

1Note for instance that the next term in the expansion of jUe3j
is of order �3 ’ 0:01 and can contribute sizably.
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Eq. (6), we have S1 � �c12c13s13s� and S2 �

s12c13s13s
��. We can insert in Eq. (27) the expressions
for the mixing angles from Eq. (22) to obtain in leading
order sin� ’ � sin��� �� and sin�
� �� ’ sin���
�� ��. Hence, the Majorana phase � is related to the
phase 
 in the parametrization of Eq. (6). It is interesting
to study the form of the neutrino mass matrix, which is
responsible for bimaximal mixing. It reads

 

mbimax
� �

A Be�i� �Be�i!

� �D� A
2�e
�2i� �D� A

2�e
�i���!�

� � �D� A
2�e
�2i!

0
BB@

1
CCA

�

1 0 0

0 e�i� 0

0 0 e�i!

0
BB@

1
CCA

A B �B

� D� A
2 D� A

2

� � D� A
2

0
BB@

1
CCA




1 0 0

0 e�i� 0

0 0 e�i!

0
BB@

1
CCA; (28)

where

 

A �
1

2
�m1 �m2e�2i��; B �

1

2
���
2
p �m2e�2i� �m1�;

D �
m3e�2i�

2
: (29)

The inner matrix in Eq. (28) is diagonalized by a real and
bimaximal rotation and the masses are obtained as

 m1 � A�
���
2
p
B; e�2i�m2 � A�

���
2
p
B;

e�2i�m3 � 2D:
(30)

Up to now there has been no need to specify the neutrino
mass ordering. This is however necessary in order to dis-
cuss neutrinoless double beta decay (0���) [35]. There
are three extreme hierarchies often discussed; the normal

hierarchy (m3 ’
�����������
�m2

A

q
� m2 ’

�����������
�m2

	

p
� m1), the in-

verted hierarchy (m2 ’ m1 ’
�����������
�m2

A

q
� m3), and the qua-

sidegenerate case (m1 ’ m2 ’ m3 �
�����������
�m2

A

q
). The

effective mass which can be measured in 0��� experi-
ments is the ee element of m� in the charged lepton basis.
To first order in �, one gets for a normal hierarchy that

hmi ’ 1
2

�����������
�m2

	

p
�. In case of an inverted hierarchy we have

 

FIG. 1 (color online). First realization of QLC: neutrino observables resulting from Eq. (22) for the 3� ranges of the CKM
parameters. We also indicated the present 1, 2, and 3� ranges of the oscillation parameters.
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 hmi ’
�����������
�m2

A

q
jc� �

���
2
p
s�s��j: (31)

The maximal (minimal) effective mass is obtained for � �

0 (� � �=2). On the other hand, we have hmi ’�����������
�m2

A

q ��������������������������������������
1� sin22�12sin2


p
in terms of the usual parame-

trization [35]. Therefore, as is also obvious from the dis-
cussion following Eq. (27), � will be closely related to the
Majorana phase 
. Similar considerations apply to the
quasidegenerate case.

B. Lepton flavor violation

Now we study the branching ratios of the LFV decays
like �! e� for this scenario. With our present assump-
tions we have that mD � mup � diag�mu;mc;mt�. With
this input and with Eq. (20), one easily obtains

 j� ~myD ~mD�21j
2 ’ A4m4

t �
2 � �1� ��2��10 �O��14�: (32)

Note that we have neglected the logarithmic dependence

on Mi. The double ratios are2

 R�21=31� ’ A2�4 �O��8�;

R�21=32� ’ A2�
2 � �1� ��2��6 �O��10�:
(33)

The branching ratios behave according to

 BR ��! e��:BR��! e��:BR��! ��� ’ �6:�2:1;

(34)

which is in agreement with Ref. [32].
In order to conduct a more precise study of the rates of

the LFV processes, we recall that there is some dependence
on the heavy neutrino masses, as encoded in the matrix
L � 	ij lnMX=Mi in Eq. (13). Hence, we need to evaluate
the values of the heavy Majorana neutrino masses, i.e., we
need to invert the seesaw formula m� � �mT

DM
�1
R mD and

diagonalize MR [36–38]. The light neutrino mass matrix is
displayed in Eq. (28). With mD � mup � diag�mu;mc;mt�

the heavy neutrino mass matrix reads

 �MR � mupm
�1
� mup � P�

~Am2
u

~Bmumc � ~Bmumt

� � ~D� ~A
2�m

2
c � ~D� ~A

2�mcmt

� � � ~D� ~A
2�m

2
t

0
B@

1
CAP�; (35)

where
 

~A �
1

2m1
�
e2i�

2m2
�

A

A2 � 2B2 ;
~B �

e2i�

2
���
2
p
m2

�
1

2
���
2
p
m1

�
�B

A2 � 2B2 ;
~D �

e2i�

2m3
�

1

4D
:

A, B, and D are given in Eq. (29). The heavy Majorana mass matrix is related to the inverse of the light neutrino mass
matrix and has for bimaximal mixing a very similar form. Because of the very hierarchical structure of MR, and if none of
the elements vanish, the eigenvalues are quite easy to obtain (see also [38]):
 

M1e
i�1 ’

m2
u� ~A

2 � 2 ~B2�

~A
�

2m2
u

m1 �m2e
�2i� ;

M2ei�2 ’ 2m2
c

~A ~D
~D� ~A=2

� 2e2i�����m2
c

m1 �m2e
�2i�

m2m3 �m1m3e
2i� � 2m1m2e

2i� ;

M3e
i�3 ’ m2

t � ~D� ~A=2� �
m2
t

4m1m2m3
�2e2i�m1m2 � e

2i�m1m3 �m2m3�:

(36)

Here M1;2;3 are real and positive, and �1;2;3 denote the
phases of the complex eigenvalues of the inner matrix in
Eq. (35). We see that the values of the heavy Majorana
masses depend on the phases � and �, which in turn are
related to the low energy Majorana phases. Note that the
requirement of M3 from Eq. (36) being smaller than the
Planck mass gives a lower bound on the smallest neutrino

mass of

 

m1 �
m2
t

4MPl
’ 10�7 eV and

m3 �
m2
t

2MPl
’ 3
 10�7 eV;

(37)

for the normal and inverted hierarchy, respectively.
The matrix VR is defined via MR � V�RM

diag
R VyR , where

Mdiag
R � diag�M1;M2;M3� contains real and positive en-

tries. We find

2The relative magnitude of the branching ratios has in this
scenario been estimated in Ref. [32]. Here we take the depen-
dence on Mi and mi carefully into account and study in addition
their absolute magnitude.
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 VR � iP�� ~VRP�R�; where ~VR ’

1 mu
mc

~B
~A

� mu
mt

2 ~B� ~A2�2 ~B2�
~A� ~A2�2 ~B2�2 ~A ~D��4 ~B2 ~D

� mu
mc

~B
~A

1 � mc
mt

~A� ~A2�2 ~B2�2 ~A ~D��4 ~B2 ~D
~A� ~A2�2 ~B2�2 ~A ~D��4 ~B2 ~D

mu
mt

~B
~A

mc
mt

~A� ~A2�2 ~B2�2 ~A ~D��4 ~B2 ~D
~A� ~A2�2 ~B2�2 ~A ~D��4 ~B2 ~D

1

0
BBB@

1
CCCA (38)

and R� � diag�e�i�1=2; e�i�2=2; e�i�3=2� contains the
phases of the eigenvalues in Eq. (36). The above matrix
is unitary to order mu=mc or mc=mt, which phenomeno-
logically corresponds to an order of �4. The heavy neutrino
masses are plotted in Fig. 2 as a function of the lightest
neutrino mass in case of normal ordering. Figure 3 shows
the same for inversely ordered light neutrinos. We have
chosen four different pairs of values for � and �. For the
plots we have fixed �m2

	 and �m2
A to their best-fit values

and have taken the quark masses as3 mu � 0:45 MeV,
mc � 1:2 GeV, and mt � 175 GeV. The matrix MR was
diagonalized numerically. Equation (36) is nevertheless an
excellent approximation if � and � are far away from �=2.
Moreover, it holds that VR ’ 1 in this case. On the other
hand, if � ’ �=2 it can occur that M1 and M2 are almost

degenerate if m1 takes a value around 0.5 eV. This happens
if ~A � 0 or, strictly speaking, ~Am2

u � ~Bmumc in which
case Eqs. (36) and (38) are no longer valid [37,38], but M1

and M2 build a pseudo-Dirac pair with mass

 M1 ’ M2 ’ ~Bmumc ’
mumc

2
���
2
p
m1

� 106 GeV: (39)

Note that the indicated value of m1 is in conflict with tight
cosmological constraints [40]. There are similar situations
for M2 and M3, which occur when � ’ �=2. Neglecting
these tuned cases, we plot the branching ratios in the case
of � � � � 0 for the normal ordering in Fig. 4 as a
function of the smallest neutrino mass,4 choosing the

 

FIG. 2 (color online). First realization of QLC: the heavy neutrino masses resulting from the diagonalization of Eq. (35) as a function
of the smallest neutrino mass for the normal mass ordering. We have chosen four different pairs of values for � and �, showing the
possible degeneracy of the masses. See text for further discussion.

3The values for the heavy neutrino masses are not much
different when we take the quark masses [39] at a higher energy
scale.

4Note that for inverse mass ordering the masses m1 and m2 are
always rather close. As obvious from Eq. (36), this leads to
slightly larger masses for the heavy neutrinos. This translates
into branching ratios which for small m3 are larger by a factor of
roughly 3.
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SPS points 1a, 2, and 4. We do not use points 1b and 3,
because the corresponding plots will be indistinguishable
from the plots for points 1a and 2, respectively. The results
are typical if both � and � are not close to �=2. In order to
take renormalization aspects into account, we evaluated the
branching ratios for quark masses at high scale [39]. For
instance, we took mu � 0:7 MeV, mc � 210 MeV, and
mt � 82:4 GeV, which corresponds for tan� � 10 to
mu � 2:3 MeV, mc � 677 MeV, and mt � 181 GeV at
MZ [39]. Because of the presence of the diagonal matrix
L � 	ij lnMX=Mi in the equation for the branching ratios,
the possibility of cancellations arises, leading to a very
small branching ratio. From Eq. (32) alone, such a cancel-
lation is impossible. We have also indicated current
and future sensitivities on the decays in Fig. 4. Typically,
�! e� can be observable for not too small neutrino
masses, unless the SUSY masses approach the TeV scale.
BR��! e�� is predicted to be very small, and observation
of �! �� requires rather large neutrino masses, small
SUSY masses, or large tan�. This is illustrated in
Fig. 5, where we have plotted the branching ratios as a
function of the SUSY parameter m1=2 for the SPS slopes 1a
and 2 from Table I. We have chosen two values for the
neutrino masses (normal ordering), namely, 0.002 and
0.2 eV. The relative magnitude of the branching ratios, as

estimated in Eq. (34), holds true for most of the parameter
space.

C. Comments on leptogenesis

It is worth discussing leptogenesis in the scenario under
study. As indicated in Sec. II C, the value of the baryon
asymmetry crucially depends on the spectrum of the heavy
Majorana neutrinos, which we have displayed in Figs. 2
and 3 for normally and inversely ordered light neutrino
masses. It also depends on the matrix VR, which in the case
of� far away from�=2 is given in Eq. (38). In this case the
eigenvalues M1;2;3 are strongly hierarchical. In general, M1

does not exceed 106 GeV, as obvious from Eq. (36) and
Figs. 2 and 3. According to Eq. (18), this is too small a
value for successful thermal leptogenesis generated by this
heavy neutrino. As pointed out in Sec. II C, it is in principle
possible that the second heaviest neutrino generates the
decay asymmetry. We will illustrate now that within the
QLC scenario under study this is problematic. Taking
advantage of the analysis in [29], we can estimate the
resulting baryon asymmetry including flavor effects
[28,29].5 The decay asymmetry of the neutrino with mass

 

FIG. 3 (color online). Same as Fig. 2 for the inverted mass ordering.

5For an analysis without flavor effects, see [41].
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M2 in the flavor 
 � e, �, � reads [29,41]
 

"
2 ’ �
1

8�v2
u

1

� ~mD ~myD�22

�
3

2

M2

M3
Imf� ~mD�2
� ~m

y
D�
3� ~mD ~myD�23g �

M1

M2

�
ln
M2

M1
� 2

�
Imf� ~mD�2
� ~m

y
D�
1� ~mD ~myD�21g

�
; (40)

where ~mD is given in Eq. (20). In case of a normal hier-
archy, we can neglect m1 with respect to m2 ’

�����������
�m2

	

p
and

m3 ’
�����������
�m2

A

q
and find from Eq. (36) that

 

M1ei�1 ’
2m2

u�����������
�m2

	

p e2i�;

M2ei�2 ’
2m2

c�����������
�m2

A

q e2i�;

M3ei�3 ’
m2
t

4m1

(41)

which fixes �1 � 2�, �2 � 2�, and �3 � 0 in the phase
matrix R� appearing in Eq. (38). The matrix ~VR in Eq. (38)
simplifies considerably to

 

~V R ’

1 � mu��
2
p
mc

���
2
p mu

mt
mu��
2
p
mc

1 � mc
mt

� mu��
2
p
mt

mc
mt

1

0
BB@

1
CCA: (42)

We can evaluate the decay asymmetries by making an
expansion in terms of �, for which we use that mc �
ccmt�

4 and mu � cumt�
8 with cu;c ’ 1. One finds that

"�2 is larger than "�2 ("e2) by two (four) orders in �. The
leading term in "�2 comes from the contribution propor-
tional to M2=M3 ’ 8c2

c�8m1=m3 in Eq. (40). Thus, we
obtain

 "�2 ’
3c2

c

2��1� c2
c�

m1�����������
�m2

A

q �8 sin2�!��� ��

’ 5
 10�9

�
m1

10�4 eV

�
sin2�!��� ��: (43)

The second contribution in Eq. (40) proportional toM1=M2

 

FIG. 4 (color online). First realization of QLC: the branching ratios for �! e�, �! e�, and �! �� against the smallest neutrino
mass (normal ordering) for the SPS points 1a, 2, and 4, see Table I. Indicated are also the present and future experimental sensitivities.
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is suppressed by �1� c2
c��24m3=m2, which is always much

smaller than m1=
�����������
�m2

A

q
�8 due to the lower limit on m1

from Eq. (37). We can identify the leptogenesis phase !�
�� �. This combination of phases is not directly
measurable in low energy experiments, as is clear from
the results in Sec. III A. Recall however that sin2�23 �

1
2 /

�2 cos�!���, JCP / sin�, and sin� ’ � sin��� ��,
which in principle allows one to reconstruct the lepto-
genesis phase with low energy measurements. However,
determining the Majorana phases in case of a normal
hierarchy seems at present impossible. We still have to
estimate the final baryon asymmetry from the decay
asymmetry Eq. (43). The wash-out of "�2 by the lightest
neutrino is governed by ~m�

1=m
�, where m� ’ 10�3 eV

and ~m�
i ’ � ~mD�i�� ~m

y
D��i=Mi. In our case, ~m�

1=m
� ’�����������

�m2
	

p
=�4c2

um�� ’ 2, which confirms the result in
Ref. [29], where it has been shown that the resulting
wash-out is of order 0.2. Without flavor effects, the
wash-out would be 2 orders of magnitude stronger [29],
which clearly demonstrates their importance. How-
ever, there is very strong wash-out from interactions
involving M2: the efficiency is m�= ~m�

2 ’ 2c2
cm�=

�����������
�m2

A

q
’

1=25 and the estimate for the total baryon asymmetry is
[29]

 
B ’ 6
 10�5��2

’ 3
 10�13

�
m1

10�4 eV

�
sin2�!��� ��; (44)

which is much below6 the observed value of 6
 10�10. Of
course, these estimates will eventually have to be con-
firmed by a precise numerical analysis. Nevertheless, it
serves to show that successful thermal leptogenesis with
the second heaviest Majorana neutrino is quite problematic
in the scenario.

We can perform similar estimates if the light neutrinos
are governed by an inverted hierarchy. After some algebra
in analogy to the normal hierarchical case treated above,
we find that

 "�2 ’
3c2

c

16��1� c2
c�

m3�����������
�m2

A

q �8 sin2��� ��!� �=2�

’ 7
 10�10

�
m3

10�4 eV

�
sin2��� ��!� �=2�;

(45)

 

FIG. 5 (color online). First realization of QLC: the branching ratios for �! e�, �! e�, and �! �� against the SUSY parameter
m1=2 for the SPS slopes 1a and 2, see Table I. We have chosen two values for the neutrino masses (normal ordering), namely, 0.002 and
0.2 eV. Indicated are also the present and future experimental sensitivities.

6This is in agreement with the findings of Ref. [42].
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which is always larger than "e;�2 . This expression is one
order of magnitude smaller than the decay asymmetry for
the normal hierarchy. It seems therefore that successful
leptogenesis within the inverted hierarchy is even more
difficult. A more precise statement would require solving
the full system of Boltzmann equations. The leptogenesis
phase is now �� ��!� �=2 and this combination of
phases can in principle be reconstructed using sin2�23 �
1
2 / �

2 cos�!���, JCP / sin�, sin� ’ � sin��� ��,
and sin�
� �� ’ sin��� �� ��. However, determining
both Majorana phases seems at present impossible.

There is another interesting situation in which successful
leptogenesis can take place in this scenario, namely, reso-
nant leptogenesis. This can occur if � ’ �=2, in which
case two heavy neutrinos have quasidegenerate masses, see
Eq. (39). In Ref. [38] a similar framework was considered,
and the mass splitting required to generate an 
B of the
observed size has been estimated. The result corresponds
to j1�M2=M1j ’ 10�5–10�6, which is a rather fine-tuned
situation. However, there are two rather interesting aspects
to this case: as discussed in Sec. III A, the phase � is
related to the low energy Majorana phase 
. If 
 � �=2,
it is known that for quasidegenerate neutrinos the stability
with respect to radiative corrections is significantly im-
proved [43]. Moreover, the resonant condition occurs if the
smallest neutrino mass is approximately 0.5 eV, i.e., the
light neutrinos are quasidegenerate. In this case, the effec-
tive mass for neutrinoless double beta decay reads

 hmi ’ m1�
���
2
p
�� 1

2c��2��2�: (46)

The maximum value of the effective mass for quasidegen-
erate neutrinos is roughly m1 [35]. The suppression factor���

2
p
� is nothing but cos2�12. Therefore there are sizable

cancellations in the effective mass [44] when the resonance
condition for the heavy neutrino masses is fulfilled. With
m1 ’ 0:5 eV we can predict that hmi ’ 0:16 eV, a value
which can be easily tested in running and up-coming
experiments [45].

If � ’ �=2, it is apparent from Figs. 2 and 3 that situ-
ations can occur in which M2 and M3 are quasidegenerate.
Hence, their decay could create a resonantly enhanced
decay asymmetry, but the lighter neutrino with mass M1

should not wash out this asymmetry. Determining if this is
indeed possible would again require a dedicated study and
solution of the Boltzmann equations. Leaving the fine-
tuned possibility of resonant leptogenesis aside, we can
consider nonthermal leptogenesis. However, as also dis-

cussed in Ref. [38], the decay asymmetry "1 turns out to be
too tiny: if we insert the phenomenological values
mu=mc �mc=mt ’ �4 in the exact equations and if we
refrain from considering the possibility of resonant en-
hancements, "1 is of order �16 ’ 10�11. In principle, the
baryon asymmetry could be generated by the decays of the
heavier neutrinos, i.e., by "2 and/or "3, which are indeed
larger than "1. This possibility would indicate that the
inflaton has a sizable branching ratio in the heavier neu-
trinos. However, this would also require that the lightest
Majorana neutrino N1 does not wash out the asymmetry
generated by N2 and N3, making a detailed numerical
analysis necessary.

IV. SECOND REALIZATION OF QLC

In this section we discuss another possible realization of
QLC, which has also been outlined already in [5,6]:

(i) the conventional seesaw mechanism generates the
neutrino mass matrix. Diagonalization of m� is
achieved via m� � U��m

diag
� Uy� and U� is related to

V (in the sense that Uy� � P�VQ�);
(ii) the matrix diagonalizing the charged leptons corre-

sponds to bimaximal mixing:U‘ � UT
bimax. This can

be achieved when Vup � Vy, therefore Vdown � 1;
(iii) if indeed Vup � Vy, then m� � �m

T
DM

�1
R mD

is diagonalized by the CKM matrix. If MR
does not introduce additional rotations we can
have the SO�10�-like relation mup � mD �

V0upm
diag
up P�VQ�. Here V 0up denotes in our conven-

tion the in-principle unknown right-handed rotation
of mD. The condition of MR not introducing addi-
tional rotations means that VR � �V 0up�

�, where

MR � V�RM
diag
R VyR .

Note that the equalities U‘ � UT
bimax and Vdown � 1 are

consistent with the SU�5�-like relation m‘ � mT
down. The

same comments as in the first realization of QLC on
whether the indicated scenario is realistic or not, would
then apply here. Ifm‘ � mT

down was not assumed, the quark
and lepton sector would not be related.

In the following, we will redo the calculations of the
previous sections for all the observables with this second
set of assumptions. First of all, we note that in the impor-
tant basis in which the charged leptons and heavy neutrinos
are real and diagonal the Dirac mass matrix reads

 mD ! ~mD � VTRmDU‘ � mdiag
up P�VQ�UT

bimax )

�
~myD ~mD � UbimaxQ

y
�Vydiag�m2

u; m2
c; m2

t �VQ�UT
bimax for LFV;

~mD ~myD � diag�m2
u;m

2
c; m

2
t � for 
B:

(47)

The correspondence between the light and heavy Majorana neutrino masses is rather trivial:

 M1 �
m2
u

m1
; M2 �

m2
c

m2
; M3 �

m2
t

m3
: (48)
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In Fig. 6 we show the neutrino masses as a function of the
smallest neutrino mass m1 and m3 for the normal and
inverted ordering, respectively. Again, we have taken the
best-fit points for �m2

	 and �m2
A and the quark masses are

mu � 0:7 MeV, mc � 210 MeV, and mt � 82:4 GeV.
Note that in contrast to the first realization of QLC there
is no possibility to enhance the neutrino masses, since they
do not depend on phases. We can set a lower limit onm1 or
m3 which stems from the requirement that M1 or M3 does
not exceed the Planck mass:
 

m1 �
m2
u

MPl
’ 4
 10�17 eV and

m3 �
m2
t

MPl
’ 6
 10�7 eV:

(49)

This is for m1 10 orders of magnitude smaller than the
corresponding limit in the first realization of QLC, see
Eq. (37).

Interestingly, there can be no leptogenesis in this sce-
nario. First of all, M1 is lighter than 107 GeV and this is—
in analogy to the first realization of QLC—too small a
value for successful leptogenesis. Can the decay of the
second heaviest neutrino generate the baryon asymmetry?
The answer is no, simply because ~mD ~myD is diagonal, as
can be seen in Eq. (47). The decay asymmetries, both in the
case when one sums over all flavors, Eq. (17), and the
asymmetries for a given flavor, Eq. (40), are always pro-
portional to off-diagonal entries of ~mD ~myD and therefore
always vanish in this realization of QLC.

A. Low energy neutrino phenomenology

In our second case the PMNS matrix can be written as

 U � Uy‘U� � R23R12�P�VQ��
y; (50)

where Rij is a rotation with �=4 around the (ij)-axis and
P� and Q� are defined in Eq. (21). We remark that an
analysis of this framework including all possible phases

has not been performed before (see Refs. [5,6,9]). With our
parametrization of the PMNS matrix, the two phases in P�
are ‘‘Majorana-like’’ and do not show up in oscillations.
All phases originate from the neutrino sector. The neutrino
oscillation observables are
 

sin2�12 �
1

2
� � cos��O��3�;

jUe3j �
A���
2
p �2 �O��3�;

sin2�23 �
1

2
�

���
1

2

s
A�2 cos��� �� �O��3�;

Jlep
CP �

�2

4
���
2
p sin��� �� �O��3�:

(51)

The solar neutrino mixing parameter depends on the CP
phase �. Note that, in order to have solar neutrino mixing
of the observed magnitude, the phase has to be close to zero
or 2�, at 3� typically below �=4 (or above 7�=4). The
prediction for sin2�12 is7

 sin 2�12 * 0:279 �0:278; 0:277; 0:276�: (52)

These are lower values than in our first scenario. The
numbers have to be compared to the 1� (2�) limit of
sin2�12 � 0:33 (0.37). The parameter jUe3j has a ‘‘central
value’’ of A�2=

���
2
p
’ 0:0295. In the first scenario the pre-

diction was jUe3j
2 � 0:0258, which is by chance almost

the same number. We find a range of

 jUe3j � 0:0295�0:0059;0:0070;0:0085;0:0099
�0:0058;0:0066;0:0076;0:0084: (53)

Recall that the 1� (2�) bound on jUe3j is 0.11 (0.17).
Probing such small values of jUe3j is rather challenging

 

FIG. 6 (color online). Second realization of QLC: the heavy neutrino masses as a function of the smallest neutrino mass for the
normal (left plot) and inverted (right plot) mass ordering.

7Again, we do not use the approximate expressions in Eq. (51),
but the exact equations. Besides the phases, we also vary the
parameters of the CKM matrix in their 1, 2, and 3� ranges, and
also fix these parameters to their best-fit values.
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and would require at least superbeams [34]. Because of
cancellations sin2�23 �

1
2 can always occur. In this case,

cos��� �� � 0 and Jlep
CP takes its maximal possible value.

The minimal and maximal values of sin2�23 are given by
 

sin2�23 � 0:466 �0:465; 0:463; 0:462� and

sin2�23 � 0:536 �0:538; 0:539; 0:540�;
(54)

which is only a slightly larger range compared to the first
scenario, and thus hard to probe experimentally. Leptonic
CP violation is in leading order proportional to �2 sin���
��, which is four powers of � larger than the JCP of the
quark sector. If the neutrino sector conserved CP, then Jlep

CP
vanishes. Note that the phase combination (�� �) governs
the magnitude of the atmospheric neutrino mixing. In the
first scenario, Jlep

CP and the solar neutrino mixing were
correlated in this way. In analogy to Eq. (25) we can write
the sum-rule

 sin2�23 ’
1
2� jUe3j cos��� �� ’ 1

2

������������������������������
jUe3j � 16J2

CP

q
:

(55)

In Fig. 7 we show the correlations between the oscillation
parameters which result from the relation in Eq. (50). We

plot Jlep
CP and sin2�12 against sin2�23, as well as � and jUe3j

against sin2�12. We also indicate the current 1, 2, and 3�
ranges of the oscillation parameters, showing that the
predictions of this scenario are perfectly compatible with
all current data.

Turning aside again from the oscillation observables, the
invariants for the Majorana phases are

 

S1 � �
�2

2
A sin���!� �O��3� and

S2 � �
�2

2
A sin�!��� �O��3�:

(56)

In analogy to the discussion following Eq. (27), we can
translate these formulas into expressions for the low energy
Majorana phases
 and�. This leads to sin� ’ sin���!�
and sin�
� �� ’ sin���!� and indicates that 
 in the
parametrization of Eq. (6) is related to (�� �). Indeed, a
calculation of the effective mass in the case of an inverted
hierarchy, where the Majorana phase 
 plays a crucial role
[35], results in

 hmi ’
�����������
�m2

A

q ��������c��� � 2
s�
c���

�2

��������: (57)

 

FIG. 7 (color online). Second realization of QLC: neutrino observables resulting from Eq. (51) for the 3� ranges of the CKM
parameters. We also indicated the current 1, 2, and 3� ranges of the oscillation parameters.
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Similar statements can be made for quasidegenerate
neutrinos.

B. Lepton flavor violation

With the help of Eqs. (13) and (47), we can evaluate the
branching ratios for LFV processes, ignoring for the mo-
ment the logarithmic dependence on the heavy neutrino
masses. The decay �! e� is found to be governed by

 j� ~myD ~mD�21j
2 ’ 1

4A
2m4

t �4 �O��5�: (58)

Comparing with Eq. (32), we see that in the second real-
ization the branching ratio is larger than in the first real-
ization by 6 inverse powers of �, or ��6 ’ 8820, almost 4
orders of magnitude. For the double ratios of the branching
ratios, we obtain

 R�21=31� ’ 1� 2
���
2
p
A cos��� ���2 �O��3�;

R�21=32� ’ A2�4 �O��5�:
(59)

There is a small dependence on the phase combination
(�� �), which also governs leptonic CP violation in
oscillation experiments and the magnitude of the atmos-
pheric neutrino mixing angle. The branching ratios behave
according to

 

BR��! e��:BR��! e��:BR��! ��� ’ A2�4:A2�4:1:

(60)

In Fig. 8 we show the branching ratios for �! e�, �!
e�, and �! �� as a function of the smallest neutrino
mass for a normal mass ordering, choosing the SPS points
1a, 2, and 4. The small dependence on the heavy neutrino
masses is taken into account and plots for the inverted
ordering look very similar. Note that from Fig. 8 it follows
that the dependence on the neutrino masses is very small.
The relative magnitude of the branching ratios, as esti-
mated in Eq. (59), holds true to a very high accuracy.
However, we immediately see that the prediction for �!
e� is at least one order of magnitude above the current
limit. To obey the experimental limit on BR��! e��, the
SUSY masses should be in the several TeV range. This is
illustrated in Fig. 9, where we have plotted the branching
ratios as a function of the SUSY parameter m1=2 for the
SPS slopes 1a and 2 from Table I. We took the normal
ordering of neutrino masses with a smallest mass m1 �
0:02 eV. Once we have adjusted the SUSY parameters to
have BR��! e�� below its current limit, the other decays
�! e� and �! �� are too rare to be observed with
presently planned experiments.

 

FIG. 8 (color online). Second realization of QLC: the branching ratios for �! e�, �! e�, and �! �� against the smallest
neutrino mass (normal ordering) for the SPS points 1a, 2, and 4, see Table I. Indicated are also the present and future sensitivities.
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V. CONCLUSIONS AND SUMMARY

We have considered the phenomenology of two predic-
tive seesaw scenarios leading approximately to quark-
lepton complementarity. Both have in common that bimax-
imal mixing is corrected by the CKM matrix. We have
studied the complete low energy phenomenology, includ-
ing the neutrino oscillation parameters, where we have
taken into account all possible phases, and neutrinoless
double beta decay. Moreover, lepton flavor violating
charged lepton decays have been studied and all results
have been compared to presently available and expected
future data. Finally, we have commented on the possibility
of leptogenesis.8

In terms of the elements of the PMNS matrix U and the
CKM matrix V, the QLC condition can be written as
jUe2j � jVudj � 1=

���
2
p

. This defines the solar neutrino mix-

ing parameter sin2�12 to be sin2��4 � ��. Taking the best-fit,
as well as the 1, 2, and 3� values of � from Eq. (9), we
obtain

 sin 2�12 � 0:2805
 �0:0009; 0:0018; 0:0027�: (61)

A second QLC relation has also been suggested, namely
�23 � A�2 � �=4, which is the analogue of Eq. (2) for the
(23)-sector. This can also be written as jU�3j � jVcbj �
1=

���
2
p

and its precise prediction is

 sin 2�23 � 0:4583�0:0011;0:0022;0:0032
�0:0011;0:0022;0:0034: (62)

We remark that in our scenario with all possible CP phases
the above two relations correspond to at least one phase
being zero.

The first scenario has bimaximal mixing from the neu-
trino sector and the matrix diagonalizing the charged lep-
tons is the CKM matrix. The main results are:

(i) solar neutrino mixing is predicted close to its 1�
bound and jUe3j even close to its 2� bound, see
Fig. 1. The phase governing the magnitude of �12

is the CP phase of neutrino oscillations and is im-
plied to be small;

 

FIG. 9 (color online). Second realization of QLC: the branching ratios for �! e�, �! e�, and �! �� against the SUSY
parameter m1=2 for the SPS slopes 1a and 2, see Table I. We have chosen for the neutrino mass (normal ordering) 0.02 eV. Indicated are
also the present and future sensitivities.

8As indicated at the beginning of Sec. II B, the decays �!
e�, �! e�, and �! �� are very strongly suppressed and
cannot be observed if supersymmetry is not realized by nature.
Hence, judging the validity of a given seesaw scenario based on
its predictions for those decays can in this case not be done. Note
that the predictions for leptogenesis do not depend on the
presence of supersymmetry.
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(ii) jUe3j is roughly 0.16, i.e., it should be observed
soon;

(iii) the lowest value of sin2�12 (corresponding to CP
conservation) is roughly 0.33, which differs by
about 15% from Eq. (61). For sin2�23 the lowest
value is 0.44, in moderate agreement with Eq. (62);

(iv) the decay �! e� can be observable for not too
small neutrino masses, unless the SUSY masses
approach the TeV scale. BR��! e�� is predicted
to be very small, and observation of �! �� re-
quires rather large neutrino masses, small SUSY
masses, or large tan�. The relative magnitude
of the branching ratios is BR��! e��:BR��!
e��:BR��! ��� ’ �6:�2:1;

(v) successful resonant leptogenesis depends on the low
energy Majorana phases but is fine-tuned. One pos-
sibility occurs if � ’ �=2, leading to two quaside-
generate heavy neutrino masses. It also leads to
quasidegenerate light neutrinos with mass around
0.5 eV and to sizable cancellations in neutrinoless
double beta decay, corresponding to hmi ’ 0:16 eV.
Leptogenesis via the decay of the second heaviest
neutrino typically fails, even with the inclusion of
flavor effects.

The second scenario has bimaximal mixing from the
charged lepton sector and the matrix diagonalizing the
neutrinos is the CKM matrix. The main results are:

(i) the neutrino oscillation parameters are perfectly
compatible with all data, see Fig. 7. The phase
governing the magnitude of �23 is the CP phase of
neutrino oscillations;

(ii) jUe3j is roughly 0.03, which is a rather small value
setting a challenge for future experiments;

(iii) the lowest value of sin2�12 (corresponding to CP
conservation) is roughly 0.28, in perfect agreement
with Eq. (61). For sin2�23 the lowest value is 0.46
(but �23 can be maximal), in perfect agreement
with Eq. (62). If sin2�23 �

1
2 then maximal CP

violation is implied;
(iv) The branching ratio of �! e� is larger than in the

first scenario by six inverse powers of � and there-
fore typically too large unless the SUSY masses are
of several TeV scale. If they are so heavy that �!
e� is below its current limit, �! e� and �! ��
are too small to be observed. The relative magni-
tude of the branching ratios is BR��!
e��:BR��! e��:BR��! ��� ’ A2�4:A2�4:1;

(v) there can be no leptogenesis.

We conclude that both scenarios predict interesting and
easily testable phenomenology. However, the first scenario
is in slight disagreement with oscillation data and allows
leptogenesis only for fine-tuned parameter values. In the
second scenario, the predictions for LFV decays are in
contradiction to experimental results unless the SUSY
parameters are very large. Moreover, no leptogenesis is
possible in this case.
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